FOR 220 Aerial Photo Interpretation and Forest Measurements

Lecture 9

Geometry / Trigonometry Review

Avery and Burkhart Page 432

Concepts used in photogrammetry

- **1. Right Triangles / Similar Triangles**
- 2. Pythagorean Theorem
- 3. Solution of Right Triangles
- 4. Sum of Interior Angles
- 5. Area Calculations
- 6. Synthesis

Right Triangles

One of the three interior angles is 90 degrees.

We can know 6 things about right triangles:

3 interior angles 3 side lengths

If we know two things about a right triangle, other than one of the interior angles is 90 degrees, we can figure everything else out.

Similar Right Triangles

Similar Right Triangles

$$\left(\frac{a}{aa}\right) = \left(\frac{b}{bb}\right) = \left(\frac{c}{cc}\right)$$

Example: b = 100 feet bb = 30 feet aa = 20 feet what is the height of a?

$$\left(\frac{a}{aa}\right) = \left(\frac{b}{bb}\right)$$
$$\left(\frac{a}{20}\right) = \left(\frac{100}{30}\right)$$
$$\left(a\right) = \left(\frac{100}{30}\right) 20 = 66.7 \, feet$$

Pythagorean Theorem

Pythagorean Theorem

$$c^2 = a^2 + b^2$$

Example: **b** = 100 feet **a** = 66.7 feet what is the length of C? $c^2 = a^2 + b^2$ $c^2 = 66.7^2 + 100^2$ $c^2 = 14,448.89$ c = 120.2 feet

Pythagorean Theorem

$$a2 = c2 - b2$$
$$b2 = c2 - a2$$

Example: **a** = 150 feet **c** = 175 feet what is the length of b? $b^2 = c^2 - a^2$ $b^2 = 175^2 - 150^2$ $b^2 = 8,125$ b = 90.1 feet

Solution of Right Triangles (Trigonometry)

Solution of Right Triangles

$$Sine(A) = \left(\frac{a}{c}\right) = \left(\frac{opposite \ side}{hypotenuse}\right)$$
$$Cos(A) = \left(\frac{b}{c}\right) = \left(\frac{adjacent \ side}{hypotenuse}\right)$$
$$Tan(A) = \left(\frac{a}{b}\right) = \left(\frac{opposite \ side}{adjacent \ side}\right)$$
$$Cot(A) = \left(\frac{b}{a}\right) = \left(\frac{adjacent \ side}{opposite \ side}\right)$$
$$Sec(A) = \left(\frac{c}{b}\right) = \left(\frac{hypotenuse}{adjacent \ side}\right)$$
$$Cosec(A) = \left(\frac{c}{a}\right) = \left(\frac{hypotenuse}{opposite \ side}\right)$$

Solution of Right Triangles

Example: b = 100 feet A = 20 degrees what is the height of "a"?

What do we know? c is the hypotenuse (we don't know) a is the opposite (we want) b is the adjacent (we know)

$$Tan(A) = \left(\frac{a}{b}\right) = \left(\frac{opposite \ side}{adjacent \ side}\right)$$
$$Tan(20) = \left(\frac{a}{100}\right)$$
$$0.3639 \ (100) = (a) = 36.39 \ feet$$

Sum of Interior Angles

Sum of Interior Angles

$$180 = \left(\frac{(Sum \ of \ angles)}{(number \ of \ angles - 2)}\right)$$

Example: C = 90 degree angle A = 30 degree angle what is the angle of B?

$$180 = \left(\frac{(30+90+B)}{(3-2)}\right)$$
$$180 = \left(\frac{(120+B)}{1}\right)$$
$$180 = (120+B)$$
$$180 - 120 = B$$
$$60 = B$$

Sum of Interior Angles - Proof on a square

$$180 = \left(\frac{(Sum \ of \ angles)}{(number \ of \ angles - 2)}\right)$$

Example: A = B = C = 90 degrees what is the angle of D?

$$180 = \left(\frac{(90+90+90+D)}{(4-2)}\right)$$
$$180 = \left(\frac{(270+D)}{2}\right)$$
$$180 = \left(\left(\frac{(270)}{2}\right) + \left(\frac{D}{2}\right)\right)$$
$$180 - 135 = \left(\frac{D}{2}\right)$$
$$45 = \left(\frac{D}{2}\right)$$
$$90 = D$$

BOTTOM LINE - SUMMARY - TAKE HOME MESSAGE

If you know two pieces of information (other than the right angle, which is always 90 degrees), you can figure out everything else about a right triangle.

EXAMPLE #1: Bearings and azimuths

You are starting from point M, on an azimuth of 30 degrees. You travel 66 feet on this azimuth. How far in North and East directions have you moved?

EXAMPLE #1: Bearings and azimuths

What do we know? hypotenuse = d = 66 feet X angle is 30 degrees

What do we need to know? We need to determine the opposite (x) and adjacent (y) side distances.

$$Sine(X) = \left(\frac{x}{d}\right) = \left(\frac{opposite \ side}{hypotenuse}\right)$$
$$x = 33 \ feet, or \ 33 \ feet \ to \ the \ East$$
$$Cos(X) = \left(\frac{y}{d}\right) = \left(\frac{adjacent \ side}{hypotenuse}\right)$$

$$y = 57.2$$
 feet, or 57.2 feet to the North

EXAMPLE #2: Bearings and azimuths

You start from a known coordinate on a trail, and traverse (compass and pace) a certain number of bearings and distances.

How would you calculate the coordinates at each vertex (station)?

Area Calculations

Area Calculations for Right Triangles

$$Area = \left(\frac{(a)(b)}{2}\right)$$

Example: a = 150 feet b = 90.1 feet what is the area of the triangle?

$$Area = \left(\frac{(a)(b)}{2}\right)$$
$$Area = \left(\frac{(150)(90.1)}{2}\right)$$

Area=0.155 acres

Area Calculations for Triangles

$$Area = \left(\frac{(b)(h)}{2}\right)$$

Example: b = 150 feet h = 100 feet what is the area of the triangle?

$$Area = \left(\frac{(b)(h)}{2}\right)$$
$$Area = \left(\frac{(150)(100)}{2}\right)$$
$$Area = 7,500 \ square \ feet$$

 $Area = 0.172 \ acres$

Area Calculations for Circles

Area =
$$\pi r^2$$

Example: r = 50 feet what is the area of the circle?

Area = π 50²

Area=7,853.98 square feet

Area=0.18 acres

Area Calculations for Circles

 $Area = \pi r^2$

Example:

You are measuring the trees within a 1/10 acre fixed plot. What is the radius (in feet) of the plot?

0.10 acres = πr^2 4,356 square feet = πr^2 1,386.56 square feet = r^2 37.2 feet = r

Putting it all Together

EXAMPLE #3: Distances and Areas

You only know a little bit about an area, that two sides are a certain number of feet from a starting point, that one side runs 200 ft. directly East-West, and that another is on an azimuth of 310°, and runs for 150 feet. There is only one more side, forming a triangle.

What is the length of the third side, the angle associated with all corners, and the area of the triangle.

Note:

Do not assume that a triangle that appears to be a right triangle is actually a right triangle. All right triangles in this class will be clearly marked.

EXAMPLE #3: Distances and Areas

What do we know? A = 40 degrees

EXAMPLE #3: Distances and Areas

What do we know?

By creating two separate right triangles, we can calculate "a" or the height of the original triangle.

$$Sine(A) = \left(\frac{opposite \ side}{hypotenuse}\right)$$
$$0.642788 = \left(\frac{a}{150}\right)$$
$$96.42 \ feet = a$$

EXAMPLE #3: Distances and Areas

What do we know?

We can also calculate "b"

$$Cos(A) = \left(\frac{adjacent \ side}{hypotenuse}\right)$$
$$0.766044 = \left(\frac{b}{150}\right)$$
$$114.91 \ feet = b$$
and "p"
$$p = (200 - b) = 85.09 \ feet$$

EXAMPLE #3: Distances and Areas

What do we know?

We can now calculate angle A'

$$Tan(A') = \left(\frac{opposite \ side}{adjacent \ side}\right) = \left(\frac{a}{p}\right)$$
$$Tan(A') = \left(\frac{96.42}{85.09}\right) = 1.1332$$
$$A' = 48.6^{\circ}$$
and side "q"
$$q^2 = p^2 + a^2$$
$$q = 128.6 \ feet$$

EXAMPLE #3: Distances and Areas

What do we know?

Angle $A = 40^{\circ}$ Angle A' = 48.6° $180 = \left(\frac{(Sum \ of \ angles)}{(number \ of \ angles - 2)}\right)$ $180 = \left(\frac{(40 + 48.6 + B)}{(3 - 2)}\right)$ $180 = \left(\frac{(88.6 + B)}{(1)}\right)$ 180 - 88.6 = B $91.4^{\circ} = B$

EXAMPLE #3: Distances and Areas

Finally, the area:

$$Area = \left(\frac{(b)(h)}{2}\right)$$

here: b = 200 feet h = a = 96.42 feet

$$Area = \left(\frac{(200)(96.42)}{2}\right)$$

$$Area = 9,642 \ square \ feel$$

 $Area = 0.22 \ acres$

EXAMPLE #3: Distances and Areas

Summary:

The length of the third side:

128.6 feet

The angle associated with all corners:

 $A = 40^{\circ}, A' = 48.6^{\circ}, B = 91^{\circ}$

The area of the triangle:

EXAMPLE #4: Distances and Areas

Calculate the area of this landscape unit:

How would you proceed?

What is going on here?

