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Chapter 10

Geometry in the Plane

Suppose that we are concerned with the motion of a particle as it moves in a plane.
At any time ¢ during the motion, the position of the particle is given by its two
coordinates, which depend on time, and may therefore be denoted by z(t) and y(¢),
respectively. The set of points traced out by the particle as it moves during a given
interval of time is a curve. The function which describes the position of the particle
is called a parametrization, and a curve described by such a function is said to be
parametrized. In the first sections of this chapter we shall develop the mathematical
theory of parametrized curves, abstracting from the picture of a physical particle in
motion. Later we shall return to this application and define the notions of velocity
and acceleration of such particles.

Parametrized curves represent an important generalization of the curves encoun-
tered thus far as the graphs of functions. As we shall see, a parametrized curve is
not necessarily the graph of an equation y = f(z).

10.1 Parametrically Defined Curves.

When we speak of the plane in this book, we assume, unless otherwise stated, that
a pair of coordinate axes has been chosen. As a result, we identify the set of points
in the plane with the set R? of all ordered pairs of real numbers. A convenient
notation for a function P whose domain is an interval I of real numbers and whose
range is a subset of the plane is P : I — R?. Every function P : I — R? defines
two coordinate functions, the functions which assign to every ¢ in I the two
coordinates of the point P(t). If we denote the first coordinate function by f, and
the second one by g, then they are defined by the equation

P@)=1(f(),g(t)), foreverytin I. (10.1)

Conversely, of course, every ordered pair of real-valued functions f and ¢g with an
interval I as common domain defines a function P : I — R? by equation (1).

Since the first and second coordinates of an element of R? are usually the -
and y-coordinates, respectively, we may alternatively define a function P : I — R?
by a pair of equations
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y=g(t),

where f and g are real-valued functions with domain I. Then, for every ¢ in I,
we have P(t) = (z,y) = (f(t),g(t)). It is also common practice to denote the
coordinate functions themselves by x and y. When this is done, we do not hesitate
to write the equations z = x(t) and y = y(¢), and the function P : I — R? is defined
by

P@t) = (z(t),y(t)), foreverytin I.

A function P : I — R? is said to be continuous at ¢y if both coordinate
functions are continuous at tg. If the coordinate functions are denoted by x and y,
then we define

lim P() = (Jim «(t), lim o(0)).
As a result, the definition of continuity for P is entirely analogous to that for
a real-valued function: P is continuous at tq if ¢p is in the domain of P and if
lim;_;, P(t) = P(to). As before, the function P is simply said to be continuous if
it is continuous at every number in its domain.

A curve in the plane is by definition a subset of R? which is the range of some
continuous function P : I — R?. Every curve is the range of many such functions,
and, as a result, it is necessary to choose our terminology carefully. We shall call a
continuous function P : I — R?, a parametrization of the curve C' which is the
range of P, and we shall say that C is parametrically defined by P : I — R”.
The points of the curve C obviously consist of the set of all points P(t), for every ¢
in I. By a parametrized curve we shall mean the range of a specified continuous
function P : I — R?. Speaking more casually, we shall refer to the curve defined
parametrically by

P(t) = (2(t),y(t)),
or, equivalently, to the curve defined parametrically by the equations
{xxw7
y =y(t),

for every ¢ in some interval I which is the common domain of the continuous func-
tions z and y. If ¢ is regarded as an independent variable, it is called the parameter
of the parametrized curve.

Example 197. Draw the curve defined parametrically by
P(t) = (1*,1), —oo <t < .

This is, of course, also the curve defined by the equations

x:t27
y=1t, —o0o <t <0o0.

It is plotted in Figure 1. Since the set of all points (z,y) which satisfy the above
two equations is equal to the set of all points (x,y) such that x = y”, we recognize
the curve as a parabola.
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Figure 1.0.1 A data plot, height versus time.

is often written Az, where the meaning of A (a capital delta in the Greek alphabet) is
“change in”. (Thus, Ax can be read as “change in 2”7 although it usually is read as “delta
2”. The point is that Az denotes a single number, and should not be interpreted as “delta
times z”.) For example, if A = (2,1) and B = (3,3), Az = 3 — 2 = 1. Similarly, the
“change in y” is written Ay. In our example, Ay = 3 — 1 = 2, the difference between the
y-coordinates of the two points. It is the vertical distance you have to move in going from
A to B. The general formulas for the change in x and the change in y between a point
(r1,y1) and a point (z2,y2) are:

Axr =29 — 21, Ay =y — 1.

Note that either or both of these might be negative.

1.1 LINES

If we have two points A(xy,y1) and B(rs,y2), then we can draw one and only one line
through both points. By the slope of this line we mean the ratio of Ay to Az. The slope
is often denoted m: m = Ay/Ax = (y2 — y1)/(x2 — x1). For example, the line joining the
points (1, —2) and (3,5) has slope (5+2)/(3—-1) =7/2.

EXAMPLE 1.1.1 According to the 1990 U.S. federal income tax schedules, a head
of household paid 15% on taxable income up to $26050. If taxable income was between
$26050 and $134930, then, in addition, 28% was to be paid on the amount between $26050
and $67200, and 33% paid on the amount over $67200 (if any). Interpret the tax bracket
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information (15%, 28%, or 33%) using mathematical terminology, and graph the tax on
the y-axis against the taxable income on the z-axis.

The percentages, when converted to decimal values 0.15, 0.28, and 0.33, are the slopes
of the straight lines which form the graph of the tax for the corresponding tax brackets.
The tax graph is what’s called a polygonal line, i.e., it’s made up of several straight line
segments of different slopes. The first line starts at the point (0,0) and heads upward
with slope 0.15 (i.e., it goes upward 15 for every increase of 100 in the z-direction), until
it reaches the point above x = 26050. Then the graph “bends upward,” i.e., the slope
changes to 0.28. As the horizontal coordinate goes from x = 26050 to x = 67200, the line
goes upward 28 for each 100 in the z-direction. At x = 67200 the line turns upward again

and continues with slope 0.33. See figure 1.1.1. O
30000 -
20000
10000 +
50000 100000 134930

Figure 1.1.1  Tax vs. income.

The most familiar form of the equation of a straight line is: ¥y = max +b. Here m is the
slope of the line: if you increase x by 1, the equation tells you that you have to increase y
by m. If you increase = by Az, then y increases by Ay = mAx. The number b is called
the y-intercept, because it is where the line crosses the y-axis. If you know two points
on a line, the formula m = (y2 —y1)/(x2 — 1) gives you the slope. Once you know a point
and the slope, then the y-intercept can be found by substituting the coordinates of either
point in the equation: y; = mx; + b, i.e., b = y1 — mxy. Alternatively, one can use the
“point-slope” form of the equation of a straight line: start with (y —y1)/(z —x1) = m and
then multiply to get (y —y1) = m(x — 1), the point-slope form. Of course, this may be
further manipulated to get y = max — mx1 + y1, which is essentially the “max 4 b” form.

It is possible to find the equation of a line between two points directly from the relation
(y—wy1)/(x—x1) = (y2 —y1)/(x2 — x1), which says “the slope measured between the point
(x1,y1) and the point (x2,y2) is the same as the slope measured between the point (1, 1)
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”

and any other point (r,y) on the line.” For example, if we want to find the equation of

the line joining our earlier points A(2,1) and B(3, 3), we can use this formula:

y—1 3-1
r—2 3—-2

2, so that y—1=2(x—2), ie., y=2xr— 3.

Of course, this is really just the point-slope formula, except that we are not computing m
in a separate step.

The slope m of a line in the form y = ma + b tells us the direction in which the line is
pointing. If m is positive, the line goes into the 1st quadrant as you go from left to right.
If m is large and positive, it has a steep incline, while if m is small and positive, then the
line has a small angle of inclination. If m is negative, the line goes into the 4th quadrant
as you go from left to right. If m is a large negative number (large in absolute value), then
the line points steeply downward; while if m is negative but near zero, then it points only
a little downward. These four possibilities are illustrated in figure 1.1.2.

4 4 4 \ 4
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0 / 0 0 \ 0
—2 —2 —2 \ —2
—4 / —4 —4 \ —4
-4 -2 0 2 4 -4 -2 0 2 4 —4 -2 0 2 4 -4 -2 0 2 4

Figure 1.1.2 Lines with slopes 3, 0.1, —4, and —0.1.

If m = 0, then the line is horizontal: its equation is simply y = b.

There is one type of line that cannot be written in the form y = mx + b, namely,
vertical lines. A vertical line has an equation of the form x = a. Sometimes one says that
a vertical line has an “infinite” slope.

Sometimes it is useful to find the z-intercept of a line y = ma + b. This is the z-value
when y = 0. Setting mxz + b equal to 0 and solving for = gives: x = —b/m. For example,
the line y = 22 — 3 through the points A(2,1) and B(3, 3) has z-intercept 3/2.

EXAMPLE 1.1.2 Suppose that you are driving to Seattle at constant speed, and notice
that after you have been traveling for 1 hour (i.e., t = 1), you pass a sign saying it is 110
miles to Seattle, and after driving another half-hour you pass a sign saying it is 85 miles
to Seattle. Using the horizontal axis for the time ¢ and the vertical axis for the distance y
from Seattle, graph and find the equation y = mt + b for your distance from Seattle. Find
the slope, y-intercept, and t-intercept, and describe the practical meaning of each.

The graph of y versus t is a straight line because you are traveling at constant speed.
The line passes through the two points (1,110) and (1.5,85), so its slope is m = (85 —
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110)/(1.5 — 1) = —50. The meaning of the slope is that you are traveling at 50 mph; m is
negative because you are traveling toward Seattle, i.e., your distance y is decreasing. The
word “velocity” is often used for m = —50, when we want to indicate direction, while the
word “speed” refers to the magnitude (absolute value) of velocity, which is 50 mph. To
find the equation of the line, we use the point-slope formula:

~ 110
yt—l — 50, sothat y=—50(f— 1)+ 110 = —50t + 160.

The meaning of the y-intercept 160 is that when ¢t = 0 (when you started the trip) you were
160 miles from Seattle. To find the t-intercept, set 0 = —50t4160, so that ¢t = 160/50 = 3.2.
The meaning of the t-intercept is the duration of your trip, from the start until you arrive
in Seattle. After traveling 3 hours and 12 minutes, your distance y from Seattle will be 0.

O

Fxercises 1.1.

Find the equation of the line through (1,1) and (=5, —3) in the form y = mz + b. =
Find the equation of the line through (—1, 2) with slope —2 in the form y = mxz + b. =
Find the equation of the line through (—1,1) and (5, —3) in the form y = mz + b. =

W=

Change the equation y — 2x = 2 to the form y = mx + b, graph the line, and find the
y-intercept and z-intercept. =

5. Change the equation x+y = 6 to the form y = max+b, graph the line, and find the y-intercept
and z-intercept. =

6. Change the equation x = 2y — 1 to the form y = mx + b, graph the line, and find the
y-intercept and x-intercept. =

7. Change the equation 3 = 2y to the form y = mx + b, graph the line, and find the y-intercept
and z-intercept. =

8. Change the equation 2z + 3y + 6 = 0 to the form y = mx + b, graph the line, and find the
y-intercept and z-intercept. =

9. Determine whether the lines 3z 4+ 6y = 7 and 2x + 4y = 5 are parallel. =

10. Suppose a triangle in the z, y—plane has vertices (—1,0), (1,0) and (0, 2). Find the equations
of the three lines that lie along the sides of the triangle in y = max 4+ b form. =

11. Suppose that you are driving to Seattle at constant speed. After you have been traveling
for an hour you pass a sign saying it is 130 miles to Seattle, and after driving another 20
minutes you pass a sign saying it is 105 miles to Seattle. Using the horizontal axis for the
time ¢ and the vertical axis for the distance y from your starting point, graph and find the
equation y = mt + b for your distance from your starting point. How long does the trip to
Seattle take? =

12. Let 2 stand for temperature in degrees Celsius (centigrade), and let y stand for temperature in
degrees Fahrenheit. A temperature of 0°C corresponds to 32°F, and a temperature of 100°C
corresponds to 212°F. Find the equation of the line that relates temperature Fahrenheit y to
temperature Celsius x in the form y = max + b. Graph the line, and find the point at which
this line intersects y = x. What is the practical meaning of this point? =



