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A
y = h(x)
y = g(x)
y = h(x)
f y=[f(x)
y = g(x)
| y=flz)
{ -
‘ Irp
Figure 4.3. The squeeze rule
Va € dom h. xT ¢ -"l””'f ) 1’; hir) I
Define then I''(¢) [N I'(e)n I"(e). On I"(e) \ {c} the constraints
(4.2), (4.3) and (4.4) all hold, hence in particular
! Iy | Jl' _.,"'u gla i
This means g(x) € 1.(f). concluding the proof.
Examples 4.6
i} Let us prove the fundamental limit
sinx
lim =517
z—0 T (4'5)
sinz . sin(—x —sinz sinz .
Observe first that y = —— is even, for (=2) = = . It is thus
z = =T &
; ; i . ; . sinz
sufficient to consider a positive = tending to 0, i.e., prove that hm+ = 1,
z—0 xr
. . sinx
Recalling (3.13), for all z > 0 we have sinz < z, or < 1. To find a

lower bound, suppose z < 7 and consider points on the unit circle: let A have
coordinates (1,0), P coordinates (cosz,sinz) and let @ be defined by (1, tan z)
(Fig.4.4). The circular sector OAP is a proper subset of the triangle OAQ, so

Area OAP < Area OAQ.

Since

AreaOAP:M:I and AreaOAQ:OA2 Q:ta;lSC’
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A

o A

Figure 4.4. The sector OAP is properly contained in OAQ

it follows

sinzx . sinzx
ie., cost < —.
T

T

2 < 2cosa’

Eventually, on 0 < z < 7 one has
cosT < %—x <1

The continuity of the cosine ensures lim cosz = 1. Now the claim follows from

z—0

the Second comparison theorem.
sinzx

ii) We would like to study how the function g(z) =
to +00. Remember that

behaves for z tending

—1<sinz <1 (4.6)
for any real z. Dividing by z > 0 will not alter the inequalities, so in every
neighbourhood I4(+00) of 400
sinz

< <

8|~
8

T

1 1 1
Now set f(z) = — h(z) = > and note :Z:llPI-‘rl:lOO - = 0. By the previous theorem
sinz

= 0.

lim
rz——4oo I

The latter example is part of a more general result which we state next (and
both are consequences of Theorem 4.5).
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Corollary 4.7 Let f be a bounded function around c, i.e., there exist a
neighbourhood I(c) and a constant C > 0 such that

lf@)<C,  Vzel(c)\{c}. (4.7)
Let g be such that
lim g(z) = 0.

Then it follows
lim f(2)g(a) = 0.

Proof. By definition lim g(x) = 0 if and only if lim |g(z)| = 0, and (4.7) implies

0 < [f(z)g(z)| < Clg(z)l, vz € I(c) \ {c}-

The claim follows by applying Theorem 4.5.

Theorem 4.8 (Second comparison theorem — infinite case) Let f, g be
gwen functions and

lim f(z) = +o0.

r—c

If there exists a neighbourhood I(c) of ¢, where both functions are defined
(except possibly at c), such that

fz)<g(z), Veel()\{c}, (4.8)
then
ii_}mcg(m) = +o00.

A result of the same kind for f holds when the limit of g is —oc.

Proof. The proof is, with the necessary changes, like that of Theorem 4.5, hence
left to the reader. ]

Example 4.9
Compute the limit of g(x} = = + sinz when z — +co. Using (4.6) we have
r—1<z+sinz, Vo e R.

Set f(z) =z — 1; since liIE f(z) = +oo, the theorem tells us
T—4+00

lim (z +sinz) = +o0. O
T—+o0
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4.1.3 Algebra of limits. Indeterminate forms of algebraic type

This section is devoted to the interaction of limits with the algebraic operations
of sum, difference, product and quotient of functions.

First though, we must extend arithmetic operations to treat the symbols +o0
and —oo. Let us set:

+oo+ 8= +oco (if se R or s = +o0)
—00+§=—00 (if seRor s = —o0)
+00- 8 = +0o (if s >0 or s = +00)
+00 - § = F00 (if s < 0or s=—00)

—ﬂﬁ:ioo (if s > 0)
&

ST (if 5 < 0)

S

gzoo (if s e R\ {0} or s = +o00)
ﬁézo (if s € R)

Instead, the following expressions are not defined

+o00

| == " +oo — (+o0), +oo0 - 0, —_—
oo + (Foo), oo — (), 00 - 0, =

ol

A result of the foremost importance comes next.

Theorem 4.10 Suppose [ admits limit £ (finite or infinite) and g admits
limit m (finite or infinite) for x — c. Then

Jl:l_I"I}: (f(z) £g9(z)) =€+ m,
lim (f(2)g(@)) = £m.

lim f_(f_) e £
a—c g(z) m’

provided the right-hand-side expressions make sense. (In the last case one
assumes g(x) # 0 on some I(c)\{c}.)
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We shall prove two relations only, referring the reader to ~ Limits for
the ones left behind. The first we concentrate upon is

lim (flfr} 4 y[.l']) ={+m

E—C

when £ and m are finite. Fix £ > 0, and consider the neighbourhood of {
of radins £/2. By assumption there is a neighbourhood I'(¢) of ¢ such that

Yo € dom f. zele)\{e = |flz)-¢ <e/2
For the same reason there is also an 1"(e) with
Y € dom g. rel(\{c} = |glx)—m|<ze/2

Put I(c) = I'(e) N I"(¢). Then if x € dom f Ndom g belongs to I(e) \ {c}.
both inequalities hold: the triangle inequality (1.1} yields

I(f(2) + g(x)) — (£ +m)| = [(f(x) = ) + (g(x) —m)|

<If(@) =l +lgla) = m| < 5+ 5 =<
proving the assertion.
The second relation is
lim /() g()) = +oc
with ¢ = +oc and m > 0 finite. For a given real A > 0. consider the

neighbourhood of +oc with end-point B = 24/m > 0. We know there is
a neighbourhood I'(¢) such that

Y € dom f. xel'(e)\{c} = f(r)>B.

On the other hand, considering the neighbourhood of m of radius m /2,
there exists an I"(¢) such that

Va € domg. rel'(e)\{c} = lgle)—m|<m/2

e, mf2 < gla) < 3m/2. Set I(c)=1'(c)n1"(c). If 2 € dom fNdomyg is
in I{¢)\ {c}. the previous relations will be both fulfilled, whence

m

flr)glx) > Hr' B— = A

Corollary 4.11 If f and g are continuous maps at a point o € R, then also

f(z)

flz) £g(zx), f(z)g(z) and g_(-ﬂ (provided g(xo) # 0) are continuous at xg.
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Proof. The condition that f and g are continuous at g is equivalent to lim f(z
f(rg) and lim g(x) glxg) (recall (3.9)). The previous theorem allows

to conclude.

Corollary 4.12 Rational functions are continuous on their domain. In par-
ticular, polynomials are continuous on R.

Proof. We verified in Example 3.17, part i). that the constants y = a and the
linear function y = & are continunous on R. Consequently, maps like y = ax”
(1 N) are continnous. But then so are polynomials, being sums of the
latter. Rational functions, as quotients of polynomials, inherit the property
wherever the denominator does not vanish.

Examples 4.13

i) Calculate

. 2r—3cosz

lim ——M—— =

z—0 5+ xsinz
The continuity of numerator and denominator descends from algebraic oper-
ations on continuous maps, and the denominator is not zero at x = 0. The

substitution of 0 to z produces ¢ = —3/5.

1) Discuss the limit behaviour of y = tanz when  — Z. Since

. . LT . ™
hn}(smm:smgzlv and Jdim coszzcosEZO,

T— = T 5
the above theorem tells

. . sinx 1
lim tanz = lim = - = o0.
z—»% z—»% COST 0

But one can be more precise by looking at the sign of the tangent around 7. Since
sinz > 0 in a neighbourhood of %, while cosz > 0 (< 0) in a left (resp. right)
neighbourhood of %, it follows

lim tanz = Foo.

it
T— 5

P
1) Let R(z) = % be rational and reduced, meaning the polynomials P, Q)
z
have no common factor. Call zy € R a zero of Q, i.e., a point such that Q(z¢) = 0.
Clearly P(xzo) # 0, otherwise P and @ would be both divisible by (z — z). Then
lim R(z) = o0
T—Tg
follows. In this case too, the sign of R(z) around of zy retains some information.
22 -3z +1
2 —
negative on a right neighbourhood, so

For instance, y = is positive on a left neighbourhood of ¢ = 1 and
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. z2 -3z +1 _
im ———— = Foo.
-1t 2 —1x
T —2

In contrast, the function y = ——————— is negative in a whole neighbourhood

2 -2z +1
of g = 1, hence

r—2

= —0CQ.

lim ————
1722 -2+ 1

Theorem 4.10 gives no indication about the limit behaviour of an algebraic
expression in three cases, listed below. The expressions in question are called in-
determinate forms of algebraic type.

Consider f(z)+g(x) (resp. f(z)~g(z)) when both f, g tend to oo with different
(resp. same) signs. This gives rise to the indeterminate form denoted by the
symbol

00 — 00.

The product f(z) g(x), when one function tends to oo and the other to 0, is
the indeterminate form with symbol

oo - 0.
11}, Relatively to f—E—S), in case both functions tend to oo or 0, the indeterminate
g(x
forms are denoted with
00 0
— or —.
00 0

In presence of an indeterminate form, the limit behaviour cannot be told a
priori, and there are examples for each possible limit: infinite, finite non-zero, zero,
even non-existing limit. Every indeterminate form should be treated singularly and
requires often a lot of attention.

Later we shall find the actual limit behaviour of many important indeterminate
forms. With those and this section’s theorems we will discuss more complicated in-
determinate forms. Additional tools to analyse this behaviour will be provided fur-
ther on: they are the local comparison of functions by means of the Landau symbols
(Sect. 5.1), de I'Hopital’s Theorem (Sect.6.11), the Taylor expansion (Sect.7.1).

Examples 4.14

i) Let z tend to +00 and define functions f(z) = z+ 22, fo(z) =z + 1, fa(z) =
z+ 1, fi(z) = z+sinz. Set g(z) = z. Using Theorem 4.10, or Example 4.9, one
verifies easily that all maps tend to +o0o. One has

lim [i(e) — g(@)] = lim_a? =+,
i () ~o(e)] = lm_1=1

lim [fs(z) —g(z)] = lim L a,

T—+00 x—+00 I
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whereas the limit of fi(z) — g(z) = sinz does not exist: the function sinx is
periodic and assumes each value between —1 and 1 infinitely many times as
T — +00.

ii) Consider now x — 0. Let f1(x) = 23, fao(z) = 22, f3(z) =z, fa(z) = 2?sin 1,
and g(x) = z2. All functions converge to 0 (for f; apply Corollary 4.7). Now

tim 22 _ s =0,
z—0 g(_’[,') z—0
2@ o,
x—0 g(:[,') z—0
1
lim f3(z) = lim —, = oo,

I — o

fa(z)
g(z)

proof of this).

1
but = sin — does not admit limit for z — 0 (Remark 4.19 furnishes a
x

111} Let us consider a polynomial

P(z)=anz™ + ...+ a1z + ap (an #0)
for x — +oo. A function of this sort can give rise to an indeterminate form
oo — 0o according to the coefficients’ signs and the degree of the monomials
involved. The problem is sorted by factoring out the leading term (monomial of
maximal degree) 2"

Oy a a
P($):$"(an+ T;l+"'+ ! —|——0>.

.’I,'"_l "

The part in brackets converges to a, when z — 400, so

lim, P(z)= litn a,z"=c0
T=—+E00 TF—TO00

The sign of the limit is easily found. For instance,
lim (-5z°+22*+7) = lim (-52%) = +cc.
r——0o0

L
Take now a reduced rational function

P(x) a2"+...+az+ag
R(z) = = Qn, b 0, m>0).
(z) Q(z) bpr™+...+bhz+b ( m 7 )
When z — +o0, an indeterminate form 3 arises. With the same technique as

before,

Blop sibiphE it
H o oy )

A €T : aAnd a = he an .
lim ———< = lim —=-— lim 2" ™=¢ — ifn=m,
x—too (12("‘,:) z—too bm-"':m h-m, z—+too b'm

0 ifn<m.
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For example:

32 — 22+ 1 i 323
lim 5 = llm —5 =—-00,
z—+oc &L~ i T—+00 —I
. 425 4 223 — 7 —4g0 1
lim = = —
z—-o00 815 — x4+ Bz r——oc 85 2
622 — 2+ 5 622
limm 2 = Iim — =0
T——0C ——x3 +9 r— —OC 7’133
sin x

becomes indeterminate % for z — 0; we proved in part

iv) The function y =

i), Examples 4.6 that g) /converges to 1. From this, we can deduce the behaviour

1—coszx
of y= ——— as x — 0, another indeterminate form of the type 8. In fact,
x
_ l—cosz . (l—cosz)(l+cosz) . 1—cosiz 1
lim ——— = lim = lim - lim ;
=0 x? z—0 x?(1 4 cos x) =0 2 e—0 14 cosx

The fundamental trigonometric equation cos? z + sin? z = 1 together with The-
orem 4.10 gives

i § . 2 . 2
. SIHZ x . sSinT . S x
lim = lim = [ lim =1,
r—0 [L‘2 x—0 a z—0 I

The same theorem tells also that the second limit is %, so we conclude

1 ——cosx 1

With these examples we have taken the chance to look at the behaviour of
elementary functions at the boundary points of their domains. For completeness we
gather the most significant limits relative to the elementary functions of Sect. 2.6.
For explanations ~. Elementary functions.

lim z = +oo0, e s =l a>0
T— 00 z—0+

lim =) lim z% = +co a<0
T—++00 x—0*

lim anx” + ...+ a1+ ap _ lim "™

z—too bypx™ + ... + bz + by by, >0

lim a® = 400, NGz =1 a>1
r— 0o T—— D0

limas =i lim a®*=+c0 a<l
xT—400 T — D0

lim log, z = +o0, lim log. oz =—coa >1
T—+00 o— 0t

lim log, & =—0cc, lim log, z=+4c0a <1
z—+00 z— 0+




102 4 Limits and continuity 11

lim sinz, lim cosxz, lim tanz do not exist
lim tanz = Foo, VkeZ
=+

x—»(%-}-kw)

- . ™ :

lim arcsinz = +— = arcsin(£1)
z—rzkl 2

lirfl|r  Arccos T = 0 = arccos 1, lim1 arccos & = 7 = arccos(—1)
T— e

: ™

lim arctanz — +—

T—ton

4.1.4 Substitution theorem

The so-called Substitution theorem is important in itself for theoretical reasons,
besides providing a very useful method to compute limits.

Theorem 4.15 Suppose a map f admits limit
lim f(z) = ¢, (4.9)

finite or not. Let g be defined on a neighbourhood of £ (excluding possibly the
point {) and such that

i) if £ € R, g is continuous at {;

i) if £ = +o0 or £ = —o0, the limit limﬁg(y) erists, finite or not.
y—-ﬁ
Then the composition g o f admits limit for x — ¢ and

lim g(f(2)) = iiffeg(y)‘ (4.10)

Proof. Set m = lim g(y) (noting that under i), m = g(¢) ). Given any neighbour-
y—E

hood I(m) of m, by i) or ii) there will be a neighbourhood I(f) of ¢ such
that

Yy € dom g, yelll) = gly) e I(im).
Note that in case i) we can use I(£) instead of [(£) \ {{} because g is
continuous at ¢ (recall (3.7)), while £ does not belong to [(¢) for case ii).
With such I(£). assumption (4.9) implies the existence of a neighbourhood
I{¢) of ¢ with

Yo € dom f, z € I(c)\ {c} > flxz) e I({).
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Remark 4.16 An alternative condition that yields the same conclusion is the
following:

i’) if £ € R, there Is a neighbourhood I(c) of ¢ where f(z) # ¢ for all © # ¢, and
the limit limé g(y) exists, finite or infinite.
’ygi

The proof is analogous.

In case £ € R and ¢ is continuous at £ (case 3) ), then limég(y) = g(£), so (4.10)
yAV

reads

lim g(f(2)) = g(lim f(z)). (4.11)

An imprecise but effective way to put (4.11) into words is to say that a continuous
function commutes (exchanges places) with the symbol of limit.

Theorem 4.15 implies that continuity is inherited by composite functions, as
we discuss hereby.

Corollary 4.17 Let f be continuous at xg, and define yo = f(xq). Let fur-
thermore g be defined around yo and continuous at yo. Then the composite
go [ is continuous at xg.

Proof. From (4.11)

which is equivalent to the claim.

A few practical examples will help us understand how the Substitution theorem
and its corollary are employed.
Examples 4.18

') The map h(z) = sin(z?) is continuous on R, being the composition of the
continuous functions f(z) = 2% and g(y) = siny.
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ii) Let us determine

lim w
z—0 xT
Set f(x) = z? and
siny Y40
9(y) =
1 if y = 0.
Then lin}) f(z) =0, and we know that ¢ is continuous at the origin. Thus
tim SR _ SV
z—0 T y—0 Yy

1
iii) We study the behaviour of h(z) = arctan (—1> around the point 1.

1
Defining f(z) = oo e have lim f(z) = Loo. If we call g(y) = arctany,

z—1

lirin g(y) = :l:% (see the Table on page 101). Therefore
y—too

lim arctan (

L 1) = lim g(y)-—-:tg.

z—1% z— y—too
v) Determine
1
lim logsin —.
z—+00 x
Setting f(z) = sin L has the effect that £ = lim f(z) = 0. Note that f(z) >0

T—+00

for all z > L. With g(y) = logy we have lir61+ g(y) = —oo, so Remark 4.16 yields
yAP

1
lim logsin— = li = —00.
 Jlim logsin y_lgl+ 9(y) 0

Remark 4.19 Theorem 4.15 extends easily to cover the case where the role of f
is played by a sequence a : n — a, with limit

lim a, = 4.

n—o00

Namely, under the same assumptions on g,

lim g(an) = lim g(y).
y—t

n—oo

This result is often used to disprove the existence of a limit, in that it provides a
Criterion of non-existence for limits : if two sequencesa :nr> an, b:n s b,
have the same limit £ and

lim g(a,) # lim g(by),

then g does not admit limit when its argument tends to £.
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For example we can prove, with the aid of the criterion, that y = sinz has no
limit when x — +oo: define the sequences a,, = 2nm and b,, = § +2nm, n € N, so
that

lim sina, = lim 0 =0, and at the same time lim sinb, = lim 1= 1.

nN—00 n—0C n—o0 TL— 00

Similarly, the function y = sin% has neither left nor right limit for x — 0.

4.2 More fundamental limits. Indeterminate forms of
exponential type

1 ™
Consider the paramount limit (3.3). Instead of the sequence a,, = (1 + —> , we
n

look now at the function of real variable

h(z) = <1+%>

It is defined when 1+ 1 > 0, hence on (—oo, —1) U (0, +0c). The following result
states that h and the sequence resemble each other closely when z tends to infinity.

Property 4.20 The following limit holds

l T
lim (l + —) =e.
r—+oo T

Proof. ~+ The number e.

By manipulating this formula we achieve a series of new fundamental limits.
€Z

The substitution y = £, with a # 0, gives

@

a\? 1% " 1\“1°
im (1 + —) = lim <1 + —) = [ lim <1 + f> } = e,
z—toc T y—too Yy y—too y

In terms of the variable y = % then,

, 1\
lim (1+2)"* = lim <1+—> =e.

z—0 y—toc Yy
The continuity of the logarithm together with (4.11) furnish
1/z

log (1
lim 0g,(l + )

=log,e = ——
z—0 & Ba

= lim log, (1 + z)V* = log, lim (1 + )
z—0 z—0
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for any a > 0. In particular, taking a = e:

log(1
e

x—0 xT

Note by the way a® — 1 = y is equivalent to z =log,(1 +y), and y — 0 if x — 0.
With this substitution,

z_1 log, (1 !
lim &= = lim — 2 = {lim w} = log a. (4.12)
20 T y—0log,(1+y) [v—=0 gy

Taking a = e produces

. oe®—1
lim
| x—0 i

="

Eventually, let us set 1+ z = €Y. Since y — 0 when z — 0,

C(I+z)P -1 eW—1 e _] oy
lim ——— = lim = lim
z—0 z y—0 e¥ —1 y—0 oy e —1
(4.13)
= lim ke lim —7 — loge® = «
v0 y  y—oev— 1
for any o € R.

For the reader’s conveniency, all fundamental limits found so far are gathered
below.

4 EIne

lim — =1
z—0 T

. 1—cosz 1
lim T
x—0 K 2

lim (1 ot %)£ =" (a € R)

z—too

'lin}}(l +z)/*=e

(o b | " 1 y log(1 + :
lim log,(1 +2) = (a > 0); in particular, lim At =
z—0 T loga z—0 T

r _ T
lim =loga (a>0); in particular, liub s 1
T—+ ¥ H—* o

1 *—1
T ) P ST

xz—0 T




4.2 More fundamental limits. Indeterminate forms of exponential type 107

xT

1\" 1
Let us return to the map h(z) = (1 + —> . By setting f(z) = (1 + —) and
T T

g(x) = x, we can write

In general such an expression may give rise to indeterminate forms for x tending
to a certain ¢. Suppose f, g are functions defined in a neighbourhood of ¢, except
possibly at ¢, and that they admit limit for x — ¢. Assume moreover f(z) > 0
around ¢, so that h is well defined in a neighbourhood of ¢ (except possibly at ¢).
To understand & it is convenient to use the identity

fz) = olog f(x)
From this in fact we obtain
) — 9(2) 08 /(@)

By continuity of the exponential and (4.11), we have

I—C

lm [f(2)]?*) = exp (11321 [g(z) log f(::;)]) :

In other words, h(x) can be studied by looking at the exponent g(z)log f(x).
An indeterminate form of the latter will thus develop an indeterminate form
of exponential type for h(x). Namely, we might find ourselves in one of these
situations:

i) g tendsto oo and f to 1 (so log f tends to 0): the exponent is an indeterminate
form of type oo - 0, whence we say that h presents an indeterminate form of
type

1°°.

11) g and f both tend to 0 (so log f tends to —o0): once again the exponent is of
type oo - 0, and the function h is said to have an indeterminate form of type

o°.

i1} g tends to 0 and f tends to +oo (log f — +00): the exponent is of type oo -0,
and h becomes indeterminate of type

o,

Examples 4.21

] 1\”
1) The map h(z) = <1 + —) is an indeterminate form of type 1°° when z —
‘ @

+oo, whose limit equals e.

i) The function h(x) = 2%, for z — 07, is an indeterminate form of type 0°. We
shall prove in Chap. 6 that lirn+ xlogz = 0, therefore lim+ h{z) = 1.
z—0 z—0
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iii) The function h(z) = z'/* is for £ — +oc an indeterminate form of type oc®.
lo
Substituting y = %, and recalling that log £ = —logy, we obtain lim L
Yy r—400 T

— lim ylogy =0, hence lim A(z)=1.
y—0F

T—+00
When dealing with h(z) = [f(z)]9"), a rather common mistake — with tragic
consequences — is to calculate first the limit of f and/or g, substitute the map
with this value and compute the limit of the expression thus obtained. This is to

emphasize that it might be incorrect to calculate the limit for x — ¢ of the
indeterminate form h(z) = [f(z)]9®*) by finding first

m = lim g(z), and from this proceed to  lim[f(z)]™.

r—C r—c

Equally incorrect might be to determine

lim £9), already knowing ¢ = lim f(x).

r—c r—C

1 x
For example, suppose we are asked to find the limit of h(z) = (1 + —) for
&

z— oo

1
z — to0; we might think of finding first £ = lim <1 + —) = 1 and from this
x

lim 1* = lim 1 = 1. This would lead us to believe, wrongly, that h converges
r—too z—+too

to 1, in spite of the fact the correct limit is e.

4.3 Global features of continuous maps

Hitherto the focus has been on several local properties of functions, whether in the
neighbourhood of a real point or a point at infinity, and limits have been discussed
in that respect. Now we turn our attention to continuous functions defined on a
real interval, and establish properties of global nature, i.e., those relative to the
behaviour on the entire domain.

Let us start with a plain definition.

Definition 4.22 A zero of a real-valued function f is a point xg € dom f
at which the function vanishes.

For instance, the zeroes of y = sinx are the multiples of , i.e., the elements of
the set {mn | m € Z}.

The problem of solving an equation like

flz)=0



