

HIGHER Joh ENGINEERING MATHEMATICS

Integration by parts

43.1 Introduction

From the product rule of differentiation:

$$\frac{\mathrm{d}}{\mathrm{d}x}(uv) = v\frac{\mathrm{d}u}{\mathrm{d}x} + u\frac{\mathrm{d}v}{\mathrm{d}x},$$

where u and v are both functions of x.

Rearranging gives: $u \frac{dv}{dx} = \frac{d}{dx}(uv) - v \frac{du}{dx}$

Integrating both sides with respect to *x* gives:

$$\int u \frac{\mathrm{d}v}{\mathrm{d}x} \, \mathrm{d}x = \int \frac{\mathrm{d}}{\mathrm{d}x} (uv) \, \mathrm{d}x - \int v \frac{\mathrm{d}u}{\mathrm{d}x} \, \mathrm{d}x$$

i.e.
$$\int u \frac{\mathrm{d}v}{\mathrm{d}x} \, \mathrm{d}x = uv - \int v \frac{\mathrm{d}u}{\mathrm{d}x} \, \mathrm{d}x$$

or
$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

This is known as the **integration by parts for-mula** and provides a method of integrating such products of simple functions as $\int xe^x dx$, $\int t \sin t dt$, $\int e^{\theta} \cos \theta d\theta$ and $\int x \ln x dx$.

Given a product of two terms to integrate the initial choice is: 'which part to make equal to u' and 'which part to make equal to v'. The choice must be such that the 'u part' becomes a constant after successive differentiation and the 'dv part' can be integrated from standard integrals. Invariable, the following rule holds: If a product to be integrated contains an algebraic term (such as x, t^2 or 3θ) then this term is chosen as the u part. The one exception to this rule is when a ' $\ln x$ ' term is involved; in this case $\ln x$ is chosen as the 'u part'.

43.2 Worked problems on integration by parts

Problem 1. Determine $\int x \cos x \, dx$.

From the integration by parts formula,

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

Let u = x, from which $\frac{du}{dx} = 1$, i.e. du = dx and let $dv = \cos x \, dx$, from which $v = \int \cos x \, dx = \sin x$.

Expressions for u, du and v are now substituted into the 'by parts' formula as shown below.

$$\int u \, dv = u \, v - \int v \, du$$

$$\int x \, \cos x \, dx = (x) (\sin x) - \int (\sin x) (dx)$$

i.e.
$$\int x \cos x \, dx = x \sin x - (-\cos x) + c$$
$$= x \sin x + \cos x + c$$

[This result may be checked by differentiating the right hand side,

i.e.
$$\frac{d}{dx}(x \sin x + \cos x + c)$$

$$= [(x)(\cos x) + (\sin x)(1)] - \sin x + 0$$
using the product rule
$$= x \cos x, \text{ which is the function}$$
being integrated]

Problem 2. Find
$$\int 3te^{2t} dt$$
.

Let u = 3t, from which, $\frac{du}{dt} = 3$, i.e. du = 3 dt and let $dv = e^{2t} dt$, from which, $v = \int e^{2t} dt = \frac{1}{2}e^{2t}$

Substituting into
$$\int u \, dv = uv - \int v \, du$$
 gives:

$$\int 3te^{2t} dt = (3t) \left(\frac{1}{2}e^{2t}\right) - \int \left(\frac{1}{2}e^{2t}\right) (3 dt)$$

$$= \frac{3}{2}te^{2t} - \frac{3}{2}\int e^{2t} dt$$
$$= \frac{3}{2}te^{2t} - \frac{3}{2}\left(\frac{e^{2t}}{2}\right) + c$$

Hence

$$\int 3t e^{2t} dt = \frac{3}{2}e^{2t} \left(t - \frac{1}{2} \right) + c,$$

which may be checked by differentiating.

Problem 3. Evaluate
$$\int_0^{\frac{\pi}{2}} 2\theta \sin \theta \, d\theta$$
.

Let $u = 2\theta$, from which, $\frac{du}{d\theta} = 2$, i.e. $du = 2 d\theta$ and let $dv = \sin \theta d\theta$, from which,

$$v = \int \sin\theta \, \mathrm{d}\theta = -\cos\theta$$

Substituting into $\int u \, dv = uv - \int v \, du$ gives:

$$\int 2\theta \sin \theta \, d\theta = (2\theta)(-\cos \theta) - \int (-\cos \theta)(2 \, d\theta)$$
$$= -2\theta \cos \theta + 2 \int \cos \theta \, d\theta$$
$$= -2\theta \cos \theta + 2 \sin \theta + c$$

Hence
$$\int_0^{\frac{\pi}{2}} 2\theta \sin \theta \, d\theta$$

$$= \left[-2\theta \cos \theta + 2\sin \theta \right]_0^{\frac{\pi}{2}}$$

$$= \left[-2\left(\frac{\pi}{2}\right)\cos\frac{\pi}{2} + 2\sin\frac{\pi}{2} \right] - \left[0 + 2\sin 0 \right]$$

$$= (-0 + 2) - (0 + 0) = \mathbf{2}$$
since $\cos\frac{\pi}{2} = 0$ and $\sin\frac{\pi}{2} = 1$

Problem 4. Evaluate $\int_0^1 5xe^{4x} dx$, correct to 3 significant figures.

Let u = 5x, from which $\frac{du}{dx} = 5$, i.e. du = 5 dx and let $dv = e^{4x} dx$, from which, $v = \int e^{4x} dx = \frac{1}{4}e^{4x}$.

Substituting into $\int u \, dv = uv - \int v \, du$ gives:

$$\int 5xe^{4x} dx = (5x) \left(\frac{e^{4x}}{4}\right) - \int \left(\frac{e^{4x}}{4}\right) (5 dx)$$

$$= \frac{5}{4}xe^{4x} - \frac{5}{4}\int e^{4x} dx$$

$$= \frac{5}{4}xe^{4x} - \frac{5}{4}\left(\frac{e^{4x}}{4}\right) + c$$

$$= \frac{5}{4}e^{4x}\left(x - \frac{1}{4}\right) + c$$

Hence
$$\int_0^1 5xe^{4x} dx$$

$$= \left[\frac{5}{4} e^{4x} \left(x - \frac{1}{4} \right) \right]_0^1$$

$$= \left[\frac{5}{4} e^4 \left(1 - \frac{1}{4} \right) \right] - \left[\frac{5}{4} e^0 \left(0 - \frac{1}{4} \right) \right]$$

$$= \left(\frac{15}{16} e^4 \right) - \left(-\frac{5}{16} \right)$$

$$= 51.186 + 0.313 = 51.499 = 51.5,$$
correct to 3 significant figures

Problem 5. Determine $\int x^2 \sin x \, dx$.

Let $u = x^2$, from which, $\frac{du}{dx} = 2x$, i.e. du = 2x dx, and let $dv = \sin x dx$, from which,

$$v = \int \sin x \, \mathrm{d}x = -\cos x$$

Substituting into $\int u \, dv = uv - \int v \, du$ gives:

$$\int x^2 \sin x \, dx = (x^2)(-\cos x) - \int (-\cos x)(2x \, dx)$$
$$= -x^2 \cos x + 2 \left[\int x \cos x \, dx \right]$$

The integral, $\int x \cos x \, dx$, is not a 'standard integral' and it can only be determined by using the integration by parts formula again.

From Problem 1, $\int x \cos x \, dx = x \sin x + \cos x$

Hence
$$\int x^2 \sin x \, dx$$

= $-x^2 \cos x + 2\{x \sin x + \cos x\} + c$
= $-x^2 \cos x + 2x \sin x + 2 \cos x + c$
= $(2 - x^2)\cos x + 2x \sin x + c$

In general, if the algebraic term of a product is of power n, then the integration by parts formula is applied n times.

Now try the following exercise.

Exercise 168 Further problems on integration by parts

Determine the integrals in Problems 1 to 5 using integration by parts.

1.
$$\int xe^{2x} dx \qquad \left[\left[\frac{e^{2x}}{2} \left(x - \frac{1}{2} \right) \right] + c \right]$$

2.
$$\int \frac{4x}{e^{3x}} dx \qquad \left[-\frac{4}{3}e^{-3x} \left(x + \frac{1}{3} \right) + c \right]$$

3.
$$\int x \sin x \, dx \qquad [-x \cos x + \sin x + c]$$

4.
$$\int 5\theta \cos 2\theta \, d\theta$$

$$\left[\frac{5}{2}\left(\theta\sin 2\theta + \frac{1}{2}\cos 2\theta\right) + c\right]$$

5.
$$\int 3t^2 e^{2t} dt$$
 $\left[\frac{3}{2}e^{2t}(t^2 - t + \frac{1}{2}) + c\right]$

Evaluate the integrals in Problems 6 to 9, correct to 4 significant figures.

6.
$$\int_0^2 2x e^x dx$$
 [16.78]

7.
$$\int_0^{\frac{\pi}{4}} x \sin 2x \, dx$$
 [0.2500]

8.
$$\int_0^{\frac{\pi}{2}} t^2 \cos t \, dt$$
 [0.4674]

9.
$$\int_{1}^{2} 3x^{2} e^{\frac{x}{2}} dx$$
 [15.78]

43.3 Further worked problems on integration by parts

Problem 6. Find $\int x \ln x \, dx$.

The logarithmic function is chosen as the 'u part'.

Thus when
$$u = \ln x$$
, then $\frac{du}{dx} = \frac{1}{x}$, i.e. $du = \frac{dx}{x}$

Letting dv = x dx gives $v = \int x dx = \frac{x^2}{2}$ Substituting into $\int u dv = uv - \int v du$ gives:

$$\int x \ln x \, dx = (\ln x) \left(\frac{x^2}{2}\right) - \int \left(\frac{x^2}{2}\right) \frac{dx}{x}$$

$$= \frac{x^2}{2} \ln x - \frac{1}{2} \int x \, dx$$

$$= \frac{x^2}{2} \ln x - \frac{1}{2} \left(\frac{x^2}{2}\right) + c$$
Hence
$$\int x \ln x \, dx = \frac{x^2}{2} \left(\ln x - \frac{1}{2}\right) + c \text{ or }$$

$$\frac{x^2}{4} (2 \ln x - 1) + c$$

Problem 7. Determine $\int \ln x \, dx$.

 $\int \ln x \, dx$ is the same as $\int (1) \ln x \, dx$ Let $u = \ln x$, from which, $\frac{du}{dx} = \frac{1}{x}$, i.e. $du = \frac{dx}{x}$ and let dv = 1dx, from which, $v = \int 1 \, dx = x$ Substituting into $\int u \, dv = uv - \int v \, du$ gives:

$$\int \ln x \, dx = (\ln x)(x) - \int x \frac{dx}{x}$$
$$= x \ln x - \int dx = x \ln x - x + c$$

Hence $\int \ln x \, dx = x(\ln x - 1) + c$

Problem 8. Evaluate $\int_1^9 \sqrt{x} \ln x \, dx$, correct to 3 significant figures.

Let $u = \ln x$, from which $du = \frac{dx}{x}$ and let $dv = \sqrt{x} dx = x^{\frac{1}{2}} dx$, from which,

$$v = \int x^{\frac{1}{2}} \, \mathrm{d}x = \frac{2}{3} x^{\frac{3}{2}}$$

Substituting into $\int u \, dv = uv - \int v \, du$ gives:

$$\int \sqrt{x} \ln x \, dx = (\ln x) \left(\frac{2}{3}x^{\frac{3}{2}}\right) - \int \left(\frac{2}{3}x^{\frac{3}{2}}\right) \left(\frac{dx}{x}\right)$$

$$= \frac{2}{3}\sqrt{x^3} \ln x - \frac{2}{3} \int x^{\frac{1}{2}} \, dx$$

$$= \frac{2}{3}\sqrt{x^3} \ln x - \frac{2}{3} \left(\frac{2}{3}x^{\frac{3}{2}}\right) + c$$

$$= \frac{2}{3}\sqrt{x^3} \left[\ln x - \frac{2}{3}\right] + c$$

Hence $\int_{1}^{9} \sqrt{x} \ln x \, dx$

$$= \left[\frac{2}{3}\sqrt{x^3}\left(\ln x - \frac{2}{3}\right)\right]_1^9$$

$$= \left[\frac{2}{3}\sqrt{9^3}\left(\ln 9 - \frac{2}{3}\right)\right] - \left[\frac{2}{3}\sqrt{1^3}\left(\ln 1 - \frac{2}{3}\right)\right]$$

$$= \left[18\left(\ln 9 - \frac{2}{3}\right)\right] - \left[\frac{2}{3}\left(0 - \frac{2}{3}\right)\right]$$

$$= 27.550 + 0.444 = 27.994 = 28.0,$$
correct to 3 significant figures

Problem 9. Find $\int e^{ax} \cos bx \, dx$.

When integrating a product of an exponential and a sine or cosine function it is immaterial which part is made equal to 'u'.

Let $u = e^{ax}$, from which $\frac{du}{dx} = ae^{ax}$,

i.e. $du = ae^{ax} dx$ and let $dv = \cos bx dx$, from which,

$$v = \int \cos bx \, \mathrm{d}x = \frac{1}{b} \sin bx$$

Substituting into $\int u \, dv = uv - \int v \, du$ gives:

$$\int e^{ax} \cos bx \, dx$$

$$= (e^{ax}) \left(\frac{1}{b} \sin bx\right) - \int \left(\frac{1}{b} \sin bx\right) (ae^{ax} \, dx)$$

$$= \frac{1}{b} e^{ax} \sin bx - \frac{a}{b} \left[\int e^{ax} \sin bx \, dx\right]$$
(1)

 $\int e^{ax} \sin bx \, dx$ is now determined separately using integration by parts again:

Let $u = e^{ax}$ then $du = ae^{ax} dx$, and let $dv = \sin bx dx$,

$$v = \int \sin bx \, \mathrm{d}x = -\frac{1}{b} \cos bx$$

Substituting into the integration by parts formula gives:

$$\int e^{ax} \sin bx \, dx = (e^{ax}) \left(-\frac{1}{b} \cos bx \right)$$
$$- \int \left(-\frac{1}{b} \cos bx \right) (ae^{ax} \, dx)$$
$$= -\frac{1}{b} e^{ax} \cos bx$$
$$+ \frac{a}{b} \int e^{ax} \cos bx \, dx$$

Substituting this result into equation (1) gives:

$$\int e^{ax} \cos bx \, dx = \frac{1}{b} e^{ax} \sin bx - \frac{a}{b} \left[-\frac{1}{b} e^{ax} \cos bx + \frac{a}{b} \int e^{ax} \cos bx \, dx \right]$$
$$= \frac{1}{b} e^{ax} \sin bx + \frac{a}{b^2} e^{ax} \cos bx - \frac{a^2}{b^2} \int e^{ax} \cos bx \, dx$$

The integral on the far right of this equation is the same as the integral on the left hand side and thus they may be combined.

$$\int e^{ax} \cos bx \, dx + \frac{a^2}{b^2} \int e^{ax} \cos bx \, dx$$
$$= \frac{1}{b} e^{ax} \sin bx + \frac{a}{b^2} e^{ax} \cos bx$$

i.e.
$$\left(1 + \frac{a^2}{b^2}\right) \int e^{ax} \cos bx \, dx$$
$$= \frac{1}{b} e^{ax} \sin bx + \frac{a}{b^2} e^{ax} \cos bx$$
i.e.
$$\left(\frac{b^2 + a^2}{b^2}\right) \int e^{ax} \cos bx \, dx$$
$$= \frac{e^{ax}}{b^2} (b \sin bx + a \cos bx)$$

Hence
$$\int e^{ax} \cos bx \, dx$$
$$= \left(\frac{b^2}{b^2 + a^2}\right) \left(\frac{e^{ax}}{b^2}\right) (b \sin bx + a \cos bx)$$
$$= \frac{e^{ax}}{a^2 + b^2} (b \sin bx + a \cos bx) + c$$

Using a similar method to above, that is, integrating by parts twice, the following result may be proved:

$$\int e^{ax} \sin bx \, dx$$

$$= \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + c \tag{2}$$

Problem 10. Evaluate $\int_0^{\frac{\pi}{4}} e^t \sin 2t \, dt$, correct to 4 decimal places.

Comparing $\int e^t \sin 2t \, dt$ with $\int e^{ax} \sin bx \, dx$ shows that x = t, a = 1 and b = 2.

Hence, substituting into equation (2) gives:

$$\int_{0}^{\frac{\pi}{4}} e^{t} \sin 2t \, dt$$

$$= \left[\frac{e^{t}}{1^{2} + 2^{2}} (1 \sin 2t - 2 \cos 2t) \right]_{0}^{\frac{\pi}{4}}$$

$$= \left[\frac{e^{\frac{\pi}{4}}}{5} \left(\sin 2 \left(\frac{\pi}{4} \right) - 2 \cos 2 \left(\frac{\pi}{4} \right) \right) \right]$$

$$= \left[\frac{e^{\frac{\pi}{4}}}{5} \left(\sin 2 \left(\frac{\pi}{4} \right) - 2 \cos 2 \left(\frac{\pi}{4} \right) \right) \right]$$

$$- \left[\frac{e^{0}}{5} (\sin 0 - 2 \cos 0) \right]$$
to 4 significant figston.

$$7. \int_{0}^{1} 2e^{3x} \sin 2x \, dx$$

$$8. \int_{0}^{\frac{\pi}{2}} e^{t} \cos 3t \, dt$$

$$- \left[\frac{e^{0}}{5} (\sin 0 - 2 \cos 0) \right]$$

$$9. \int_{1}^{4} \sqrt{x^{3}} \ln x \, dx$$

$$= \left\lceil \frac{e^{\frac{\pi}{4}}}{5}(1-0) \right\rceil - \left[\frac{1}{5}(0-2) \right] = \frac{e^{\frac{\pi}{4}}}{5} + \frac{2}{5}$$

= **0.8387**, correct to 4 decimal places

Now try the following exercise.

Exercise 169 Further problems on integration by parts

Determine the integrals in Problems 1 to 5 using integration by parts.

1.
$$\int 2x^2 \ln x \, dx \qquad \left[\frac{2}{3} x^3 \left(\ln x - \frac{1}{3} \right) + c \right]$$

2.
$$\int 2 \ln 3x \, dx$$
 [2x(\ln 3x - 1) + c]

$$3. \int x^2 \sin 3x \, \mathrm{d}x$$

$$\left[\frac{\cos 3x}{27} (2 - 9x^2) + \frac{2}{9} x \sin 3x + c \right]$$

$$4. \int 2e^{5x} \cos 2x \, dx$$

$$\left[\frac{2}{29}e^{5x}(2\sin 2x + 5\cos 2x) + c\right]$$

5.
$$\int 2\theta \sec^2 \theta \, d\theta \quad [2[\theta \tan \theta - \ln(\sec \theta)] + c]$$

Evaluate the integrals in Problems 6 to 9, correct to 4 significant figures.

6.
$$\int_{1}^{2} x \ln x \, dx$$
 [0.6363]

7.
$$\int_0^1 2e^{3x} \sin 2x \, dx$$
 [11.31]

8.
$$\int_0^{\frac{\pi}{2}} e^t \cos 3t \, dt$$
 [-1.543]

9.
$$\int_{1}^{4} \sqrt{x^3} \ln x \, dx$$
 [12.78]

10. In determining a Fourier series to represent f(x) = x in the range $-\pi$ to π , Fourier coefficients are given by:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos nx \, dx$$
and
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin nx \, dx$$

where n is a positive integer. Show by using integration by parts that $a_n = 0$ and $b_n = -\frac{2}{n}\cos n\pi.$

11. The equation $C = \int_0^1 e^{-0.4\theta} \cos 1.2\theta \, d\theta$

and
$$S = \int_0^1 e^{-0.4\theta} \sin 1.2\theta \, d\theta$$

are involved in the study of damped oscillations. Determine the values of C and S.

$$[C = 0.66, S = 0.41]$$