

ENGINEERING MATHEMATICS

for t real. These parametric equations are

$$x = -1 + 8t$$
, $y = -1$, $z = 7 - 3t$

for t real. We obtain P_0 when t = 0 and P_1 when t = 1. In this example, the y-coordinate of every point on the line is -1, so the line is in the plane y = -1.

We may also say that this line consists of all points (-1+8t, -1, 7-3t) for t real. \blacklozenge

SECTION 6.1 PROBLEMS

In each of Problems 1 through 5, compute $\mathbf{F} + \mathbf{G}$, $\mathbf{F} - \mathbf{G}$, $2\mathbf{F}$, $3\mathbf{G}$, and $\|\mathbf{F}\|$.

1.
$$\mathbf{F} = 2\mathbf{i} - 3\mathbf{j} + 5\mathbf{k}, \mathbf{G} = \sqrt{2}\mathbf{i} + 6\mathbf{j} - 5\mathbf{k}$$

2.
$$\mathbf{F} = \mathbf{i} - 3\mathbf{k}, \mathbf{G} = 4\mathbf{j}$$

3.
$$\mathbf{F} = 2\mathbf{i} - 5\mathbf{j}, \mathbf{G} = \mathbf{i} + 5\mathbf{j} - \mathbf{k}$$

4.
$$\mathbf{F} = \sqrt{2}\mathbf{i} - \mathbf{j} - 6\mathbf{k}, \mathbf{G} = 8\mathbf{i} + 2\mathbf{k}$$

5.
$$\mathbf{F} = \mathbf{i} + \mathbf{j} + \mathbf{k}, \mathbf{G} = 2\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$$

In each of Problems 6 through 9, find a vector having the given length and in the direction from the first point to the second.

$$6. 5, (0, 1, 4), (-5, 2, 2)$$

7.
$$9, (1, 2, 1), (-4, -2, 3)$$

8.
$$12, (-4, 5, 1), (6, 2, -3)$$

9.
$$4, (0, 0, 1), (-4, 7, 5)$$

In each of Problems 10 through 15, find the parametric equations of the line containing the given points.

10.
$$(1, 0, 4), (2, 1, 1)$$

11.
$$(3,0,0), (-3,1,0)$$

12.
$$(2, 1, 1), (2, 1, -2)$$

13.
$$(0, 1, 3), (0, 0, 1)$$

14.
$$(1,0,-4), (-2,-2,5)$$

15.
$$(2, -3, 6), (-1, 6, 4)$$

6.2 The Dot Product

The *dot product* $\mathbf{F} \cdot \mathbf{G}$ of \mathbf{F} and \mathbf{G} is the real number formed by multiplying the two first components, then the two second components, then the two third components, and adding these three numbers. If $\mathbf{F} = a_1 \mathbf{i} + b_1 \mathbf{j} + c_1 \mathbf{k}$ and $\mathbf{G} = a_2 \mathbf{i} + b_2 \mathbf{j} + c_2 \mathbf{k}$, then

$$\mathbf{F} \cdot \mathbf{G} = a_1 a_2 + b_1 b_2 + c_1 c_2$$
.

Again, this dot product is a number, not a vector. For example,

$$(\sqrt{3}\mathbf{i} + 4\mathbf{j} - \pi\mathbf{k}) \cdot (-2\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}) = -2\sqrt{3} + 24 - 3\pi.$$

The dot product has the following properties.

1.
$$\mathbf{F} \cdot \mathbf{G} = \mathbf{G} \cdot \mathbf{F}$$
.

2.
$$(\mathbf{F} + \mathbf{G}) \cdot \mathbf{H} = \mathbf{F} \cdot \mathbf{H} + \mathbf{G} \cdot \mathbf{H}$$
.

3.
$$\alpha(\mathbf{F} \cdot \mathbf{G}) = (\alpha \mathbf{F}) \cdot \mathbf{G} = \mathbf{F} \cdot (\alpha \mathbf{G})$$
.

4.
$$\mathbf{F} \cdot \mathbf{F} = ||\mathbf{F}||^2$$
.

5.
$$\mathbf{F} \cdot \mathbf{F} = 0$$
 if and only if $\mathbf{F} = \mathbf{O}$.

6.
$$\|\alpha \mathbf{F} + \beta \mathbf{G}\|^2 = \alpha^2 \|\mathbf{F}\|^2 + 2\alpha\beta \mathbf{F} \cdot \mathbf{G} + \beta^2 \|\mathbf{G}\|^2$$
.

Dot products of vectors can be computed using MAPLE and the DotProduct command, which is in the VectorCalculus package of subroutines. This command also applies to *n*-dimensional vectors, which are introduced in Section 6.4.

Conclusions (1), (2), and (3) are routine computations. Conclusion (4) is often used in computations. To verify conclusion (4), suppose

$$\mathbf{F} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$
.

Then

$$\mathbf{F} \cdot \mathbf{F} = a^2 + b^2 + c^2 = ||\mathbf{F}||^2$$
.

Conclusion (5) follows easily from (4), since \mathbf{O} is the only vector having length 0. For conclusion (6), use conclusions (1) through (4) to write

$$\| \alpha \mathbf{F} + \beta \mathbf{G} \|^{2} = (\alpha \mathbf{F} + \beta \mathbf{G}) \cdot (\alpha \mathbf{F} + \beta \mathbf{G})$$

$$= \alpha^{2} \mathbf{F} \cdot \mathbf{F} + \alpha \beta \mathbf{F} \cdot \mathbf{G} + \alpha \beta \mathbf{G} \cdot \mathbf{F} + \beta^{2} \mathbf{G} \cdot \mathbf{G}$$

$$= \alpha^{2} \| \mathbf{F} \|^{2} + 2\alpha \beta \mathbf{F} \cdot \mathbf{G} + \beta^{2} \| \mathbf{G} \|^{2}.$$

The dot product can be used to find an angle between two vectors. Recall the law of cosines: For the upper triangle of Figure 6.11 with θ being the angle opposite the side of length c, the law of cosines states that

$$a^2 + b^2 - 2ab\cos(\theta) = c^2.$$

Apply this to the vector triangle of Figure 6.11 (lower), which has sides of length $a = \|\mathbf{G}\|$, $b = \|\mathbf{F}\|$, and $c = \|\mathbf{G} - \mathbf{F}\|$. Using property (6) of the dot product, we obtain

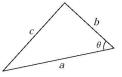
$$\|\mathbf{G}\|^{2} + \|\mathbf{F}\|^{2} - 2\|\mathbf{F}\|\|\mathbf{G}\|\cos(\theta) = \|\mathbf{G} - \mathbf{F}\|^{2}$$
$$= \|\mathbf{G}\|^{2} + \|\mathbf{F}\|^{2} - 2\mathbf{G} \cdot \mathbf{F}.$$

Assuming that neither \mathbf{F} nor \mathbf{G} is the zero vector, this gives us

$$\cos(\theta) = \frac{\mathbf{F} \cdot \mathbf{G}}{\|\mathbf{F}\| \|\mathbf{G}\|}.$$
 (6.1)

Since $|\cos(\theta)| \le 1$ for all θ , equation (6.1) implies the *Cauchy-Schwarz inequality*.

$$|\mathbf{F} \cdot \mathbf{G}| < ||\mathbf{F}|| ||\mathbf{G}||$$
.



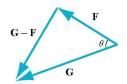


FIGURE 6.11 The law of cosines and the angle between vectors.

EXAMPLE 6.2

The angle θ between $\mathbf{F} = -\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ and $\mathbf{G} = 2\mathbf{j} - 4\mathbf{k}$ is given by

$$\cos(\theta) = \frac{(-\mathbf{i} + 3\mathbf{j} + \mathbf{k}) \cdot (2\mathbf{j} - 4\mathbf{k})}{\|-\mathbf{i} + 3\mathbf{j} + \mathbf{k}\| \|2\mathbf{j} - 4\mathbf{k}\|}$$
$$= \frac{(-1)(0) + (3)(2) + (1)(-4)}{\sqrt{1^2 + 3^2 + 1^2}\sqrt{2^2 + 4^2}} = \frac{2}{\sqrt{220}}.$$

Then $\theta \approx 1.436$ radians. \blacklozenge

EXAMPLE 6.3

Lines L_1 and L_2 have parametric equations

$$L_1: x = 1 + 6t, y = 2 - 4t, z = -1 + 3t$$

and

$$L_2: x = 4 - 3p, y = 2p, z = -5 + 4p.$$

The parameters t and p can take on any real values. We want an angle θ between these lines.

The strategy is to take a vector \mathbf{V}_1 along L_1 and a vector \mathbf{V}_2 along L_2 and find the angle between these vectors. For \mathbf{V}_1 , find two points on L_1 , say (1, 2, -1) when t = 0 and (7, -2, 2) when t = 1, and form

$$\mathbf{V}_1 = (7-1)\mathbf{i} + (-2-2)\mathbf{j} + (2-(-1))\mathbf{k} = 6\mathbf{i} - 4\mathbf{j} + 3\mathbf{k}.$$

On L_2 , take (4, 0, -5) with p = 0 and (1, 2, -1) with p = 1, forming

$$\mathbf{V}_2 = 3\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}.$$

Now compute

$$\cos(\theta) = \frac{6(3) - 4(-2) + 3(-4)}{\sqrt{36 + 16 + 9}\sqrt{9 + 4 + 16}} = \frac{14}{\sqrt{1769}}.$$

An angle between L_1 and L_2 is $\arccos(14/\sqrt{1769})$, which is approximately 1.23 radians. \blacklozenge

Two nonzero vectors \mathbf{F} and \mathbf{G} are *orthogonal* (perpendicular) when the angle θ between them is $\pi/2$ radians. This happens exactly when

$$\cos(\theta) = 0 = \frac{\mathbf{F} \cdot \mathbf{G}}{\|\mathbf{F}\| \|\mathbf{G}\|}$$

which occurs when $\mathbf{F} \cdot \mathbf{G} = 0$. It is convenient to also agree that \mathbf{O} is orthogonal to every vector. With this convention, two vectors are orthogonal if and only if their dot product is zero.

EXAMPLE 6.4

Let $\mathbf{F} = -4\mathbf{i} + \mathbf{j} + 2\mathbf{k}$, $\mathbf{G} = 2\mathbf{i} + 4\mathbf{k}$ and $\mathbf{H} = 6\mathbf{i} - \mathbf{j} - 2\mathbf{k}$. Then $\mathbf{F} \cdot \mathbf{G} = 0$, so \mathbf{F} and \mathbf{G} are orthogonal. But $\mathbf{F} \cdot \mathbf{H}$ and $\mathbf{G} \cdot \mathbf{H}$ are not zero, so \mathbf{F} and \mathbf{H} are not orthogonal and \mathbf{G} and \mathbf{H} are not orthogonal.

Property (6) of the dot product has a particularly simple form when the vectors are orthogonal. In this case, $\mathbf{F} \cdot \mathbf{G} = 0$, and upon setting $\alpha = \beta = 1$, we have

$$\|\mathbf{F} + \mathbf{G}\|^2 = \|\mathbf{F}\|^2 + \|\mathbf{G}\|^2$$
.

This is the familiar *Pythagorean theorem*, because the vectors \mathbf{F} and \mathbf{G} form the sides of a right triangle with hypotenuse $\mathbf{F} + \mathbf{G}$ (imagine Figure 6.5 with \mathbf{F} and \mathbf{G} forming a right angle).

EXAMPLE 6.5

Suppose two lines are defined parametrically by

$$L_1: x = 2 - 4t, y = 6 + t, z = 3t$$

and

$$L_2: x = -2 + p, y = 7 + 2p, z = 3 - 4p.$$

We want to know if these lines are orthogonal. Note that the question makes sense even if L_1 and L_2 do not intersect.

The idea is to form a vector along each line and test these vectors for orthogonality. For a vector along L_1 , take two points on this line, say (2,6,0) when t=0 and (-2,7,3) when t=1. Then $\mathbf{V}_1=-4\mathbf{i}+\mathbf{j}+3\mathbf{k}$ is parallel to L_1 . Similarly, (-2,7,3) is on L_2 when p=0, and (-1,9,-1) is on L_2 when p=1, so $\mathbf{V}_2=\mathbf{i}+2\mathbf{j}-4\mathbf{k}$ is parallel to L_2 . Compute $\mathbf{V}_1\cdot\mathbf{V}_2=-14\neq 0$. Therefore, L_1 and L_2 are not orthogonal.

Orthogonality is also useful for determining the equation of a plane in 3-space. Any plane has an equation of the form

$$ax + by + cz = d$$
.

As suggested by Figure 6.12, if we specify a point on the plane and a vector orthogonal to the plane, then the plane is completely determined. Example 6.6 suggests a strategy for finding the equation of this plane.

EXAMPLE 6.6

We will find the equation of the plane Π containing the point (-6, 1, 1) and orthogonal to the vector $\mathbf{N} = -2\mathbf{i} + 4\mathbf{j} + \mathbf{k}$. Such a vector \mathbf{N} is said to be *normal* to Π and is called a *normal* vector to Π .

Here is a strategy. Because (-6, 1, 1) is on Π , a point (x, y, z) is on Π exactly when the vector between (-6, 1, 1) and (x, y, z) lies in Π . But then $(x+6)\mathbf{i} + (y-1)\mathbf{j} + (z-1)\mathbf{k}$ must be orthogonal to \mathbf{N} , so

$$\mathbf{N} \cdot ((x+6)\mathbf{i} + (y-1)\mathbf{j} + (z-1)\mathbf{k}) = 0.$$

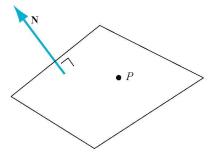


FIGURE 6.12 A point P and a normal vector \mathbf{N} determine a plane.

Then

$$-2(x+6)+4(y-1)+(z-1)=0$$
,

or

$$-2x + 4y + z = 17$$
.

This is the equation of Π .

Following this reasoning in general, the equation of a plane containing a point P_0 : (x_0, y_0, z_0) and having a normal vector $\mathbf{N} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ is

$$\mathbf{N} \cdot [(x - x_0)\mathbf{i} + (y - y_0)\mathbf{j} + (z - z_0)\mathbf{k}] = 0$$

Of

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0. ag{6.2}$$

It is also sometimes convenient to notice that the vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ is always a normal vector to a plane ax + by + cz = d, for any d. Changing the value of d moves the plane in 3-space but does not change its orientation with respect to the axes, so the normal vector remains the same and is determined by the coefficients a, b, and c only.

Another use for the dot product is in forming vector projections.

Let \mathbf{u} and \mathbf{v} be given, nonzero vectors, represented as arrows from a common point (for convenience). The *projection* of \mathbf{v} onto \mathbf{u} is a vector $\operatorname{proj}_{\mathbf{u}}\mathbf{v}$ in the direction of \mathbf{u} having magnitude equal to the length of the perpendicular projection of the arrow representing \mathbf{v} onto the line along the arrow representing \mathbf{u} . This projection is done by constructing a perpendicular line from the tip of \mathbf{v} onto the line through \mathbf{u} . The base of the right triangle having \mathbf{v} as hypotenuse is the length d of $\operatorname{proj}_{\mathbf{u}}\mathbf{v}$ (Figure 6.13).

If θ is the angle between **u** and **v**, then

$$\cos(\theta) = \frac{d}{\|\mathbf{v}\|}.$$

Then

$$d = \parallel \mathbf{v} \parallel \cos(\theta) = \parallel \mathbf{v} \parallel \frac{\mathbf{u} \cdot \mathbf{v}}{\parallel \mathbf{u} \parallel \parallel \mathbf{v} \parallel} = \frac{\mathbf{u} \cdot \mathbf{v}}{\parallel \mathbf{u} \parallel}.$$

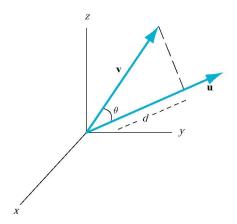


FIGURE 6.13 Orthogonal projection of **v** onto **u**.

To obtain a vector in the direction of \mathbf{u} and of length d, divide \mathbf{u} by its length to obtain a unit vector, then multiply this vector by d. Therefore,

$$\operatorname{proj}_{\mathbf{u}} \mathbf{v} = d \left(\frac{\mathbf{u}}{\parallel \mathbf{u} \parallel} \right) = \frac{\mathbf{u} \cdot \mathbf{v}}{\parallel \mathbf{u} \parallel^2} \mathbf{u}.$$

As an example, suppose $\mathbf{v} = 4\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ and $\mathbf{u} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$. Then

$$\mathbf{u} \cdot \mathbf{v} = 9$$
 and $\|\mathbf{u}\|^2 = 6$,

SO

$$\operatorname{proj}_{\mathbf{u}}\mathbf{v} = \frac{9}{6}\mathbf{u} = \frac{3}{2}(\mathbf{i} - \mathbf{j} + 2\mathbf{k}).$$

If we think of these vectors as forces, we may interpret $\text{proj}_{\mathbf{u}}\mathbf{v}$ as the effect of \mathbf{v} in the direction of \mathbf{u} .

SECTION 6.2 PROBLEMS

In each of Problems 1 through 6, compute the dot product of the vectors and the cosine of the angle between them. Also determine if the vectors are orthogonal.

1.
$$i, 2i - 3j + k$$

2.
$$2i - 6j + k, i - j$$

3.
$$-4i - 2i + 3k$$
, $6i - 2j - k$

4.
$$8i - 3j + 2k$$
, $-8i - 3j + k$

5.
$$i - 3k$$
, $2j + 6k$

6.
$$i + j + 2k, i - j + 2k$$

In each of Problems 7 through 12, find the equation of the plane containing the given point and orthogonal to the given vector.

7.
$$(-1, 1, 2), 3\mathbf{i} - \mathbf{j} + 4\mathbf{k}$$

8.
$$(-1, 0, 0)$$
, $\mathbf{i} - 2\mathbf{j}$

9.
$$(2, -3, 4), 8\mathbf{i} - 6\mathbf{j} + 4\mathbf{k}$$

10.
$$(-1, -1, -5), -3i + 2j$$

11.
$$(0, -1, 4), 7\mathbf{i} + 6\mathbf{j} - 5\mathbf{k}$$

12.
$$(-2, 1, -1)$$
, $4\mathbf{i} + 3\mathbf{j} + \mathbf{k}$

In each of Problems 13, 14, and 15, find the projection of ${\bf v}$ onto ${\bf u}$.

13.
$$\mathbf{v} = \mathbf{i} - \mathbf{j} + 4\mathbf{k}, \mathbf{u} = -3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$$

14.
$$\mathbf{v} = 5\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}, \mathbf{u} = \mathbf{i} - 5\mathbf{j} + 2\mathbf{k}$$

15.
$$\mathbf{v} = -\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}, \mathbf{u} = 2\mathbf{i} + 7\mathbf{j} - 3\mathbf{k}$$

6.3 The Cross Product

The dot product produces a scalar from two vectors. The cross product produces a vector from two vectors.

Let $\mathbf{F} = a_1 \mathbf{i} + b_1 \mathbf{j} + c_1 \mathbf{k}$ and $\mathbf{G} = a_2 \mathbf{i} + b_2 \mathbf{j} + c_2 \mathbf{k}$. The *cross product* of \mathbf{F} with \mathbf{G} is the vector $\mathbf{F} \times \mathbf{G}$ defined by

$$\mathbf{F} \times \mathbf{G} = (b_1 c_2 - b_2 c_1)\mathbf{i} + (a_2 c_1 - a_1 c_2)\mathbf{j} + (a_1 b_2 - a_2 b_1)\mathbf{k}.$$

Here is a simple device for remembering and computing these components. Form the determinant

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$