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BBenenue

[locobue  conmepUT  Kypc  JIEKIMHA,  YHTaeMbId  CTyJIEHTaM
Mexnynapoanoro  ¢uHaHcoBoro  ¢akynprera  DUHYHHBEpCHUTETa  Ha
aHrIMHACKOM si3bIKe. [locoOue oxBaThIBaeT CleAyIOUIie BONPOCH! IUCIUILTHHBL:
CUCTEMBbl JIMHEHHBIX YpaBHEHUI, MAaTpHUIbI U ONPEACTHUTENIH, BEKTOPHAs
anrebpa, JUHEHWHbIE MPeoOpa3OBaHUA, KOMIUIEKCHbIE YHCIA, KBaJpaTHYHbIC
(GopMBI, FMEMEHTH aHAIWTHYECKON T'eOMETpPHH, BBIMYKIIbIE MHOXeCTBa. Bech
TEOPETUYECKHI MaTepuasn COMPOBOXKAACTCA MPUMEPAMH, HWLTIOCTPUPYIOIIUMU
OCHOBHBIE TOJIOKEHUsI Teopur. [locodue cHaOXKEHO CHHCKOM PEKOMEHIyeMOM
JUTEPATyphl HA PYCCKOM M aHTJIMHCKOM SI3bIKaX.

[lepen crynmenTamu, WH3y4alOUMMH Kypc JHHEHMHON anreOpbl Ha
MexayHapoaHOM (UHAHCOBOM (DaKyJIbTETe Ha aHTIUICKOM SI3bIKE, CTaBHUTCS
HeJlerkasl 3ajiaua: OCBOMTH JAaHHBIM, OYeHb HEMPOCTOM MpeaMeT, cpa3zy Ha JIByX
A3bIKax. A 3TO O3HA4YaeT HE TOJbKO HAYYUTHCS MOHHMMATh U HCIOJIb30BATh
COOTBETCTBYIOIIYIO  CIHEIHAJbHYI0O TEPMHHOJIOTHIO Ha S3bIKe, HO U
IPUCIIOCOOUTHCS K 3allafHOMY CTHIIIO ITojlauu MaTepuaia. [lociennee ocoOeHHO
aKTyaJbHO JUIS CTYACHTOB, ENAIONIMX IMPOIOIKATh OOydeHHEe 3a PYyOesKOM.
[TosTOMy BCe OCHOBHBIE TEPMHHBI CHAO>KEHBI NEPEBOJIAMU Ha PYCCKHUH S3BIK,
IPUBOJISTCS] PYCCKOSI3bIUHBIE HA3BAHUS TEOPEM, a TAKXKe MPH MoJaue MaTepuasa
NOpOH OTHaeTcs MPEeaNOYTeHHE MOAXOMy, MPHUHATOMY B 3apyOeKHOM Kypce
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Lecture 1

Solving Systems of

Linear Equations




Basic Terminology

e System of Linear Equations (cucmema
NIUHeUHbIX ypasHeHul) or Linear System: a
finite set of linear equations.

e Solution: numbers s, S5, ..., S, such that

every equation of the system is satisfied when
we substitute x; = S, Xy = Sy, ..., Xy = Sy,

e Solution Set (mHO»3tecmeo peweHul) or
General Solution (o6wee peweHue): the set
of all solutions of the system.




* An inconsistent (HecoemecmHas) system has no
solutions

e A consistent (coemecmHas) system has at least
one solution

EXAMPLE of an inconsistent system:
{x +y=4
x+y=3

Every system of linear equations
 has no solutions, or

* has exactly one solution, or

e has infinitely many solutions.




An arbitrary system of m linear
equations in n unknowns

(11X1 T Gq2X2 T °*
(21X1 T Q22X T °*

where

- A1nXn

- UonXn =

* X{,Xy, ...,Xyn arethe unknowns

e g'sand b's are constants

constant
terms




EXAMPLE of a general system of 3 equations in 4

unknowns (0b6wwaa cnctema n3 3-x ypaBHEHUM
C 4-MA HEU3BECTHbIMMWN):

(11X1 + Q12X + Aq3X3 + Aq4X4 = Dq
A1X1 + AppXy + Ap3X3 + ApaXy = by
(31X1 + Q32X + A33X3 + A34X4 = b3

a;

number of the equation number of the unknown




Terminology

e Augmented Matrix (pacwmpeHHaa maTtpuua):
a1 A1n bl
(A[b) = '

entry
(anemeHT
MaTpULbl)




List of operations to eliminate unknowns:

1. Multiply an equation through by a nonzero
constant.

2. Interchange two equations.
3. Add a multiple of one equation to another.

The corresponding operations on the rows of the
augmented matrix (elementary row operations):

1. Multiply a row through by a nonzero constant.
2. Interchange two rows.
3. Add a multiple of one row to another row.



Ve

X+y+2z2=9
EXAMPLE 12x+4y-3z=1
3X+6y—-52=0
1 1 2|9 ?szdxthelstrowtotheznd 1 1 2 9 Multiply the 2" row

2 4 -3|1| *-3xtheltrowtothe3™ |0 2 -7 |-17 by 1/2
3 6 510 0 3 -11|-27 11 2 9

0 1 -7/2|-17/2
0 3 -11 | -27

Add Add
*-11/2 x the 3RP row to the 1t e -1 x the 2" row to the 15t

* 7/2 x the 3R° row to the 2" e -3 x the 2" row to the 3

100 1 0 11/2]35/2 \ yutiplythe 2 (1 O 11/2 | 35/2
0 1 02 0 1 —7/2|-17/2 |rowby-2 0 1 —7/2|-17/2
00 1 00 1 | 3 0 0 -1/2|-3/2

Solution: x=1,y=2,z=3.



Row-Echelon Form of a Matrix

DEFINITION A row of a matrix has k leading
zeros if the first k elements of the row are zeros
and the (k + 1)th element of the row is not zero.

EXAMPLE

(0000430 -12)

|
four leading zeros




DEFINITION A matrix is in row-echelon form
(ctynenyaTbiv BUA) if each row has more leading
zeros than the row preceding it.

DEFINITION The first nonzero entry in each row
of a matrix in row-echelon form is called a pivot
(pa3peluatoLmnii aIeMeHT).
EXAMPLE

130

100)

210




Reduced Row-Echelon Form

DEFINITION A row-echelon matrix in which
e each pivotisaland

e each column containing a pivot contains no other
nonzero entries

is said to be in reduced row-echelon form
(npnBeaeHHbIN CTyneHYaTbi BUA).

EXAMPLES

1 0 0 4 1 0 O 01 x 0 =«
010 7)) {0 1 0), (0 0 0 1 *)
0 0 1-1 0 0 1 0 0 0 0O




Solving Linear Systems

EXAMPLE 1

1 0 O]5 X =
0 1 0f-2) = Jy=-2
0 0 114 Z =4




EXAMPLE 2

1 0 0 4|-1
(O 1 0 2 6)
0 0 1 312
(x4 +4x, = -1 (x; = —1-—4x,
$ x, +2x4, = 6 S5 <x, = 6—2x4
| X3 +3x, = 2 X3 = 2-3x

* Xy, X,, and x; are pivots (6a3ncHble nepemeHHble)
* X, is a free variable (ceobogHaa nepemeHHas)
General solution:
x1 =-—1—-4t, x, =6 —2t, x3 =2 —3t, x4 =t,
or X; = (—1—4t,6 —2t,2 —3t,t), t ER.
Basis solution:

t=0 - x5 =(—-1,6,2,0).



EXAMPLE 3

OO =
O = O

(

The last equation is

0-x;+0-x, +0-x53 = 1.
This equation cannot be satisfied = there is no
solution to the system.

The system is inconsistent!




Elimination Methods

{ System of Linear Equation }

Gaussian
Elimination

Gauss-Jordan
Elimination

Row-Echelon Reduced Row-
Form Echelon Form




Step-by-step Elimination: Example
and Algorithm

Step 1. Locate the leftmost column that does
not consist entirely of zeros:

0 0 -2 0 7]12
2 4 —-10 6 12|28
2 4 -5 6 -—=5I-1

L | eftmost nonzero column




Step 2. Interchange the top row with another row, if

necessary, to bring a nonzero entry to the top of the
column:

(2 4 —-10 6 12 28) The first and the second
0O O —2 0 7 |12 |<—— rowsin the preceding matrix

2 4 —5 6 —5|—1 were interchanged

Step 3. If the entry that is now at the top of the column
is a, multiply the first row by 1/a in order to get 1:

2 =9 9§ bk The first row of th
e first row of the
0 0 -2 O 7 112 preceding matrix was

27 4 -5 6 —5l—1 multiplied by 1/2




Step 4. Add suitable multiples of the top row to the
rows below so that all entries below and above the

pivot becomes zero:
2 =53 6 14 -2 times the first row of the
<—— preceding matrix was
added to the third row

0O 0 -2 0 7 |12
0 0 5 0 -—-171-29

Step 5. Now cover the top row in the matrix and begin
again with Step 1 applied to the submatrix. Continue in
this way until the entire matrix is in row-echelon form:

1 2 -5 3 6 | 14 1 2 -5 3 6 |14
(O 0 -2 O 7 | 12 ) — (O 0O 1 0 -3.5 6)
O 0 5 0 -—-171-29 O 0 O O 1 12
L Leftmost nonzero column in the submatrix




Reduced row-echelon form:
1 2 0 3 0
(O 0 1 0 O
0 0 0 0 1
Corresponding system:

DN =
N~

(x, +2x, =+ 3x, = 7 (x; = 7 —2%x,—3xy
< X3 = 1 -« X3 = 1
L Xg = 2 KxS - 2

General solution:
X, =(7—-2t—3s,t,1,5,2), t,s €R.



Lecture 2

Matrices and Matrix

Operations




Homogeneous Systems

DEFINITION A system of linear equations is said
to be homogeneous (00HopoOHas) if the
constant terms are all zero:

A11X1 + 12X + -+ apXy =0
Az1X1 T ApXp + -+ AppXy = 0

Am1X1 + QX + -+ ApnX,, = 0




Properties of Homogeneous Systems

e Every homogeneous system of linear equations is
consistent.

e There are only two possibilities for its solutions:

— The system has only trivial solution:
x1=0,%x,=0,..,x, =0.

— The system has nontrivial solutions in addition to the
trivial solution.

THEOREM 1 A homogeneous system of linear
equations with more unknowns than equations has
infinitely many solutions.




Matrix: Rectangular Array Of Numbers

all man aln
A= : : is m Xn matrix

aml Enn amn
m is the number of rows

n is the number of columns

EXAMPLE
(i g _41) is @ 2 X 3 matrix

Notation: Aij = (A)l]




Special Matrices

e a column matrix (or a column vector):

b
- b
b=>= :2
b
e arow matrix (or a row vector):
a=a=(a a - ay)

e asquare matrix of arder n (nopsaKa n):

the main diagonal




Arithmetic of Matrices

DEFINITION Two matrices are equal if they have the
same size and their corresponding entries are equal.

DEFINITION If A and B are matrices of the same size,
then

e thesumA + B
(A+B);j = (A);; + (B);j
e the difference A —-B
(A—B);j = (A);; — (B)jj
DEFINITION If A is any matrix and c is any scalar, then
the matrix cA is a scalar multiple of A:

(cA)i; = c(A);;




If A, A,, ..., A are matrices of the same size and
Ccy, C, ..., C, are scalars, then an expression of
the form

CLA+CGA, +...+CA,
is called a linear combination of A, A,, ..., A
with coefficients c,, c,, ..., C,.

n

EXAMPLE —
2(; -G 9G4

is the linear combination of A and B with scalar
coefficients 2 and -1.



Multiplying Matrices

DEFINITION If Ais an m x r matrix and B is an
rx n matrix:

/al a, )
1 .
/bll b1j bln\
A=|a, .. a, =
\brl brj brn/
\aml amr)

then the product AB is the m x n matrix with
entries (AB). =a,b; +a,b,, +...+a,b,

ij irrj




EXAMPLE  (2x3)(3x4) — (2x4)

AB = 0 -1|3|1|=

/124}

(4 1 [4] 3
2 6 0 [

2 1 |32

(2-4)+(6-3)+(0-5) = 26

12 27 30 13
8 -4 26 12




Transpose of a Matrix

DEFINITION If A is any m x n matrix, then the
transpose of A (mpaHcnoHUpoB8aHHaAs),
denoted by A’, is the n x m matrix that results
from interchanging the rows and columns of

A; that is (AT)U — (A)]l

EXAMPLE 3N
N L AT=|1 4
3 4 6

26




Trace of a Matrix

DEFINITION If A is a square matrix, then the
trace of A (cned), denoted by Tr(A), is the sum
of the entries on the main diagonal of A:

tr(A) = aqq + ayy, + -+ a,y

EXAMPLE

tr(A)=-1+5+7+0=11




THEOREM 2 Properties of Matrix Arithmetic
The following rules of matrix arithmetic are valid.:
e A+ B=B+A (Commutative law for addition)

e A+ (B+C)=(A+B)+C (Associative law for
addition)

e A(BC)=(AB)C (Associative law for multiplication)
e A(B+C)=AB+AC (Left distributive law)

e (B+C)A=BA+CA (Right distributive law)

e ag(B+C)=aB+aC

e (a+b)C=aC+bC

e a(bC)=(ab)C

e a(BC)=(aB)C=B(al)



Zero and ldentity Matrices

DEFINITION A zero matrix is a matrix, all of whose
entries are zero:

0 - 0
Omxn =3¢ ™= i
0 - 0

DEFINITION An identity matrix (eOQuHuyHaa mampuya)
is a square matrix with 1's on the main diagonal and
0's off the main diagonal:

1 0 - 0
h={9 ;7%




THEOREM 3
The following rules of matrix arithmetic are valid.:
* A+0=0+A=A
e A-A=0
e 0-A=-A
e AO=0; OA=0
e If Aisan m x n matrix, then
A, = A, IL,A=A.

THEOREM 4 If R is the reduced row-echelon form of
an n x n matrix A, then either R has a row of zeros
or R is the identity matrix |,




Inverse of a Matrix

DEFINITION If A is a square matrix, and if B is a
matrix of the same size and AB=BA =1/, then A is
said to be invertible (o6pamumasa mampuya)
and B is called an inverse (obpamHaa mampuya)
of A. If there is no such matrix B, then A is said to
be singular (8bipoxc0eHHaa mampuya).

The inverse of A is uniquely defined and is denoted
by AL

AAl =] and AlA=]




THEOREM 6 The matrix
_(a b
4= (C d)

is invertible if ad — bc # 0, in which case the
inverse is given by the formula

1 _
A = ad — bc (—dc ab)

Proof You should verify that AA1 =/ and
AlA =]




THEOREM 7 If A and B are invertible matrices of
the same size, then AB is invertible and

(AB) =B'A™

THEOREM 8 If A is an invertible matrix, then:
-1
e Al jsinvertible and (A_l) =A

 For any nonzero scalar k, the matrix KA is

invertible and _
(A) " = A




THEOREM 9 If the sizes of the matrices are such
that the stated operations can be performed,
then

+ (A7) =A

« (A+B)' =A"+B' and (A-B)' =A'-B'

e (kA)' =kA" where k is any scalar

e (AB) =B'A'

THEOREM 10 If A is an invertible matrix, then A’
is also invertible and ( AT )—1 ( Al )T




Lecture 3

Inverse Matrices and

Determinants




A Method for Inverting Matrices

a sequence of elementary row

A operations I

I the same sequence of elementary

row operations A_ 1
N :

45




EXAMPLE Find the inverse of 4 = (

1
i

4

1 4
0

1

J

2 -1

\_/

~
o)
~

o4

o

1 4

2 7
1 0
2 1
7 4
2 -1

)

Answer: A~1

-3

4
—1

)

46




Matrix Form of a Linear System

Consider any system of
m linear equationsinn
unknowns:

Replace this system
by the single matrix
equation:

Write it as a product:

S

( a11X1 + A12X> + .-
aAr1Xq + Arp X9 + .-

\Am1X1 + A Xy + -+

+ a,nXy = by,

ai11X1 +- A12X> + .-+ A1nXn bl
aAr1Xq + aArp X9 SRRt ArnXn _ bZ
a1 aq2 A1n X1 b4
Az1 Az Aon X2\ | by



THEOREM 2 Every system of linear
equations has no solutions, or has exactly
one solution, or has infinitely many
solutions.

THEOREM 3 If A is an invertible n x n
matrix, then for each n x 1 matrix b, the
system of equations Ax = b has exactly
one solution, namely, x = Ab.




EXAMPLE Solve the linear system
{ X1 +4x, =7
2x1 +7xy = 12

Solution. Write system in matrix form: Ax = b, where
X
AZG ;L) x=(4): b:(172)

A is invertible and

AT = (_27 —41)

By Theorem 3, the solution of the system is
x=a= (50 1)(R)=(5)

X;=—1,x,=2

Answer:




Diagonal Matrices

A square matrix in which all the entries off the main diagonal
are zero is a diagonal matrix (puaroHanbHaa maTpuua):

d1 0 e 0
p=(% % 0
0 0 dn

A diagonal matrix is invertible if and only if all of its diagonal
entries are nonzero and
1/d1 0 0
pD-1— 0 1/d, --- O

0 0 - 1/d,




Triangular Matrices

e Lower triangular matrix:

(HUX@cHempey20nabHas
MaTpuLa)

e Upper triangular matrix:

(eepxHempeyz2onbHasa
MaTpuLa)

.0 0
e Triangular matrix: either upper triangular or lower triangular.

THEOREM 5 A triangular matrix is invertible if and only if its
diagonal entries are all nonzero.




Symmetric Matrices

A square matrix A is called symmetric (cummempuyeckas)

EXAMPLES —
( 3 E j 4 -3 0
- 5 0 7,

THEOREM 6 If A and B are symmetric matrices with the same
size, and if k is any scalar, then:

o A’ and kA are symmetric.
e A+ BandA-Bare symmetric.
* [fAis an invertible symmetric matrix, then A is symmetric.




Determinants: Introduction

Recall that the 2 x 2 matrix
_(a b
4= (C d)

is invertible if ad — bc # 0. The expression ad — bc
is called the determinant (onpedenumens) of
A and is denoted by det(A) or |A|. With this
notation

_ 1 —
AT = det(A) (—dc ab)




Minors and Cofactors

DEFINITION If A is a square matrix, then the minor of entry
(MuHop anemeHma) a;; is denoted by M;; and is the
determinant of the submatrix that remains after the ith row
and jth column are deleted from A.

a; ... ;... Ay
M ] = all 1j am
a, .. a .. a

C; = (-1)"M; is called the cofactor of entry (anze6pauyeckoe
donosHeHue) a;.



EXAMPLE Let

3 1 —4
A=|2 5 6
1 4 8

Then
4 8
and Cy= (-1)"*My =My =16
3 —4
M3, = (2 6 =B _64‘=3-6+2-4:26

Cs= (-1)°"*Mgp =— Mg, =—26



Cofactor Expansions

DEFINITION The determinant of an n x n
matrix is

dEt(A) — a11C11 + a12C12 T T alncln

This method of evaluating det (A) is called
cofactor expansion along the first row of A
(pa3noxceHue onpedeanumesns no Nepsou
CTpOKe).




EXAMPLE Let

(3 1 0
A=|-2 -4 3
o 4 -2,
Then 3 1 0
det(A)=|-2 -4 3|=
5 4 22
L4 82 s
4 -2 |5 -2

= 3(—4) -1(-11) +0 = -1

+0-




THEOREM 7 Expansions by Cofactors

The determinant of an n x n matrix A can be
computed by multiplying the entries in any
row (or column) by their cofactors and adding
the resulting products; that is, foreach 1 <i <
nand1<j<n:

e Cofactor expansion along the jth column:
det(A)=a,,C,; +a,,C,; +...+a,C

nj " nj

e Cofactor expansion along the ith row:
det(A)=a,C,+a.C,+...+a C

In —In




EXAMPLE Let

Then 3
det(A) = -2
5
4
A

(3 1 0
2 -4 3
o 4 -2,
1 0

4 3=

4 -2

3 1 0
— (=2

oA

+5

1 0
4 3

—3(—4) — (=2)(-2) +5-3=-1




Lecture 4

Determinants and

Vectors




Adjoint of a Matrix

DEFINITION If A is any n x n matrix and C; is the
cofactor of a;, then the matrix

C11 G2 - Cip
C21 Caz -+ Cap
Chn1 Cnz - g

is called the matrix of cofactors from A.

The transpose of this matrix is called the adjoint of A
(npucoedunennHaa mampuya) and is denoted by

adj (A).




EXAMPLE Suppose

3 2 -1
A= (1 6 3 )
2 —4 0
The cofactors of A:

C;;=12,C,,=6,C3=-16, C,;=4,C,, =2,
C,;=16,C;,=12,C;,=—-10,C55 =16
The matrix of cofactors:

12 6 —16
(4 2 16 )
12 —-10 16
The adjoint of A:

12 4 12
adj(A)z( 6 2 —10)

—16 16 16



THEOREM 1

e The square matrix is invertible if and
only if det(A) is not zero.

e [fA is an invertible matrix, then

A—l

~ det(4)

+adj (4)




EXAMPLE Consider

3 2 -1
A=<1 6 3)
2 —4 0

The determinant of A:

det(A) = 64
The adjoint of A:
12 4 12
adj (4) = ( 6 2 —10)
—16 16 16
The inverse of A:
1 12 4 12
A1 = -adj(A) =—1| 6 2 —10
det(4) 64 16 16 16

3/16 1/16 3/16
=(3/32 1/32 -5/32
~1/4 1/4 1/4



THEOREM 2 If A is an n x n triangular matrix (upper triangular,
lower triangular, or diagonal), then det (A) is the product of the
entries on the main diagonal of the matrix; that is, det(A) = a,; -

azz y see y ann

THEOREM 3 Cramer's Rule

If Ax = b is a system of n linear equations in n unknowns such

that det (A) # 0, then the system has a unique solution. This
solution is

B det(4,) B det(A4,) B det(4,,)
17 0et(4) ) 2T det(d)” T ™ T det(A)
where A; is the matrix obtained by replacing the entries in the

b

jth column of A by the entries in the matrixb = | :
by




EXAMPLE Use Cramer's rule to solve
{7x1 — 5x2 — 3
le + 3x2 = 4

Solution.
7 -5 73/—5 771 3]
SN S HIN S

2 3 4] 3 2|4
det(A) = 21+10 =31
det(A) =9+ 20 =29 det(A,) =28—6 =22
29 22
A= X, =

31 31



THEOREM 4 Let A be a square matrix.
If A has a row of zeros or a column of
zeros, then det (A) = 0.

THEOREM 5 Let A be a square
matrix. Then det (A) = det (A7).

THEOREM 9 If A is a square matrix
with two proportional rows or two
proportional columns, then det (A) = 0.




THEOREM 6 Let A be a square matrix. If B is the
matrix that results when a single row or single

column of A is multiplied by a scalar k, then
det (B) = k-det (A).

EXAMPLE ka, ka, Kka, a, @, a,
(for the first row a, a, a&,|=K-a, a, a,
of 3 x 3 matrix) a, a, a, dy Ay, Qg

Proof (for this case)

Ka,, ka, kay,
det(B) = 3.21 a22 a23 — ka11C11 + ka12C:12 + ka13C13
a31 a‘32 a33

— k(a11C11 + a12C12 + a13C13) =K 'dEt(A)




THEOREM 7 Let A be a square matrix. If B is the
matrix that results when two rows or two

columns of A are interchanged, then
det (B) = — det (A).

EXAMPLE

Ge

a, a.
d, d3p
dy, dgg

N

= P

dy 4, dy

22 23
/
a‘31 a‘33

a32

vV




THEOREM 8 Let A be a square matrix. If B is the
matrix that results when a multiple of one row
of A is added to another row or when a multiple

of one column is added to another column, then
det (B) = det (A).

EXAMPLE
a, +kay, a,+kay, aj;tkay |a, a, a;
Ay Ay, A3 =[8y Gy Gy
Ay ds) ds3 dy;  dyp Ay




EXAMPLE |0 1 5 |3 -6 9
B _ The 1°t and the 2" rows of
det(A)=3 -6 9=-0 1 5 A were interchanged
2 6 1 2 6 1
1 -2 3
__3.0 1 5 A common factor of 3 from the 1t row was
B taken through the determinant sign
2 6 1
1 -2 3
_ _a. —2 times the 1% row was
i added to the 3™ row
0 10 -5
1 -2 3
B —10 times the 2" row was
==&v L added to the 3™ row
0 0 -55
LR L A common factor of -55 from
=(-3)(-55)[0 1 5/=(-3)(-55)(1) =165 | the last row was taken
0 0 1 through the determinant sign




Basic Properties of Determinants

det(kA) = k" det(A)

EXAMPLE

Kd,; Kdj, Kd d, 4,
3
Kd,;  Kay, Kay|= K d,) dy, Ay

KAy  Kdg, Kag dy Gz g3




EXAMPLE det(A + B) # det(A) + det(B)

SRS
det(A) =1

det(B) =8
det(A+B) =23



Let A, B, and C be n x n matrices that differ only
in a single row, say the rth, and

the rth
row of C

the rth
row of A

oy

the rth
row of B

Then det(C) = det(A) + det(B).
The same result holds for columns.

EXAMPLE

1 / 5
2 0 3
1+0 4+1 7+(-1

|l
N O =
~N O
~N W U
_|_
o N B
R O
w Ol




3 A square matrix A is invertible if and only
if det (A) #0.

EXAMPLE Test the matrix for invertibility
(1 2 3
A=|1 0 1

2 4 6,

det(A)=0 ) | A 'S

invertible

75



THEOREM 10 /f A and B are square
matrices of the same size, then
det(AB) = det(A) - det(B).

COROLLARY If A is invertible, then

_ 1
det(471) = Totd)




Geometric Vectors

A

\ terminal point

initial point
Notation:

e vectors: V, W, Qa, b,...
e scalars: K, X, a, t,...




Two vectors v = (v,, v,) and w = (w,, w,) are
equal if and only if v; = w; and v, = w,

Ifv= (v, v,)and w = (w,, w,), then
vV+w=(v, +w, VvV, +Ww,)and

If k is any scalar, then k-v = (kv,, kv,)

EXAMPLE If v=(1,—2) and w = (7, 6), then
v+w=(8,4)and 4v = (4, — 8).




Vectors in 3-Space

Ifv={(vy, v, v;) and w = (w,, w,, w;), then
e vand w are equal if and only if
V, =W, V, =W,, and v; = W,
* V+W= (v, +w, VvV, +w,, V3 + W,)
e k-v=(kv,, kv,, kv;), where k is any scalar

If the vector P; P, has initial point P, = (x, y,, ;)
and terminal point P, = (x,, v,, Z,), then

PiP, = 0P, — 0P, = (X, —X1,Y2 — V1,23 — Z1)




Lecture 5

Vector Spaces




Vectors in n-Space

DEFINITION If n is a positive integer, then an ordered n-
tuple (ynopsdoyeHHbIl HA6op U3 n yucen) is a
sequence of n real numbers (a,, a,, ..., a,). The set of
all ordered n-tuples is called n-space and is denoted
by R". The elements of this set are called generalized
vector.

Notation: v = (a,, a,, ..., a,).

ordered 2-tuple < ordered pair
ordered 3-tuple < ordered triple

1-tuple < a real number; R'=R




Standard Operations on [R”

DEFINITION Two vectors u = (u,, U,, ..., U,) and
v=(vy,V,, .. V)in R"are called equal if

U=V, Uy =V, o, U, =V,
e The sumu + v is defined by
u+v=(u,+vy,u,+v,, .., u,+v)

e |f kis any scalar, the scalar multiple k-u is
defined by

k-u = (ku,, ku,, ..., ku,)




e The zero vectorin R": 0=(0,0, ..., 0).

e Ifu=(uy, u,, .., u,)is any vector in R”,
then the negative (or additive inverse)
of u is defined by —u = (~u,, —u,, ..., =u,).

* The difference of vectors in R" is defined
by u—v=u+(-v)

=(u; =V, U,=V,, ..., U, — V).



Properties of Vector Operations
In n-Space

THEOREM 1 If u = (uq, Uy, ..., U,), v = (v, v,, ..., v,), and
w = (w,, w,, ..., w,) are vectors in R" and k and m are
scalars, then:

(Ju+v=v+u
(2Ju+(v+w)=(u+v)+w

(3) u+0=0+u=u
(4)u+(—u)=0; thatis,u—u=0
(5) k(mu) = (mk)u

(6) k(u + v) = ku + kv

(7) (k + m)u = ku + mu

(8) lu=u




DEFINITION Let V be an arbitrary nonempty set of objects with
two operations : addition, and multiplication by scalars.

Addition | each pair of objects u and v

Scalar each scalar k and
multiplication | | each object uin V
Suppose that

If uand v are objects in V, thenu+visin V.

=)
=)

an object u + v, the
sum of uand v

an object ku, the
scalar multiple of u
by k

If kis any scalar and u is any object in V, then ku is in V.

There is an object 0 in V, called a zero vector for V.

For each uin V, there is an object —u in V, a negative of u.

Eight axioms from Theorem 1 are satisfied

Then V is a vector space and the objects in V are vectors.




EXAMPLE 1 R"is a vector space

EXAMPLE 2 The set V of all 2 x 2 matrices is a vector space if
e addition = matrix addition,

e scalar multiplication = matrix scalar multiplication.
Solution

. U1 Ujg2 Vi1 V12
1) Consider u = ( ) and v = ( )
U1 Up2 Va1 VU2

Then u+visanobjectinV and kuis an objectin V.

2)1f 0 = (8 8

3) Foranyuin Vput —u = (

),then O+u=u+0=uforalluin V.

—Uqq —u12)
—Up1 U2
Thenu+(—u)=0and (—u)+u=0.

Axioms 1-8 follow from properties of matrix operation.



EXAMPLE 3 The set V of m x n matrices is a vector space M.

EXAMPLE 4 A vector space of real-valued functions

Let V be the set of real-valued functions defined on (—oo, ). If f
= f(x) and g = g(x) are two functions and k is any real number,

define
e the sum function f+ g by (f + g)(x) = f(x) + g(x)
e the scalar multiple kf by (kf)(x) = k- f(x)
The vector 0 is identically zero for all values of x.
The negative of a vector f is the function —f = —f(x).

EXAMPLE 5 The zero vector space

Let V consist of a single object, which we denote by 0, and define
0+0=0and k0 =0 for all scalars k.



Euclidean n-Space

DEFINITION

Ifu=(uy, u,, .. u)andv=_(v, v, .., v,)areany
vectors in R”, then the Euclidean inner
product (ckanapHoe npoussedeHue) is

u-v=(u,v)=uv, +u,v,+uyv,
Sometimes it is also called dot product.

EXAMPLE Find the Euclidean inner product of
the vectorsu=(-1, 3,5,7)andv=(5,-4, 7, 0)

: 4
in R Answer: u-v =18




THEOREM 2 (Properties of Euclidean Inner Product) I/f
u, v, and w are vectors in R" and k is any scalar, then:
(a) u'v=v-u

(b) (u+v)w=uw+vw

(c) (ku)-v =k (u-v)

(d) v.v 2 0. Further, v-v=0 &< v =0.

Proof (c) Let u = (u,, U, ..., u,),and v= (v, v,, ..., v,).
Then (ku)-v=(ku, ku,,..., ku )-(v,V,,...,V.)
=ku,v, +Ku,v, +...+ku v =
=k(u,v, +U,v, +...+u. Vv ) =Kk(U- V)
Proof (d) We have V-V :Vf +V22 +...+V§ > 0. Equality
holds if and only if v, =v, =...=v_ =0— that s, if and
only if v=0.




EXAMPLE Givehnu-u=2,u'v=-3,v.v=1,
evaluate (3u + 2v):(4u + v).

Solution
(3u + 2v)-(4u + v) =
= 3u-(4u + v) + 2v-(4u + v)
= 3u-4u + 3u-v + 2v-4u + 2v-v
=12u-u+1lu-v + 2v-v

=12:2 +11:(-3) +2-1 =7




Norm and Distance in Euclidean n-Space

The Euclidean norm (or Euclidean length) (Hopma,
dnuHa) of a vector u = (uy, U,, ..., u,) in R"is

lul| = Vu-u= \/u% +us + - + us

The Euclidean distance between the points
u=(uy, U, ..., u)andv=_(v, v, .. v,)in R"is

d(u,v) = |lu—v| =
\/(u1 —v1)4 + (U —v3)% + -+ (uy — vy)?




EXAMPLE 3 Finding Norm and Distance
Supposeu=(1,3,-2,7)andv=(0, 7, 2, 2).
Then

u

) JO+B)? +(-2)* +(7)? =/63 =37

d(u,v)=
JA=0)% +(3=7)% + (=2 —2)* + (7 - 2)* =+/58




THEOREM 3 Cauchy—Bunyakovsky-—
Schwarz Inequality (HepaseHcTBO
Kowwn-byHakosckoro-LLBapua) in R”

Ifu=(uy, u, .., u,)andv=(vy,v,, .., v )are
vectors in R", then
lu-v| < [luf] - [[v]
In terms of components, this inequality is the
same as
UV, ULV, +... 4 UV | <

S\/uf+u22+...+u,f -\/v12+v22+...+vn2



Angle between Two Vectors
In n-Space

e |f uand v are nonzero vectors in R? or R3 and @ is the angle
between them, then

u-v
u-v =|ulll|v|[cos6 COSO =
ul[v] v

or

e Ifu=(uy,u,, .. u,)andv=(v,v,, .., v,)aretwo nonzero
vectors in R”, then the cosine of the angle 68 between u and v
is defined by

u-v
COSO =

Julliv]

The Cauchy—Bunyakovsky—Schwarz inequality = ‘COS@‘Sl




EXAMPLE For the given vectorsu = (1, -2, 3, -1)
and v =(3,0, 2, -5), find the cosine of the angle
6 between u and v.

Solution

u-v= 1:3+2-3+(-1)-(-5)=14

lu|| = 12 + (=2)2+32 + (—1)2= V15
V]| = +/32 + 02 + 22 + (—5)2=+/38

cos 0 = 14
V15 - /38




THEOREM 4 Properties of Length in R”

If uand v are vectors in R" and k is any scalar,

then:
(a) [U]|=0

(b) |U=0 ifand only ifu=0
(c) [[kul[=k||ul

(d) |u+v|<|ul[+|v| (Triangle inequality)




THEOREM 5 Properties of Distance in R”

If u, v, and w are vectors in R", then:

(a) d(u,v) >0
(b) d(u, v) =0 if and only if u = v.
(c) d(u, v) =d(v, u)

(d) d(u, v) <d(u, w) + d(w, v) (Triangle
inequality)




Orthogonality

DEFINITION Two vectors u and v in R” are called
orthogonal if u-v = 0.

EXAMPLE Are the vectors
u=(-2,3,1,4) and v=(1, 2,0, -1)
in R* orthogonal?

uv=-2-1+32+1-0+4-(-1)=0




Lecture 6

Subspaces and Linear

Independence




DEFINITION Let V be an arbitrary nonempty set of objects with
two operations : addition, and multiplication by scalars.

Addition | each pair of objects u and v

Scalar each scalar k and
multiplication | | each object uin V
Suppose that

If uand v are objects in V, thenu+visin V.

=)
=)

an object u + v (the
sum of u and v)

an object ku (the
scalar multiple of u
by k)

If kis any scalar and u is any object in V, then ku is in V.

There is an object 0 in V, called a zero vector for V.

For each uin V, there is an object —u in V, a negative of u.

Eight axioms (see the next slide) are satisfied.

Then V is a vector space and the objects in V are vectors.




Eight Axioms of Vector Space

If u,v, and w are any vectors in V, and k and m are
scalars, then:

()u+v=v+u
(2Q)u+(v+w)=(u+v)+w
(3)u+0=0+u=u

(4) u+(—u)=0; thatis, u—u=0
(5) k(mu) = (mk)u

(6) k(u +v) = ku + kv

(7) (k + m)u = ku + mu

(8) lu=u




Concept of a Subspace

DEFINITION A subset W of a vector space Vis
called a subspace (noonpocmpaHcmeo) of V
if W is itself a vector space under the addition
and scalar multiplication defined on V.

Question |s it necessary to verify 8 vector space
axioms to show that a set W forms a vector
space?

No, because these axioms are “inherited” from V.




THEOREM 1 /f W is a set of one or more
vectors from a vector space V, then W is a
subspace of V if and only if the following
conditions hold.

(a) If u and v are vectors in W, then u + v is in W.

(b) If k is any scalar and u is any vector in W,
then ku is in W.

Remark Theorem 1 states that W is a subspace
of V if and only if W is closed under
(3amKHYymo omHocumernosHo) addition and
closed under scalar multiplication.




Testing for a Subspace

EXAMPLE 1 Every i
plane through
the origin of R3
is a subspace

of R3.

104




EXAMPLE 2 Every .
line through the
origin of R3is a -
subspace of R3.

() Wis closed under addition,

(H) Wis closed under scalar
multiplication 105



EXAMPLE 3 Let W be the
set of all points (x, y) in
R? such that x > 0 and A

y 2 0. W
Question |s the set W
a subspace of R??

i,

Solutionv = (1, 1) lies
in W, but its negative
v =(-1,-1) ,
does not = 7? |
W is not closed under
scalar multiplication = ?

W is not a subspace!!!

106



List of Subspaces of R? and R3

Subspaces of R? Subspaces of R3

{0} {0}
Lines through the Lines through the
origin origin

Planes through the
origin
R? R3

107



Solution Spaces of Homogeneous
Systems

Let Ax = b be a system of linear equations.

Solution vector: a vector x that satisfies this
system.

THEOREM 2 /f Ax = 0 is a homogeneous linear
system of m equations in n unknowns, then
the set of solution vectors is a subspace of R".




Linear Combinations of Vectors

DEFINITION A vector w is called a linear combination
(nuHeliHou kombuHayueli) of the vectors v, v,,..., v,
if it can be expressed in the form

wW=kv, +kVv,+ .. +kv,

where k,, k,, ..., k. are scalars.

EXAMPLE Every vector v = (g, b, ¢) in R3 is expressible
as a linear combination of the standard basis vectors
i=(1,0,0), j=(0,1,0), k=(0,0,1)since

v=(a,b,c)=a(1,0,0)+b(0,10)+c(0,0,1) =ai+bj+ck




THEOREM 3

If v, v,, ..., Vv, are vectors in a vector space V,
then

(a) The set W of all linear combinations of v,, v,,
..., VIS a subspace of V.

(b) W is the smallest subspace of V that contains
V., V,, ..., V. in the sense that every other

subspace of V that contains v, v,, ..., V, must
contain W.




Spanning

DEFINITION If S = {v,, v,, ..., v,} is a set of vectors
in a vector space V, then the subspace W of V

consisting of all linear combinations of the
vectors in S is called the space spanned by
(7uHeliHoU 060n104YKOU 8EKMOpPOB) V,, V,, ...,
v, and we say that the vectorsv,, v,, ..., v,
span (cmsazuearom, nopoxcoarom) W.

Write:
W =span(S§) or W=spani{v,Vv,, .., V}



EXAMPLE If v, and v, are noncollinear vectors in R3 with their
initial points at the origin, then span{v,, v,} is the plane
determined by v, and v,.

Similarly, if v is a nonzero vector in R? or R3, then span{v} is the
line determined by v.

k- k- .

span v, ¥,] ~ span |v]
.‘_._.-"
o
ﬁl't'| + |':.-.T'|- -'._."
. by
A
] ]
- 3 -
A
(¢r) Span {v . V4] is the plane through the (h) Span {v} is the line through the
origin determined by v and v,. origin determined by v.
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Linear Independence

DEFINITION If S = {v,, v,, ..., v,} is @ nonempty set of
vectors, then the vector equation

kv, +k,v, +...+k v =0
has at least one solution, namely
k;,=0,k,=0, .., k=0
If this is the only solution, then S is called a linearly
independent (nuHeliHo He3asucumoe) set. If

there are other solutions, then S is called a
linearly dependent (nuHeliHo 3a8ucumoe) set.




EXAMPLE1 Ifv,=(2,-1,0, 3),v,=(1, 2,5,-1), and

v;=(7,-1,5, 8), then
3"1 +V,—V;= 0

the set of vectors is
linearly dependent

EXAMPLE 2

Consideri=(1,0,0),j=(0,1,0),and k=(0, 0, 1) in R3.
In terms of components, the vector equation

ki+kj+kk=0
becomes k,(1, 0, 0) + k,(0, 1, 0) + k4(0, O, 1) = (O, O, O)

k;,=0,k,=0,k;=0 the set S ={ij, j, k} is
linearly independent

Similarly, the vectors
e, =(3,0,..,0),e=(01,..0),..,e,=(0,0, .., 1)
form a linearly independent set in R".



THEOREM 4 A set S with two or more
vectors is

(a) Linearly dependent if and only if at least one
of the vectors in S is expressible as a linear
combination of the other vectors in S.

(b) Linearly independent if and only if no vector
in S is expressible as a linear combination of
the other vectors in S.




Proof (a)
1) =
letS={v,, v,, ..., V,}, r= 2.

S is linearly dependent = there are scalars k;,

k,, ..., k., not all zero, such that
kv, +k,v,+...+k Vv =0

Suppose that k, # 0. Then this formula =

which expresses v, as a linear combination of
the other vectors in S.



2) = .
Assume that at least one of the vectorsin S

is expressible as a linear combination of the others.
Suppose that

V,=C,V,+C,V,+...+C.V,
SO
V,-C,V,—CV,—...—CV, =0
The equation
kv, +K,V, +...+K Vv, =0
is satisfied by
k. =1 k,=-C,, ..., kK =—C

r r

which are not all zero. Therefore, S is linearly
dependent.




EXAMPLE The vectors
v;=(2,-1,0,3),v,=(1,2,5,-1),v;=(7,-1, 5, 8)
form a linearly dependent set, since (see Example 1)
3v,+v,—v;=0
Task. Express each vector as a linear combination of
the other two.

Answer. 1 1

V,=—=V, +—=V
1 2 3
3 3

V, =-3V, +V, V, =3V, +V,



THEOREM 5
(a) A finite set of vectors that contains the zero

vector is linearly dependent.

(b) A set with exactly two vectors is linearly
independent if and only if neither vector is a
scalar multiple of the other.

Proof (a) For any vectorsv,, v,, ..., v, the set
S={v, Vv,, ..., v, 0} is linearly dependent since

0=0vy+0v, +:--+0v,,+1-0




Geometric Interpretation of Linear
Independence in R? and R3

A set of two vectors is linearly independent & the
vectors do not lie on the same line when they are
placed with their initial points at the origin.

A | ke A
.-"‘ |

(@) Linearly dependent (&) Lnearly dependent (¢) Lmearly independent



Geometric Interpretation of Linear
Independence in R3

A set of three vectors is linearly independent & the
vectors do not lie in the same plane when they are
placed with their initial points at the origin.

(e) Linearly dependent (h) Linearly dependent (e) Linearly independent



THEOREM 6

LetS ={v,, v,, ..., V.} be a set of vectors
in R™. If r>n, then S is linearly
dependent.




Lecture 7

Basis and Dimension




Concept of a Basis

DEFINITION If V is any vector space and
S={v, V,, ..., v, }is a set of vectors in V, then S
is called a basis (6a3uc) for V if the following
two conditions hold:

(a) Sis linearly independent.

(b) S spans V, that is, any vector v € V can be
represented as a linear combination
ofv, Vv,, .., V,.




THEOREM 1 Uniqueness of Basis
Representation

IfS={v,, v,, ..., v} is a basis for a vector space
V, then every vector v in V can be expressed in
the formv =c,v, + c,v, + ... + ¢, v, in exactly
one way.




Proof Suppose that some vector v can be

written as
V=C\V,+CV, +..+CV,
and also as
v=kv,+kv,+..+kv,
Therefore,

0=(c,—ky)v,+(c,—k))v, +...+(c,— k) v,

The linear independence of S =
c,—k,=0, ¢,—-k,=0, .., ¢,—k,=0
thatis, c,=k;, ¢,=k,, ..., ¢,=k

n.




Coordinates Relative to a Basis

DEFINITION If S ={v,, v,, ..., v, } is a basis for a
vector space V, and

V=CV, +CV, +...+C\V,
is the expression for a vector v in terms of the basis
S, then the scalars ¢, ¢,, ..., ¢, are called the

coordinates of v relative to the basis S
(koopouHamelr sekmopa e basuce).

The vector (c,, c,, ..., ¢,) in R" is called the
coordinate vector of v relative to S.

Notation:
(V)S = (C]_I C2; ©ee) Cn)




EXAMPLE 1 Standard Basis for IR”

Considere; =(1,0,0, .., 0),e,=(0, 1,0, ..., 0), ...,

e =(0,0,0,..,1). Then.

e S={e,e,, .. erislinearly independent

e Sspans R"since for any vectorv = (v, v,, ..., v,) in R" :
v=v,e +v,e,+..+v.e,

Thus, S is the standard basis for R". We have

= (v)s = (vy, vy, -, V)

Remark In R? and R3, the standard basis vectors are
commonly denoted by i, j, and k, rather than by e, e,,
and e..



EXAMPLE 2 Suppose v, = (1, 0), v, = (1, 1).
(a) Show that the set S = {v,, v,} is a basis for R?.
(b) Find the coordinate vector of v = (5, —1) with respect to S.

Solution (a) Show that S spans R?. Let b = (b, b,) be an arbitrary
vector and try to expressitas b = c,v, + c,v,.

b} (1 1) (c+¢, L
(sz—cl(o}rczw—( c j ) a=bi=b,g=b

Show that S is linearly independent. Find the solution of

0=cv,+ Vv, > €¢=0,¢,=0

Solution (b) We must find the scalars ¢, and ¢, such that

V=C\V, +CV,. j|> c,=6,c,=-1
V=6v,—-V, ) (v)c=(6,-1)




EXAMPLE 5 Basis for the Subspace span(S)

If S={v,, v,, ..., v }is alinearly independent set
in a vector space V, then S is a basis for the
subspace span(S).

THEOREM 2
Let {v,, v,, ..., v, } be any basis for a vector space V.

(a) If a set has more than n vectors, then it is
linearly dependent.

(b) If a set has fewer than n vectors, then it does not
span V.




THEOREM 3 All bases for a vector space
have the same number of vectors.

DEFINITION The dimension (pasmepHocmes) of a
vector space V, is the number of vectors in a
basis for V. The zero vector space has
dimension zero.

Notation: dim(V).



Dimensions of Some Vector Spaces

The standard basis
dim(R")=n {e, e, .., e} hasn vectors

The standard basis
dim(P)=n+1 {1,xx ., ,xthasn+1
vectors
The standard basis has mn
mn vectors

dim(M

mn) 5




THEOREM 4 If V is an n-dimensional vector

space, and if S is a set in V with exactly n vectors,
then S is a basis for V if either S spans V or S is
linearly independent.

EXAMPLE Show thatv, = (-3, 7) and v, = (5, 5)
form a basis for R2.

Solution

neither vector the two vectors
_ | : ' | they form a
is a scalar orm a linearly hasi
: > : > asis b
multiple of the independent Y
_ Theorem 4
other set in [R2




THEOREM 5 Let S be a set of vectors in a vector
space V.

(a) If S spans V but is not a basis for V, then S can be
reduced to a basis for V by removing appropriate
vectors from S.

(b) If S is a linearly independent set that is not
already a basis for V, then S can be enlarged to a
basis for V by inserting appropriate vectors into S.

THEOREM 6 If W is a subspace of a vector space
V, then dim(W) < dim(V), moreover, if
dim(W) = dim(V), then W = V.




DEFINITION For an m x n matrix

Aipz Q12 0 Qin
Az21 Q22 = d2n
A= : : . :
Am1 Amz2 °° OAmn
we consider the row vectors
ry =(Q11 Q2 - Qin)
r, =(az1 Qzz - Qzpn)
'm = (aml Am2 amn)
and the column vectors
a1 ai» A1n
| Q21 | Q22 | Qan
Cl - ) CZ - . ) ) Cn



DEFINITION If A is an m x n matrix, then

e the subspace of R"” spanned by the row
vectors of A is called the row space
(npocmpaHcmeo cmpok) of A

e the subspace of R™ spanned by the column
vectors of A is called the column space
(npocmpaHcmeo cmonbyoes) of A



General and Particular Solutions

* The vector x,is called a particular solution of
Ax = b.

e The expression c,v, + c,v, + ... + ¢, v, is called
the general solution of Ax = 0.

* The expression X, + ¢V, + C,V, + ... + C,V IS
called the general solution of Ax = b.

Theorem 8 The general solution of Ax = b is the
sum of any particular solution of AXx = b and the
general solution of Ax = 0.




EXAMPLE Consider the system

{ X1 — 2Xo + X4
3Xy + X3 — 7X4

5
) (1)

Then
X;=5+2t-5s, x,=t, x3=-1-3t+7s, x,=5.

This result can be written in vector form as

X1 5+4+2t—s=s 5 2 —1
X2 | _ t _( O 1 0
x3 | Tl —1-3t+7s ) T\ =1 Tt =37\ 7
X4 S 0 0 1
/’ / \ / )
the general || x,, a particular || the general | X —2%  +X,=0
solution of (1) || solution of (1) || solution of 3%, +X; — 7%, =0




THEOREM 9 Elementary row operations do
not change the row space of a matrix.

THEOREM 10

(a) Elementary row operations do not alter
relationships of linear independence
among the column vectors.

(b) Elementary row operations do not alter
the formulas (linear combinations) that
relate linearly dependent column vectors.




COROLLARY /f A and B are row equivalent
matrices, then a given set of column vectors of
A forms a basis for the column space of A

if and only if

the corresponding column vectors of B form a
basis for the column space of B.



EXAMPLE (a) Find a subset of the vectors
v,=(1,2,3), v,=(-2,0,1),v;=(-3, 2, 5)
that forms a basis for the space spanned by
these vectors.

(b) Express each vector not in the basis as a
linear combination of the basis vectors.

Solution
Step 1. Form the matrix A having v, v,, v; as its column

vectors:
1 -2 -3
A= (2 0 2 )
3 1 5



Step 2. Reduce the matrix A to its reduced row-echelon
form R:

(1 -2 -3 (7 0 7 7 0 7)
A=12 0 2 2 0 2]:2 110 1
‘0 0 0) (1 0 1)
1 0 1 R=|0 1 2
0 1 2 0 0 0,

and let w,, wmﬁ R.



Step 3. Identify the columns that contain the pivots in R
- w;and w,.

The corresponding column vectors of A are the basis
vectors for span(S) — v;andv,.

Step 4. Express each column vector of R that does not
contain a pivot as a linear combination of column
vectors that do contain pivots. This yields a set of
dependency equations:

W; = W, + 2W,
The corresponding equations for the column vectors of A

express the vectors that are not in the basis as linear
combinations of the basis vectors:

V; =V, + 2V,




Lecture 8

Rank and Orthogonality




Row Space, Column Space, and
Nullspace

DEFINITION If A is an m x n matrix, then

e the subspace of R"” spanned by the row
vectors of A is called the row space of A,

e the subspace of R™ spanned by the column
vectors of A is called the column space of A,

e the solution space of the homogeneous
system of equations Ax =0, which is a
subspace of R”, is called the nullspace of A.




THEOREM 1 If A is any matrix, then the

row space and column space of A have
the same dimension.

DEFINITION The common dimension of the row
space and column space of a matrix A is called
the rank (pan2) of A and is denoted by rank(A).

rank(A) = rank(A’)

The dimension of the nullspace of A is denoted
by dim(V,).
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EXAMPLE Find the rank and the dimension of the nullspace V, of

the matrix
1 0 4
A —
(O 1 —2)

Solution Since the row space and column space are both two-
dimensional, so rank(A) = 2.

To find dim(V,), solve the linear system Ax = 0:

(A% =0 — x =4t X, =2t X, =t

X, —2X; =0
The general solution of the system is
/Xl\ /_4\
X, |=t| 2
X)) 1)

Therefore, dim(v,) =1



THEOREM 2 (Dimension Theorem for Matrices)
If A is a matrix with n columns, then
rank(A) + dim(V,) = n.

Proof Since A has n columns, the homogeneous linear system
Ax = 0 has n variables, which are the basic variables (pivots)
and the free variables. Thus

number of basic + number of free
variables variables

= N

e The number of basic variables = rank(A)

e The number of free variables = the number of parameters in
the general solution = dim(V,)

rank(A) + dim(V,)




THEOREM 3 The rank of a matrix is the

number of nonzero rows in its row-
echelon form.

EXAMPLE Find the rank of the matrix given in
the row-echelon form:

1 —0.4 —0.3]130
(o 0.8 —0.2[100

0 0 0.7 1210

Answer: rank(A) = 3.




THEOREM 4 The Consistency Theorem
(treopema KpoHeKepa—Kanennn)

If AX = b is a linear system of m equations in n
unknowns, then the following are equivalent:

 AX = b js consistent.
e bisin the column space of A.

e The coefficient matrix A and the augmented
matrix [A | b] have the same rank:

rank(A) = rank [A | b]




EXAMPLE If the system of linear equations has
the following augmented matrix:

1 0 -23 16 2 )
0 1 -10 7 _8
00 0 O 1
00 0 0 0,

rank(A) =2 ‘ the system is
rank[A|b] =3 inconsistent



Orthogonality

>

Since for nonzero vectors u and v
(U, v)
then RN >
cos=0 & 0=n/2 & (uv)=0
Agreement: consider the angle between u and v to
be 7/2 when either or both of these vectors is 0.

DEFINITION Two vectors u and v are called
orthogonal (opmozoHanbHbimu) if (u, v) = 0.

Notation: u 1 v




DEFINITION A set of vectors S ={v,, v,, ..., V,} in
R" is called an orthogonal set if all pairs of
distinct vectors in the set are orthogonal:

v, Lv fori#j.
An orthogonal set in which each vector has
norm 1 is called orthonormal.

Vi lvill=1
EXAMPLE
letu,; =(0,1,0),u,=(1,0,1),u;=(1,0,-1).
s this set orthogonal? yes
s this set orthonormal? no




EXAMPLE Letu, =(0,1,0),u,=(1,0,1),u;=(1,0,-1)
The Euclidean norms of the vectors are

lu ll=1 [lu, =2, [lusll=+2

Normalizing u,, u,, and u; yields

u u, 1 1
V, = 1 :(0,1, O) V, = :(_101 —j
", | “lu,ll W27 T2

" _(i ) _ij
Collull (V27T V2
s the set S = {v,, v,, v;} orthonormal? yes

(Vi V) = (V3 Va) = (Vo Vo) =0 (1, =11, [l =[] v, ]| =1



Orthonormal and Orthogonal Bases

e Orthonormal basis: a basis consisting of
orthonormal vectors

 Orthogonal basis: a basis consisting of
orthogonal vectors

EXAMPLE the standard basis for R”
e, =(3,00,..,0), e,=(0,1,0,..,0), ...,
e =(0,0,0,..,1)
is orthonormal.




Coordinates Relative to
Orthogonal Bases

THEOREM 5 [f S ={v,, v,, ..., v} is an orthogonal
basis for R", and u is any vector in R", then

ICA A A A
(V1, V1) = (V2, V2) . | (Vo Vi)
or
u:(u,Vl)v +(u,Vz)v e (u,Vn)v
Fwgll2 ™ [l vyll2 ° R




Proof Since S = {v,, v,, ..., v, } is a basis, a vector u
can be expressed in the form

u=kv,+kv,+..+kv,

For each vectorin S, we have
(u, v)) = (kv + kv, + .+ kv, V)
= ky(vy, v)) + ky(v,, v) + ...+ k (v, V)
Since S is an orthogonal set, we have
(v, v)=0 if j#I.
Therefore, (u, v;) = k(v,, v;) and
~ (u,w)
(v, V)

i




EXAMPLE Suppose v, = (2, 3) and v, = (3, =2).
1) Check that S ={v,, v,}is an orthogonal basis for IR?.

2) Express the vector u =(7, 5) as a linear combination of
the vectors in S, and find the coordinate vector (u)..

Solution
(v, v,)=2-3-3-2=0
B 29

(uv)=29 (Iv,[F=13 ) =0

(U V) =11 |lv,|f =13 mem kf%

kl

(u). = (29/13, 11/13)



THEOREM 7 IfS={v,, v,, ..., Vv, }is an
orthogonal set of nonzero vectors in R",
then S is linearly independent.

Proof Assume that kv, + kv, +..+ kv =0.
For each v;in S we have

(kv + kv, +...+kv,v)=(0,v)=0
or, equivalently,

ki(vy, v;) + ky(v,, vi) + ...+ k (v, v)=0

From the orthogonality of S it follows that (v, v;) = 0 when
i # j, so this equation reduces to

k{v,v)=0
Since the vectors in S are nonzero, (v, v;) #0 = k. = 0. So
k,=k,=..=k, =0.




Notion of a Polynomial

DEFINITION A polynomial in a single variable can
be written in the form

f=fx)=ax"+a,_x"1+. +a,x*+a,x + a,,
where n is a nonnegative integer. The numbers a,
are coefficients, with a, the leading coefficient

and a, the constant term of the polynomial. If
a, # 0, then n is the degree of the polynomial.

Notation: deg(f) = n.

The zero polynomial f(x) = 0 is not assigned a
degree.




Some terminology

A nonzero polynomial = the sum of a finite
number of non-zero terms.

A monomial: a one-term polynomial
EXAMPLE flx) = 3x2 5x + 4

term 1: coefficient 3,
. term 2 term 3
variable x, and exponent 2

deg(f)=2



Polynomials of small degree

Zeroth
degree:

First
degree:

Second
degree:

Third
degree:

fix)=a,a#0
flx)=ax+b

f(x)=ax?+ bx+c

f(x) = ax3 + bx?
+cx+d

Constant
polynomial

Linear
polynomial

Quadratic
polynomial

Cubic
polynomial



Arithmetic of polynomials

$ $

addition multiplication

EXAMPLE Let

f(x) =x3+2x+1 and g(x) = x> — x + 4.
e flx)+g(x)= x>+x*+x+5
* fix)-glx)= xX>=x*+6x3—x2+7x+4

deg(f + g) < max{deg(f), deg(g)}
deg(f - g) = deg(f) + deg(g)




Polynomial Long Division

two polynomials:

f (the dividend)
g # 0 (the divisor)

=)

two polynomials:
°g (a quotient)
°r (a remainder)

fx) = g(x)-q(x) + r(x),
where either r=0or deg(r) <deg( g).

These conditions define uniquely g(x) and r(x).




EXAMPLE Divide x3 — 2x% — 4 by x — 3.
Solution

x3—2x*4+0-x—4 | x—3
x3 — 3x2

x* +x +3
x4 0-x
— x4 —3x
_3x — 4
3x—9
5
Answer:

x3—2x*—4=(x*+x+3)(x—3)+5




THEOREM 10 (Polynomial Remainder
Theorem or Little Bézout's Theorem)

The remainder of the division of a
polynomial f(x) by a linear polynomial x— a
is equal to f(a).

EXAMPLE Suppose f(x) = x> — 2x + 3.
Polynomial division of f(x) by x — 2 gives
e the quotient | X*+ 2x +2
 and the remainder | 7/
Therefore, f(2)=7




Proof Polynomial long division

J

f(x) = q(x) - g(x) + r(x)
where deg (r) < deg (g)

Take g(x) = x—a as the divisor = deg (g) =1 =
deg (r) =0, i.e. r(x) = r. Therefore,

fx)=qlx) - (x—a) +r
Setting x = a we obtain:
fla)=qla) - (a—a)+r=r




COROLLARY (The Factor Theorem)

A polynomial f(x) has a factor x — a if and
only if fla) = 0. (i.e. a is a root of the
polynomial).

Proof We have

fx)=qlx) - (x—a) +r
1) If fla) =0, then r =0, and f(x) has a factor
X—a
2) If f(x) has a factor x—a, i.e. f(x) = g(x) - (x—a),
then f(a) = 0.




Lecture 9

Polynomials and

Complex Numbers




DEFINITION If f(a) = O then a is called the root
(kopeHsb) of the polynomial f(x).

THEOREM 1 (The Factor Theorem)
A polynomial f(x) has a factor x — a
if and only if fla) = 0.




THEOREM 2

(The integer root theorem)

If an integer is a root of a
polynomial whose coefficients are
integers and whose leading
coefficient is £1, then that integer
is a factor of the constant term.




EXAMPLE Find the factors at
flx) =x3+ 7x% + 8x + 2.

Solution The roots should be among the divisors
of 2: 1,-1,2,-2.

1) Substitute x = 1 into f, using the Horner’s
scheme:

Xg | x> x%2 xt X°

1 7 8 2
1|1 8 16 18
/S [ ]

f(x) = (x2 + 8x + 16)(x 1) + 18




2) Next try x + 1 (substituting x = —1 into the f):

Xo| x> x2 xt X0
1 7 8 2
-1 6 2 0

\\\ N

flx) = (x2 + 6x + 2)(x + 1)

3) x=-3+7
ANSWEL £ (x) = (x+1)(x+3+7 )(x+3-7)




Divisibility of Polynomials

DEFINITION g divides f or g is a divisor of f if there
exists a polynomial g such thatg - g =.

Notation: g|f
a is a root of f (x-a)l| f

If (x — a)? divides f then a is called a multiple root
(kpamHeoil KopeHsb) of f, and otherwise a is called
a simple root of f.

DEFINITION The multiplicity (kpamHocme) of the
root a in fis a highest power m such that (x - a)™
divides f.




DEFINITION A polynomial which cannot be
factorized into the product of two non
constant polynomials is called an irreducible
polynomial (Henpusodumobili MHO204s1€EH).

EXAMPLE Polynomial f(x) = x? + 1 is irreducible.

THEOREM 3 Any polynomial can be decomposed
into the product of a constant by a product of
irreducible polynomials. This decomposition is
unique up to the order of the factors and the
multiplication of any constant factors by a
constant.




Greatest Common Divisor

DEFINITION Let f and g be polynomials. A
greatest common divisor (Haubonowui
obwuli denumens) of f and g is a polynomial
d that divides f and g and such that every
common divisor of f and g also divides d.

Notation: GCD(f, g).
e Iff=g=0, the GCD is 0.

e The GCD is unique up to the multiplication by
a nonzero constant.




EXAMPLE: Find the GCD of
x>+ 7x+6and x? - 5x - 6.
Solution
1) Factor x*+ 7x + 6:
x2+7x+6=(x+1)(x+6)
2) Factor x?-5x - 6:
x2-5x-6=(x+1)(x-6)
Thus, their GCD is

x+1




Properties of GCD

If ¢ is any common divisor of fand g, then ¢
divides their GCD.

GCD(f, g) = GCD(g, f)
GCD(f, g) = GCD(f, g + rf) for any polynomial r.
For any k # 0, GCD(f, g) = GCD(f, kg)

For two polynomials f and g, there exist
polynomials a and b, such that

GCD(f, g) =af + bg
and GCD(f, g) divides every such linear
combination of fand g.




Finding the Greatest Common Divisor

Two ways to find GCD

Factorization 1

The Euclidean

e find the factors of algorithm
each polynomial
e select the set of
common factors




Euclidean Algorithm

to find the GCD of two polynomials a(x) and b(x),
where deg(b(x)) < deg(a(x))

1) By polynomial long division:

a(x) = Go(x)b(x) + ro(x), deg(ry(x)) < deg(b(x))
2) By propetry, GCD(a, b) = GCD(b, r,).
Then set a,(x) = b(x), b,(x) = ry(x).
3) Repeat the process:

01(X) = ql(X)b1(X) + r1(X)

Then set a,(x) = b,(x), b,(x) = r;(x) and so on.
4) When we reach a point at which b,(x) =0,

GCD(a, b) = GCD(a,, b,) = ... = GCD(a,, 0) = a,




EXAMPLE: Find the GCD of x3 + 9x%2 + 20x + 12
and x%2 - 5x - 6.

1) x3+9x% + 20x + 12 =

(x2 - 5x - 6)(x + 14) + 96(x + 1)

2) x> -5x-6=

(x+1)(x-6)+0

Since X+1 is the last nonzero remainder, the
GCD of these polynomialsis x+1



Partial Fraction Decomposition

Partial fraction decomposition of a rational
function is the operation that consists in
expressing the fraction as a sum of a polynomial
(possibly zero) and one or several fractions with
a simpler denominator.




Decomposition of N(x)/D(x) into
Partial Fractions
e Divide if improper: If N(x)/D(x) is an improper

fraction (that is, if deg(N) = deg(D)), divide N(x)
into D(x) to obtain

N(X) _ 1y Ny (X)
D(x) (a polynomial) + D(x)

e Factor denominator into factors of the form
(px + g)™ and (ax? + bx + c)",

where ax? + bx + cis irreducible.



e Linear factors: For each factor of the form (px + g)™,
the partial fraction decomposition must include the
following sum of m fractions.

Al + AZ +...+ A“
(px+q) (px+0q)° (px+0q)"

e Quadratic factors: For each factor of the form

(ax? + bx + c)", the partial fraction decomposition must
include the following sum of n fractions.

B,x+C, N B,x+C, - B Xx+C,
(ax* +bx+c) (ax®+bx+c)®>  (ax®*+bx+c)"




EXAMPLE 1

5x°+20x+6 6 1 L9
X(X +1)° X X+1 (Xx+1)°
EXAMPLE 2

2X°—4x—-8 2 2  2x+4

== +
X(X=D(x*+4) x x-1 x°+4



Definition of a Complex Number

x? > 0, for every real ‘ the equation x? =-1
number x has no real solutions

Introduce the “imaginary”

number | = \/—_1

with the property =

Gerolamo Cardano (1501 —1576)

186



DEFINITION A complex number (komnaekcHoe
yucno) is an ordered pair of real numbers,
denoted by a + bi, where i = -1.

EXAMPLES 4+3i, 2-i, -1+.I.

e the real number a is called the real part of z
(delicmeumenbHasa yacme), Re(z) = a

e the real number b is called the imaginary part
of z (MHUmasa yacme), Im(z) = b

EXAMPLE Re(4 — 3i) = 4, Im(4 - 3i) = -3.



The Complex Plane

A Imagimary axis

(Imaginary bf————————@i=a+M

nart of 2)

: Real axis
- -

i
(Real part of 2)

188




DEFINITION Two complex numbers, a + bi and
c+diareequalifa=candb=d.

e Ifb=0,thena+bi =a

real numbers “

points on the real axis

e Ifa=0,thena+bi=bi =

pure imaginary
numbers (Wucmo
MHUMble)

=)

points on the
Imaginary axis




Operations on Complex Numbers

e Addition of complex numbers:
(a+bi)+(c+di)=(a+c)+(b+d)i
e Subtraction of complex numbers:
(a+bi)—(c+di)=(a—c)+(b—d)i
 Multiplication by a real number k:
k(a + bi) = (ka) + (kb)i

Since (— 1)z +z=0, we denote (— 1)z as — z and call
it the negative of z.




EXAMPLE Let z, =4 -5/, z, =1 + 6i. Then

2+2,= (4-51)+(-1+6I1)
=(4-1)+(-5+6)I=3+I

2,—12,= (4-51)—(-1+6I1)
=(4+1)+(-5-6)I=5-11

3z, = 3(4-5i)=12-15i

~-2,= —(-1+61)=1-6I



Multiplication of Complex Numbers

Expand the product (a + bi) - (c + di), following
the usual rules of algebra but treating i? as -1.
This yields

(a + bi) - (c + di) = ac + bdi? + bci + adi
= (ac — bd) + (bc + ad)i
which suggests the following definition:

(a + bi) - (c +di)=(ac— bd) + (bc + ad)i




EXAMPLE

(3+21)(4+i)= 12+3i+8i+2i°
=12+111-2=10+11
(S—Eij(2+3i)— 10+15i—i——i°
2 2

=10+141+ 3 = 23 +14]
2 2

I1+1)(1-21)= 1+3i




Lecture 10

Complex Numbers




Complex Conjugates

DEFINITION If z=a + bi is any complex number,
then the complex conjugate (KomnaeKcHo-
conpaxceHHoe) of z (also called the conjugate
of z) is defined by Z = a — bi.

EXAMPLES 7 -3 2] 7=3-2i
2=—4-T7i  7=—4+7i
Z=I z=-1
z=4 4

V4
V4




The Conjugate of a Complex Number

.
4 ;T (¢t, )

’.I

|
|
|
|
|
|
:
|
|
|
|
|
i
%
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Modulus of a Complex Number

DEFINITION The modulus (modyne) of a complex
number z = a + bi, denoted by |z]|, is defined by

12| =~/a? +b?
If b=0, then z=a is a real number, and

1z|=+/a?+02 =a? =|a]

so the modulus of a real number is its absolute value.
Thus the modulus of z is also called the absolute
value of z.

EXAMPLE If z = 3 — 4i, then | z|=+/3? + (-4)? =~/25 =5




THEOREM 1 For any complex number 2,
22 =z

Proof If z=a + bi, then
zz=(a+bi)(a-bi)=a’-b%i*=a’+b”* =z

EXAMPLE (2 + 5/)(2 = 5i) = 22 + 52 = 29



Division of Complex Numbers

If z, # 0, then
2, 1,1, 1,1,

4
Z, 1,1, ‘22‘2

3+41 .

- in the form a + bi.
1-2i

EXAMPLE Express

3+4i (3441 + 20)
1-2i (1-=2)(1+20)

Solution

_3+6i+4i+8i2 —5 4+ 10i

1 — 42 B 5

= -1+ 2i




THEOREM 2 Properties of the
Conjugate

For any complex numbers z, z,, and z,:

() Z,+2,=12,+1,

(b) z,-2,=2,—-1,

(c) z,-z,=12-12,

(d) Z1/22 = Zl/zz

(e) 7=1z




Polar Form (TpuroHometpuuyeckmnm sma)

z=x+1iy,z#0, r=|z|.
Then

x=rcosf, y=rsin6 h - .
so that A
Z=x+iy=rcosO +ir sind '

ol . . g V= rsin i
Z = r(cos@ + i sinf@)

—

This is a polar form of z. SN0

The angle @ is called an | v=reosd
argument of z and is
denoted by 6 = arg z




EXAMPLE 1 Express in polar form

Z=1+\/§l ._;'"'i
Solution | N3
r=z|= \/12 +(V3)* =v1+3=2 N -
/ |
z:1+\/§i:2 i+£i)z2(¢0$£+isinﬁj (er)
\2 2 3 3
EXAMPLE 2 Express in polar form LY
z=-1-1i

Solution r=z|= \/(_1)2+(_1)2 _\2 ez

z=\/§(—\/1§—\/1§iJ=\/§(cos_T%+isin_T?mj : i




Multiplication and Division in Polar Form

Let z, =r,(cosf, +isinf,) and z, =r,(cosf, +isind,)

Multiplying, we obtain
cos(6, + 09,)
2,2, = 1, [(cosfO, cosB,—sinb, sinb,)
+ i (sin6, cosB, + cosf, sinb,)] sin(@, + 6,)

Z,2, =i, [cos(6, +0,) +isin(6, +0,)]

Similarly,
if z, # 0, then

4 _ Nilcos(6, - 0,) +isin(6, —6,)]

S —
Z, L




EXAMPLE

T . . 1T
Z1 = 2 (cos§+ lsmg)

T T

T . . 1T
Z, =3 (cosz+ lsmg)

AR, =23[ (
COS 3

_2[ TL’+_ _ n]_
—3cos6 lsm6 =

Z1 _2[ (n n)_l__ _ (n n)'
ZZ—BCOS 3G L SIn 275/

’ 6) ’ iSin(g ’ Z)]

= 6|cos + isinz | = 61
— COSZ lSlnz — 0Ol

é(\/§+i)



DeMoivre's Formula (popmyna
Myaspa)

If n is a positive integer and z =r (cosf + i sinf),
then

2"=2-2-72-.."2
=r"fcos(@+0+..+0)+isin(6+60+...+0)]

or
Zz" = r"(cos n@ +i sin n@)

Moreover, this also holds for negative integers
if z#0.




Finding nth Roots

If n is a positive integer and z # 0 is any complex
number, then we define an nth root of z to be
any complex number w that satisfies

wh=7z

We denote an nth root of z by z1/. Let
w = p (cosa + i sina) and z=r (cosO + i sinb)
Then

p" (cos na +isin na) =r (cosf + i sinG)




We see that p" =ror
p=Ar
Moreover, since
cos na = cosB and sin na = sind,

we have

na =60 +2nk or a——+@, k € Z
n n

Since only O, 1, 2, ..., n—1 produce distinct values of «,
there are n different nth roots of z =r (cos@ + i sinB):

W—’W[COS( 2nk>+isin(g+@)],

n n n
k=012, ..,n—1



EXAMPLE Find all cube roots of -8.
Solution An argument of -8 is 6 = Tt.
Moreover, r= |z| = |-8| =8, so

—8 = 8 (cosm + i sinm)

We have
(—8)”3:§/§ cos(£+2—nkj+isin(£+%j ,k=0,12
3 3 3 3
Thus the cube roots of -8 are
2(cos£+isin£j=2 3+£i —1++/3i
3 3 2 2
2(cosmt+isinm) =2(-1) =-2

2(cos%"+isin%“j _ 2[1—§i] —1—+/3i

2



The cube roots of -8

209




EXAMPLE Find all fourth roots of 1.

Solution Observe that
Z4—-1=(Z2-1)(2+1)=(z-21)(z+ 1) (z—=)(z + i)
So the fourth roots of 1 are 1, -1, i, —i.




THEOREM 3 (Fundamental Theorem
of Algebra) Let f(z) be a polynomial of
degree n =2 1. Then f(z) always has a
root z, € C.

COROLLARY Let f(z) be a polynomial of
degree n 2 1. Then there exist complex
numbers z,, z,, ..., 2, such that

flz)=a,(z=2,) (z—-2,)... (z—2z,).




THEOREM 4 Suppose

flz)=a,2"+a, ;2" +... + 0,2 +a,z + q,

has real coefficients. If z, is a root of f(z),
then the conjugate z_O is also a root of f(z).

THEOREM 5 /f

flz)=a,2"+a, ;2" +... + 0,2> +0,z + q,
is a polynomial with real coefficients, then
it could be factorized in factors with real
coefficients of degree one or two.




EXAMPLE Find a polynomial of 2" degree with
real coefficients that has the root z; = 2 + 5/.

Solution By theorem 4, this polynomial has
another root z,= 2 — 5i. Thus

flz)=(z~-2)) (- Z,)
=(z—-(2 +5/)) (z— (2 - 5i))

=(z-2)% - 25/?

=22-4z+4+25=22-42+ 29



Functions from R"to R

DEFINITION A functionf: A — B is arule

each element a
InasetA

—

Write: b=f(a) ora - b

EXAMPLE

one and only one
element b in a set B

flx, y) = x?> + y? is a function from R?to R




Terminology

b is the image (0o6pa3) of a under f
fla) is the value (3Ha4eHue) of f at a
the set A is the domain (06aacme onpedeneHus)

of f
the set B is the codomain of f

the subset of B consisting of all values f(a) as a
varies over A is the range (06aacmeb 3HavyeHul)

of f

A and B are sets of real numbers = fis a real-
valued function of a real variable




Functions from R” to R”

DEFINITION If A=R"and B=R" (m and n
possibly the same), then fis called a map
(omobpaixceHue) or a transformation
(npeobpasoeaHue) from R” to R™, and is
usually denoted by 7. We say that T maps R”"
into R™.

Notation T: R" > RM™

DEFINITION If m = n, the transformation
T: R" - R™is called an operator on R".




Suppose that f,, f,, ..., f,, are real-valued functions
of n real variables, say

W, = £,(%, X X,)
W, = f,(X, X, ...y X.)

W =T (X, X, ..., X)
These m equations assign a unique point
(wy, w,, ..., w, ) in R™ to each point (x;, x,, ..., X,)
in R” and thus define a transformation
T:R" - R™ such that

T(Xy, Xy, ooy X)) = (W, W5, ..., W, )



EXAMPLE A Transformation from
R? to [R3

The equations
W, = X, + X,
W, = 3X1X2
W, = X12 — X22
define a transformation T: R? = R3 such that
T(X1’ Xz) — (X1 + X,, 3X1X2’ )(12 - X22)
Thus, for example, T(1, -2) = (-1, -6, —3)
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Linear Transformations
from R” to R”

DEFINITION A transformation T: R” - R™ is
called linear if it is specified by linear
equations of the form

Wi = A11X1 -+ A12X9 + -+ A1nXn




A linear transformation T: R” =& IR™ can be
written in matrix notation by

(W1) (an aln)(xl)
Wi Am1 " Amn Xn
or more briefly by w = Ax.

The matrix A = [g,] is called the standard matrix
for the linear transformation T.

Notation: T=T,, A =[T].



EXAMPLE The linear transformation T: R* 2> R3
(wy = 2x; — 3x, + x3 — 5x4
SWy, =4x1 + Xy — 2X3 + X4

\WB — 5x1 — xz ~+ 4‘X3

can be expressed in matrix form as

Wi 2 -3 1 -5 iﬁl
wal=14 1 -2 1 ||5
W3 5 -1

4 0

so the standard matrix for T is

2 -3 1 =5
A= (4 1 -2 1 )
5 -1 4 0

T(ll _3; Or 2) =7 (11 31 8)




Reflection Operators

Operator lllustration Equations Standard Matrix
A
Reﬂectlon (=, y] o = V) ——
about the N / Wy =—X -1.0
. w=Jix) N /,/1' g
y-axis W - W,=Y 0 1
A T (X vl
Reflection / 1 W = X
about the - = 1 1 0
i 5 I — —
X-axis w = T(x) H} ! (X, =V) W2 y O _1
Reflection , PR
about the W=7 f&"y-' W =Y 0 1
line y = x _i,;}-':ﬂ“'” 3 W, = X 1 0




Projection Operators

Operator lllustration Equations Standard Matrix
4-
(1, v)
Orthogf)nal s W, = X 1 0
projection 1},,,
on the o Vic ) 3 W, = 0 0
X-axis " g I ~
LL]
_'.
Orthogonal e
projection =~ 7 &™ f,"' L ¥) w, =0 0 O
on the -~
) il W, =
y-axis “!I ok 2= 0 1

g -




Rotation Operators

Let ¢ be the angle from x-axis to xand r = |x| = |w].

Then X =(x, y)=(rcosg, rsing)
and w = (w,, w,) = (rcos(¢ + 8), rsin(¢p + 9))
Since w, =|r cos¢|cosl —r sing|sind

W, =|r cos¢|sinf +|r sing [cosO

" y W= ||'-|'|.I A |

we have "\
w, = x cosf — y sinf /|

. F i i _ e
w, = x sinf +y cos6 = i
Then - 0>

. /r'i-__.H - I | |
[T] _ (COS H - Sln 8) F __,_.-'"r-F-L_' |'|I_I I I A
— ] " ‘ | | -y
sin@ cos@ .




Dilation and Contraction Operators
(onepaTtopbl C}KaTUA U pacTAXKeHUA)

Operator lllustration Equations Standard Matrix
Contraction A’
with factor k _:‘,.l ® Ly
(0<k<1) " 'HI-'..L..Lw |
e W, = kX k 0
W, =Ky 0 k
A W (RKX, Kv)

Dilation "

o w)
with factor '
k(k=>1) :
"




Compositions of Linear Transformations

If T,: R" >Rk and T;: RK >R™ are linear
transformations, then
each x > T,(x) > T5(T4(x))

This is called the composition of T, with T, and is
denoted by T; o T, (read “T; circle T,”). Thus

(Tg o Ty)(x) = Ta(T,(x))
The composition T; o T, is linear since
(Tg o T,)(x) = Tz(T4(x)) = B(Ax) = (BA)x
Therefore, T; o T, is multiplication by BA:
Tgo Ty=Tga




One-to-One Linear Transformations

DEFINITION A linear transformation 7: R" > [R™
is said to be one-to-one if T maps distinct
vectors in IR” into distinct vectors in R™.

EXAMPLE N
iy
L ¥ Tiu)
- | IIII f
[/
f A
L
T ; ,f"'! /N L
] ____..i'

2 e = i I P i |
r |:ll.. .-"-... — — I.
,;_:_-\...J-'-'--.
ép l” i
L

Projection: not one-to-one Rotation: one-to-one




THEOREM 1 Equivalent Statements

If Aisannxn matrixand T,: R" - R" js
multiplication by A, then the following
statements are equivalent.

(a) A is invertible.

(b) The range of T, is R".

(c) T, is one-to-one.

EXAMPLE Rotation operator T is one-to-one,
since

cos® —-sino
det[T]=| . =C0S°0+sin“0=1=0
SINOG  cosoO




Inverse of a One-to-One Linear
Operator

If T: R" - R" is a one-to-one linear operator,
X = W = T(X),
= there is the operator T1: R” - R” that maps
w back to x. i)
Operator T is called aps X 10 W

La "
the inverse of T. X O

7] = (7]




THEOREM 2 Properties of Linear
Transformations

A transformation T: R" = IR™ js linear if and only
if the following relationships hold for all vectors
uand v in R" and for every scalar c.

(a) T(u +v) = T(u) + T(v)

(b) T(cu) = cT(u)

Proof 1) Assume first that T is a linear transformation,
and let A be the standard matrix for T. Then

TMu+v)=A(u+v)=Au+Av = T(u) + T(v)
and
T{cu) = A(cu) = c(Au) = cT(u)




2) Conversely, assume that properties (a) and (b) hold.
Let e, e,, ..., €, be the standard basis vectors

1 0 0
€1 = L y €2 = 1 ’ y€n = L
0 0 1

and let A be
A= [T(el)l T(ez)l | T(en)]

If x = x,e, + x,e, + ... + x, e, is any vector in R”, then
Ax =x,T(e;) +x, T(e,) +... +x, T(e,)
=T(x,e,) + T(x,e,) +..+T(x e,
= T(x,e, + x,e, + ... + x.e ) = T(x)

This shows that T is multiplication by A and therefore linear.




THEOREM 3

If T: R" - R™is a linear transformation, and e,,
e,, ..., €, are the standard basis vectors for R",
then the standard matrix for T is

[T] = [T(el)l T(ez)l | T(en)]

EXAMPLE Suppose T: R3 - R?is a linear transformation such

that (1) (0) (0)
-1 2 1
TO: ,T].: ,TO:
3 0 6
0) 0) 1)
Then




Eigenvalues and Eigenvectors

DEFINITION If A is an n x n matrix, then a nonzero vector
X in R" is called an eigenvector (cob6cmeeHHbIl
sekmop) of A if

AX = AX

for some scalar A. The scalar A is called an eigenvalue
(cobcmeeHHoe 3HaveHue) of A, and x is said to be an
eigenvector of A corresponding to A.

AX P |

.-'.-..l- 'I._
rd
"
" + y
/ Ax / \ e

A X AX
() =A< () A =1 [c) =lsA=0 (ef) A S =]



EXAMPLE Verify whether the vectors

X = G) andy = (—21)

are eigenvectors of

A= (g —01)
Solution

the eigenvalue A =3

1 X is an eigenvector of
( j(Zj ( ] > A corresponding to
2

Av — ‘ y is not an
Y=ls —1)l-1) |17 eigenvector of A




| is the identity matrix

Rewrite AX = AX as —
AX—AX=AXx—Ax=(A—-AN)x=0

nonzero solutions <:> det(A—A/)=0

e p(A) =det(A —Al) is the characteristic polynomial
(xapakmepucmuyeckuii mHo2o4neH) of A

 p(A) =0 is the characteristic equation
(xapakmepucmuyeckoe ypasHeHue) of A

deg(p) =n “ p(A) = 0 has at most n distinct solutions

U

n x n matrix A has at most n distinct eigenvalues




EXAMPLE Find the eigenvalues and

eigenvectors of the matrix A = (1 3)

4 2
Solution
1) The characteristic equation of A is
11 =A 3
det(a—an= |2, 7 A\

=12-31-10=U1+2)(1—=5) =0

Therefore, the eigenvalues of A are
A, =—-2andA, =5.



2) x is an eigenvector of A & xis a nontrivial
solution of (A — A/)x = 0; that is,

(1;/1 23,1)(2):(8)



THEOREM 4 If A is a triangular matrix,
then the eigenvalues of A are the
entries on the main diagonal of A.

Proof for a 3 x 3 upper triangular matrix
d11 di2 Q433
A= 0 az ay3
0 0 aj;
The characteristic equation is
d11 Q12 Ai3
det(A — Al) = det( 0 ay (123)
0 0 aA33
(a;; —(az; —N(azz —41) =0

and the eigenvalues areA=a,,, A =0a,,, A = a;.




THEOREM 5 If k is a positive integer, A is an
eigenvalue of a matrix A, and X is a
corresponding eigenvector, then \¢ js an
eigenvalue of A* and x is a corresponding
eigenvector.

Proof If A is an eigenvalue of A and x is a
corresponding eigenvector, then

A%Xx = A(Ax) = A(Ax) = A(Ax) = A%X
Akx = A(AF1x) = A(M1x) = A1(Ax) = A1(Ax) = A<x

= A is an eigenvalue of AK and x is an
eigenvector.
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Change of Basis

Change-of-Basis Problem |If we change the basis
for a vector space V from some old basis B to
some new basis B’, how is the old coordinate
vector (v), of a vector v related to the new
coordinate vector (v),.?




Solution for dimension 2 Let
e B={u, u,} bethe old basis
e B'={u’;, u,}bethe new basis

Suppose
))s =® ond (u), =[§]

That is,
u,=au;+bu, and u',=cu;+du,
Let v = k,u’, + k,u’, be any vector in V.
Then
v = k,(au, + bu,) + k,(cu, + du,)
= (k,a + k,c)u, + (kb + k,d)u,



Thus the old coordinate vector for v is

k.a+k,C
(V)B: kb
b +k,d

which can be written as

a c)\lk (a ¢
(V)B:(b dj(kzj or (V)B_[b dj(V)B'

The old coordinate vector (v), results when we multiply the
new coordinate vector (v), on the left by the matrix

a C
P=
b d
The columns of this matrix are the coordinates of the new
basis vectors relative to the old basis.



Solution of the Change-of-Basis
Problem in General Case

If we change the basis from the old basis
B={u;, u, .., u.}
to the new basis
B ={u,u,, .., u.j

then for any v the old coordinate vector (v); is related to
the new one (v);. by the equation

(V)g=P -(v)z

P = [ 1(U')s |1 (U')s]

is the transition matrix (mampuuya nepexooda) from B’ to
B.

where




EXAMPLE Let B = {u,, u,} and B’ = {u’,, u’,} be bases for R?,

where u; =(1,0), u,=(0,1), u’;=(1,1), u’,=(2,1)
(a) Find the transition matrix from B’ to B.
(b) Find (v), if _3
(V)g: = .

Bl

Solution (a) We have

(1 N[ 2
o] wael®

Thus the transition matrix from B’ to B is 5 (1 2)
11

Solution (b)

o o



THEOREM 1 If P is the transition

matrix from a basis B’ to a basis B for a
vector space V, then P is invertible, and
P-1 s the transition matrix from B to B’

Summary If P is the transition matrix from a
basis B’ to a basis B, then for every vector v:

(V)B =P- (V)B' (V)B’ =pt- (V)B




THEOREM 2 If B and B’ are bases for a
vector space V, and if I. V - V is the
identity operator, then the transition
matrix from B” to B is [/] g

Proof Suppose that B = {u,, u,, ..., u, } and
B'={u’,, u’,, .., u’ }are bases for V. Since
I(v) = v for all vin V, we have

[ e =1 DU U )T ]
=[U)e [l (U)e] =P




Effect of Changing Bases on Matrices
of Linear Operators

Problem If B and B’ are two bases for a vector
space V,and if T: V- Vs a linear operator,
what relationship, if any, exists between the
matrices [T]; and [T],?




-
i

v v J';.H'r '.;H'.l
Basis = B’ Basis=H Basis=H Basis= H

We have

[T]B' =[loTo I]B’ = [I]B’,B [T]B '[I]B,B’
Let P = [l]5 5, then Pt = [I]5,5, SO

[T]B' =P [T]B ‘P

THEOREM 3 Let T: V = V be a linear operator on

a vector space V, and let B and B’ be bases for V.
Then

[T]g = P [T]g P

where P is the transition matrix from B’ to B.




EXAMPLE Let T: R? - R? be defined by

T X1 [ AT X
X, ) | =2x +4x,

Find the matrix of T with respect to the standard
basis B = {e,, e,} for R?; then find the matrix of
T with respect to the basis B" = {u’;, u’,},

where
1 1
u' = and U’ =



Solution Since

then

(11
m-

Find the transition matrix

1 1
P:[I]B,B':[(ull)s|(u'2)B]: ( j

1 2
P_l_z 1
-1 1

so the matrix of T relative to the basis B’ is

_p P_z -1(1 1)1 1) (2 0
[T]e =P 1Tl _(—1 1}(—2 4](1 2]_(0 3]

and its inverse



Orthogonal Matrices

DEFINITION A square matrix A with the property
Al=A
is said to be an orthogonal matrix
(opmozoHanvbHasA).

A square matrix A is orthogonal if and only if
AA =AA=]




EXAMPLE A rotation matrix
g = (COSH — sin 9)
sinf cos@6
is orthogonal for all choices of 8, since
AT 4 — ( cos 6 sinH) (cos@ —sinH)
—sin@ cosB/\sinf cosf

=(p 1)

Note that the row vectors
r; = (cos@,—sinf), r, = (sinf,cosf)

are orthogonal, since (r;,r,) = 0.



THEOREM 4 The following are equivalent for an
n X n matrix A.

(a) A is orthogonal.

(b) The row vectors of A form an orthonormal
setin R".

(c) The column vectors of A form an orthonormal
setin R",

COROLLARY If P is the transition matrix from
one orthonormal basis to another orthonormal
basis for R", then P is an orthogonal matrix.




THEOREM 5

(a) The inverse of an orthogonal matrix is
orthogonal.

(b) A product of orthogonal matrices is
orthogonal.
(c) If A is orthogonal, then

det(A) =1 or det(A) = -1.

EXAMPLE For a rotation matrix
g = (cos@ — sin 9)
sinf cos@
we have

det(4) = cos? 0 +sin’* 0 =1




The Matrix Diagonalization Problem

The Eigenvector Problem Given an n x n matrix A,
does there exist a basis for R"” consisting of
eigenvectors of A?

The Diagonalization Problem (Matrix Form) Given
an n x n matrix A, does there exist an invertible
matrix P such that PAP is a diagonal matrix?

DEFINITION A square matrix A is called
diagonalizable if there is an invertible matrix P
such that PAP is a diagonal matrix; the matrix P
is said to diagonalize A.




THEOREM 6 If A is an n x n matrix, then the
following are equivalent.

(a) A is diagonalizable.

(b) A has n linearly independent
eigenvectors.
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Procedure for Diagonalizing a Matrix

Step 1. Find n linearly independent eigenvectors
of A, say py, Py, ---» P,-

Step 2. Form the matrix P having p,, p,, ---, P,, @S
its column vectors.

Step 3. The matrix P"LAP will then be diagonal
with A, A,, ... A, as its successive diagonal
entries, where A, is the eigenvalue
corresponding to p,fori=1, 2, ..., n.




EXAMPLE Find a matrix P that diagonalizes 3 2

Solution The characteristic equation of A is

3-x 2|
=27 -3L+2=0

det(A—-Al) =

and we get the following eigenvalues and eigenvectors:

1 2
ro=10p; = 1] Ay =21P,= _1

So the matrix A is diagonalizable and ( 1 2 ]

P=
-1 -1
diagonalizes A. As a check,

0 P N e b



THEOREM 2 Ifv,, v,, ..., v, are eigenvectors
of A corresponding to distinct eigenvalues
A, N, ...\, then{v, v,, .., v} is a linearly
independent set.

COROLLARY /If an n x n matrix A has n distinct
eigenvalues, then A is diagonalizable.




THEOREM 3 If A is a symmetric matrix, then
(a) The eigenvalues of A are all real numbers.
(b) Eigenvectors corresponding to distinct
eigenvalues are orthogonal.

THEOREM 4 If A is an n x n matrix, then the
following are equivalent.

(a) A is orthogonally diagonalizable.

(b) A has an orthonormal set of n eigenvectors.
(c) A is symmetric.




EXAMPLE Find an orthogonal matrix P that diagonalizes
1= )
2 4
Solution The characteristic equation of A is

det(A—/U)=|7;A 4E/1|=;L2—11;L+24=0

Solving, we get
A = 3: p1=(_12)' A2 =8 p2=(i)

These vectors are orthogonal. Normalizing them yields

w=(1w) =)
to\2/mE)] " \1/45

Finally, using v, and v, as column vectors, we get

[ 1/4/5  2/45 /30
P_<_2/\/§ 1/\@) and D—(O 8)



Quadratic Forms

265



* Alinear form:

0. X+ 0%, +..+a.x,

* A quadrat;c form: 2 all possible terms
b = aq1X1 + Ay2X5 + .- 4 annx% ~+| of the form a; x;x;

fori<j
EXAMPLE

e A quadratic form in the variables x; and x, is
_ 2 2
O = a1x] + azx; + ax1x;
* A quadratic form in the variables x,, x, and x; is

2 2 2
a11xy + x5 + aszx;

+A1pX1 Xy + A13X1X3 + Ar3XyX3

| ) \ J
| |

squared terms cross-product terms




Matrix Representation of Quadratic
Forms

00+ B + By, e, (1, x2>[

a,
a,/2

a,/2
a22

]

A
X2

|

2 2 2
a11)(1 T a22)(2 T a’33x3 T aiI.2X1X2 T a13X1X3 T a'23)(2)(3

[ a,
(X, X %) a,/2
\a13/2

|

a,/2 a;/2)
a22 a‘23/2
a23/2 ds; )

(X, )

X

\ X3/




EXAMPLE 1 Find matrix representation of the
guadratic form

2 3\ X
2X° +6xy—T7y: = (X
FoyTy= | y)(?v —7j{yj

EXAMPLE 2 Find the quadratic form from its
matrix representation

1 D5\ x
( y)(_5 4]()/): X° —10xy +4y*



 General form of matrix representation:

d(x) = x'Ax

where x is the column vector of variables, and

4 all /? /9

a12/2 d, /Zn/2

coefficients of the
squared terms

AN

A= : H
(&2 @, /2

Ay

half the coefficients
of the cross-
product terms

e A quadratic form in terms of the Euclidean

inner product:

X'Ax = (Ax, X) = (x, Ax)




Definiteness

DEFINITION A quadratic form ®(x) = x’Ax is

e positive definite (monoxcumenoHo
onpedeneHHasn) if ®(x) >0 for all x # 0 (then A
is a positive definite matrix)

* negative definite (ompuyamenbHo
onpeodeneHHasn) if ®(x) <0 forallx#0

* indefinite (HeonpedeneHHasn) if P(x) has both
positive and negative values




EXAMPLES

e the form _ 9?2 2 . | Positive
PO =2%+3% | definite

e the form CD(X) — —3)(12 _ X22 is negfit.ive
definite

e the form @ (X) = 7X12 —11X22 IS indefinite



THEOREM 5 A symmetric matrix A is
positive definite if and only if all the
eigenvalues of A are positive.

THEOREM 6 A symmetric matrix A is
negative definite if and only if all the
eigenvalues of A are negative.




Criterion for Definiteness

a11 | A12 Ain

a1 A2 Aon
A= : : .

An1 Anz *° Qnn

DEFINITION The leading principal submatrices of A are

A1 Aq2
A = (a11);A2 = (a21 azz)’

i1 412 Aq3
Az =421 Q22 0423 ],.., A, =A

d3q1 d3zz d33
The leading principle minors (y2anoebie muHopbi) are the
determinants of these submatrices.




THEOREM 7 (Sylvester’s Criterion for
Definiteness) A symmetric matrix A is

* positive definite if and only if det (A,) >0,
det (A,) >0, ...

* negative definite if and only if det (A,) <0,
det (A,) >0, ...

e otherwise, A is indefinite




EXAMPLE Test for definiteness the matrix

(2 -1
A= -1 2
\—3 4
Solution
A =[2=2>0
A, =
2 -1 -3

A,=-1 2 4|=1>0

-3 4 9

Answer: the matrix A is positive definite.

—3)
A
9 )

2 -1

-1 2

= 3>0



Diagonalization of Quadratic Forms

THEOREM 8 Let ® = x’Ax be a quadratic form in the
variables x,, x,, ..., X,. If P orthogonally diagonalizes
A, and if x = Py, then
O =xTAx = y'Dy = 1, y{ + 1,95 + - + 1,7

where A, \,, ..., A, are the eigenvalues of A and

,11 0 )
0 O An

DEFINITION The matrix P in this theorem is said to
orthogonally diagonalize the quadratic form or reduce
the quadratic form to a sum of squares.




EXAMPLE Find a change of variables that will
reduce the quadratic form ® =X’ + x> + 4x,X,
to a sum of squares, and express the quadratic
form in terms of the new variables.

Solution 1 2\ X
o<tc 5
2

The characteristic equation of this matrix is
1-A 2
2 1-A

det(A—1l) = A2 -2A-3=0

so the eigenvalues are A, = 3, A, = 1.



Then

o) (4

m_(vﬁ Y2 jm
X,) \1/J2 -1/J2 \ Y,
or, equivalently,
X =12y, +1N2y,
Xzzl/\/iyl_l/\/zﬁ

Ay = 3] p1:(

Thus,

The new quadratic form is ® =3y, — Y5 .



Indices of Inertia

DEFINITION Suppose D = P’AP is a diagonal
matrix. Then

* the positive index of inertia| I, |: the number
of positive entries of D

e the negative index of inertia |I_|: the number
of negative entries of D

* the number of zeros of D| I,

e the rank of A:rank(A) =i, +i_




THEOREM 9 (Law of Inertia for
Quadpratic Forms)

The positive and the negative indices
of inertia, and the rank of the
quadratic form are uniquely defined,
i.e. are invariants of ®.

Useful relationship:

i, +i_+iy=n




Lagrange's Reduction

EXAMPLE @ = X/|+6X,X, [+ 5X

2
X2 +6X,X, +9x2|—9x2 +5x2 | (K+3%)
=X, +6X,X, +9X;

= (%, +3%,)" —9x + 5%
= (%, +3x2)2 —4X? =(x, +3x2)2 —(2x,)7

Let <y1:X1+3X2,
Y, = 2X,

Then ® =y —y;
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DEFINITION Equations of the form
ax?+2bxy +cy’+dx+ey+f=0
where a, b, ..., f are real numbers, and at least
one of the numbers a, b, c is not zero is called
a quadratic equation in x and y, and
ax? + 2bxy + cy?
is called the associated quadratic form.
Graphs of quadratic equations are called conics

(kpusblie emopozo nopadkay) or conic
sections.



Real non-
degenerate

Ellipse:

xZ yZ 5
a " pz T

Hyperbola:

xZ yZ

a’? b2
Parabola:

y? = 2px

1

1

Real

degenerate
Intersecting lines:
52 yz )
a2 b?
Parallel lines:
y2 _ b2 =0
Coincident lines:
y“ =0

Imaginary

Imaginary ellipse:

2 2
N
2=
lmaginary
parallel lines:

y% + b% =0

Imaginary lines,
intersecting at a real
point:

x2 y2
2tz



2 2

. X vy

. | —
Ellipse: - +-5 =1
b P
_GK/ a >
my
PF, + PF,=2a f%=a*—Db?




eccentricity

PFi+PF2=2a h. e=fl/a

S directrix

2

! P
0<€<1 ~b e=PF2/PD

i
%

287



2 2
KXY
Hyperbola: — — <> =1
asymptote ¥ asymptote
y=éx_

a

288
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http://en.wikipedia.org/wiki/File:Hyperbola_properties.svg

Parabola: y* = 2px

j.--.

directrix

D(-p/2, 0)]
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Principal Axes Theorem for R’

THEOREM 1 Let
ax>+2bxy+cy’+dx+ey+f=0
be the equation of a conic C, and let
X'AX = ax? + 2bxy + cy?
be the associated quadratic form. Then the coordinate

axes can be rotated so that the equation for Cin the
new x'y’-coordinate system has the form

AXZ2+Ny2+dX +e’y +f=0
where N\, and \, are the eigenvalues of A. The rotation can

be accomplished by the substitution x = Px’, where P
orthogonally diagonalizes A and det(P) = 1.




Slope-Intercept Equation of a Line

An equation of a line is
y=mx+b,

where m and b are constants
(parameters):

e m determines the slope
(yenoseoli Koaghgpuyuerm)
of that line,

e b determines the point at
which the line crosses the

y-axis, known as the y- AY
intercept. m =—=tan(0)




Properties of a Slope:

If m >0, then the line 2
rises from left to right “

If m =0, then the line is N
horizontal

If m <0, then the line falls
from left to right

If m is undefined, then
the line is vertical

The greater the absolute
value of the slope of a
line, the steeper the line
IS.



http://en.wikipedia.org/wiki/File:Linear_Function_Graph.svg

The Point-Slope Equation of a Line

y (X5, Y5)
(X y4):

yz_Y1: Yo~ Y;
X, =X Xy = X3

m =

-~ X

Suppose we are given the slope m and the point (x,, y,).
If (x, y) is any other point on the line, then

Vi _ o

X —
We get the point-slope e(;(luation of a line:

y—y,=m(x—x,)




Principal Axes Theorem for R’

THEOREM 1 Let
ax>+2bxy+cy’+dx+ey+f=0
be the equation of a conic C, and let
X'AX = ax? + 2bxy + cy?
be the associated quadratic form. Then the coordinate

axes can be rotated so that the equation for Cin the
new x'y’-coordinate system has the form

AXZ2+Ny2+dX +e’y +f=0
where N\, and \, are the eigenvalues of A. The rotation can

be accomplished by the substitution x = Px’, where P
orthogonally diagonalizes A and det(P) = 1.




Slope-Intercept Equation of a Line

An equation of a line is
y=mx+b,

where m and b are constants
(parameters):

e m determines the slope
(yenoseoli Koaghgpuyuerm)
of that line,

e b determines the point at
which the line crosses the

y-axis, known as the y- AY
intercept. m =—=tan(0)




Properties of a Slope:

If m >0, then the line 2
rises from left to right “

If m =0, then the line is N
horizontal

If m <0, then the line falls
from left to right

If m is undefined, then
the line is vertical

The greater the absolute
value of the slope of a
line, the steeper the line
IS.



http://en.wikipedia.org/wiki/File:Linear_Function_Graph.svg

The Point-Slope Equation of a Line

y (X5, Y5)
(X y4):

yz_Y1: Yo~ Y;
X, =X Xy = X3

m =

-~ X

Suppose we are given the slope m and the point (x,, y,).
If (x, y) is any other point on the line, then

Vi _ o

X —
We get the point-slope e(;(luation of a line:

y—y,=m(x—x,)




Suppose a line contains a point Py(x,, ¥,) and has a
direction vector p = (p,, p,). Then

Vector Equation of a Line: y

r=r,+tp A Po(xo’yo)
Parametric Equations of a Line: P

(~ ro

[ =% +tp, . P(x,y)

_ X

Y=Y +1P,

(t is a parameter, t € R) X=X, Y=Y,

Symmetric Equation of a Line:
Py P,



EXAMPLE

Find the equations of the line passing through
the point (7, 9) and having the direction vector

P = (_3/ 5)

Solution )
X=17-3t

* parametric equations: <
y=9+05t

* symmetric equation: X-7 Yy-9
-3 5




Two-Point Equation of a Line

F’{IJ{;J
Fimg. )
207205 s )(_x1 a y_y1
liiifh_.}']:! K27 —
T Ke=ay X2 . Xl y2 - yl
X=X
=1 3 x X

EXAMPLE Find the equation of the line passing through
P(2,-1)and Py(4,5) x-2 y+1 Xx—2 y+1
4-2 5+1 2 6



Intercept Equation of a Line

302




Distance Between a Point and a Line

THEOREM 3 The distance D between a
point Py(x,, ¥,) and the line I: ax + by + ¢ =
0 can be found using the formula

| ax, + by, +C|

Ja? +b?

D(P,, ) =




Using the Distance Formula

EXAMPLE

Find the distance d from the point (1, —2) to the
line 3x+4y—6 =0.

Solution

C13-1+4-(-2)—-6] |-11]

D
V32 + 42 V25

2.2
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Conic Sections and Lines




Parallel Lines

Lines [, and [, are l l their direction vectors

parallel v and w are collinear
l X—X1 Y— N <:> Y1 — W1
1 —
V4 Vs V, Wy
is parallel to
2" T 1
W1 W2 L/w



EXAMPLE Find the symmetric equation of a line
through the point Py(2, 6) that is parallel to

x—1 y+7 Answer:

3 5 x—2 y—6

3 5
EXAMPLE Find a pair of parallel lines:

- x+11:y—9 - x+1:y—2
- =2 4 1 3
|'X;2—y+4 |:X_5=y+1
3" 9 T 1 3 -6

Answer: l, and [,



Parallel Lines

Lines [, and [, are
parallel “

their normal vectors
n, and n, are collinear

Lines nx
=0 <:> a

li:ax + by +c¢q
and
lyya,x+ b,y +c,=0
are parallel ,




EXAMPLE Find the standard equation of a line through
the point Py(—7, 2) that is parallel to the line
3x—2y + 15 = 0.

Answer:. | Point-normal form: 3(x+7)—-2(y—-2)=0

Standard form: 3x -2y +25=0
EXAMPLE Find a pair of parallel lines:

[;: 2x + 5y = 11, LL:—=x+3y+7=0,
l: 2(x + 1) — 6(y — 2) =5, l,: 5x—2y =1

Answer: | |, and [,



Perpendicular Lines

Lines [, and [, are “ their direction vectors
perpendicular v and w are orthogonal

X=X _ Y™ <:>(v,w) = vywy + vow, =0
(%1 [
IS perpendicular
to
X=Xz Y—DY2
W1 N W3




EXAMPLE Given the line
lx—3 y—4
7 =9
e find the symmetric equation of a line [, through the
point P,(5, —2) that is perpendicular to [.

Solution: , _ X—5 +2
v=(7,-9), Answer: —— = .
e find the standard equation of a line [, through the
point P,(1, 1) that is perpendicular to L. n

Solution: n =(7,-9)

Answer:7(x —1)—9(y—-1)=0 & 7x—9y+2=0



Perpendicular Lines

Lines [, and [, are “ their normal vectors n,
perpendicular and n, are orthogonal

Lines (nl, nz)
lyrax +byy+¢p =0 <:> = aq0a, + b1b2 =0
and
l;a,x+b,y+c,=0
are perpendicular




EXAMPLE Given the line l: 4x+y+7 =0,

e find the standard equation of a line [, through the
point P,(=5, —8) that is perpendicular to L.

Solution: Answer:

n,=(4,1)  Point-normal form: 1(x +5)—4(y +8) =0

n,=(1,-4) Standard form: x—4y—27 =0

e find the symmetric equation of a line [, through the
point P,(3, —12) that is perpendicular to L.

Solution: v = (4,1)

Answer:
x—3 y+12

4 1




Angle between Two Lines

v =
0
o
(v, w)| _|(ng,my)|
cosf = cosf =
]| - [lwl] [Ing || - [|ngy]]

EXAMPLE Find the cosine of an angle between the lines
[;:6x+5y—3=0andl,:2x—-7y+1=0
Answer: |6-2+5-(=7)] 23

COSO = —
J36+25-/4+49 /61+/53




Planes in 3-Space

A<

315



Task Find the equation of the plane passing
through the point Py(x,, ¥o, Z,) and having the
nonzero vector n = (a, b, ¢) as a normal.

The plane consists of points P(x, y, z) for which

(n,PoP) =0
Since PO = (x —Xo,Y — Vo, Z — Zp), We have

a(x —xg) + bly —y,) + c(z—z,) =

This is the point-normal equation of a plane.



EXAMPLE Find an equation of the plane passing
through the point (3, —1, 7) and perpendicular to
the vector n = (4, 2, -5).

Solution A point-normal form is
4(x—3)+2(y+1)-5(z-7)=0¢&
4x + 2y —5z+ 25=0
DEFINITION The equation of the form
ax+by+cz+d=0

where a, b, ¢, and d are constants, which are not all
zero, is called the general (standard) form of the
equation of a plane.

This plane has the vector n = (a, b, c¢) as a normal.




Equation of a Plane
Through Three Points

THEOREM 1 The equation of the plane passing
through three points P,(xy, ¥4, Z;), P,(X,, ¥,, Z,),
and P5(x;, 5, Z5) that do not lie in the same
line is

X—X1 Y—V1 <Z—24

Xp—=X1 Y2—Y1 Z2— 71| =0

X3 —X1 Y3 — Y1 43— 2%




Proof point P(x, y, z) lies in the plane

¢

The vectors El|5’ =(X=X,¥Y-Y,Z-2)
@: (Xz — X Yo=Y 4~ 21); and
PP, =(X,— X, Y, — Yy, Z, — Z,) are linearly dependent

X—X1 Y—Y1 Z—2Z;
Xo = X1 Y2—)Y1 Zp — 73
X3 —X1 Y3—)Y1 Z3 — 73

$
o %’P




EXAMPLE Find the equation of the plane passing
through the points P,(1, 2, -1), P,(2, 3, 1), and
P.(3, -1, 2).

Solution X-1 y-2 z+1 |x-1 y-2 z+1

2-1 3-2 1+1j=| 1 1 2 |=0

3-1 -1-2 2+1 2 -3 3

1 2 1 2 1 1

—(y—-2 +(z+1 =0
—33(y )23( )2—3

O(x-1)+(y-2)-5(z+1) =0

OX+y-5z-16=0



Parametric Equations of a Line
in 3-Space

Suppose that / is a line in 3-space through the
point Py(x,, Vo, Z5) and parallel to the nonzero
vector v = (v,, v,, v5), which is called the
direction (Hanpaeasaowuu) vector.

Then [ consists precisely of those points P(x, y, z)

—

for which PP = tv.




In terms of components, this can be written as
(X =Xq, ¥ — Vo, Z— 2y) = (tvy, tv,, tv,)
SOX—Xy,=tv,y—Yy,=tv,, and z—z, = tv,

We get the equations

(X = Xo + tV,
Y =y T+ tv,, —o<t< 4+
kZ:ZO+tU3

which are called the parametric equations for |.



EXAMPLE

The line through the point (1, 2, —3) and parallel
to the vector v = (4, 5, —7) has the parametric
equations

 x=1+4t
y=2+5t, —oo<t<+w
Z=-3—-1t

J\.

.



Symmetric Equations of a Line

Consider the parametric equations for a line
X=Xy +tv,y=y,+tvy, andz =z, + tvs

If v{, v, and v; are all nonzero, we solve for t:
X — Xg Y —Yo Z — Zg
— t, — t, =t
Uq (47 U3

Symmetric equations (KaHOHU4YecKue ypasHeHus):
X—Xo Y—Yo Z—Z2p
V1 [, U3

If, for example, v; = 0, the symmetric equations become

Y—Yo Z—Z
x—x9=0 and =
(%) U3




Two-Point Form Equations of a Line

If the line / passes through two points Py(x,, ¥, Z,) and
P.(X,, V1, Z;), then the vector

e

vV="PP; = (X1 —X0, Y1 — Yo, Z1 — Zp)
is parallel to the line. We get the two-point equations:
(x = x9 + t(x; — x0)
Yy =Yo +t(y1 = Yo)
\Z =2+ t(z1 — 2p)

A

or symmetric equations:
X—X0 Y—DYo Z — Zp

X1 —X0o Y1—Yo “Z1— Zp




EXAMPLE

The line passing through the points (1, 2, 3) and
(4, 6, 9) has the two-point form equations:

(x=1+t(4-1) (x=1+3t
Ly=2+1(6-2) h Ty =2+4t
1 z2=3+1(9-3) | Z=3+6t
and the symmetric equations:
x-1 y-2 z-3
'3 4 6



EXAMPLE Intersection of a Line
and a Plane

(a) Find parametric equations for the line /
passing through the points P,(2, 4, —1) and
P,(5, 0, 7).

(b) Where does the line intersect the xy-plane?

(c) Where does the line intersect the plane
m:2x—y+3z—-65=07?




Solution (a) Since P, P, = (3,—4,8)||l and P,(2, 4, -1)€l,
Xx=2+3t, y=4-4t, z=-1+8t (—o= <t < +o0)

Solution (b) The line | intersects the xy-plane at the point
where

z=-1+8t=0 & t=1/8
Substituting this value of t for [ yields

vz = (27
x;}’;Z - 8)2)

Solution (c) Suppose the line [ intersects m at the point
Po(2 + 3t, 4 — 4t, -1 + 8t) for some t. Since P, € T,

22+3t)—(4-4t)+3(-1+8t)—65=0 & t=2
Thus,
Py(2+3:2,4-42,-1+82)=(8,—4,15)



EXAMPLE Line of Intersection of Two
Planes

Find parametric equations for the line of
intersection of the planes 3x+2y—-4z-6=0
and x—3y—-2z-4=0

Solution . 26 16
x:H-I_Ht

3x+2y—4z—6=0 ‘

{x—By 2Z2—4 =0 <y=—%—%t
\ 7 =

These are the parametric equations of the line.




Distance Between a Point and a Plane

THEOREM 3 The distance D between a
point Py(X,, Yo, Z,) and the plane
ax+by+cz+d=0is

~ |ax, +by, +cz, +d |

D
Ja?+b? +¢?




EXAMPLE Find the distance D between the point
(1, -4, —3) and the plane 2x — 3y + 6z = 1.

Solution

First rewrite the equation of the plane in the
form

2x—3y+62+1=0
Then
| 2-1+(-3)(-4) +6(-3) +1| |[-3|

D
V22 +(=3)? + 67 7

3
=



EXAMPLE Find the distance between parallel
planesx+2y—2z=3and 2x+4y—-4z=7.

Solution

Idea: select an arbitrary point in one plane and
compute the distance to the other plane.

y=z=0In
X+2y—2z=3 ‘ Pol3, 0, 0)

,-’f P
// ";'I /
|2:3+4.0+(-4)-0-7] 1 v !

D —

\/22 + 4% 4+ (—4)° 6 f L /
W ;‘f
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Planes and Convex Hulls




The Angle between Two Planes

Dihedral angle (08y2paHHbIl y201) between the
planes = the smaller (acute) angle between them
The angle between the two planes is equal to

* the angle between
their normals if it is
acute

e the supplementary
angle otherwise




EXAMPLE Find the dihedral angle between the
planes having equations 2x + 3y —4z =5 and
4x — 2y + 3z = 6.

Solution A pair of normals to the given planes
aren; =(2,3,-4)and n, = (4, -2, 3). The

cosine of the angle between n, and n, is
(n,n,) 8-6-12 10

_||n1||-||n2 | - J4+9+16-/16+4+9 - 29

Since the cosine is negative, then the angle is
obtuse. Therefore, the angle between two

planesis  ;r.c0s(10/29) = cos(10/29)




Relative Position of Two Lines

two lines in [R?2

! 1 1

parallel intersecting coincident




two lines in R3

coincident

parallel I skew (cKkpewwmBatowmecs)
_’-'EI?'.::;::;::::::“;;:“;: ;“, e ;“," ';“, "

Intersecting

337



Determining the Relative Position of
Two Lines

the direction vectors are

/\

linearly dependent linearly independent

the lines are the lines are skew
parallel or equal or intersecting

Vl/7 /7\/1
/2 Ty,



EXAMPLE Verify whether two lines

X—2 +3 A/ x+1 —5 Z—2
-1 2 3 2 —4 —6

are parallel, coincident, intersecting or skew.
Solution The direction vectors
v,=(-1,2,3)and v, =(2, -4, —6)
are collinear = [, and [, are parallel or
coincident

Take a point P,(2, =3, 7) on the line I, and check
if it also belongs to /.

P, & |, = the lines are parallel



EXAMPLE Verify whether two lines
X—=2 y_-|-3 z—7 x+1 y—5 Z—

— = =— and —=—=—

2
—1 2 3 3 -1 7
are parallel, coincident, intersecting or skew.

Solution The direction vectors

v,=(-1,2,3)and v, =(3,-1, 7)
are not collinear = /, and /, are intersecting or skew.
Create the vector from P,(2,-3,7) €/, to P,(-1, 5, 2) €

l,. 1f PP, = (—3,8,—5) is linearly dependent with v,
and v,, then the lines are intersecting. If not, they are

skew. v
-1 2 3 %
3 -1 7|=102+#0 )

-3 8 -5 /
— the lines are skew v,




The Angle between Skew Lines

EXAMPLE Find the angle between v,
[: x=2+ =4 — =3+2
X 3t, y t, z=3+2t VX 0

LL: x=1-t, y=5+2t, z=6+3t

=

v,=(3,-1,2) || /jand Vv, =(-1, 2,3) || L.
The angle 0 between the lines = the angle between the

vectors v, and v,:
(Vl'VZ) _3_2+6 1
cos0 = = —
Ivall - lIv2ll Vo+1+4-v1+4+9 14

So the angle is 6 = arccos(1/14).

Solution




The Angle between
a Line and a Plane

Line — direction vector v
Plane - normal vector n

0 = /2 — (angle between v and n)

EXAMPLE Find the angle between the linex=5-2t,y=4+7t, z
=1+ 4tand the plane3x—y+2z+21=0.

Solution The direction vector isv = (-2, 7, 4), the normal vector is
n=(3,-1, 2). Then
(v,n) —6—7+8 —5

Ivll-llnll  vA+49+16-V9+1+4 +966
: _T 5 _ : 5
So the angle is 8 = ~ — arccos (—m) = arcsin (

)



Lines in [R”

DEFINITION Given vectors pand v # 0 in R”, the set of all
points x in R” such that

X=p+tv, where—oo<t<oo,
is called the line through p in the direction of v.
This equation is called a vector equation for the line.
If x=(x,...,%,),v=1(vq .., v,), and p=(py, ..., p,), then
(Xq, - X)) = (Py, - p,) + EVy, ..., V)
which holds if and only if
X1 =Pt tvy

Xn=Pp ¥t tvn
These are parametric equations
for the line in R”".




EXAMPLE Suppose [ is the line in R* through
P,(1, 2,7, 8) in the direction of v=(1, -3, 2, 11)

Then the parametric equations of / are

X, =1+t

X, =2—3t
Xg=—7+2t
X,=8+ 11t

Note that if we solve for t in both of these
equations and exclude this variable, we get
xl_l_XZ_Z_x3+7_x4_8
1 -3 2 11
These are just the symmetric equations of a line.




Segments in R”

Suppose we have two distinct points A = p and
B = q. Consider the vector v=q —p.

Then all pointsx =p + tv, where 0 <t <1, lie on
the segment joining p and q. Thus the equation

X=p+tv
where 0 <t<1, determines
the segment joining p and q. A
It can be rewritten in the form

X=p+tlq—p)
or x=(1-t)p + tq g




If X = (X]_I tee ) Xn)) p = (pll tee) pn)l and q = (qll tee) qn)) then
V= q — p = (ql _p1; ©e0) qn_pn))
and the segment equation may be written as
(X]_I tee) Xn) = (plr tee) pn) + t(ql — pl) tee) qn_ pn)
which holds if and only if
X, =p,+t(g, —p,)

X, =Py +tq,—pp)
These equations are called parametric equations for the
segment in R". They can be rewritten in the form

x,=(1-t)p, + tq,

x,=(1-t)p, +1tq,



EXAMPLE Find a parametric equation of the
segment joining the points A(1, 2, 3, 4) and
B(-1, 3, -5, 2).

Solution
X =(1-1t)-t X =1-2t
X, =2(1-1)+ 3t X, =2+1
X,=3(1-t)-5t or X =3-08t
X, = 4(1—t)+ 2t X, =4-21

t=0 = we getA
t=1 = wegetB



EXAMPLE Verify whether the point Q(8, 1, —4, —2)
belongs to the segment joining A(5, 2, -1, —4) and
B(20, -3, —16, 6).

Solution The parametric equations for the segment:

(x; =5+ 15¢
X, =2 —5¢t
< x; = —1—15¢
X, = —4 + 10t
Then solve the system of equations
54+ 15t =8 ,
2—5t=1 _
—1— 15t = —4 = ‘T3
—4 4+ 10t = -2

Since 0<1/5 <1, then Q lies on the segment.



Hyperplanes in R”

DEFINITION Suppose n and p are vectors in R” with n # 0.
The set of all vectors x in R” which satisfy the equation

n(x—p)=0 (1)

is called a hyperplane through the point p. We call n a
normal vector for the hyperplane and we call this
equation a normal equation for the hyperplane.

Letn=(a,, a,, ..., a,), P =(py, Py - P,), AaNd X = (X, X5, ...,
X,), then (1) =
a,(x;—pq) +a,(x,—p,) +..+a,(x,—p,) =0

or
ax,tax,+..+ax,+d=0




Hyperplanes in R?, R3, and R*

Space Hyperplane __Equation

a point ax+b=0< x=-b/a
IRZ a line ax+bx+c=0
R3 a plane ax+bx+cz+d=0

RN an (n—1)-dimensional ax;+ax,+..+a.x, +d=0
affine subspace

EXAMPLE The set of all points (x, y, z, w) in R* which satisfy
—X+4y+2z2+3w=5
is a 3-dimensional hyperplane with the normal vector
= (_3_' _1! 41 2)'
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Angles between Hyperplanes

DEFINITION Let G and H be hyperplanes in R” with
normal equations

m-(x—p)=0 and n:-(x—q)=0
respectively, chosen so that m - n = 0. Then the

angle between G and H is the angle between m
and n.

Moreover, we will say that

e G and H are orthogonal if m and n are
perpendicular

e G and H are parallel if m and n are parallel




EXAMPLE 1 Find the angle 6 between the two
planes in R* with equations

X+2y—z+5w+7=0 and x—-3y—-z—-2w=5

Solution First note thatm=(1, 2,-1,5)and n=(1, —
3,—1,-2). Since m - n =-14, we will compute the
angle between m and —n. Hence

(m, —n)

“mil-|in]| szls m=p 6- arCCOS(Jsmsj

EXAMPLE 2 The planes in R* with equations
3x+y—2z+7w=3 and 6x+2y—4z+ 14w =13

are parallel since their normal vectors m=(3, 1, -2,
7) and n = (6, 2, —4, 14) are parallel.




DEFINITION A half-space is either of the two
parts into which a hyperplane divides R".

It may be specified by a non-strict inequality:
ax;tax,+..+ax +d20

where not all of the real numbersa,, a,, ..., a
are zero.

n

Space HaltSpace _Equation _____

a ray ax+b =0

IRZ a half-plane ax+bx+c=>0
R3 a half-space ax+bx+cz+d=>0
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How to graph a half-plane ax + by + ¢ 2 0?

1) Graph the line ax + by + ¢ = 0. This line divides the plane into
two halves.

2) Choose a test point (x,, y,) not on the line.

e The coordinates of (x,, y,) satisfy the inequality = so do all
points on the same side of the line = shade that whole area.

e The coordinates of (x,, y,) do not satisfy the original inequality
= shade the portion of the plane on the side of the line in
which (x,, y,) does not lie.

ax+by+c>0
Hall-okano

(X0 Yo). o

Hat-planas
ax+by+c<0




EXAMPLE Graph 4x —y — 2 > 0.

Solution We first graph the linedx—-y -2 =0.
We now choose a convenient point not on the
line, say (0, 0), and plug its coordinates into
our original inequality: r

4-0-0-220, (Falsel)

Since the inequality does

— L T ] 00

(0,

x
1234567 8¢

not hold, we shade inthe 8755732711

portion of the plane lying
on the other side then (0, 0).

1do S dnodn b daopa =




Convex Sets

DEFINITION A set Cin R" is said to be convex if for
every p, q € C and every real numbert,0<t< 1, the
point (1 —t)p + tq € C.

Geometrically: a set is convex if, given two points in the
set, every point on the line segment joining these
two points is also a member of the set.

convex nonconvex



EXAMPLES of convex sets:
° apoint

e aline

e a half-line (a ray)
e aplane

* a half-plane

* a half-space

* a hyperplane



THEOREM The intersection of any
collection of convex sets is convex.

jind

=]
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DEFINITION A set which can be expressed as the
intersection of a finite number of closed spaces is
said to be a polytope (MHO202paHHUK).

DEFINITION A
nonempty bounded
polytope is called a
polyhedron
(oepaHu4eHHbIlU
MHO202PAHHUK).

COROLLARY Any
polytope is a convex
set.




Convex Hulls

DEFINITION The convex hull or convex envelope
(ebinyKnasa oboaoyka moyek) of a set X of points is
the smallest convex set that contains X.

Formally, the convex hull may be defined as the
intersection of all convex sets i
containing X or as the set of all

convex combinations

of points in X.




When X is a finite point set on the plane, the
convex hull may be visualized as the shape
formed by a rubber band stretched around X.

TN
SR
N N—"/

e i_'__l-'_

o S



Convex Hull of a Finite Point Set

EXAMPLE Point out all vertices of a convex hull of the following
finite point set: A(1, 2), B(2, 1), C(2, 4), D(1, 3), and E(-4, —-1).

Answer: B, C, E
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