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178 6 Differential calculus

and ask ourselves whether there are real numbers ¢ and b rendering f differen-
tiable at the origin. The continuity at the origin (recall: differentiable implies
continuous) forces the two values

lim f(z)= —4, lim f(z)= f(0)=-b+1

z—0~ z—0t
to agree, hence b = 5. With b fixed, we may impose the equality of the right
and left limits of f'(z) for z — 0, to the effect that f’(z) admits finite limit for
x — 0. Then we use Theorem 6.15, which prescribes that

li () = lim 2 2z = 2a, d li "3 = b+e*)=6
zlr(r)lvf(a:) lim 2acos2z = 2a an zi.%l+f(x) rn+( +e%)

li
1}‘&0

are the same, so a = 3. O

Remark 6.17 In using Theorem 6.15 one should not forget to impose continuity
at the point z¢. The mere existence of the limit for f’ is not enough to guarantee
f will be differentiable at zy. For example, f(z) = x + signz is differentiable at
every x # 0: since f/'(z) = 1, it necessarily follows ili% f'(z) = 1. The function is

nonetheless not differentiable, because not continuous, at z = 0.

6.4 Extrema and critical points

Definition 6.18 One calls xg € dom f a relative (or local) maximum
point for f if there is a neighbourhood I..(xg) of xo such that

Yz € I.(zg) Ndom f, Flry= Tz

Then f(xg) is a relative (or local) maximum of f.
One calls xy an absolute maximum point (or global maximum point)
for f if

VY € dom f, J(x) < f(x),

and f(xg) becomes the (absolute) maximum of f. In either case, the max-
imum is said strict if f(x) < f(zg) when x # xy.

Exchanging the symbols < with > one obtains the definitions of relative and
absolute minimum point. A minimum or maximum point shall be referred to
generically as an extremum (point) of f.

Examples 6.19
i) The parabola f(z) = 1422 —12? = 2— (2 — 1)? has a strict absolute maximum
point at g = 1, and 2 is the function’s absolute maximum. Notice the derivative
f'(z) = 2(1 — z) is zero at that point. There are no minimum points (relative or
absolute).
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Figure 6.3. Types of maxima

ii) For g(x) = arcsinz (see Fig. 2.24), o = 1 is a strict absolute maximum point,
with maximum value 7. The point z; = —1 is a strict absolute minimum, with
value —75. At these extrema g is not differentiable. a

We are interested in finding the extremum points of a given function. Provided
the latter is differentiable, it might be useful to look for the points where the first
derivative vanishes.

Definition 6.20 A critical point (or stationary point) of f is a point xq
at which f is differentiable with derivative f'(xq) = Q.

The tangent at a critical point is horizontal.

Lo a0 €Tz

Figure 6.4. Types of critical points

Theorem 6.21 (Fermat) Suppose [ is defined in a full neighbourhood of a
point xog and differentiable at xq. If xo is an extremum point, then it is eritical
forsfo-tte”

f(xo) = 0.
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Fermat’s Theorem 6.21 ensures that the extremum points of a differentiable
map which belong to the interior of the domain should be searched for among
critical points.

A function can nevertheless have critical points that are not extrema, as in
Fig.6.4. The map f(z) = z° has the origin as a critical point (f'(z) = 3z? = 0 if
and only if z = 0), but admits no extremum since it is strictly increasing on the
whole R.

At the same time though, a function may have non-critical extremum point
(Fig. 6.3); this happens when a function is not differentiable at an extremum that
lies inside the domain (e.g. f(z) = |x|, whose absolute minimum is attained at the
origin), or when the extremum point is on the boundary (as in Example 6.19 ii)).
The upshot is that in order to find all extrema of a function, browsing through
the critical points might not be sufficient.

To summarise, extremum points are contained among the points of the domain
at which either

the first derivative vanishes,

or the function is not differentiable,

iii) or among the domain’s boundary points (inside R).
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6.5 Theorems of Rolle and of the Mean Value

The results we present in this section, called Theorem of Rolle and Mean Value
Theorem, are fundamental for the study of differentiable maps on an interval.

Theorem 6.22 (Rolle) Let f be a function defined on a closed bounded
interval [a,b], continuous on [a,b] and differentiable on (a,b) (at least). If
f(a) = f(b), there exists an xo € (a,b) such that

f‘(.’L‘n) =

In other words, f admits at least one critical point in (a,b).

fla) = f(b)

a To b

Figure 6.5. Rolle’s Theorem

Proof. By the Theorem of Weierstrass the range f([a,b]) is the closed interval
[, M] bounded by the minimum and maximum values m, M of the map:
m= min f(z)= flzm), M = max f(x)= f(zum),
z€[a,b] ' z€la,b]
for suitable @, zar € [a, b].
In case m = M, f is constant on [a,b], so in particular f'(x) = 0 for any
xr € (a,b) and the theorem follows.

Suppose then m < M. Since m < f(a) = f(b) < M, one of the strict
inequalities f(a) = f(b) < M, m < f(a) = f(b) will hold.
If f(a) = f(b) < M, the absolute maximum point x;s cannot be a nor b

thus, 5 € (a,b) is an interior extremum point at which f is differentiable.
By Fermat’'s Theorem 6.21 we have that x,; = ¢ is a critical point.
[f m < fla) = f(b), one proves analogously that x,, is the critical point

xy of the claim. &

The theorem proves the existence of one critical point in (a, b); Fig. 6.5 shows that
there could actually be more.
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Theorem 6.23 (Mean Value Theorem or Lagrange Theorem) Let f
be defined on the closed and bounded interval [a,b], continuous on [a,b] and
differentiable (at least) on (a,b). Then there is a point xo € (a,b) such that

J(b) - f(a) - F(a). (6.9)

e
Every such point o we shall call Lagrange point for f in (a,b)

Introduce an auxiliary map

Proof.
s L "(b)
glz) = f(z) = 'f(-——J’ fla) (r—a)
b—a

defined on [a,b]. It is continuous on [a,b] and differentiable on (a,b), as
lifference of f and an affine map, which is differentiable on all of R. Note

It is easily seen that
gla) = f(a). g(b) = f(a),
so Rolle’s Theorem applies to g, with the consequence that there is a point

xg € (a.b) satisfying
B) — fla)
f0) - fle) _,

.f;’,[J‘t,}J = fr[i*»'u.} i o

But this is exactly (6.9).
4
FO)
J‘»’
f@]
a To b

Figure 6.6. Lagrange point for f in (a,b)
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The meaning of the Mean Value Theorem is clarified in Fig.6.6. At each La-
grange point, the tangent to the graph of f is parallel to the secant line passing
through the points (a, f(a)) and (b, f(b)).

Example 6.24

Consider f(z) = 1+ z + V1 — 22, a continuous map on its domain [—1,1] as
composite of elementary continuous functions. It is also differentiable on the

open interval (—1,1) (not at the end-points), in fact
T

"z)=1— e,
Fa=l-7=5
Thus f fulfills the Mean Value Theorem’s hypotheses, and must admit a La-
grange point in (—1,1). Now (6.9) becomes
fH-5=n Zo
i I ] wis FEVEL TR T NN

1=

satisfied by zy = 0.

6.6 First and second finite increment formulas

We shall discuss a couple of useful relations to represent how a function varies
when passing from one point to another of its domain.
Let us begin by assuming f is differentiable at zg. By definition

lim f(z) = f(@o)

Tz T — T

= f'(zo),
that is to say

lim <M B f’(m0)> — i L) = flzo) = F(@o) (@ — o) _ 0

Tr — To I—To r — Ip

L—T(

Using the Landau symbols of Sect. 5.1, this becomes
f(x) ~ fzo) = f'(z0)(z — x0) = o(x ~ 20), 2z — 0.

An equivalent formulation is

f(z) — f(zo) = f(zo)(x — ) + 0(x — T0), T — =0, (6.10)

or

Af = §'(@0)Az + o(Az), Az — 0, (6.11)

by putting Az =z — ¢ and Af = f(z) — f(x0).
Equations {6.10)-(6.11) are equivalent writings of what we call the first formula
of the finite increment , the geometric interpretation of which can be found in
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[}

y = flx)

: Lo+ ._'l‘.l T *
Sl z) S o)

Af [ '
,J’"(-f'u);\.:'

.f-(-’!fu:] T - .3
Ax

y = t(z)

To €T Ax
Figure 6.7. First formula of the finite increment

Fig. 6.7. It tells that if f'(zg) # 0, the increment Af, corresponding to a change
Az, is proportional to Az itself, if one disregards an infinitesimal which is negligible
with respect to Az. For Az small enough, in practice, Af can be treated as

I (x0) Az.

Now take f continuous on an interval I of R and differentiable on the interior
points. Fix z; < zo in I and note that f is continuous on [z1, z2] and differentiable
on (x1,z2). Therefore f, restricted to [z, z2], satisfies the Mean Value Theorem,
so there is Z € (z1,z2) such that

f(z2) = f(x1)

T2 —IT1

= f(2),

that is, a point Z € (z;,z2) with

f(@a) = f(@1) = F'(@)(@2 - 21). (6.12)

We shall refer to this relation as the second formula of the finite increment.
It has to be noted that the point Z depends upon the choice of z; and x5, albeit
this dependency is in general not explicit. The formula’s relevance derives from
the possibility of gaining information about the increment f(z2) — f(z1) from the
behaviour of f/ on the interval [z, z2].

The second formula of the finite increment may be used to describe the local
behaviour of a map in the neighbourhood of a certain zy with more precision than
that permitted by the first formula. Suppose f is continuous at g and differentiable
around z( except possibly at the point itself. If x is a point in the neighbourhood
of zg, (6.12) can be applied to the interval bounded by z¢ and z, to the effect that
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| Af = f@)Az, (6.13)

where 7 lies between zg and x. This alternative formulation of (6.12) expresses the
increment of the dependent variable Af as if it were a multiple of Az; at closer
look though, one realises that the proportionality coefficient, i.e., the derivative
evaluated at a point near g, depends upon Az (and on zg), besides being usually
not known.

A further application of (6.12) is described in the next result. This will be
useful later.

Property 6.25 A function defined on a real interval I and everywhere differ-
entiable is constant on I if and only if its first derivative vanishes identically.

Proof. Let f be the map. Suppose first f is constant, therefore for every xg € I,
- . flE) - flxo) . : -
the difference quotient —————, with z € I, x # =z, is zero. Then
€T Hify]
f'(xg) = 0 by definition of derivative.
Vice versa, suppose f has zero derivative on I and let us prove that f is
constant on /. This would be equivalent to demanding

I||'II | ]' = ,'r [’2 J ."v';.'f.‘] ;o € l.

Take z1,29 € I and use formula (6.12) on f. For a suitable & between
xy, T2, we have

flxa) — flz1) = f(Z)(x2 — 1) =0,

thus f(x1) = f(x2). O

6.7 Monotone maps

In the light of the results on differentiability, we tackle the issue of monotonicity.

Theorem 6.26 Let I be an interval upon which the map f is differentiable.
Then:

a) If f is increasing on I, then f'(x) >0 for all z € I.

b1) If f'(x) > 0 for any x € I, then f is increasing on I;

b2) if f'(x) > 0 for all x € I, then f is strictly increasing on I.
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Proof.
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Figure 6.8. Proof of Theorem 6.26, b)
Let us prove claim a). Suppose [ increasing on I and consider an interior
point &g of 1. For all & € I such that 2 < xy. we have
flz) — fzg) <0 and T — 29 < 0.
; oy BN ) &
Thus, the difference quotient Ar between ap and r is non-negative. On
the other hand, for any & € [ with = > xy.

) — Flg)] 2 0 and x—axg > 0.

. . Af . .
Here too the difference quotient o between xy and x is positive or zero.
A

Altogether,

e 0 S UPOE we Va # wp;

Corollary 4.3 on

. i Ty

S, B =)
vields f'(a¢) = 0. As for the possible extremumn points in I. we arrive
at the same conclusion by considering one-sided limits of the difference
quotient, which is always > 0.
Now to the implications in parts b). Take f with f'(z) > 0 for all x € I.
The idea is to fix points @y < xp in I and prove that f(x;) < f(a2).
For that we use (6.12) and note that f'(:z) = 0 by assumption. But since
ae — a1 > 0, we have

Flas) = f(@1) = f'(@)(wa — 1) > 0,

proving bl). Considering f such that /() > 0 for all x € T instead, (6.12)
implies f(as) — f(ry) > 0, hence also 52) holds. |



