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Differential calculus

The precise definition of the notion of derivative, studying a function’s differen-
tiability and computing its successive derivatives, the use of derivatives to analyse
the local and global behaviours of functions are all constituents of Differential
Calculus.

6.1 The derivative

We start by defining the derivative of & function.

Let f: dom f € R — R be a real function of one real variable, take 2y € dom f
and suppose f is defined in a neighbourhood I,.(xq) of xg. With z € I,.(zg), x # z¢
fixed, denote by

Ar =x — xg
the (positive or negative) increment of the independent variable between
zo and z, and by

Af = flz) — f(=o)
the corresponding increment of the dependent variable. Note that z = x¢ +
Az, f(x) = flzo) + Af.

The ratio

ﬁ @)= flzo) . flzs £:42) — f(zo)
Ar T — Tp = Ax

is called difference quotient of f between x; and z.

In this manner A f represents the absolute increment of the dependent variable
f when passing from zg to z¢ + Az, whereas the difference quotient detects the
rate of increment (while Af/ f is the relative increment). Multiplying the difference
quotient by 100 we obtain the so-called percentage increment. Suppose a rise by
Az = 0.2 of the variable x prompts an increment Af = 0.06 of f; the difference

quotient af equals 0.3 = 3% corresponding to a 30% increase.
Ag 100
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A

y = f(x)
y = s(x)
Flwo + Az)] A y = t(x)
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flzo) 1 -
-".l" -1'|.->+ Az ]

Figure 6.1. Secant and tangent lines to the graph of f at Py

Graphically, the difference quotient between xg and a point z, around x is the
slope of the straight line s passing through Py = (mo, f(aco)) and P, = (acl, f(ml)),
points that belong to the graph of the function; this line is called secant of the
graph of f at Py and P, (Fig.6.1). Putting Az = 27 —x¢ and Af = f(a1) — f(x0),
the equation of the secant line reads

y:s(ac):f(a:o)—F%(a:—xo), z e€R. (6.1)

A typical application of the difference quotient comes from physics. Let M be
a point-particle moving along a straight line; call s = s(t) the z-coordinate of the
position of M at time ¢, with respect to a reference point O. Between the instants
to and t; = to + At, the particle changes position by As = s(t1)} — s(tg). The
difference quotient % represents the average velocity of the particle in the given

interval of time.

How does the difference quotient change, as Az approaches 07 This is answered
by the following notion.

Definition 6.1 A map [ defined on a neighbourhood of vy € R is called

differentiable at xg if the limit of the difference quotient —— between xg
AT

and x exists and is finite, as x approaches xy. The real number

. (z) — fx Az) — f(z
f;(-'i"[)) = i_li]};}:" f( 3 ~ i((]f(l) - J}j‘ln_o flxo + ‘dfl) f(zo)

is called (first) derivative of f at zg.
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The derivative at g is variously denoted, for instance also by

df

1r (z0), Df(zp).

y/ (IU)'/
The first symbol goes back to Newton, the second is associated to Leibniz.
From the geometric point of view f'(xg) is the slope of the tangent line at
Py = (20, f(20)) to the graph of f: such line ¢ is obtained as the limiting position
of the secant s at Py and P = (z, f(z)), when P approaches Py. From (6.1) and
the previous definition we have

’ —

’ y =t(x) = f(xo) + f'(x0)(x — x0), zeR. |

s
In the physical example given above, the derivative v(tp) = §'(tg) = lim —

is the instantaneous wvelocity of the particle M at time .
Let
dom f' = {z € dom f : f is differentiable at =}

and define the function f':dom f' CR — R, f':z— f'(z) mapping = € dom f’
to the value of the derivative of f at x. This map is called (first) derivative of f.

Definition 6.2 Let I be a subset of dom f. We say that f is differentiable
on I (orin I) if f is differentiable at each point of I.

A first yet significant property of differentiable maps is the following.

! Proposition 6.3 If f is differentiable at xo, it is also continuous at xg.
|

. / ] -
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Not all continuous maps at a point are differentiable though. Consider the map
f(z) = |z|: it is continuous at the origin, yet the difference quotient between the
origin and a point x # 0 is

_A_f_f(x)-f(())_m_{ﬂ if z >0,
T 1-1 ifz<o,

= 6.2
Az z—0 T (6.2)

so the limit for £ — 0 does not exist. Otherwise said, f is not differentiable at
the origin. This particular example shows that the implication of Proposition 6.3
can not be reversed: differentiability is thus a stronger property than continuity,
an aspect to which Sect. 6.3 is entirely devoted.

6.2 Derivatives of the elementary functions. Rules of
differentiation

We begin by tackling the issue of differentiability for elementary functions using
Definition 6.1.

i) Consider the affine map f(z) = az + b, and let o € R be arbitrary. Then

, L (a(a:o + Az) + b) —(azo +b)
J'(@o) = Alalcrgo Az Az—0

in agreement with the fact that the graph of f is a straight line of slope a. The
derivative of f(z) = ax + b is then the constant map f'(z) = a.
In particular if f is constant (a = 0), its derivative is identically zero.

i) Take f(z) = z? and zg € R. Since

. (zo+ Az)? ~ 23 )
e = g, BT < o oy a0 =2,

the derivative of f(z) = 22 is the function f'(z) = 2z.
Now let f(z) = 2™ with n € N. The binomial formula (1.13) yields

(xo + Az)™ — 23

’ _ «
J(wo) = Aty Az
zy +nzy” le—}-Z( ) Bl Aw]® — o
- Alglcrgo Az

Il

Algiﬂrg()(mvo +Z<> (Az)F- >_m:g L

for all zyp € R. Therefore, f'(z) = nz™~! is the derivative of f(z) = 2™ .
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iv) Even more generally, consider f(z) = z® where o € R, and let zg # 0 be a
point of the domain. Then

. o o o|(] 4 4z ‘1
(g + Ax)* — . To [( z ) ]
f'lzo) = Jim : A:z): > = Jim o
L ()
T Aimy 4z

Substituting y = f—;‘ brings the latter into the form of the fundamental limit
(4.13), so
f(zo) = azf ™.

When « > 1, f is differentiable at zq = 0 as well, and f’(0) = 0. The function
f(z) = z® is thus differentiable at all points where the expression z* ! is well
defined; its derivative is f'(z) = az®~!.
For example f(z) = /z = 2'/2, defined on [0, +00), is differentiable on (0, +-00)
with derivative f'(z) = NG The function f(z) = V25 = 2%/% is defined on R,
T

where it is also differentiable, and f'(z) = 52%/°% = 2V/z2.

v} Now consider the trigonometric functions. Take f(z) = sinz and zy € R.
Formula (2.14) gives

Flao) = lim sin(zo + Az) —sinzo 2sin 5Z cos(zo + 4%)
0 Az—0 Az Ar—0 Ax
i Az
sin == Az
— 2 .
- AI;{I},O Ax III’E COos (IO + —)

The limit (4.5) and the cosine’s continuity tell
f(xo) = cos xg.

Hence the derivative of f(z) =sinz is f'(z) = cosz.
Using in a similar way formula (2.15), we can see that the derivative of f(z) =
cosz is the function f'(z) = —sinz.

vi) Eventually, consider the exponential function f(z) = a®. By (4.12) we have

, aro-l»AI — g%° aAr _
= lim ——————— =4 lim ——— =qa""1
F(@o) A0 Az R T Az @ s
showing that the derivative of f(z) = o® is f'(z) = (loga)a®.
As loge = 1, the derivative of f(z) = € is f'(z) = ¢* = f(z), whence the
derivative f’ coincides at each point with the function f itself. This is a crucial
fact, and a reason for choosing e as privileged base for the exponential map.
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We next discuss differentiability in terms of operations (algebraic operations,
composition, inversion) on functions. We shall establish certain differentiation
rules to compute derivatives of functions that are built from the elementary
ones, without resorting to the definition each time. The proofs may be found
at ~~» Derivatives.

Theorem 6.4 (Algebraic operations) Let f(x),g(x) be differentiable
maps at xg € R. Then the maps f(z) + g(x), f(z)g(x) and, if g(xo) # 0,
f(z)

——= are differentiable at xy. To be precise,

g()
(f £ 9) (z0) = f'(wo) £ g'(z0), (6.3)
(f 9) (wo) = f'(w0)g(xo) + f(x0)g' (o), (6.4)
i A S J'(x0)g(x0) — f(x0)g' (20) o
(E ) (z0) = rENE : (6.5)

Corollary 6.5 (‘Linearity’ of the derivative) If f(z) and g(z) are dif-
ferentiable at xy € R, the map af(x) + Bg(x) is differentiable at xqy for any
a,B R and

(af + B9)'(x0) = af' (o) + By’ (x0). (6.6)

Proof. Consider (6.4) and recall that differentiating a constant gives zero: then
oy f " . 1 f \ 2 \ ;T - " . 3 "
[ (zn) x] |rg) and ’I’." Vo) 7 (o) follow. The rest is a conse

S
quence of {D.a).

Examples 6.6

i) To differentiate a polynomial, we use the fact that D z™ = nz™~! and apply
the corollary repeatedly. So, f(z) = 32°% — 22 — 22 + 322 — 5z + 2 differentiates
to

fl(z) =3 -5z —2 42 — 322 + 3.2z — 5 = 15¢* — 823 — 322 + 62 — 5.

i1) For rational functions, we compute the numerator and denominator’s deriva-
tives and then employ rule (6.5), to the effect that

z2 -3z +1
foy=——7—

has derivative
(20-3)(2z—1)— (2> -3+ 1)2 22> —2z+1
(22 — 1)2 T 4a? -4z + 1
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iil) Consider f(x) = x3 sin . The product rule (6.4) together with (sinz)’ = cosz
yield
f'(x) = 32%sinz + 2 cos x.

1v ) The function

sinx
flz) =tanz =
cos T
can be differentiated with (6.5)
’ cosx cosx —sinx (—sinx)  cos’x +sinz sin x 9
fix)= > = 5 =1+——=1+tan"z.
cos? x cos?x cos? x
Another possibility is to use cos? z + sin® z = 1 to obtain
1
/ . J—
f (L) - COSZ.I'

Theorem 6.7 (“Chain rule”) Let f(x) be differentiable at xp € R and g(y)
a differentiable map at yo = f(x). Then the composition go f(z) = q(f(J ))
is differentiable at xy and

(g0 f) (x0) = ¢ (y0) f'(z0) = g’ (f(20)) f' (20). (6.7)

Examples 6.8

i) The map h(z) = V1 — 22 is the composite of f(z ) =1 —2?, whose derivative

is f'(x) = —2z, and g(y) = /. for which ¢'(y) = ﬁ Then (6.7) directly gives
1 T

— (-2 = ————.

21 — 22 V1—2?

i} The function h(x) = €537 is composed by f(z) = cos3z, g(y) = Y. But

f(x) is in turn the composite of ¢(z) = 3z and 1 (y) = cosy; thus (6.7) tells

f'(z) = —3sin3z. On the other hand ¢'(y) = e¥. Using (6.7) once again we

conclude

h(x)=

B (x) = —3e“°°37 gin 3z.

Theorem 6.9 (Derivative of the inverse function) Suppose f(x) is a
continuous, invertible map on a neighbourhood of xo € R, and differentiable
at xg, with f'(xo) # 0. Then the inverse map f~'(y) is differentiable at
yo = f(xg), and

1
f’( o) ()

(F71 (%) = (6.8)
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Examples 6.10
i) The function y = f(x) = tanz has derivative f’(z) = 1 + tan®z and inverse
z = f~!(y) = arctany. By (6.8)

1 1
_1 l — — .
(f ) (y) T s tan2 T 1+ y2

Setting for simplicity f~! = g and denoting the independent variable with z,

the derivative of g(z) = arctan z is the function ¢'(z) = Tra2
z

ii) We are by now acquainted with the function y = f(x) = sinz: it is invertible

on [—%, 2], namely = f~'(y) = arcsiny. Moreover, f differentiates to f'(z) =

cosz. Using cos?z + sin?z = 1, and taking into account that on that interval
cosz > 0, one can write the derivative of f in the equivalent form f'(z) =

1 —sin® z. Now (6.8) yields

Y () ! !

N \/1—sin2z: \/1—212.

Put once again f~! = g and change names to the variables: the derivative of

VIZ 2

In similar fashion g(z) = arccosz differentiates to ¢'(z) = —

g(z) = arcsinz is ¢'(z) =
1

Vi-2?

iii) Consider y = f{z) = a®. It has derivative f'(z) = (loga)a® and inverse

z = f~(y) = log, y. The usual (6.8) gives

1 1
—1y () = - :
(f ) (y) (log a)az (log a)y
1
Defining f~! = g and renaming z the independent variable gives ¢’(x) = loga)z

as derivative of g{z) = log, = (z > 0).
Take now h(z) = log,(—z) (with z < 0), composition of z — —z and ¢{y): then

M = Togae Y T

log, |z| (x # 0) has derivative ¢'(z) =

m. Putting all together shows that g(z) =
oga

(loga)z”

1
With the choice of base a = e the derivative of g(z) = log |z| is ¢'(z) = e

Remark 6.11 Let f(x) be differentiable and strictly positive on an interval I.
Due to the previous result and the Chain rule, the derivative of the composite

map g(z) = log f(z) is
f'(z)

flz)

g'(z) =

4
The expression = is said logarithmic derivative of the map f.

f
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The section ends with a useful corollary to the Chain rule 6.7.

Property 6.12 If [ is an even (or odd) differentiable function on all its
domain, the derivative f' is odd (resp. even).

Proof.

Since [ is even, f(—x) = f(x) for any = € dom f. Let us differentiate both
sides. As f(—ur) is the composition of x — —x and y — f(y). its derivative
reads — f'(—z). Then f'{—z) F(x) for all z € dom f, so f' is odd.
Similarly if f is odd. !

We reckon it could be useful to collect the derivatives of the main elementary
functions in one table, for reference.

Dz% =az* ! (Vo € R)
D sinxz = cosx
D cosxz = —sinzx
. 1
D tanz =1+ tan“z = =
cos?
D arcsinz = L
D arccosx = :
V1—a2

D arctanz = 1+—:I'2
Da® = (loga) a” in particular, De® =e”
D log, |z| = ! in particular, D log|z| = :

RS og ) T 2 " SR

6.3 Where differentiability fails

It was noted carlier that the function f(x) = |z| is continuous but not differentiable
at the origin. At each other point of the real line f is differentiable, for it coincides
with the line y = « when = > 0, and with y = —z for x < 0. Therefore f'(z) = +1



