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Введение 
Пособие содержит курс лекций, читаемый студентам 

Международного финансового факультета Финуниверситета на 

английском языке. Пособие охватывает следующие вопросы дисциплины: 

системы линейных уравнений, матрицы и определители, векторная 

алгебра, линейные преобразования, комплексные числа, квадратичные 

формы, элементы аналитической геометрии, выпуклые множества. Весь 

теоретический материал сопровождается примерами, иллюстрирующими 

основные положения теории. Пособие снабжено списком рекомендуемой 

литературы на русском и английском языках. 

Перед студентами, изучающими курс линейной алгебры на 

Международном финансовом факультете на английском языке, ставится 

нелегкая задача: освоить данный, очень непростой предмет, сразу на двух 

языках. А это означает не только научиться понимать и использовать 

соответствующую специальную терминологию на языке, но и 

приспособиться к западному стилю подачи материала. Последнее особенно 

актуально для студентов, желающих продолжать обучение за рубежом. 

Поэтому все основные термины снабжены переводами на русский язык, 

приводятся русскоязычные названия теорем, а также при подаче материала 

порой отдается предпочтение подходу, принятому в зарубежном курсе 

“Linear Algebra”. 
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Linear Algebra 
Olga Evgen’evna Orel,  

Ph. D., Associate Professor 
Department of Mathematics-1, 

olga_orel72@mail.ru  

FINANCIAL UNIVERSITY 
 UNDER THE GOVERNMENT OF THE RUSSIAN 

FEDERATION 

Moscow 2014 
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Contents of the Course 
  Systems of Linear Equations 
  Matrices and Determinants 
  Vector Spaces 
  Polynomials 
  Complex Numbers 
  Linear Transformations 
  Bilinear and Quadratic Forms 
  Analytic Geometry (Lines, Planes, and Conics) 
  Convex Sets 
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Solving Systems of 
Linear Equations 

Lecture 1 
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Basic Terminology 
• System of Linear Equations (система 

линейных уравнений) or Linear System: a 
finite set of linear equations. 

• Solution: numbers 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛 such that 
every equation of the system is satisfied when 
we substitute 𝑥𝑥1 = 𝑠𝑠1, 𝑥𝑥2 = 𝑠𝑠2, … , 𝑥𝑥𝑛𝑛 = 𝑠𝑠𝑛𝑛.    

• Solution Set (множество решений) or 
General Solution (общее решение): the set 
of all solutions of the system. 

8 



• An inconsistent (несовместная) system has no 
solutions 

• A consistent (совместная) system has at least 
one solution 

EXAMPLE of an inconsistent system:  

�𝑥𝑥 + 𝑦𝑦 = 4
𝑥𝑥 + 𝑦𝑦 = 3 

9 

Every system of linear equations  
• has no solutions, or  
• has exactly one solution, or  
• has infinitely many solutions. 

 



An arbitrary system of m linear 
equations in n unknowns 

�

𝑎𝑎11𝑥𝑥1 + 𝑎𝑎12𝑥𝑥2 + ⋯ + 𝑎𝑎1𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏1
𝑎𝑎21𝑥𝑥1 + 𝑎𝑎22𝑥𝑥2 + ⋯ + 𝑎𝑎2𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏2

⋮
𝑎𝑎𝑚𝑚1𝑥𝑥1 + 𝑎𝑎𝑚𝑚2𝑥𝑥2 + ⋯ + 𝑎𝑎𝑚𝑚𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏𝑚𝑚

 

where 
• 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 are the unknowns 
• a's and b's are constants          

10 

constant  
terms 



EXAMPLE of a general system of 3 equations in 4 
unknowns (общая система из 3-х уравнений 
с 4-мя неизвестными):    

�
𝑎𝑎11𝑥𝑥1 + 𝑎𝑎12𝑥𝑥2 + 𝑎𝑎13𝑥𝑥3 + 𝑎𝑎14𝑥𝑥4 = 𝑏𝑏1
𝑎𝑎21𝑥𝑥1 + 𝑎𝑎22𝑥𝑥2 + 𝑎𝑎23𝑥𝑥3 + 𝑎𝑎24𝑥𝑥4 = 𝑏𝑏2
𝑎𝑎31𝑥𝑥1 + 𝑎𝑎32𝑥𝑥2 + 𝑎𝑎33𝑥𝑥3 + 𝑎𝑎34𝑥𝑥4 = 𝑏𝑏3
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number of the equation number of the unknown 

𝑎𝑎𝑖𝑖𝑖𝑖 



Terminology 
• Augmented Matrix (расширенная матрица): 

𝐴𝐴 𝐛𝐛 =
𝑎𝑎11 … 𝑎𝑎1𝑛𝑛

⋮ ⋱ ⋮
𝑎𝑎𝑚𝑚1 … 𝑎𝑎𝑚𝑚𝑛𝑛

𝑏𝑏1
⋮

𝑏𝑏𝑚𝑚

 

 
• Coefficient Matrix (матрица коэффициентов): 

𝐴𝐴 =
𝑎𝑎11 … 𝑎𝑎1𝑛𝑛

⋮ ⋱ ⋮
𝑎𝑎𝑚𝑚1 … 𝑎𝑎𝑚𝑚𝑛𝑛
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entry 
(элемент 
матрицы) 



List of operations to eliminate unknowns: 
1. Multiply an equation through by a nonzero 

constant. 
2. Interchange two equations. 
3. Add a multiple of one equation to another. 
The corresponding operations on the rows of the 

augmented matrix (elementary row operations): 
1. Multiply a row through by a nonzero constant. 
2. Interchange two rows. 
3. Add a multiple of one row to another row. 

13 



14 

2 9
2 4 3 1
3 6 5 0

x y z
x y z
x y z

+ + =
 + − =
 + − =

1 1 2 9
2 4 3 1
3 6 5 0

 
 − 
 − 

1 1 2 9
0 2 7 17
0 3 11 27

 
 − − 
 − − 

Add  
• -2 x the 1st row to the 2nd  
• -3 x the 1st row to the 3rd  

1 1 2 9
0 1 7 / 2 17 / 2
0 3 11 27

 
 − − 
 − − 

1 0 11/ 2 35 / 2
0 1 7 / 2 17 / 2
0 0 1/ 2 3 / 2

 
 − − 
 − − 

Multiply the 2nd row 
by 1/2 

Add  
• -1 x the 2nd row to the 1st  
• -3 x the 2nd row to the 3rd  

1 0 11/ 2 35 / 2
0 1 7 / 2 17 / 2
0 0 1 3

 
 − − 
 
 

1 0 0 1
0 1 0 2
0 0 1 3

 
 
 
 
 

Multiply the 2nd  
row by -2 

EXAMPLE 

Add  
• -11/2 x the 3RD row to the 1st  
• 7/2 x the 3RD row to the 2nd 

Solution: x = 1, y = 2, z = 3. 



Row-Echelon Form of a Matrix 

DEFINITION A row of a matrix has k leading 
zeros if the first k elements of the row are zeros 
and the (k + 1)th element of the row is not zero. 
 
EXAMPLE 

( 0   0   0   0   4   3   0   -1   2) 
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four leading zeros 



DEFINITION A matrix is in row-echelon form 
(ступенчатый вид) if each row has more leading 
zeros than the row preceding it. 
DEFINITION The first nonzero entry in each row 
of a matrix in row-echelon form is called a pivot 
(разрешающий элемент). 
EXAMPLE  

1 −0.4 −0.3
0 0.8 −0.2
0 0 0.7

130
100
210
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pivots 



Reduced Row-Echelon Form 

DEFINITION A row-echelon matrix in which 
• each pivot is a 1 and  
• each column containing a pivot contains no other 

nonzero entries  
is said to be in reduced row-echelon form 
(приведенный ступенчатый вид). 
EXAMPLES 

1    0    0      4
0    1    0      7
0    0    1 − 1

,   
1 0 0
0 1 0
0 0 1

,   
0   1   ∗    0   ∗
0    0    0    1   ∗
0    0    0    0   0

 

17 



Solving Linear Systems 

 
EXAMPLE 1 

1 0 0
0 1 0
0 0 1

5
−2
4

   →    �
𝑥𝑥 = 5   
𝑦𝑦 = −2
𝑧𝑧 = 4   
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EXAMPLE 2 
1 0 0
0 1 0
0 0 1

4
2
3

−1
6
2

 

�
𝑥𝑥1          + 4𝑥𝑥4 = −1
    𝑥𝑥2      + 2𝑥𝑥4 = 6
         𝑥𝑥3 + 3𝑥𝑥4 = 2

     →      �
𝑥𝑥1 = −1 − 4𝑥𝑥4
𝑥𝑥2 = 6 − 2𝑥𝑥4
𝑥𝑥3 = 2 − 3𝑥𝑥4

 

• x1, x2, and x3 are pivots (базисные переменные) 
• x4 is a free variable (свободная переменная) 
General solution:  
𝑥𝑥1 = −1 − 4𝑡𝑡, 𝑥𝑥2 = 6 − 2𝑡𝑡, 𝑥𝑥3 = 2 − 3𝑡𝑡, 𝑥𝑥4 = 𝑡𝑡,  
or                       𝐱𝐱𝐺𝐺 = −1 − 4𝑡𝑡, 6 − 2𝑡𝑡, 2 − 3𝑡𝑡, 𝑡𝑡 , 𝑡𝑡 ∈ 𝑅𝑅. 
Basis solution: 

𝑡𝑡 = 0   →   𝐱𝐱𝐵𝐵 = (−1, 6, 2, 0). 

19 



EXAMPLE 3 
1 0 0
0 1 2
0 0 0

0
0
1

 

 
The last equation is  

0 ∙ 𝑥𝑥1 +0 ∙ 𝑥𝑥2 + 0 ∙ 𝑥𝑥3 = 1. 
This equation cannot be satisfied ⇒ there is no 
solution to the system. 

20 

The system is inconsistent! 



Elimination Methods 

21 

System of Linear Equation 

Row-Echelon 
Form  

Reduced Row-
Echelon Form  

Gaussian 
Elimination 

Gauss-Jordan 
Elimination 



Step-by-step Elimination: Example 
and Algorithm 

Step 1. Locate the leftmost column that does 
not consist entirely of zeros: 
 

0 0 −2
2 4 −10
2 4 −5

0 7
6 12
6 −5

12
28
−1
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Leftmost nonzero column 



Step 2. Interchange the top row with another row, if 
necessary, to bring a nonzero entry to the top of the 
column: 

2 4 −10
0 0 −2
2 4 −5

6 12
0 7
6 −5

28
12
−1

 

 
 
Step 3. If the entry that is now at the top of the column 
is a, multiply the first row by 1/a in order to get 1: 

1 2 −5
0 0 −2
2 4 −5

3 6
0 7
6 −5

14
12
−1
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The first and the second 
rows in the preceding matrix 
were interchanged 

The first row of the 
preceding matrix was 
multiplied by 1/2 



Step 4. Add suitable multiples of the top row to the 
rows below so that all entries below and above the 
pivot becomes zero: 

1 2 −5
0 0 −2
0 0 5

3 6
0 7
0 −17

14
12

−29
 

 
Step 5. Now cover the top row in the matrix and begin 
again with Step 1 applied to the submatrix. Continue in 
this way until the entire matrix is in row-echelon form: 

1 2 −5
0 0 −2
0 0 5

3 6
0 7
0 −17

14
12

−29
  →  

1 2 −5
0 0 1
0 0 0

3 6
0 −3.5
0 1

14
6
2
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-2 times the first row of the  
preceding matrix was 
added to the third row 

Leftmost nonzero column in the submatrix  



Reduced row-echelon form: 
1 2 0
0 0 1
0 0 0

3 0
0 0
0 1

7
1
2

 

Corresponding system: 

�
𝑥𝑥1 + 2𝑥𝑥2    + 3𝑥𝑥4   = 7

      𝑥𝑥3 = 1
                                𝑥𝑥5 = 2

   →  �
𝑥𝑥1 = 7 − 2𝑥𝑥2 − 3𝑥𝑥4
𝑥𝑥3 = 1
𝑥𝑥5 = 2

 

General solution:  
𝐱𝐱𝐺𝐺 = 7 − 2𝑡𝑡 − 3𝑠𝑠, 𝑡𝑡, 1, 𝑠𝑠, 2 , 𝑡𝑡, 𝑠𝑠 ∈ 𝑅𝑅. 
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Matrices and Matrix 
Operations 

Lecture 2 

26 



Homogeneous Systems 

DEFINITION A system of linear equations is said 
to be homogeneous (однородная) if the 
constant terms are all zero: 

 

�

𝑎𝑎11𝑥𝑥1 + 𝑎𝑎12𝑥𝑥2 + ⋯ + 𝑎𝑎1𝑛𝑛𝑥𝑥𝑛𝑛 = 0
𝑎𝑎21𝑥𝑥1 + 𝑎𝑎22𝑥𝑥2 + ⋯ + 𝑎𝑎2𝑛𝑛𝑥𝑥𝑛𝑛 = 0

⋯
𝑎𝑎𝑚𝑚1𝑥𝑥1 + 𝑎𝑎𝑚𝑚2𝑥𝑥2 + ⋯ + 𝑎𝑎𝑚𝑚𝑛𝑛𝑥𝑥𝑛𝑛 = 0

 

27 



Properties of Homogeneous Systems 

• Every homogeneous system of linear equations is 
consistent. 

• There are only two possibilities for its solutions: 
– The system has only trivial solution:                             

𝑥𝑥1 = 0, 𝑥𝑥2 = 0, … , 𝑥𝑥𝑛𝑛 = 0. 
– The system has nontrivial solutions in addition to the 

trivial solution. 

28 

THEOREM 1 A homogeneous system of linear 
equations with more unknowns than equations has 
infinitely many solutions. 



𝐴𝐴 =
𝑎𝑎11 … 𝑎𝑎1𝑛𝑛

⋮ ⋱ ⋮
𝑎𝑎𝑚𝑚1 … 𝑎𝑎𝑚𝑚𝑛𝑛

    is    𝑚𝑚 × 𝑛𝑛   matrix 

m is the number of rows 
n is the number of columns 

EXAMPLE  
2 0 4
1 3 −1    is  a  2 × 3  matrix 

Notation: 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝐴𝐴 𝑖𝑖𝑖𝑖 
 

29 

Matrix: Rectangular Array Of Numbers 



Special Matrices 
• a column matrix (or a column vector): 

𝐛𝐛 = 𝑏𝑏 =

𝑏𝑏1
𝑏𝑏2
⋮

𝑏𝑏𝑚𝑚

 

• a row matrix (or a row vector): 
𝐚𝐚 = �⃗�𝑎 = 𝑎𝑎1 𝑎𝑎2 ⋯ 𝑎𝑎𝑛𝑛   

• a square matrix of order n (порядка n): 
𝑎𝑎11 … 𝑎𝑎1𝑛𝑛

⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 … 𝑎𝑎𝑛𝑛𝑛𝑛
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the main diagonal 



Arithmetic of Matrices 
DEFINITION Two matrices are equal if they have the 

same size and their corresponding entries are equal. 
DEFINITION If A and B are matrices of the same size, 

then  
• the sum A + B :  

𝐴𝐴 + 𝐵𝐵 𝑖𝑖𝑖𝑖 = 𝐴𝐴 𝑖𝑖𝑖𝑖 + 𝐵𝐵 𝑖𝑖𝑖𝑖 
• the difference A – B : 

𝐴𝐴 − 𝐵𝐵 𝑖𝑖𝑖𝑖 = 𝐴𝐴 𝑖𝑖𝑖𝑖 − 𝐵𝐵 𝑖𝑖𝑖𝑖 
DEFINITION If A is any matrix and c is any scalar, then 

the matrix cA is a scalar multiple of A: 
 𝑐𝑐𝐴𝐴 𝑖𝑖𝑖𝑖 = 𝑐𝑐 𝐴𝐴 𝑖𝑖𝑖𝑖 
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If A1, A2, …, An are matrices of the same size and 
c1, c2, …, cn are scalars, then an expression of 
the form  

c1A1+ c2A2 + … + cnAn  
    is called a linear combination of  A1, A2, …, An 

with coefficients c1, c2, …, cn.  
EXAMPLE 

2 1 2
3 4 − 5 2

−1 4 = 

is the linear combination of A and B with scalar 
coefficients 2 and −1. 

32 

−3 2
7 4  



Multiplying Matrices 

DEFINITION If A is an  m x r  matrix and B is an      
r x n  matrix: 

 
 
 
 
 then the product AB is the  m x n matrix with  

entries 

33 

11 1

1

1

r

i ir

m mr

a a

A a a

a a

 
 
 
 =
 
 
 
 



  



  



11 1 1

1

j n

r rj rn

b b b
B

b b b

 
 =  
 
 

 

    

 

( ) 1 1 2 2i j i j ir rjij
AB a b a b a b= + + +



EXAMPLE  

34 

(2 3)(3 4) (2 4)× × → ×

4 1 4 3
1 2 4

0 1 3 1
2 6 0

2 7 5 2
AB

     = − =           

(2 4) (6 3) (0 5) 26⋅ + ⋅ + ⋅ =

12 27 30 13
8 4 26 12

AB  
=  − 



Transpose of a Matrix 

DEFINITION If A is any m x n matrix, then the 
transpose of A (транспонированная), 
denoted by AT, is the n x m matrix that results 
from interchanging the rows and columns of 
A; that is 𝐴𝐴𝑇𝑇

𝑖𝑖𝑖𝑖 = (𝐴𝐴)𝑖𝑖𝑖𝑖 
EXAMPLE 
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2 1 5
3 4 6

A  
=  
 

2 3
1 4
5 6

TA
 
 =   
 



Trace of a Matrix 

DEFINITION If A is a square matrix, then the 
trace of A (след), denoted by Tr(A), is the sum 
of the entries on the main diagonal of A: 

tr 𝐴𝐴 = 𝑎𝑎11 + 𝑎𝑎22 + ⋯ + 𝑎𝑎𝑛𝑛𝑛𝑛 
EXAMPLE 
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1 2 7 0
3 5 8 4
1 2 7 3
4 2 1 0

A

− 
 − =

− 
 − 

tr( ) 1 5 7 0 11A = − + + + =



THEOREM 2 Properties of Matrix Arithmetic 
The following rules of matrix arithmetic are valid: 
• A + B = B + A (Commutative law for addition) 
• A + (B + C) = (A + B) + C  (Associative law for 

addition) 
• A(BC) = (AB)C (Associative law for multiplication) 
• A(B + C) = AB + AC (Left distributive law) 
• (B + C) A = BA + CA (Right distributive law) 
• a(B + C) = aB + aC 
• (a + b)C = aC + bC 
• a(bC) = (ab)C 
• a(BC) = (aB)C = B(aC) 
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Zero and Identity Matrices 

DEFINITION A zero matrix is a matrix, all of whose 
entries are zero: 

0𝑚𝑚×𝑛𝑛 =
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

 

DEFINITION An identity matrix (единичная матрица) 
is a square matrix with 1's on the main diagonal and 
0's off the main diagonal: 

𝐼𝐼𝑛𝑛 =
1 0
0 1

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 1
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THEOREM 3 
The following rules of matrix arithmetic are valid: 
• A + 0 = 0 + A = A 
• A – A = 0 
• 0 – A = – A 
• A0 = 0;  0A = 0 
• If A is an m x n matrix, then  

𝐴𝐴𝐼𝐼𝑛𝑛 = 𝐴𝐴,       𝐼𝐼𝑚𝑚𝐴𝐴 = 𝐴𝐴.   
THEOREM 4 If R is the reduced row-echelon form of 
an n x n matrix A, then either R has a row of zeros 
or R is the identity matrix In.                  
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Inverse of a Matrix 
DEFINITION If A is a square matrix, and if B is a 

matrix of the same size and AB = BA = I, then A is 
said to be invertible (обратимая матрица) 
and B is called an inverse (обратная матрица) 
of A. If there is no such matrix B, then A is said to 
be singular (вырожденная матрица). 

The inverse of A is uniquely defined and is denoted 
by A-1 
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AA-1 = I        and       A-1A = I  



THEOREM 6 The matrix 

𝐴𝐴 = 𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑  

is invertible if 𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐 ≠ 0, in which case the 
inverse is given by the formula 

𝐴𝐴−1 =
1

𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐
𝑑𝑑 −𝑏𝑏

−𝑐𝑐 𝑎𝑎  

 
Proof   You should verify that  AA-1 = I  and         

A-1A = I. 
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THEOREM 7 If A and B are invertible matrices of 
the same size, then AB is invertible and   

 
 
THEOREM 8 If A is an invertible matrix, then: 
• A-1  is invertible and      
• For any nonzero scalar k, the matrix kA is 

invertible and  
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( ) 1 1 1AB B A− − −=

( ) 11A A
−− =

( ) 1 11kA A
k

− −=



THEOREM 9 If the sizes of the matrices are such 
that the stated operations can be performed, 
then 

•       
•                                     and  
•                      , where k is any scalar 
•   
THEOREM 10 If A is an invertible matrix, then AT 

is also invertible and 
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( )TTA A=
( )T T TA B A B+ = + ( )T T TA B A B− = −
( )T TkA kA=
( )T T TAB B A=

( ) ( )1 1 TTA A
− −=



Inverse Matrices and 
Determinants 

Lecture 3 
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A Method for Inverting Matrices 

45 

A nIa sequence of elementary row 
operations 

1A−
nI the same sequence of elementary 

row operations 



EXAMPLE  Find the inverse of 𝐴𝐴 = 1 4
2 7   
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1 4 1 0
2 7 0 1
 
 
  1 4 1 0

0 1 2 1
 
 − − 

1 4 1 0
0 1 2 1
 
 −  1 0 7 4

0 1 2 1
 −
 − 

Answer:  𝐴𝐴−1 = −7 4
2 −1    



Matrix Form of a Linear System 
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Consider any system of 
m linear equations in n 
unknowns: 

Replace this system 
by the single matrix 
equation: 

Write it as a product:  

or Ax = b 

�

𝑎𝑎11𝑥𝑥1 + 𝑎𝑎12𝑥𝑥2 + ⋯ + 𝑎𝑎1𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏1
𝑎𝑎21𝑥𝑥1 + 𝑎𝑎22𝑥𝑥2 + ⋯ + 𝑎𝑎2𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏2

⋮
𝑎𝑎𝑚𝑚1𝑥𝑥1 + 𝑎𝑎𝑚𝑚2𝑥𝑥2 + ⋯ + 𝑎𝑎𝑚𝑚𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏𝑚𝑚

 

𝑎𝑎11𝑥𝑥1 + 𝑎𝑎12𝑥𝑥2 + ⋯ + 𝑎𝑎1𝑛𝑛𝑥𝑥𝑛𝑛
𝑎𝑎21𝑥𝑥1 + 𝑎𝑎22𝑥𝑥2 + ⋯ + 𝑎𝑎2𝑛𝑛𝑥𝑥𝑛𝑛

⋮
𝑎𝑎𝑚𝑚1𝑥𝑥1 + 𝑎𝑎𝑚𝑚2𝑥𝑥2 + ⋯ + 𝑎𝑎𝑚𝑚𝑛𝑛𝑥𝑥𝑛𝑛

=

𝑏𝑏1
𝑏𝑏2
⋮

𝑏𝑏𝑚𝑚

 

𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22

… 𝑎𝑎1𝑛𝑛
… 𝑎𝑎2𝑛𝑛

⋮ ⋮
𝑎𝑎𝑚𝑚1 𝑎𝑎𝑚𝑚2

⋱ ⋮
… 𝑎𝑎𝑚𝑚𝑛𝑛

𝑥𝑥1
𝑥𝑥2
⋮

𝑥𝑥𝑛𝑛

=

𝑏𝑏1
𝑏𝑏2
⋮

𝑏𝑏𝑚𝑚

 



THEOREM 2 Every system of linear 
equations has no solutions, or has exactly 
one solution, or has infinitely many 
solutions. 
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THEOREM 3 If A is an invertible n x n 
matrix, then for each n x 1 matrix b, the 
system of equations Ax = b has exactly 
one solution, namely, x = A-1b. 



EXAMPLE Solve the linear system 

� 𝑥𝑥1 + 4𝑥𝑥2 = 7
2𝑥𝑥1 + 7𝑥𝑥2 = 12 

Solution. Write system in matrix form: Ax = b, where 

𝐴𝐴 = 1 4
2 7 ,    𝐱𝐱 =

𝑥𝑥1
𝑥𝑥2

,     𝐛𝐛 = 7
12  

A is invertible and  

𝐴𝐴−1 = −7 4
2 −1  

By Theorem 3, the solution of the system is 

𝐱𝐱 =  𝐴𝐴−1𝐛𝐛 = −7 4
2 −1

7
12 = −1

2  

Answer:   
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x1 = ‒ 1, x2 = 2 



Diagonal Matrices  
A square matrix in which all the entries off the main diagonal 

are zero is a diagonal matrix (диагональная матрица):  

𝐷𝐷 =

𝑑𝑑1 0  
0  𝑑𝑑2

⋯ 0  
⋯ 0  

⋮  ⋮  
0  0  

⋱ ⋮  
⋯ 𝑑𝑑𝑛𝑛

 

 
A diagonal matrix is invertible if and only if all of its diagonal 

entries are nonzero and 

𝐷𝐷−1 =

1/𝑑𝑑1 0
0    1/𝑑𝑑2

⋯    0   
⋯    0   

 ⋮        ⋮    
 0        0    

⋱ ⋮
⋯ 1/𝑑𝑑𝑛𝑛
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Triangular Matrices 
• Lower triangular matrix:  

 
 
 

• Upper triangular matrix: 
 

 
 
 
• Triangular matrix: either upper triangular or lower triangular. 
THEOREM 5 A triangular matrix is invertible if and only if its 

diagonal entries are all nonzero. 
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11 12 1

22 20

0 0

n

n

nn

a a a
a a

a

 
 
 
 
 
 





   



11

21 22

1 2

0 0
0

n n nn

a
a a

a a a

 
 
 
 
 
 





   



(нижнетреугольная  
матрица) 

(верхнетреугольная  
матрица) 



Symmetric Matrices 

A square matrix A is called symmetric (симметрическая)           
if A = AT.  

EXAMPLES 
 
 
THEOREM 6 If A and B are symmetric matrices with the same 

size, and if k is any scalar, then: 
• AT  and kA are symmetric. 
• A + B and A – B are symmetric. 
• If A is an invertible symmetric matrix, then A-1 is symmetric. 
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7 3
3 5

− 
 − 

1 4 5
4 3 0
5 0 7

 
 − 
 
 



Determinants: Introduction 

Recall that the 2 x 2 matrix 

𝐴𝐴 = 𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑  

is invertible if ad – bc ≠ 0. The expression ad – bc 
is called the determinant (определитель) of 
A and is denoted by det(A) or |A|. With this 
notation 

𝐴𝐴−1 =
1

det(𝐴𝐴)
𝑑𝑑 −𝑏𝑏

−𝑐𝑐 𝑎𝑎  
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Minors and Cofactors 
DEFINITION If A is a square matrix, then the minor of entry 

(минор элемента) aij  is denoted by Mij and is the 
determinant of the submatrix that remains after the ith row 
and jth column are deleted from A.  

 
 
 
 
 
 
Cij = (–1)i+jMij is called the cofactor of entry (алгебраическое 

дополнение) aij. 
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11 1 1

1

1

j n

ij i ij in

n in nn

a a a

M a a a

a a a

=

 

    

 

    

 



EXAMPLE Let  

𝐴𝐴 =
3 1 −4
2 5 6
1 4 8

 

Then 

𝑀𝑀11 =
3 1 −4
2 5 6
1 4 8

= 5 6
4 8 = 5 ∙ 8 − 6 ∙ 4 = 16 

and  

    𝑀𝑀32 =
3 1 −4
2 5 6
1 4 8

= 3 −4
2 6 = 3 ∙ 6 + 2 ∙ 4 = 26 
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C11 = 

C32 = 

(‒1)1+1M11 = M11 = 16 

(‒1)3+2M32 = ‒ M32 = ‒ 26 



Cofactor Expansions 

DEFINITION The determinant of an n x n 
matrix is 

 
 
This method of evaluating det (A) is called 

cofactor expansion along the first row of A 
(разложение определителя по первой 
строке). 
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11 11 12 12 1 1det( ) n nA a C a C a C= + + +



EXAMPLE Let 
 
 
 
Then   
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3 1 0
2 4 3

5 4 2
A

 
 = − −  − 

3 1 0
det( ) 2 4 3

5 4 2

4 3 2 3 2 4
3 1 0

4 2 5 2 5 4
3( 4) 1( 11) 0 1

A = − − =
−

− − − −
= ⋅ − ⋅ + ⋅ =

− −

= − − − + = −



THEOREM 7 Expansions by Cofactors 

The determinant of an n x n matrix A can be 
computed by multiplying the entries in any 
row (or column) by their cofactors and adding 
the resulting products; that is, for each 1 ≤ i ≤ 
n and 1 ≤ j ≤ n: 

• Cofactor expansion along the jth column: 
 
• Cofactor expansion along the ith row: 
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1 1 2 2det( ) j j j j nj njA a C a C a C= + + +

1 1 2 2det( ) i i i i in inA a C a C a C= + + +



EXAMPLE Let 
 
 
 
Then   
 

59 

3 1 0
2 4 3

5 4 2
A

 
 = − −  − 

3 1 0
det( ) 2 4 3

5 4 2

4 3 1 0 1 0
3 ( 2) 5

4 2 4 2 4 3
3( 4) ( 2)( 2) 5 3 1

A = − − =
−

−
= − − + =

− − −

= − − − − + ⋅ = −



Determinants and 
Vectors 

Lecture 4 
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Adjoint of a Matrix 

DEFINITION If A is any n x n matrix and Cij is the 
cofactor of aij, then the matrix 

𝐶𝐶11 𝐶𝐶12
𝐶𝐶21 𝐶𝐶22

⋯ 𝐶𝐶1𝑛𝑛
⋯ 𝐶𝐶2𝑛𝑛

⋮ ⋮
𝐶𝐶𝑛𝑛1 𝐶𝐶𝑛𝑛2

⋱ ⋮
⋯ 𝐶𝐶𝑛𝑛𝑛𝑛

 

is called the matrix of cofactors from A.  
The transpose of this matrix is called the adjoint of A 

(присоединенная матрица) and is denoted by 
    adj (A). 
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EXAMPLE Suppose 

𝐴𝐴 =
3 2 −1
1 6 3
2 −4 0

 

The cofactors of A: 
 
 

The matrix of cofactors: 
12 6 −16
4 2 16

12 −10 16
 

 
The adjoint of A: 

adj 𝐴𝐴 =
12 4 12
6 2 −10

−16 16 16
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C11 = 12, C12 = 6, C13 = – 16,  C21 = 4, C22 = 2,  
C23 = 16, C31 = 12, C32 = – 10, C33 = 16 



THEOREM 1 
• The square matrix is invertible if and 

only if det(A) is not zero. 
• If A  is an invertible matrix, then 
 

𝐴𝐴−1 =
1

det(𝐴𝐴)
∙ adj (𝐴𝐴) 
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EXAMPLE Consider 

𝐴𝐴 =
3 2 −1
1 6 3
2 −4 0

 

The determinant of A: 
 
The adjoint of A: 

adj 𝐴𝐴 =
12 4 12
6 2 −10

−16 16 16
 

The inverse of A: 

𝐴𝐴−1 =
1

det(𝐴𝐴) ∙ adj 𝐴𝐴 =
1
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12 4 12
6 2 −10

−16 16 16
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det(A) = 64 

=
3/16 1/16 3/16
3/32 1/32 −5/32
−1/4 1/4 1/4

 



THEOREM 2 If A is an n x n triangular matrix (upper triangular, 
lower triangular, or diagonal), then det (A) is the product of the 
entries on the main diagonal of the matrix; that is, det(A) =  a11 ⋅ 
a22 ⋅ … ⋅ ann 
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THEOREM 3 Cramer's Rule 
If Ax = b is a system of n linear equations in n unknowns such 

that det (A) ≠ 0, then the system has a unique solution. This 
solution is 

𝑥𝑥1 =
det(𝐴𝐴1)
det(𝐴𝐴)

,  𝑥𝑥2 =
det(𝐴𝐴2)
det(𝐴𝐴)

, … , 𝑥𝑥𝑛𝑛 =
det(𝐴𝐴𝑛𝑛)
det(𝐴𝐴)

 

     where Aj is the matrix obtained by replacing the entries in the 

jth column of A by the entries in the matrix 𝐛𝐛 =
𝑏𝑏1
⋮

𝑏𝑏𝑛𝑛

 



EXAMPLE Use Cramer's rule to solve 

�7𝑥𝑥1 − 5𝑥𝑥2 = 3
2𝑥𝑥1 + 3𝑥𝑥2 = 4 

Solution.  
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7 5
2 3

A
− 

=  
 

1

3 5
4 3

A
− 

=  
 

2

7 3
2 4

A  
=  
 

det( ) 21 10 31A = + =

1det( ) 9 20 29A = + = 2det( ) 28 6 22A = − =

1
29
31

x = 2
22
31

x =



THEOREM 4 Let A be a square matrix. 
If A has a row of zeros or a column of 
zeros, then det (A) = 0. 
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THEOREM 5 Let A be a square 
matrix. Then det (A) = det (AT). 

THEOREM 9 If A is a square matrix 
with two proportional rows or two 
proportional columns, then det (A) = 0. 



THEOREM 6 Let A be a square matrix. If B is the 
matrix that results when a single row or single 
column of A is multiplied by a scalar k, then  
det (B) = k⋅det (A). 
EXAMPLE 
 
 
Proof (for this case) 
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11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

ka ka ka a a a
a a a k a a a
a a a a a a

= ⋅(for the first row  
of 3 x 3 matrix) 

11 12 13

21 22 23 11 11 12 12 13 13

31 32 33

11 11 12 12 13 13

det( )

( ) det( )

ka ka ka
B a a a ka C ka C ka C

a a a
k a C a C a C k A

= = + +

= + + = ⋅



THEOREM 7 Let A be a square matrix. If B is the 
matrix that results when two rows or two 
columns of A are interchanged, then    
det (B) = – det (A). 

EXAMPLE  
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21 22 23 11 12 13

11 12 13 21 22 23

31 32 33 31 32 33

a a a a a a
a a a a a a
a a a a a a

= −



THEOREM 8 Let A be a square matrix. If B is the 
matrix that results when a multiple of one row 
of A is added to another row or when a multiple 
of one column is added to another column, then 
det (B) = det (A). 

EXAMPLE  
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11 21 12 22 13 23 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

a ka a ka a ka a a a
a a a a a a
a a a a a a

+ + +
=



EXAMPLE 
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0 1 5 3 6 9
det( ) 3 6 9 0 1 5

2 6 1 2 6 1
A

−
= − = −

1 2 3
3 0 1 5

2 6 1

−
= − ⋅

1 2 3
3 0 1 5

0 10 5

−
= − ⋅

−

1 2 3
3 0 1 5

0 0 55

−
= − ⋅

−

1 2 3
( 3)( 55) 0 1 5 ( 3)( 55)(1) 165

0 0 1

−
= − − = − − =

The 1st  and the 2nd  rows of  
A were interchanged 

A common factor of 3 from the 1st row was 
taken through the determinant sign  

–2 times the 1st  row was 
added to the 3rd row 

–10 times the 2nd  row was 
added to the 3rd row 

A common factor of -55 from 
the last row was taken 
through the determinant sign  



Basic Properties of Determinants 

 

                               det(kA) = kn det(A) 
 
EXAMPLE 
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1 

11 12 13 11 12 13
3

21 22 23 21 22 23

31 32 33 31 32 33

ka ka ka a a a
ka ka ka k a a a
ka ka ka a a a

=



EXAMPLE det(A + B) ≠ det(A) + det(B) 
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1 2
2 5

A  
=  
 

3 1
1 3

B  
=  
 

4 3
3 8

A B  
+ =  

 

det( ) 1A =

det( ) 8B =

det( ) 23A B+ =



 
 

 
 
 
EXAMPLE 
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2 Let A, B, and C be n x n matrices that differ only 
in a single row, say the rth, and  
 
 
Then det(C) = det(A) + det(B). 
The same result holds for columns. 

1 7 5 1 7 5 1 7 5
2 0 3 2 0 3 2 0 3

1 0 4 1 7 ( 1) 1 4 7 0 1 1
= +

+ + + − −

the rth  
row of C 

the rth  
row of A 

the rth  
row of B 



 
 

 
EXAMPLE Test the matrix for invertibility 
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3 A square matrix A is invertible if and only 
if  det (A) ≠ 0. 

1 2 3
1 0 1
2 4 6

A
 
 =   
 

det( ) 0A = A is not 
invertible 



THEOREM 10 If A and B are square 
matrices of the same size, then 
                   det(AB) = det(A) ⋅ det(B). 

COROLLARY If A is invertible, then  

 det 𝐴𝐴−1 = 1
det(𝐴𝐴)
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Geometric Vectors 

 
 

 
 
 
Notation: 

• vectors:  v, w, a, b,… 
• scalars: k, x, a, t,… 
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initial point  

terminal point  A 

B AB=v




78 

Two vectors v = (v1, v2) and w = (w1, w2) are 
equal if and only if v1 = w1 and v2 = w2  

If v = (v1, v2) and w = (w1, w2), then 
v + w = (v1 + w1, v2 + w2) and  
v – w = (v1 – w1, v2 – w2)  

If k is any scalar, then k⋅v = (kv1, kv2) 

EXAMPLE If v = (1, – 2) and w = (7, 6), then  
v + w = (8, 4) and 4v = (4, – 8). 



Vectors in 3-Space 
If v = (v1, v2, v3) and w = (w1, w2, w3), then 
• v and w are equal if and only if  
             v1 = w1, v2 = w2, and v3 = w3  
• v + w = (v1 + w1, v2 + w2, v3 + w3) 
• k⋅v = (kv1, kv2, kv3), where k is any scalar 
 
If the vector 𝑃𝑃1𝑃𝑃2  has initial point P1 = (x1, y1, z1) 
and terminal point P2 = (x2, y2, z2), then 

𝑃𝑃1𝑃𝑃2 = 𝑂𝑂𝑃𝑃2 − 𝑂𝑂𝑃𝑃1 = (𝑥𝑥2 − 𝑥𝑥1, 𝑦𝑦2 − 𝑦𝑦1, 𝑧𝑧2 − 𝑧𝑧1) 
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Vector Spaces 

Lecture 5 
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Vectors in n-Space 

DEFINITION If n is a positive integer, then an ordered n-
tuple (упорядоченный набор из n чисел) is a 
sequence of n real numbers (a1, a2, …, an). The set of 
all ordered n-tuples is called n-space and is denoted 
by ℝn. The elements of this set are called generalized 
vector. 

Notation: v = (a1, a2, …, an).  
ordered 2-tuple ↔ ordered pair 

ordered 3-tuple ↔ ordered triple 
1-tuple ↔ a real number; ℝ1 = ℝ  
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Standard Operations on ℝn 

DEFINITION Two vectors u = (u1, u2, …, un) and   
v = (v1, v2, …, vn) in ℝn are called equal if  

u1 = v1, u2 = v2, …, un = vn. 
• The sum u + v is defined by  

u + v = (u1 + v1, u2 + v2, …, un + vn)  
• If k is any scalar, the scalar multiple k⋅u is 

defined by 
k⋅u = (ku1, ku2, …, kun) 
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• The zero vector in ℝn:      0 = (0, 0, …, 0).  
• If u = (u1, u2, …, un) is any vector in ℝn, 

then the negative (or additive inverse) 
of u is defined by – u = (–u1, –u2, …, –un). 

 
• The difference of vectors in ℝn is defined 

by   u – v = u + (– v)  
                      = (u1 – v1, u2 – v2, …, un – vn). 
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Properties of Vector Operations  
in n-Space 

THEOREM 1 If u = (u1, u2, …, un), v = (v1, v2, …, vn), and     
w = (w1, w2, …, wn) are vectors in ℝn and k and m are 
scalars, then: 

(1) u + v = v + u 
(2) u + (v + w) = (u + v) + w 
(3) u + 0 = 0 + u = u 
(4) u + (– u) = 0; that is, u – u = 0 
(5) k(mu) = (mk)u 
(6) k(u + v) = ku + kv 
(7) (k + m)u = ku + mu 
(8) 1u = u 
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DEFINITION Let V be an arbitrary nonempty set of objects with 
two operations : addition, and multiplication by scalars.  

 
 

 
 

Suppose that 
• If u and v are objects in V, then u + v is in V. 
• If k is any scalar and u is any object in V, then ku is in V. 
• There is an object 0 in V, called a zero vector for V. 
• For each u in V, there is an object – u in V, a negative of u. 
• Eight axioms from Theorem 1 are satisfied 
Then V is a vector space and the objects in V are vectors. 
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Addition each pair of objects u and v an object u + v, the 
sum of u and v 

Scalar 
multiplication 

each scalar k and 
each object u in V 

an object ku, the 
scalar multiple of u 

by k 



EXAMPLE 1   ℝn is a vector space 
 
EXAMPLE 2 The set V of all 2 x 2 matrices is a vector space if  
• addition = matrix addition,   
• scalar multiplication = matrix scalar multiplication. 
Solution 

1) Consider  𝐮𝐮 =
𝑢𝑢11 𝑢𝑢12
𝑢𝑢21 𝑢𝑢22

    and     𝐯𝐯 =
𝑣𝑣11 𝑣𝑣12
𝑣𝑣21 𝑣𝑣22

 
Then  u + v is an object in V  and  ku is an object in V. 

 2) If 𝟎𝟎 =  0 0
0 0 , then  0 + u = u + 0 = u for all u in V. 

3) For any u in V put −𝐮𝐮 =
−𝑢𝑢11 −𝑢𝑢12
−𝑢𝑢21 −𝑢𝑢22

 
Then u + (– u) = 0 and (– u) + u = 0.  
 
Axioms 1–8 follow from properties of matrix operation.  
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EXAMPLE 3  The set V of m x n matrices is a vector space Mmn. 
 
EXAMPLE 4 A vector space of real-valued functions 
Let V be the set of real-valued functions defined on (−∞, ∞). If f 

= f(x) and g = g(x) are two functions and k is any real number, 
define  

• the sum function f + g by (f + g)(x) = f(x) + g(x)  
• the scalar multiple kf by (kf)(x) = k⋅ f(x) 
The vector 0 is identically zero for all values of x.  
The negative of a vector f is the function –f = –f(x).  
 
EXAMPLE 5 The zero vector space 
Let V consist of a single object, which we denote by 0, and define         

0 + 0 = 0 and k0 = 0 for all scalars k.  
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Euclidean n-Space 

DEFINITION  
If u = (u1, u2, …, un) and v = (v1, v2, …, vn) are any 

vectors in ℝn, then the Euclidean inner 
product (скалярное произведение) is 

u∙v =(u, v) = u1v1 + u2v2 + unvn  
Sometimes it is also called dot product. 
EXAMPLE Find the Euclidean inner product of 

the vectors u = (–1, 3, 5, 7) and v = (5, –4, 7, 0) 
in ℝ4.  
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Answer: u∙v = 18 



THEOREM 2 (Properties of Euclidean Inner Product) If 
u, v, and w are vectors in ℝn and k is any scalar, then: 
(a) u∙v = v⋅u 
(b) (u + v)⋅w = u⋅w + v⋅w 
(c) (ku)⋅v = k (u⋅v) 
(d) v⋅v ≥ 0. Further, v⋅v = 0 ⇔ v = 0. 

Proof (c) Let u = (u1, u2, …, un), and v = (v1, v2, …, vn). 
Then 

 
  
Proof (d) We have                                                  . Equality 

holds if and only if v1 = v2 = … = vn = 0— that is, if and 
only if v = 0. 
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1 2 1 2

1 1 2 2

1 1 2 2

( ) ( , , , ) ( , , , )

( ) ( )

n n

n n

n n

k ku ku ku v v v
ku v ku v ku v
k u v u v u v k

⋅ = ⋅

= + + + =

= + + + = ⋅

u v

u v

 




2 2 2
1 2 0nv v v⋅ = + + + ≥v v 



EXAMPLE Given u⋅u = 2, u⋅v = –3, v⋅v = 1, 
evaluate (3u + 2v)⋅(4u + v). 
Solution 
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(3u + 2v)⋅(4u + v) =  

= 3u⋅(4u + v) + 2v⋅(4u + v) 

= 3u⋅4u + 3u⋅v + 2v⋅4u + 2v⋅v 

= 12u⋅u + 11u⋅v + 2v⋅v 

= 12⋅2 + 11⋅(–3) + 2⋅1 = –7 



Norm and Distance in Euclidean n-Space 

The Euclidean norm (or Euclidean length) (норма, 
длина) of a vector u = (u1, u2, …, un) in ℝn is  

𝐮𝐮 = 𝐮𝐮 ∙ 𝐮𝐮 = 𝑢𝑢1
2 + 𝑢𝑢2

2 + ⋯ + 𝑢𝑢𝑛𝑛
2  

The Euclidean distance between the points         
u = (u1, u2, …, un) and v = (v1, v2, …, vn) in ℝn is 
 

𝑑𝑑 𝐮𝐮, 𝐯𝐯 = 𝐮𝐮 − 𝐯𝐯 =
𝑢𝑢1 − 𝑣𝑣1

2 + 𝑢𝑢2 − 𝑣𝑣2
2 + ⋯ + 𝑢𝑢𝑛𝑛 − 𝑣𝑣𝑛𝑛

2 
 

91 



EXAMPLE 3 Finding Norm and Distance 
Suppose u = (1, 3, –2, 7) and v = (0, 7, 2, 2). 
Then  
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=u
2 2 2 2(1) (3) ( 2) (7) 63 3 7+ + − + = =

( , )d =u v
2 2 2 2(1 0) (3 7) ( 2 2) (7 2) 58− + − + − − + − =



THEOREM 3 Cauchy–Bunyakovsky–
Schwarz  Inequality (неравенство 
Коши-Буняковского-Шварца) in ℝn  
If u = (u1, u2, …, un) and v = (v1, v2, …, vn) are 

vectors in ℝn, then 
𝐮𝐮 ∙ 𝐯𝐯 ≤ 𝐮𝐮 ∙ 𝐯𝐯  

In terms of components, this inequality is the 
same as 
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1 1 2 2

2 2 2 2 2 2
1 2 1 2

n n

n n

u v u v u v

u u u v v v

+ + + ≤

≤ + + + ⋅ + + +



 



Angle between Two Vectors  
in n-Space 

• If u and v are nonzero vectors in ℝ2 or ℝ3 and 𝜃𝜃 is the angle 
between them, then  

                                               
                                                              or       
• If u = (u1, u2, …, un) and v = (v1, v2, …, vn) are two nonzero 

vectors in ℝn, then the cosine of the angle 𝜃𝜃 between u and v 
is defined by  
 

 

The Cauchy–Bunyakovsky–Schwarz inequality  ⟹   
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cos⋅ = θu v u v cos ⋅
θ =

u v
u v

cos ⋅
θ =

u v
u v

cos 1θ ≤



EXAMPLE For the given vectors u = (1, ‒2, 3, ‒1) 
and v = (3, 0, 2, ‒5), find the cosine of the angle 
𝜃𝜃 between u and v. 
Solution  

u ⋅ v =               

||u|| =  

||v|| =  

cos θ =  
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1 ⋅ 3 + 2 ⋅ 3 + (‒1) ⋅ (‒5) = 14 

12 + (−2)2+32 + (−1)2= 15 

32 + 02 + 22 + (−5)2= 38 

14
15 ∙ 38

 



THEOREM 4 Properties of Length in ℝn 

If u and v are vectors in ℝn and k is any scalar, 

then: 

(a)  

(b)                if and only if u = 0 

(c)   

(d)                                    (Triangle inequality) 
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0≥u

0=u

| |k k=u u

+ ≤ +u v u v

u 

v u + v 



THEOREM 5 Properties of Distance in ℝn 

If u, v, and w are vectors in ℝn, then: 
 
(a) d(u, v) ≥ 0 
(b) d(u, v) = 0 if and only if u = v. 
(c) d(u, v) = d(v, u) 
(d) d(u, v) ≤ d(u, w) + d(w, v) (Triangle 

inequality) 
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Orthogonality 

DEFINITION Two vectors u and v in ℝn are called 
orthogonal if u⋅v = 0. 

EXAMPLE Are the vectors  
u = (–2, 3, 1, 4)  and   v = (1, 2, 0, –1) 

in ℝ4 orthogonal? 
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u⋅v = –2⋅1 + 3⋅2 + 1⋅0 + 4⋅(–1) = 0 



Subspaces and Linear 
Independence 

Lecture 6 

99 



DEFINITION Let V be an arbitrary nonempty set of objects with 
two operations : addition, and multiplication by scalars.  

 
 

 
 

Suppose that 
• If u and v are objects in V, then u + v is in V. 
• If k is any scalar and u is any object in V, then ku is in V. 
• There is an object 0 in V, called a zero vector for V. 
• For each u in V, there is an object – u in V, a negative of u. 
• Eight axioms (see the next slide) are satisfied. 
Then V is a vector space and the objects in V are vectors. 
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Addition each pair of objects u and v an object u + v (the 
sum of u and v) 

Scalar 
multiplication 

each scalar k and 
each object u in V 

an object ku (the 
scalar multiple of u 

by k) 



Eight Axioms of Vector Space 
If u, v, and w are any  vectors in V, and k and m are 

scalars, then: 
(1) u + v = v + u 
(2) u + (v + w) = (u + v) + w 
(3) u + 0 = 0 + u = u 
(4) u + (– u) = 0; that is, u – u = 0 
(5) k(mu) = (mk)u 
(6) k(u + v) = ku + kv 
(7) (k + m)u = ku + mu 
(8) 1u = u 
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Concept of a Subspace 

DEFINITION A subset W of a vector space V is 
called a subspace (подпространство)  of V 
if W is itself a vector space under the addition 
and scalar multiplication defined on V. 
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Question Is it necessary to verify 8 vector space 
axioms to show that a set W forms a vector 
space?  

No, because these axioms are “inherited” from V. 



THEOREM 1 If W is a set of one or more 
vectors from a vector space V, then W is a 
subspace of V if and only if the following 
conditions hold. 
(a) If u and v are vectors in W, then u + v is in W. 
(b) If k is any scalar and u is any vector in W, 
then ku is in W. 

Remark Theorem 1 states that W is a subspace 
of V if and only if W is closed under 
(замкнуто относительно) addition and 
closed under scalar multiplication. 
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Testing for a Subspace 

EXAMPLE 1 Every 
plane through 
the origin of ℝ3 
is a subspace    
of ℝ3. 
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EXAMPLE 2 Every 
line through the 
origin of ℝ3 is a 
subspace of ℝ3. 
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EXAMPLE 3 Let W be the 
set of all points (x, y) in 
ℝ2 such that x ≥ 0 and   
y ≥ 0.  
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W is not closed under 
scalar multiplication ⟹ ? 

W is not a subspace!!! 

Solution v = (1, 1) lies  
in W, but its negative        
–v = (–1, –1)  
does not ⟹ ? 

Question Is the set W 
a subspace of ℝ2?  



List of Subspaces of ℝ2 and ℝ3 

Subspaces of ℝ2 Subspaces of ℝ3 

{0} {0} 

Lines through the 
origin 

Lines through the 
origin 
Planes through the 
origin 

ℝ2 ℝ3 
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Solution Spaces of Homogeneous 
Systems 

Let Ax = b be a system of linear equations. 
Solution vector:  a vector x that satisfies this 

system.  
THEOREM 2 If Ax = 0 is a homogeneous linear 

system of m equations in n unknowns, then 
the set of solution vectors is a subspace of ℝn. 
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Linear Combinations of Vectors 

DEFINITION A vector w is called a linear combination 
(линейной комбинацией) of the vectors  v1, v2,…, vr 
if it can be expressed in the form 

w = k1v1 + k2v2 + … + krvr  
where k1, k2, …, kr are scalars. 
EXAMPLE Every vector v = (a, b, c) in ℝ3 is expressible 

as a linear combination of the standard basis vectors          
i = (1, 0, 0),     j = (0, 1, 0),     k = (0, 0, 1) since 
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( , , ) (1, 0, 0) (0,1, 0) (0, 0,1)a b c a b c a b c= = + + = + +v i j k



THEOREM 3 
If  v1, v2, …, vr are vectors in a vector space V, 

then 
(a) The set W of all linear combinations of v1, v2, 

…, vr is a subspace of V. 
(b) W is the smallest subspace of V that contains 

v1, v2, …, vr in the sense that every other 
subspace of V that contains v1, v2, …, vr must 
contain W. 
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Spanning 

DEFINITION If S = {v1, v2, …, vr} is a set of vectors 
in a vector space V, then the subspace W of V 
consisting of all linear combinations of the 
vectors in S is called the space spanned by 
(линейной оболочкой векторов) v1, v2, …, 
vr, and we say that the vectors v1, v2, …, vr 
span (стягивают, порождают) W.  

Write: 
W = span(S)     or     W = span{v1, v2, …, vr} 
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EXAMPLE If v1 and v2 are noncollinear vectors in ℝ3 with their 
initial points at the origin, then span{v1, v2} is the plane 
determined by v1 and v2.  

Similarly, if v is a nonzero vector in ℝ2 or ℝ3, then span{v} is the 
line determined by v. 
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Linear Independence 

DEFINITION If S = {v1, v2, …, vr} is a nonempty set of 
vectors, then the vector equation 

 
has at least one solution, namely 

k1 = 0, k2 = 0, …, kr = 0  
If this is the only solution, then S is called a linearly 

independent (линейно независимое) set. If 
there are other solutions, then S is called a 
linearly dependent (линейно зависимое) set. 

113 

1 1 2 2 r rk k k+ + + =v v v 0



EXAMPLE 1 If v1 = (2, –1, 0, 3), v2 = (1, 2, 5, –1), and  
v3 = (7, –1, 5, 8), then  
 
EXAMPLE 2 
Consider i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1) in ℝ3. 

In terms of components, the vector equation 
k1i + k2j + k3k = 0 

becomes  k1(1, 0, 0) + k2(0, 1, 0) + k3(0, 0, 1) = (0, 0, 0) 
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3v1 + v2 – v3 =  0 
the set of vectors is 
linearly dependent 

k1 = 0, k2 = 0, k3 = 0 the set S = {i, j, k} is 
linearly independent 

Similarly, the vectors 
e1 = (1, 0, …, 0), e2 = (0, 1, …, 0), …, en = (0, 0, …, 1) 
form a linearly independent set in ℝn. 



THEOREM 4 A set S with two or more 
vectors is 

(a) Linearly dependent if and only if at least one 
of the vectors in S is expressible as a linear 
combination of the other vectors in S. 
 

(b) Linearly independent if and only if no vector 
in S is expressible as a linear combination of 
the other vectors in S. 
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Proof (a)  
                        
                     Let S = {v1, v2, …, vr}, r ≥ 2.  
S is linearly dependent  ⟹ there are scalars k1, 

k2, …, kr, not all zero, such that 
 
Suppose that k1 ≠ 0. Then this formula ⟹ 

𝐯𝐯1 = −
𝑘𝑘2

𝑘𝑘1
𝐯𝐯2 + ⋯ + −

𝑘𝑘𝑟𝑟

𝑘𝑘1
𝐯𝐯𝑟𝑟 

which expresses v1 as a linear combination of 
the other vectors in S.  
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1)   ⟹ 

1 1 2 2 r rk k k+ + + =v v v 0



  
                      Assume that at least one of the vectors in S 

is expressible as a linear combination of the others. 
Suppose that 

 
so 
 
The equation 
 
is satisfied by 
 
which are not all zero. Therefore, S is linearly 

dependent.  
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2)   ⟸ 

1 2 2 3 3 r rc c c= + + +v v v v

1 2 2 3 3 r rc c c− − − − =v v v v 0

1 1 2 2 r rk k k+ + + =v v v 0

1 2 21, , , r rk k c k c= = − = −



EXAMPLE The vectors  
v1 = (2, –1, 0, 3), v2 = (1, 2, 5, –1), v3 = (7, –1, 5, 8)  

form a linearly dependent set, since (see Example 1) 
 3v1 + v2 – v3 = 0 

Task. Express each vector as a linear combination of 
the other two. 

Answer. 
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1 2 3
1 1
3 3

= − +v v v

2 1 33= − +v v v 3 1 23= +v v v



THEOREM 5 
(a) A finite set of vectors that contains the zero 
vector is linearly dependent. 
(b) A set with exactly two vectors is linearly 
independent if and only if neither vector is a 
scalar multiple of the other. 

Proof (a) For any vectors v1, v2, …, vr, the set  
S = {v1, v2, …, vr, 0}  is linearly dependent since  

 
𝟎𝟎 = 0𝐯𝐯1 + 0𝐯𝐯2 + ⋯ + 0𝐯𝐯𝑟𝑟 + 1 ∙ 𝟎𝟎 
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Geometric Interpretation of Linear 
Independence in ℝ2 and ℝ3 
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A set of two vectors is linearly independent ⇔ the 
vectors do not lie on the same line when they are 
placed with their initial points at the origin. 



Geometric Interpretation of Linear 
Independence in ℝ3  
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A set of three vectors is linearly independent ⇔ the 
vectors do not lie in the same plane when they are 
placed with their initial points at the origin. 



THEOREM 6 
 
Let S = {v1, v2, …, vr} be a set of vectors 

in ℝn. If  r > n, then S is linearly 
dependent. 
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Basis and Dimension 

Lecture 7 
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Concept of a Basis 

DEFINITION If V is any vector space and               
S = {v1, v2, …, vr} is a set of vectors in V, then S 
is called a basis (базис) for V if the following 
two conditions hold: 

(a) S is linearly independent. 
(b) S spans V, that is, any vector v ∊ V  can be 

represented as a linear combination                
of v1, v2, …, vr. 
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THEOREM 1 Uniqueness of Basis 
Representation  

 
If S = {v1, v2, …, vn}  is a basis for a vector space 

V, then every vector v in V can be expressed in 
the form v = c1v1 + c2v2 + … + cnvn  in exactly 
one way. 
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Proof  Suppose that some vector v can be 
written as 

v = c1v1 + c2v2 + … + cnvn 
and also as 

v = k1v1 + k2v2 + … + knvn 
Therefore,  

0 = (c1 – k1) v1 + (c2 – k2) v2 + … + (cn – kn) vn 
The linear independence of S ⟹ 

c1 – k1 = 0,   c2 – k2 = 0,  …,   cn – kn = 0  
that is, c1 = k1,   c2 = k2,  …,   cn = kn.   
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Coordinates Relative to a Basis 
DEFINITION If S = {v1, v2, …, vn}   is a basis for a 

vector space V, and 
v = c1v1 + c2v2 + … + cnvn 

is the expression for a vector v in terms of the basis 
S, then the scalars c1, c2, …, cn  are called the 
coordinates of v relative to the basis S 
(координаты вектора в базисе).  

The vector (c1, c2, …, cn) in ℝn is called the 
coordinate vector of v relative to S. 

Notation: 
(v)S = (c1, c2, …, cn)  
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EXAMPLE 1 Standard Basis for ℝn 
Consider e1 = (1, 0, 0, …, 0), e2 = (0, 1, 0, …, 0), …,  
en = (0, 0, 0, …, 1). Then: 
•  S = {e1, e2, …, en} is linearly independent 
• S spans ℝn since for any vector v = (v1, v2, …, vn) in ℝn : 

v = v1e1 + v2e2 + … + vnen  
Thus, S is the standard basis for ℝn. We have  

v = (v)S = (v1, v2, …, vn) 
 
Remark In ℝ2 and ℝ3, the standard basis vectors are 

commonly denoted by i, j, and k, rather than by e1, e2, 
and e3.  
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EXAMPLE 2 Suppose v1 = (1, 0), v2 = (1, 1).   
(a) Show that the set S = {v1, v2}  is a basis for ℝ2. 
(b) Find the coordinate vector of v = (5, –1) with respect to S. 
Solution (a) Show that S spans ℝ2. Let b = (b1, b2) be an arbitrary 

vector and try to express it as b = c1v1 + c2v2.  
 
 
Show that S is linearly independent. Find the solution of               

0 = c1v1 + c2v2  
Solution (b) We must find the scalars c1 and c2 such that               

v = c1v1 + c2v2.   
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1 1 2
1 2

2 2

1 1
0 1

b c c
c c

b c
+      

= + =      
      

c1 = b1 – b2, c2 = b2 

c1 = 0, c2 = 0 

c1 = 6, c2 = –1 

v = 6v1 – v2 (v)S = (6, –1) 



EXAMPLE 5 Basis for the Subspace span(S) 
If S = {v1, v2, …, vn} is a linearly independent set 
in a vector space V, then S is a basis for the 
subspace span(S). 

THEOREM 2 
Let {v1, v2, …, vn} be any basis for a vector space V. 
(a) If a set has more than n vectors, then it is 

linearly dependent. 
(b) If a set has fewer than n vectors, then it does not 

span V. 
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THEOREM 3 All bases for a vector space 
have the same number of vectors. 

DEFINITION The dimension (размерность) of a 
vector space V, is the number of vectors in a 
basis for V. The zero vector space has 
dimension zero.  

 
Notation: dim(V). 
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Dimensions of Some Vector Spaces 

dim(ℝn) = n 
The standard basis  
{e1, e2, …, en} has n vectors 

dim(Pn) = n + 1 
The standard basis  
{1, x, x2, …, xn} has n + 1 
vectors 

dim(Mmn) = mn 
The standard basis has mn 
vectors 
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THEOREM 4 If V is an n-dimensional vector 
space, and if S is a set in V with exactly n vectors, 
then S is a basis for V if either S spans V or S is 
linearly independent. 

EXAMPLE Show that v1 = (–3, 7) and v2 = (5, 5) 
form a basis for ℝ2. 

Solution  
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neither vector 
is a scalar 

multiple of the 
other 

the two vectors 
form a linearly 
independent 

set in ℝ2 

they form a 
basis by 

Theorem 4 



THEOREM 5 Let S be a set of vectors in a vector 
space V. 
(a) If S spans V but is not a basis for V, then S can be 
reduced to a basis for V by removing appropriate 
vectors from S. 
(b) If S is a linearly independent set that is not 
already a basis for V, then S can be enlarged to a 
basis for V by inserting appropriate vectors into S. 

THEOREM 6 If W is a subspace of a vector space 
V, then dim(W) ≤ dim(V); moreover, if     
dim(W) = dim(V), then W = V. 
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DEFINITION For an m x n  matrix 

𝐴𝐴 =

𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22

⋯ 𝑎𝑎1𝑛𝑛
⋯ 𝑎𝑎2𝑛𝑛

⋮ ⋮
𝑎𝑎𝑚𝑚1 𝑎𝑎𝑚𝑚2

⋱ ⋮
⋯ 𝑎𝑎𝑚𝑚𝑛𝑛

 

we consider the row vectors 
𝐫𝐫1 = 𝑎𝑎11 𝑎𝑎12 ⋯ 𝑎𝑎1𝑛𝑛  
𝐫𝐫2 = 𝑎𝑎21 𝑎𝑎22 ⋯ 𝑎𝑎2𝑛𝑛  

… 
𝐫𝐫𝑚𝑚 = 𝑎𝑎𝑚𝑚1 𝑎𝑎𝑚𝑚2 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛  

and the column vectors 

𝐜𝐜1 =

𝑎𝑎11
𝑎𝑎21

⋮
𝑎𝑎𝑚𝑚1

,  𝐜𝐜2 =

𝑎𝑎12
𝑎𝑎22

⋮
𝑎𝑎𝑚𝑚2

,  …, 𝐜𝐜𝑛𝑛 =

𝑎𝑎1𝑛𝑛
𝑎𝑎2𝑛𝑛

⋮
𝑎𝑎𝑚𝑚𝑛𝑛
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DEFINITION If A is an m x n matrix, then  
• the subspace of ℝn spanned by the row 

vectors of A is called the row space 
(пространство строк) of A 

• the subspace of ℝm spanned by the column 
vectors of A is called the column space 
(пространство столбцов) of A  
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General and Particular Solutions 
• The vector x0 is called a particular solution of 

Ax = b.  
• The expression c1v1 + c2v2 + … + ckvk is called 

the general solution of Ax = 0.  
• The expression x0 + c1v1 + c2v2 + … + ckvk is 

called the general solution of Ax = b. 
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Theorem 8 The general solution of Ax = b is the 
sum of any particular solution of Ax = b and the 
general solution of Ax = 0. 



EXAMPLE Consider the system 

                   � 𝑥𝑥1 − 2𝑥𝑥2             + 𝑥𝑥4 = 5
             3𝑥𝑥2 + 𝑥𝑥3 − 7𝑥𝑥4 = −1                     (1) 

Then 
x1 = 5 + 2t – s,   x2 = t,   x3 = –1 – 3t + 7s,   x4 = s. 
This result can be written in vector form as 

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

=
5 + 2𝑡𝑡 − 𝑠𝑠

𝑡𝑡
−1 − 3𝑡𝑡 + 7𝑠𝑠

𝑠𝑠

=
5
0

−1
0

+ 𝑡𝑡
2
1

−3
0

+ 𝑠𝑠
−1
0
7
1
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the general 
solution of (1)  

x0, a particular 
solution of (1)  

the general  
solution of   

1 2 4

2 3 4

2 0
3 7 0

x x x
x x x

− + =
 + − =



THEOREM 9 Elementary row operations do 
not change the row space of a matrix.  
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THEOREM 10 
(a) Elementary row operations do not alter 
relationships of linear independence 
among the column vectors. 
(b) Elementary row operations do not alter 
the formulas (linear combinations) that 
relate linearly dependent column vectors. 



 
COROLLARY If A and B are row equivalent 

matrices, then a given set of column vectors of 
A forms a basis for the column space of A  

if and only if  
    the corresponding column vectors of B form a 

basis for the column space of B. 
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EXAMPLE (a) Find a subset of the vectors           
v1 = (1, 2, 3),  v2 = (–2, 0, 1), v3 = (–3, 2, 5)       
that forms a basis for the space spanned by 
these vectors. 
(b) Express each vector not in the basis as a 
linear combination of the basis vectors. 
Solution 
Step 1. Form the matrix A having v1, v2, v3 as its column 

vectors: 

𝐴𝐴 =
1 −2 −3
2 0 2
3 1 5
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Step 2. Reduce the matrix A to its reduced row-echelon 
form R:  

 
 
 
 
 
 
 
 
and let w1, w2, w3 be the column vectors of R. 
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1 2 3
2 0 2
3 1 5

A
− − 

 =  
 
 

7 0 7
2 0 2
3 1 5

 
 
 
 
 

7 0 7
1 0 1
3 1 5

 
 
 
 
 

0 0 0
1 0 1
0 1 2

 
 
 
 
 

1 0 1
0 1 2
0 0 0

R
 
 =  
 
 

:2 



Step 3. Identify the columns that contain the pivots in R   
→   w1 and w2. 

The corresponding column vectors of A are the basis 
vectors for span(S)   →   v1 and v2. 

Step 4. Express each column vector of R that does not 
contain a pivot as a linear combination of column 
vectors that do contain pivots. This yields a set of 
dependency equations: 

w3 = w1 + 2w2 
The corresponding equations for the column vectors of A 

express the vectors that are not in the basis as linear 
combinations of the basis vectors: 

v3 = v1 + 2v2 
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Rank and Orthogonality 

Lecture 8 
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Row Space, Column Space, and 
Nullspace 

DEFINITION If A is an m x n matrix, then  
• the subspace of ℝn spanned by the row 

vectors of A is called the row space of A,  
• the subspace of ℝm spanned by the column 

vectors of A is called the column space of A, 
• the solution space of the homogeneous 

system of equations Ax = 0, which is a 
subspace of ℝn, is called the nullspace of A. 
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THEOREM 1 If A is any matrix, then the 
row space and column space of A have 
the same dimension. 

DEFINITION The common dimension of the row 
space and column space of a matrix A is called 
the rank (ранг) of A and is denoted by rank(A). 
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rank(A) = rank(AT) 

The dimension of the nullspace of A is denoted 
by dim(VA). 



EXAMPLE Find the rank and the dimension of the nullspace VA of 
the matrix 

 
 
Solution Since the row space and column space are both two-

dimensional, so rank(A) = 2.  
To find dim(VA), solve the linear system Ax = 0: 
 
 
The general solution of the system is 
 
 
 
 
Therefore,  
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1 0 4
0 1 2

A  
=  − 

1 3

2 3

4 0
2 0

x x
x x
+ =

− =
1 2 34 , 2 ,x t x t x t= − = =

1

2

3

4
2
1

x
x t
x

−   
   =   

  
  

dim( ) 1AV =



THEOREM 2 (Dimension Theorem for Matrices) 
If A is a matrix with n columns, then  
                         rank(A) + dim(VA) = n. 
Proof Since A has n columns, the homogeneous linear system   

Ax = 0 has n variables, which are the basic variables (pivots) 
and the free variables. Thus  

 
     
• The number of basic variables = rank(A) 
• The number of free variables = the number of parameters in 

the general solution = dim(VA) 
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number of basic 
variables 

number of free 
variables n 

rank(A) dim(VA) n 



THEOREM 3 The rank of a matrix is the 
number of nonzero rows in its row-
echelon form. 

EXAMPLE Find the rank of the matrix given in 
the row-echelon form: 

1 −0.4 −0.3
0 0.8 −0.2
0 0 0.7

130
100
210

 

 

149 

Answer: rank(A) = 3. 



THEOREM 4 The Consistency Theorem 
(теорема Кронекера—Капелли) 

If Ax = b is a linear system of m equations in n 
unknowns, then the following are equivalent: 

• Ax = b is consistent. 
• b is in the column space of A. 
• The coefficient matrix A and the augmented 

matrix [A | b] have the same rank: 
rank(A) = rank [A | b]  
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EXAMPLE If the system of linear equations has 
the following augmented matrix: 
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1 0 23 16 2
0 1 10 7 8
0 0 0 0 1
0 0 0 0 0

 −
 − − 
 
 
 

rank[ | ] 3A =b
rank( ) 2A = the system is 

inconsistent 



Orthogonality 

Since for nonzero vectors u and v  
 
then 

cos𝜃𝜃 = 0    ⇔    𝜃𝜃 = 𝜋𝜋/2    ⇔     (u, v) = 0 
Agreement: consider the angle between u and v to 

be 𝜋𝜋/2 when either or both of these vectors is 0. 
DEFINITION Two vectors u and v are called 

orthogonal (ортогональными) if (u, v) = 0. 
Notation: u ⊥ v 
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( , )cos
|| || || ||

θ =
⋅

u v
u v



DEFINITION A set of vectors S = {v1, v2, …, vr} in 
ℝn is called an orthogonal set if all pairs of 
distinct vectors in the set are orthogonal:  

vi⊥vj for i ≠ j.  
An orthogonal set in which each vector has 

norm 1 is called orthonormal:  
 
EXAMPLE  
Let u1 = (0, 1, 0), u2 = (1, 0, 1), u3 = (1, 0, –1).  
Is this set orthogonal? 
Is this set orthonormal? 
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|| || 1ii∀ =v

yes 

no 



EXAMPLE Let u1 = (0, 1, 0), u2 = (1, 0, 1), u3 = (1, 0, –1) 
The Euclidean norms of the vectors are  
 
Normalizing u1, u2, and u3 yields 
 
   
 
 
Is the set S = {v1, v2, v3} orthonormal?  
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1 2 3|| || 1, || || 2, || || 2= = =u u u

1
1

1

(0,1, 0)
|| ||

= =
uv
u

2
2

2

1 1, 0,
|| || 2 2

 = =  
 

uv
u

3
3

3

1 1, 0,
|| || 2 2

 = = − 
 

uv
u

1 2 1 3 2 3( , ) ( , ) ( , ) 0= = =v v v v v v 1 2 3|| || || || || || 1= = =v v v

yes 



Orthonormal and Orthogonal Bases 

• Orthonormal basis: a basis consisting of 
orthonormal vectors 

• Orthogonal basis: a basis consisting of 
orthogonal vectors 

EXAMPLE the standard basis for ℝn 
e1 = (1, 0, 0, …, 0),   e2 = (0, 1, 0, …, 0), …,   

en = (0, 0, 0, …, 1)   
is orthonormal. 

155 



Coordinates Relative to 
Orthogonal Bases 

THEOREM 5 If S = {v1, v2, …, vn} is an orthogonal 
basis for ℝn, and u is any vector in ℝn, then 

𝐮𝐮 =
(𝐮𝐮, 𝐯𝐯1)
(𝐯𝐯1, 𝐯𝐯1)

𝐯𝐯1 +
(𝐮𝐮, 𝐯𝐯2)
(𝐯𝐯2, 𝐯𝐯2)

𝐯𝐯2 + ⋯ +
(𝐮𝐮, 𝐯𝐯𝑛𝑛)
(𝐯𝐯𝑛𝑛, 𝐯𝐯𝑛𝑛)

𝐯𝐯𝑛𝑛 

or 

𝐮𝐮 =
(𝐮𝐮, 𝐯𝐯1)

 𝐯𝐯1
2 𝐯𝐯1 +

(𝐮𝐮, 𝐯𝐯2)
 𝐯𝐯2

2 𝐯𝐯2 + ⋯ +
(𝐮𝐮, 𝐯𝐯𝑛𝑛)

 𝐯𝐯𝑛𝑛
2 𝐯𝐯𝑛𝑛 
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Proof Since S = {v1, v2, …, vn} is a basis, a vector u 
can be expressed in the form 

u = k1v1 + k2v2 + … + knvn 
For each vector in S, we have 

(u, vi) = (k1v1 + k2v2 + … + knvn, vi)     
                              = k1(v1, vi) + k2(v2, vi) + … + kn(vn, vi) 
 Since S is an orthogonal set, we have  

(vj, vi) = 0    if    j ≠ i.  
Therefore, (u, vi) = ki(vi, vi) and 

𝑘𝑘𝑖𝑖 =
(𝐮𝐮, 𝐯𝐯𝑖𝑖)
(𝐯𝐯𝑖𝑖 , 𝐯𝐯𝑖𝑖)
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EXAMPLE Suppose v1 = (2, 3) and v2 = (3, –2).  
1) Check that S = {v1, v2} is an orthogonal basis for ℝ2.  
2) Express the vector u = (7, 5) as a linear combination of 

the vectors in S, and find the coordinate vector (u)S. 

Solution  
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1( , ) =u v 29 2
1|| || =v 13 1

29
13

k =

2( , ) =u v 11 2
2|| || =v 13

2
11
13

k =

(v1, v2) = 2⋅ 3 ‒ 3⋅ 2 = 0  

(u)S = (29/13,  11/13) 



THEOREM 7 If S = {v1, v2, …, vn} is an 
orthogonal set of nonzero vectors in ℝn, 
then S is linearly independent. 
Proof Assume that      k1v1 + k2v2 + … + knvn = 0. 
For each vi in S we have  

(k1v1 + k2v2 + … + knvn, vi) = (0, vi) = 0 
or, equivalently, 

k1(v1, vi) + k2(v2, vi) + … + kn(vn, vi) = 0 
From the orthogonality of S it follows that (vj, vi) = 0 when        

i ≠ j, so this equation reduces to   
ki(vi, vi) = 0 

Since the vectors in S are nonzero, (vi, vi) ≠ 0 ⟹ ki = 0. So 
k1 = k2 = … = kn = 0. 
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Notion of a Polynomial 

DEFINITION A polynomial in a single variable can 
be written in the form 

f = f(x) = anxn + an–1xn–1 +… + a2x2 +a1x + a0, 
where n is a nonnegative integer. The numbers ai 

are coefficients, with an the leading coefficient 
and a0 the constant term of the polynomial. If    
an ≠ 0, then n is the degree of the polynomial.  

Notation: deg(f) = n.  
The zero polynomial f(x) = 0 is not assigned a 

degree.  
160 



Some terminology 

A nonzero polynomial = the sum of a finite 
number of non-zero terms.  

A monomial: a one-term polynomial 

EXAMPLE          f(x) = 3x2 – 5x + 4 
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term 1: coefficient 3, 
variable x, and exponent 2 term 2 term 3 

deg( f ) = 2 



Polynomials of small degree 

Zeroth 
degree:  f(x) = a, a ≠ 0  

Constant 
polynomial 

First 
degree:  f(x) = ax + b  

Linear 
polynomial 

Second 
degree:  f(x) = ax2 + bx + c  

Quadratic 
polynomial 

Third 
degree:  

f(x) = ax3 + bx2       
+ cx + d  

Cubic 
polynomial 
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Arithmetic of polynomials 

 
 
EXAMPLE Let  

f(x) = x3 + 2x + 1 and g(x) = x2 – x + 4. 
• f(x) + g(x) =  
• f(x) ⋅ g(x) =  
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addition multiplication 

deg(f + g) ≤ max{deg(f), deg(g)} 
deg(f ⋅ g) = deg(f) + deg(g) 

x3 + x2 + x + 5 
x5 – x4 + 6x3 – x2 +7x + 4 



Polynomial Long Division 

 
 

 
 

f(x) = g(x)⋅ q(x) + r(x), 
where either r = 0 or deg( r ) < deg( g ).  
These conditions define uniquely q(x) and r(x). 
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two polynomials:  
•f (the dividend) 
•g ≠ 0 (the divisor) 

two polynomials:  
•q (a quotient) 
•r (a remainder) 



EXAMPLE Divide 𝑥𝑥3 − 2𝑥𝑥2 − 4 by 𝑥𝑥 − 3. 
Solution 
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𝑥𝑥3 − 2𝑥𝑥2 + 0 ∙ 𝑥𝑥 − 4 𝑥𝑥 − 3 
𝑥𝑥3 − 3𝑥𝑥2 

𝑥𝑥2 + 0 ∙ 𝑥𝑥 
𝑥𝑥2 +𝑥𝑥 +3 

𝑥𝑥2 − 3𝑥𝑥 
3𝑥𝑥 − 4 
3𝑥𝑥 − 9 

5 

Answer:   
      𝑥𝑥3 − 2𝑥𝑥2 − 4 = 𝑥𝑥2 + 𝑥𝑥 + 3 𝑥𝑥 − 3 + 5  



THEOREM 10 (Polynomial Remainder 
Theorem or Little Bézout's Theorem)  
The remainder of the division of a 
polynomial f(x) by a linear polynomial x – a 
is equal to f(a).  
EXAMPLE Suppose f(x) = x3 – 2x + 3.  
Polynomial division of f(x) by x – 2 gives  
• the quotient 
• and the remainder  
Therefore,  
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x2 + 2x + 2 
7 

f(2) = 7 



Proof   
 
 
 
where deg (r) < deg (g) 
Take g(x) = x – a as the divisor ⟹ deg (g) = 1 ⟹ 

deg (r) = 0, i.e. r(x) = r. Therefore, 
f(x) = q(x) ⋅ (x – a) + r 

Setting x = a we obtain:  
f(a) = q(a) ⋅ (a – a) + r = r  
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Polynomial long division 

f(x) = q(x) ⋅ g(x) + r(x) 



COROLLARY (The Factor Theorem)       
A polynomial f(x) has a factor x – a if and 
only if f(a) = 0. (i.e. a is a root of the 
polynomial).  
Proof  We have 

f(x) = q(x) ⋅ (x – a) + r 
1) If f(a) = 0, then r = 0, and f(x) has a factor       

x – a 
2) If f(x) has a factor x – a, i.e. f(x) = q(x) ⋅ (x – a), 

then f(a) = 0. 
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Polynomials and 
Complex Numbers 

Lecture 9 

169 



THEOREM 1 (The Factor Theorem)       
A polynomial f(x) has a factor x – a 
if and only if f(a) = 0.  
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DEFINITION If f(a) = 0 then a is called the root 
(корень) of the polynomial f(x).  



THEOREM 2  
(The integer root theorem)    
If an integer is a root of a 
polynomial whose coefficients are 
integers and whose leading 
coefficient is ±1, then that integer 
is a factor of the constant term. 

171 



EXAMPLE Find the factors at  
f(x) = x3 + 7x2 + 8x + 2. 

Solution The roots should be among the divisors 
of 2:    1, –1, 2, –2. 

1) Substitute x = 1 into f, using the Horner’s 
scheme: 
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 x0      x3    x2    x1    x0 
          1      7     8     2 
   1                  

f(x) = (x2 + 8x + 16)(x – 1) + 18  

1 8 16 18 



2) Next try x + 1 (substituting x = –1 into the f): 
 
 
 
 
 
 
3) 
Answer:   
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 x0      x3    x2    x1    x0 
          1      7     8     2 
 –1 

f(x) = (x2 + 6x + 2)(x + 1) 

3 7x = − ±

( )( )( ) ( 1) 3 7 3 7f x x x x= + + + + −

1     6     2     0 



Divisibility of Polynomials 

DEFINITION g divides f or g is a divisor of f if there 
exists a polynomial q such that g ⋅ q = f.  

Notation:  g|f 
 
 
If (x − a)2 divides f then a is called a multiple root 

(кратный корень) of f, and otherwise a is called 
a simple root of f.  

DEFINITION The multiplicity (кратность) of the 
root a in f is a highest power m such that (x − a)m 
divides f. 
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a is a root of f  (x − a)| f  



DEFINITION A polynomial which cannot be 
factorized into the product of two non 
constant polynomials is called an irreducible 
polynomial (неприводимый многочлен).  

EXAMPLE Polynomial f(x) = x2 + 1 is irreducible. 
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THEOREM 3 Any polynomial can be decomposed 
into the product of a constant by a product of 
irreducible polynomials. This decomposition is 
unique up to the order of the factors and the 
multiplication of any constant factors by a 
constant. 



Greatest Common Divisor 

DEFINITION Let f and g be polynomials. A 
greatest common divisor (наибольший 
общий делитель) of f and g is a polynomial 
d that divides f and g and such that every 
common divisor of f and g also divides d.  

Notation: GCD(f, g). 
• If f = g = 0, the GCD is 0.  
• The GCD is unique up to the multiplication by 

a nonzero constant. 
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EXAMPLE: Find the GCD of  
x2 + 7x + 6 and x2 − 5x − 6. 

Solution 
1) Factor  x2 + 7x + 6: 
 
 2) Factor  x2 − 5x − 6:  
 
Thus, their GCD is 
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x2 + 7x + 6 = (x + 1)(x + 6) 

x2 − 5x − 6 = (x + 1)(x − 6) 

x + 1 



Properties of GCD 
• If c is any common divisor of f and g, then c 

divides their GCD.  
• GCD(f, g) = GCD(g, f) 
• GCD(f, g) = GCD(f, g + rf) for any polynomial r.  
• For any k ≠ 0, GCD(f, g) = GCD(f, kg)    
• For two polynomials f and g, there exist 

polynomials a and b, such that  
GCD(f, g)  = af + bg  

    and GCD(f, g) divides every such linear 
combination of f and g. 
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Finding the Greatest Common Divisor  

  

179 

Factorization 

Two ways to find GCD 

The Euclidean 
algorithm • find the factors of 

each polynomial 
• select the set of 

common factors 



Euclidean Algorithm 
to find the GCD of two polynomials a(x) and b(x),  

where deg(b(x)) ≤ deg(a(x)) 
1) By polynomial long division: 

a(x) = q0(x)b(x) + r0(x), deg(r0(x)) < deg(b(x)) 
2) By propetry, GCD(a, b) = GCD(b, r0). 
Then set a1(x) = b(x), b1(x) = r0(x). 
3) Repeat the process: 

a1(x) = q1(x)b1(x) + r1(x) 
Then set a2(x) = b1(x), b2(x) = r1(x) and so on. 
4) When we reach a point at which bN(x) = 0,  

GCD(a, b) = GCD(a1, b1) = ... = GCD(aN, 0) = aN 
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EXAMPLE: Find the GCD of x3 + 9x2 + 20x + 12 
and x2 − 5x − 6. 

1) x3 + 9x2 + 20x + 12 = 
 
2) x2 − 5x − 6 = 
 
 
Since            is the last nonzero remainder, the 

GCD of these polynomials is  
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(x2 − 5x − 6)(x + 14) + 96(x + 1) 

(x + 1)(x − 6) + 0 

1x +
1x +



Partial Fraction Decomposition 

182 

Partial fraction decomposition of a rational 
function is the operation that consists in 

expressing the fraction as a sum of a polynomial 
(possibly zero) and one or several fractions with 

a simpler denominator. 



Decomposition of N(x)/D(x) into 
Partial Fractions 

• Divide if improper: If N(x)/D(x) is an improper 
fraction (that is, if deg(N) ≥ deg(D)), divide N(x) 
into D(x) to obtain  

 
 
• Factor denominator into factors of the form  

(px + q)m and (ax2 + bx + c)n,  
where ax2 + bx + c is irreducible. 
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1( ) ( )(a polynomial)
( ) ( )

N x N x
D x D x

= +



• Linear factors: For each factor of the form (px + q)m, 
the partial fraction decomposition must include the 
following sum of m fractions. 
 

 
 
• Quadratic factors: For each factor of the form  
(ax2 + bx + c)n, the partial fraction decomposition must 
include the following sum of n fractions. 
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1 2
2 ...

( ) ( ) ( )
m

m
A A A

px q px q px q
+ + +

+ + +

1 1 2 2
2 2 2 2...

( ) ( ) ( )
n n

n
B x C B x C B x C

ax bx c ax bx c ax bx c
+ + +

+ + +
+ + + + + +



EXAMPLE 1  
 
 
 
EXAMPLE 2  
 

185 

2

2 2

5 20 6 6 1 9
( 1) 1 ( 1)

x x
x x x x x
+ +

= − +
+ + +

3

2 2

2 4 8 2 2 2 4
( 1)( 4) 1 4

x x x
x x x x x x

− − +
= − +

− + − +



Definition of a Complex Number 

 
 

Introduce the “imaginary”  

number                  

with  the property  
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x2 ≥ 0, for every real 
number x 

the equation x2 = –1 
has no real solutions 

1i = −

( )2
2 1 1i = − = −

Gerolamo Cardano (1501 –1576) 



DEFINITION A complex number (комплексное 
число) is an ordered pair of real numbers, 
denoted by a + bi, where i2 = –1. 

EXAMPLES   4 + 3i,     2 – i,     –1 + i. 
 
• the real number a is called the real part of z 

(действительная часть), Re(z) = a 
• the real number b is called the imaginary part 

of z (мнимая часть), Im(z) = b  

EXAMPLE  Re(4 – 3i) = 4, Im(4 – 3i) = –3.  
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The Complex Plane 
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DEFINITION Two complex numbers, a + bi and    
c + di are equal if a = c and b = d. 

 
•  If b = 0, then a + bi  = a 
 
 
• If a = 0, then a + bi = bi  ⇒ 
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real numbers points on the real axis 

pure imaginary 
numbers (чисто 

мнимые)  

points on the 
imaginary axis 



Operations on Complex Numbers 

• Addition of complex numbers: 
(a + bi) + (c + di) = (a + c) + (b + d)i 

• Subtraction of complex numbers: 
(a + bi) – (c + di) = (a – c) + (b – d)i 

• Multiplication by a real number k: 
k(a + bi) = (ka) + (kb)i       

 
Since (– 1)z + z = 0, we denote (– 1)z as – z and call 

it the negative of z. 
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EXAMPLE Let z1 = 4 – 5i, z2 = –1 + 6i. Then 
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1 2z z+ = (4 5 ) ( 1 6 )
(4 1) ( 5 6) 3

i i
i i

− + − +
= − + − + = +

1 2z z− = (4 5 ) ( 1 6 )
(4 1) ( 5 6) 5 11

i i
i i

− − − +
= + + − − = −

13z = 3(4 5 ) 12 15i i− = −

2z− = ( 1 6 ) 1 6i i− − + = −



Multiplication of Complex Numbers 

Expand the product (a + bi) ⋅ (c + di), following 
the usual rules of algebra but treating i2 as −1. 
This yields 

(a + bi) ⋅ (c + di) = ac + bdi2 + bci + adi  
                              = (ac – bd) + (bc + ad)i 

which suggests the following definition: 
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(a + bi) ⋅ (c + di) = (ac – bd) + (bc + ad)i 



EXAMPLE 
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(3 2 )(4 )i i+ + = 212 3 8 2
12 11 2 10 11

i i i
i i

+ + +
= + − = +

15 (2 3 )
2

i i − + = 
 

2310 15
2

3 2310 14 14
2 2

i i i

i i

+ − −

= + + = +

(1 )(1 2 )i i i+ − = 1 3i+



Complex Numbers 

Lecture 10 
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Complex Conjugates 

DEFINITION If z = a + bi is any complex number, 
then the complex conjugate (комплексно-
сопряженное) of z (also called the conjugate 
of z) is defined by 𝑧𝑧̅ = 𝑎𝑎 − 𝑏𝑏𝑏𝑏. 

EXAMPLES  
 

 

195 

3 2z i= + 3 2z i= −
4 7z i= − − 4 7z i= − +

z i= z i= −

4z = 4z =



The Conjugate of a Complex Number 
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Modulus of a Complex Number 

DEFINITION The modulus (модуль) of a complex 
number z = a + bi, denoted by  |z|, is defined by  

  
If b = 0, then z = a is a real number, and  
 
so the modulus of a real number is its absolute value. 

Thus the modulus of z is also called the absolute 
value of z. 

EXAMPLE If z = 3 – 4i, then  
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2 2| |z a b= +

2 2 2| | 0 | |z a a a= + = =

2 2| | 3 ( 4) 25 5z = + − = =



THEOREM 1 For any complex number z,  
 

Proof If z = a + bi, then 
 
 
 
EXAMPLE (2 + 5i)(2 – 5i) = 22 + 52 = 29 
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2| |zz z=

2 2 2 2 2 2( )( ) | |zz a bi a bi a b i a b z= + − = − = + =



Division of Complex Numbers 
If z2 ≠ 0, then 
 
 

EXAMPLE Express  
3+4𝑖𝑖
1−2𝑖𝑖

  in the form a + bi. 

 
Solution 
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1 1 2 1 2
2

2 2 2 2

z z z z zz
z z z z

= = =

3 + 4𝑏𝑏
1 − 2𝑏𝑏

= 
(3 + 4𝑏𝑏)(1 + 2𝑏𝑏)
(1 − 2𝑏𝑏)(1 + 2𝑏𝑏)

 

=
3 + 6𝑏𝑏 + 4𝑏𝑏 + 8𝑏𝑏2

1 − 4𝑏𝑏2  =
−5 + 10𝑏𝑏

5
= −1 + 2𝑏𝑏 



THEOREM 2 Properties of the 
Conjugate 
For any complex numbers z, z1, and z2: 

(a)  

(b)  

(c)  

(d)  

(e)  
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1 2 1 2z z z z+ = +

1 2 1 2z z z z− = −

1 2 1 2z z z z⋅ = ⋅

1 2 1 2z z z z=

z z=



Polar Form (тригонометрический вид) 

z = x + iy, z ≠ 0,    r = |z|. 
Then  

x = r cos𝜃𝜃,       y = r sin𝜃𝜃 
so that  

z = x + iy = r cos𝜃𝜃 + ir sin𝜃𝜃  
or 
 
This is a polar form of z. 
The angle 𝜃𝜃 is called an 

argument of z and is 
denoted by 𝜃𝜃 = arg z 
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z = r(cos𝜃𝜃 + i sin𝜃𝜃) 



EXAMPLE 2 Express in polar form 
z = –1 – i 

Solution 
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EXAMPLE 1 Express in polar form 

 𝑧𝑧 = 1 + 3 𝑏𝑏 
Solution  
 

2 2| | 1 ( 3) 1 3 2r z= = + = + =

1 31 3 2 2 cos sin
2 2 3 3

z i i i
  π π = + = + = +   

  

2 2| | ( 1) ( 1) 2r z= = − + − =

1 1 3 32 2 cos sin
4 42 2

z i i− π − π   = − − = +     



Multiplication and Division in Polar Form 

Let  z1 = r1(cos𝜃𝜃1 + i sin𝜃𝜃1) and  z2 = r2(cos𝜃𝜃2 + i sin𝜃𝜃2)    
Multiplying, we obtain 
 
 
 
 
 
Similarly, 
if z2 ≠ 0, then 
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z1z2 = r1r2 [cos(𝜃𝜃1 + 𝜃𝜃2) + i sin(𝜃𝜃1 + 𝜃𝜃2)] 

cos(𝜃𝜃1 + 𝜃𝜃2) 

sin(𝜃𝜃1 + 𝜃𝜃2) 
z1z2 = r1r2 [(cos𝜃𝜃1 cos𝜃𝜃2 – sin𝜃𝜃1 sin𝜃𝜃2)  

               + i (sin𝜃𝜃1 cos𝜃𝜃2 + cos𝜃𝜃1 sin𝜃𝜃2)] 

1 1
1 2 1 2

2 2

[cos( ) sin( )]z r i
z r

= θ −θ + θ −θ



EXAMPLE  

𝑧𝑧1 = 2 cos 𝜋𝜋
3

+ 𝑏𝑏 sin 𝜋𝜋
3

            𝑧𝑧2 = 3 cos 𝜋𝜋
6

+ 𝑏𝑏 sin 𝜋𝜋
6
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𝑧𝑧1𝑧𝑧2 = 2 ∙ 3 cos
𝜋𝜋
3

+
𝜋𝜋
6

+ 𝑏𝑏 sin
𝜋𝜋
3

+
𝜋𝜋
6

 

= 6 cos
𝜋𝜋
2

+ 𝑏𝑏 sin
𝜋𝜋
2

= 6𝑏𝑏 

𝑧𝑧1

𝑧𝑧2
 =

2
3

cos
𝜋𝜋
3

−
𝜋𝜋
6

+ 𝑏𝑏 sin
𝜋𝜋
3

−
𝜋𝜋
6

 

=
2
3

cos
𝜋𝜋
6

+ 𝑏𝑏 sin
𝜋𝜋
6

=
1
3

3 + 𝑏𝑏  



DeMoivre's Formula (формула 
Муавра) 

If n is a positive integer and z = r (cos𝜃𝜃 + i sin𝜃𝜃), 
then  

      zn = z ⋅ z ⋅ z ⋅ … ⋅ z  
          = rn [cos (𝜃𝜃 + 𝜃𝜃 + … + 𝜃𝜃) + i sin (𝜃𝜃 + 𝜃𝜃 + … + 𝜃𝜃)] 
or 
 
 
Moreover, this also holds for negative integers  
     if z ≠ 0. 
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zn = rn (cos n𝜃𝜃 +i sin n𝜃𝜃) 



Finding nth Roots 

If n is a positive integer and z ≠ 0 is any complex 
number, then we define an nth root of z to be 
any complex number w that satisfies  

 
We denote an nth root of z by z1/n. Let  

w = 𝜌𝜌 (cos𝛼𝛼 + i sin𝛼𝛼) and z = r (cos𝜃𝜃 + i sin𝜃𝜃) 
Then 

𝜌𝜌n (cos n𝛼𝛼 + i sin n𝛼𝛼) = r (cos𝜃𝜃 + i sin𝜃𝜃) 
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wn = z 



We see that 𝜌𝜌n = r or  
𝜌𝜌 = 𝑟𝑟𝑛𝑛  

Moreover, since 
cos n𝛼𝛼 = cos𝜃𝜃 and sin n𝛼𝛼 = sin𝜃𝜃,  

we have 

n𝛼𝛼 = 𝜃𝜃 + 2𝜋𝜋k   or   𝛼𝛼 = 𝜃𝜃
𝑛𝑛

+ 2𝜋𝜋𝜋𝜋
𝑛𝑛

,   k ∊ ℤ  

Since only 0, 1, 2, …, n – 1 produce distinct values of 𝛼𝛼, 
there are n different nth roots of z = r (cos𝜃𝜃 + i sin𝜃𝜃): 

𝑤𝑤 = 𝑟𝑟𝑛𝑛 cos
𝜃𝜃
𝑛𝑛

+
2𝜋𝜋𝑘𝑘

𝑛𝑛
+ 𝑏𝑏 sin

𝜃𝜃
𝑛𝑛

+
2𝜋𝜋𝑘𝑘

𝑛𝑛
,

                                             𝑘𝑘 = 0, 1, 2, … , 𝑛𝑛 − 1 
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EXAMPLE Find all cube roots of −8. 
Solution An argument of −8 is 𝜃𝜃 = 𝜋𝜋.  
Moreover, r = |z| = |–8| = 8, so 

–8 = 8 (cos𝜋𝜋 + i sin𝜋𝜋) 
We have 
 
Thus the cube roots of −8 are 
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1/3 3 2 2( 8) 8 cos sin , 0,1, 2
3 3 3 3

k ki k π π π π   − = + + + =        

1 32 cos sin 2 1 3
3 3 2 2

i i i
 π π + = + = +  

   
2(cos sin ) 2( 1) 2iπ+ π = − = −

5 5 1 32 cos sin 2 1 3
3 3 2 2

i i i
 π π + = − = −  

   



The cube roots of −8 
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EXAMPLE Find all fourth roots of 1. 
Solution  Observe that  
z4 – 1 = (z2 – 1)(z2 + 1) = (z – 1)(z + 1) (z – i)(z + i) 
So the fourth roots of 1 are 1, –1, i, –i. 
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THEOREM 3 (Fundamental Theorem 
of Algebra) Let f(z) be a polynomial of 
degree n ≥ 1. Then f(z) always has a 
root z0 ∊ ℂ. 

COROLLARY Let f(z) be a polynomial of 
degree n ≥ 1. Then there exist complex 
numbers z1, z2, …, zn, such that  

f(z) = an (z – z1) (z – z2)… (z – zn). 
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THEOREM  4 Suppose   
f(z) = anzn + an–1zn–1 +… + a2z2 +a1z + a0  
has real coefficients. If z0 is a root of f(z), 
then the conjugate       is also a root of f(z). 
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0z

THEOREM 5 If   
    f(z) = anzn + an–1zn–1 +… + a2z2 +a1z + a0  
is a polynomial with real coefficients, then 
it could be factorized in factors with real 
coefficients of degree one or two. 



EXAMPLE Find a polynomial of 2nd degree with 
real coefficients that has the root z1 = 2 + 5i.  
  
Solution  By theorem 4, this polynomial has 
another root z2 = 2 ‒ 5i. Thus 
f(z) = (z ‒ z1) (z ‒ z2) 
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= z2 ‒ 4z + 4 + 25 = z2 ‒ 4z + 29 

= (z ‒ 2)2 ‒ 25i2 

= (z ‒ (2 + 5i)) (z ‒ (2 ‒ 5i)) 



DEFINITION A function f : A → B  is a rule 
 
 
 
Write: b = f(a) or a ↦ b 
EXAMPLE  
f(x, y) = x2 + y2 is a function from ℝ2 to ℝ 

214 

each element a 
in a set A 

one and only one 
element b in a set B 

Functions from ℝn to ℝ 



Terminology 

• b is the image (образ) of a under f  
• f(a) is the value (значение) of f at a 
• the set A is the domain (область определения) 

of f  
• the set B is the codomain of f 
• the subset of B consisting of all values f(a) as a 

varies over A is the range (область значений) 
of f 

• A and B are sets of real numbers ⟹ f is a real-
valued function of a real variable 
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Functions from ℝn to ℝm 

DEFINITION If A = ℝn and B = ℝm (m and n 
possibly the same), then f is called a map 
(отображение) or a transformation 
(преобразование) from ℝn to ℝm, and is 
usually denoted by T. We say that T maps ℝn 
into ℝm.  

Notation  T: ℝn → ℝm  
DEFINITION If m = n, the transformation             

T: ℝn → ℝm is called an operator on ℝn.  
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Suppose that f1, f2, …, fm  are real-valued functions 
of n real variables, say 

 
 
 
 
These m equations assign a unique point               

(w1, w2, …, wm) in ℝm to each point (x1, x2, …, xn) 
in ℝn and thus define a transformation                 
T: ℝn → ℝm  such that  

T(x1, x2, …, xn) = (w1, w2, …, wm) 
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1 1 1 2

2 2 1 2

1 2

( , , ..., )
( , , ..., )

( , , ..., )

n

n

m m n

w f x x x
w f x x x

w f x x x

=
=

=
 



EXAMPLE A Transformation from 
ℝ2 to ℝ3 

The equations 
 
 
 
define a transformation T: ℝ2 → ℝ3  such that 
 
Thus, for example, T(1, –2) = 
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1 1 2

2 1 2
2 2

3 1 2

3
w x x
w x x
w x x

= +
=

= −

(–1, –6, –3) 

2 2
1 2 1 2 1 2 1 2( , ) ( , 3 , )T x x x x x x x x= + −



Linear Transformations 

Lecture 11 
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Linear Transformations  
from ℝn to ℝm 

DEFINITION A transformation T: ℝn → ℝm is 
called linear if it is specified by linear 
equations of the form 

 

�
𝑤𝑤1 = 𝑎𝑎11𝑥𝑥1 + 𝑎𝑎12𝑥𝑥2 + ⋯ + 𝑎𝑎1𝑛𝑛𝑥𝑥𝑛𝑛

⋮
𝑤𝑤𝑚𝑚 = 𝑎𝑎𝑚𝑚1𝑥𝑥1 + 𝑎𝑎𝑚𝑚2𝑥𝑥2 + ⋯ + 𝑎𝑎𝑚𝑚𝑛𝑛𝑥𝑥𝑛𝑛

 

 

220 



A linear transformation T: ℝn → ℝm can be 
written in matrix notation by 

𝑤𝑤1
⋮

𝑤𝑤𝑚𝑚
=

𝑎𝑎11 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚1 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛

𝑥𝑥1
⋮

𝑥𝑥𝑛𝑛

 

or more briefly by w = Ax. 
 
The matrix A = [aij] is called the standard matrix 

for the linear transformation T.  
 
Notation: T = TA, A = [T]. 
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EXAMPLE The linear transformation T: ℝ4 → ℝ3 

�
𝑤𝑤1 = 2𝑥𝑥1 − 3𝑥𝑥2 + 𝑥𝑥3 − 5𝑥𝑥4
𝑤𝑤2 = 4𝑥𝑥1 + 𝑥𝑥2 − 2𝑥𝑥3 + 𝑥𝑥4  
𝑤𝑤3 = 5𝑥𝑥1 − 𝑥𝑥2 + 4𝑥𝑥3            

 

can be expressed in matrix form as 
𝑤𝑤1
𝑤𝑤2
𝑤𝑤3

=
2 −3
4 1
5 −1

1 −5
−2 1
4 0

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

 

so the standard matrix for T is 

𝐴𝐴 =
2 −3
4 1
5 −1

1 −5
−2 1
4 0
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T(1, –3, 0, 2) = ? (1, 3, 8) 



Reflection Operators 
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Reflection 
about the 

y-axis 

Reflection 
about the 

x-axis 

Operator        Illustration         Equations   Standard Matrix 

Reflection 
about the 
line y = x 

1

2

w x
w y

= −
=

1 0
0 1
− 
 
 

1

2

w x
w y

=
= −

1 0
0 1
 
 − 

1

2

w y
w x

=
=

0 1
1 0
 
 
 



Projection Operators 
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Orthogonal 
projection 
on the  
x-axis 

Operator        Illustration         Equations   Standard Matrix 

1

2 0
w x
w

=
=

1 0
0 0
 
 
 

1

2

0w
w y

=
=

0 0
0 1
 
 
 

Orthogonal 
projection 
on the  
y-axis 



Let 𝜙𝜙 be the angle from x-axis to x and r = |x| = |w|. 
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Then                x = (x, y) = (r cos𝜙𝜙, r sin𝜙𝜙) 
and             w = (w1, w2) = (r cos(𝜙𝜙 + 𝜃𝜃), r sin(𝜙𝜙 + 𝜃𝜃)) 

Since  w1 = r cos𝜙𝜙 cos𝜃𝜃 – r sin𝜙𝜙 sin𝜃𝜃  
    w2 = r cos𝜙𝜙 sin𝜃𝜃 + r sin𝜙𝜙 cos𝜃𝜃 

we have 
w1 = x cos𝜃𝜃 – y sin𝜃𝜃  
w2 = x sin𝜃𝜃 + y cos𝜃𝜃  
Then 

𝑇𝑇 = cos 𝜃𝜃 − sin 𝜃𝜃
sin 𝜃𝜃 cos 𝜃𝜃  

Rotation Operators 



Dilation and Contraction Operators 
(операторы сжатия и растяжения) 
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Contraction 
with factor k 
(0 ≤ k ≤ 1) 

Operator        Illustration         Equations   Standard Matrix 

1

2

w kx
w ky

=
=

0
0
k

k
 
 
 

Dilation 
with factor 
k (k ≥ 1) 



Compositions of Linear Transformations 

If TA: ℝn →ℝk and TB: ℝk →ℝm are linear 
transformations, then  

 
This is called the composition of TB with TA and is 

denoted by TB ∘ TA (read “TB circle TA”). Thus 
(TB ∘ TA)(x) = TB(TA(x)) 

The composition TB ∘ TA is linear since 
(TB ∘ TA)(x) = TB(TA(x)) = B(Ax) = (BA)x 

Therefore, TB ∘ TA is multiplication by BA: 
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TB ∘ TA = TBA 

each x TA(x) TB(TA(x)) 



One-to-One Linear Transformations 
DEFINITION A linear transformation T: ℝn → ℝm 

is said to be one-to-one if T maps distinct 
vectors in ℝn into distinct vectors in ℝm. 

EXAMPLE 
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Projection: not one-to-one Rotation: one-to-one 



THEOREM 1 Equivalent Statements 
If A is an n x n matrix and TA: ℝn → ℝn is 
multiplication by A, then the following 
statements are equivalent. 
(a) A is invertible. 
(b) The range of TA is ℝn. 
(c) TA is one-to-one. 

EXAMPLE  Rotation operator T is one-to-one, 
since  
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2 2cos sin
det[ ] cos sin 1 0

sin cos
T

θ − θ
= = θ+ θ = ≠

θ θ



Inverse of a One-to-One Linear 
Operator 

If T: ℝn → ℝn is a one-to-one linear operator,  
x ↦ w = T(x),  

⟹ there is the operator T-1: ℝn → ℝn that maps 
w back to x.  

Operator T-1 is called  
the inverse of T.  
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[T-1] = [T]-1 



THEOREM 2 Properties of Linear 
Transformations 
A transformation T: ℝn → ℝm is linear if and only 
if the following relationships hold for all vectors 
u and v in ℝn and for every scalar c. 
(a) T(u + v) = T(u) + T(v) 
(b) T(cu) = cT(u) 
Proof 1) Assume first that T is a linear transformation, 

and let A be the standard matrix for T. Then 
T(u + v) = A(u + v) = Au + Av = T(u) + T(v) 

and 
T(cu) = A(cu) = c(Au) = cT(u) 
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2) Conversely, assume that properties (a) and (b) hold.  
Let e1, e2, …, en be the standard basis vectors 

𝐞𝐞1 =
1
0
⋮
0

, 𝐞𝐞2 =
0
1
⋮
0

, … , 𝐞𝐞𝑛𝑛 =
0
0
⋮
1

 

and let A be  
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A = [T(e1)| T(e2)| …| T(en)] 
If x = x1e1 + x2e2 + … + xnen is any vector in ℝn, then 

Ax = x1 T(e1) + x2 T(e2) + … + xn T(en) 
= T(x1 e1) + T(x2 e2) + … + T(xn en) 
= T(x1e1 + x2e2 + … + xnen) = T(x) 

This shows that T is multiplication by A and therefore linear.  



THEOREM 3 
If T: ℝn → ℝm is a linear transformation, and e1, 
e2, …, en are the standard basis vectors for ℝn, 
then the standard matrix for T is  
                   [T] = [T(e1)| T(e2)| …| T(en)] 
EXAMPLE Suppose T: ℝ3 → ℝ2 is a linear transformation such 

that 
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1 0 0
1 2 1

0 , 1 , 0
3 0 6

0 0 1
T T T
     

−          = = =                    
     

1 2 1
3 0 6
− 
 
 

[ ]T =

Then 



Eigenvalues and Eigenvectors 
DEFINITION If A is an n x n matrix, then a nonzero vector 

x in ℝn is called an eigenvector (собственный 
вектор) of A if  

Ax = λx  
for some scalar λ. The scalar λ is called an eigenvalue 

(собственное значение) of A, and x is said to be an 
eigenvector of A corresponding to λ. 
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EXAMPLE Verify whether the vectors 

𝑥𝑥 = 1
2  and 𝑦𝑦 = 2

−1  

are eigenvectors of   

𝐴𝐴 = 3 0
8 −1  

Solution 
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x is an eigenvector of 
A corresponding to 
the eigenvalue λ = 3 

y is not an 
eigenvector of A 

A =x 3= x
3 0 1 3
8 1 2 6
    

=    −    

A =y
3 0 2 6
8 1 1 17
    

=    − −    



Rewrite Ax = λx as  
Ax – λx = Ax – λIx = (A – λI)x = 0 

 
 
• p(λ) = det(A – λI) is the characteristic polynomial 

(характеристический многочлен) of A 
• p(λ) = 0 is the characteristic equation  

(характеристическое уравнение) of A  
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det(A – λI) = 0 nonzero solutions 

deg(p) = n p(λ) = 0 has at most n distinct solutions 

n x n matrix A has at most n distinct eigenvalues 

I is the identity matrix 



EXAMPLE Find the eigenvalues and  
eigenvectors of the matrix 𝐴𝐴 = 1 3

4 2  

Solution 
1) The characteristic equation of A is 
 
 
 
Therefore, the eigenvalues of A are  
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1 − 𝜆𝜆 3
4 2 − 𝜆𝜆  det(𝐴𝐴 − 𝜆𝜆𝐼𝐼) = 

= 𝜆𝜆2 − 3𝜆𝜆 − 10 = 𝜆𝜆 + 2 𝜆𝜆 − 5 = 0 

λ1 = –2 and λ2 = 5. 



2) x is an eigenvector of A ⇔  x is a nontrivial 
solution of (A – λI)x = 0; that is, 

1 − 𝜆𝜆 3
4 2 − 𝜆𝜆

𝑥𝑥1
𝑥𝑥2

= 0
0  
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λ1 = –2  
 
 

λ2 = 5  
 
 

1

2

3 3 0
4 4 0

x
x

    
=    

    
1

1
2

, 0
x t

t
x t

−   
= = ≠   

  
x

1

2

4 3 0
4 3 0

x
x

−     
=    −    

1
2

2

3 4
, 0

x t
t

x t
   

= = ≠   
  

x



THEOREM 4 If A is a triangular matrix, 
then the eigenvalues of A are the 
entries on the main diagonal of A. 
Proof for a 3 x 3 upper triangular matrix 

𝐴𝐴 =
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
0 𝑎𝑎22 𝑎𝑎23
0 0 𝑎𝑎33

 

The characteristic equation is 

det(𝐴𝐴 − 𝜆𝜆𝐼𝐼) = det
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
0 𝑎𝑎22 𝑎𝑎23
0 0 𝑎𝑎33

 

𝑎𝑎11 − 𝜆𝜆 𝑎𝑎22 − 𝜆𝜆 𝑎𝑎33 − 𝜆𝜆 = 0 
and the eigenvalues are λ = a11, λ = a22, λ = a33. 
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THEOREM 5 If k is a positive integer, λ is an 
eigenvalue of a matrix A, and x is a 
corresponding eigenvector, then λk is an 
eigenvalue of Ak and x is a corresponding 
eigenvector. 
Proof If λ is an eigenvalue of A and x is a 

corresponding eigenvector, then 
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A2x = A(Ax) = A(λx) = λ(λx) = λ2x 
Akx = A(Ak–1x) = A(λk–1x) = λk–1(Ax) = λk–1(λx) = λkx 
⟹ λk is an eigenvalue of Ak and x is an 
eigenvector.  



Linear  
Transformations – 2  

Lecture 12 

241 



Change of Basis  

Change-of-Basis Problem If we change the basis 
for a vector space V from some old basis B to 
some new basis B’, how is the old coordinate 
vector (v)B of a vector v related to the new 
coordinate vector (v)B’? 
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Solution for dimension 2  Let  
• B = {u1, u2}  be the old basis 
• B’ = {u’1, u’2} be the new basis  
Suppose 

and     
 

That is, 
u'1 = au1 + bu2       and      u'2 = cu1 + du2 

Let v = k1u’1 + k2u’2 be any vector in V.  
Then  

v = k1(au1 + bu2) + k2(cu1 + du2)   
   = (k1a + k2c)u1 + (k1b + k2d)u2 
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1( ' )B

a
b
 

=  
 

u 2( ' )B

c
d
 

=  
 

u



Thus the old coordinate vector for v is 
 
 
which can be written as 

   

 
 
 

244 

1 2

1 2

( )B

k a k c
k b k d

+ 
=  + 

v

The old coordinate vector (v)B results when we multiply the 
new coordinate vector (v)B’ on the left by the matrix 
 
 
 
The columns of this matrix are the coordinates of the new 
basis vectors relative to the old basis. 
 

1
'

2

( ) or ( ) ( )B B B

ka c a c
kb d b d
    

= =    
    

v v v

a c
P

b d
 

=  
 



Solution of the Change-of-Basis 
Problem in General Case 

If we change the basis from the old basis  
B = {u1, u2, …, un}  

to the new basis  
B’ = {u’1, u’2, …, u’n},  

then for any v the old coordinate vector (v)B is related to 
the new one (v)B’ by the equation  

(v)B = P ⋅ (v)B’ 
where 
  
is the transition matrix (матрица перехода) from B’ to 

B.  
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[ ]1 2( ' ) | ( ' ) | ... | ( ' )B B n BP = u u u



EXAMPLE Let B = {u1, u2} and B’ = {u’1, u’2} be bases for ℝ2, 
where  u1 = (1, 0),  u2 = (0, 1),  u’1 = (1, 1),  u’2 = (2, 1) 

(a) Find the transition matrix from B’ to B. 
(b) Find (v)B if    
 
Solution (a) We have 
                                         
 
Thus the transition matrix from B’ to B is 
 
Solution (b) 
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'

3
( )

5B

− 
=  
 

v

1

1
( ' )

1B
 

=  
 

u 2

2
( ' )

1B
 

=  
 

u

1 2
1 1

P  
=  
 

1 2 3 7
1 1 5 2

−    
=    

    
( )B =v



THEOREM 1 If P is the transition 
matrix from a basis B’ to a basis B for a 
vector space V, then P is invertible, and 
P–1 is the transition matrix from B to B’. 

Summary If P is the transition matrix from a 
basis B’ to a basis B, then for every vector v: 
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(v)B = P⋅ (v)B’ (v)B’ = P–1 ⋅ (v)B 



THEOREM 2 If B and B’ are bases for a 
vector space V, and if I: V → V is the 
identity operator, then the transition 
matrix from B’ to B is [I]B,B’ 
Proof Suppose that B = {u1, u2, …, un} and           

B’ = {u’1, u’2, …, u’n} are bases for V. Since    
I(v) = v for all v in V, we have 
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[ ]
[ ]

, ' 1 2

1 2

[ ] [ ( ' )] | [ ( ' )] | ... | [ ( ' )]

( ' ) | ( ' ) | ... | ( ' )
B B B B n B

B B n B

I I I I

P

=

= =

u u u

u u u



Effect of Changing Bases on Matrices 
of Linear Operators 

Problem If B and B’ are two bases for a vector 
space V, and if T: V → V is a linear operator, 
what relationship, if any, exists between the 
matrices [T]B and [T]B’? 
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We have  
[T]B’ = [I ∘ T ∘ I]B’ = [I]B’,B ⋅[T]B ⋅[I]B,B’ 

Let P = [I]B,B’, then P–1 = [I]B’,B, so 
[T]B’ = P–1 ⋅[T]B ⋅P 
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THEOREM 3 Let T: V → V be a linear operator on 
a vector space V, and let B and B’ be bases for V. 
Then 

[T]B’ = P–1 ⋅[T]B ⋅P 
where P is the transition matrix from B’ to B. 



EXAMPLE Let T: ℝ2 → ℝ2  be defined by 
 
 
Find the matrix of T with respect to the standard 

basis B = {e1, e2} for ℝ2; then find the matrix of 
T with respect to the basis B’ = {u’1, u’2}, 
where 
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1 1 2

2 1 22 4
x x x

T
x x x

+   
=   − +   

1 2

1 1
' and '

1 2
   

= =   
   

u u



Solution Since 
 
 
then 
 
 
Find the transition matrix 
 
 
and its inverse 
 
 
so the matrix of T relative to the basis B’ is 
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1 1 2

2 1 22 4
x x x

T
x x x

+   
=   − +   

1 1
[ ]

2 4BT  
=  − 

[ ], ' 1 2[ ] ( ' ) | ( ' )B B B BP I= = =u u

1 2 1
1 1

P− − 
=  − 

1
'

2 1 1 1 1 1
[ ] [ ]

1 1 2 4 1 2B BT P T P− −   
= = =   − −   

1 1
1 2
 
 
 

2 0
0 3
 
 
 



Orthogonal Matrices 

DEFINITION A square matrix A with the property  
A–1 = AT  

is said to be an orthogonal matrix 
(ортогональная). 
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A square matrix A is orthogonal if and only if 
A AT = ATA = I 



EXAMPLE A rotation matrix  

𝐴𝐴 = cos 𝜃𝜃 − sin 𝜃𝜃
sin 𝜃𝜃 cos 𝜃𝜃  

is orthogonal for all choices of 𝜃𝜃, since 

𝐴𝐴𝑇𝑇𝐴𝐴 = cos 𝜃𝜃 sin 𝜃𝜃
−sin 𝜃𝜃 cos 𝜃𝜃

cos 𝜃𝜃 − sin 𝜃𝜃
sin 𝜃𝜃 cos 𝜃𝜃

= 1 0
0 1  

Note that the row vectors  
𝐫𝐫1 = cos 𝜃𝜃 , − sin 𝜃𝜃 ,  𝐫𝐫2 = sin 𝜃𝜃 , cos 𝜃𝜃  

are orthogonal, since 𝐫𝐫1, 𝐫𝐫2 = 0. 
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THEOREM 4 The following are equivalent for an 
n x n matrix A. 
(a) A is orthogonal. 
(b) The row vectors of A form an orthonormal 
set in ℝn. 
(c) The column vectors of A form an orthonormal 
set in ℝn. 

COROLLARY If P is the transition matrix from 
one orthonormal basis to another orthonormal 
basis for ℝn, then P is an orthogonal matrix.  
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THEOREM 5 
(a) The inverse of an orthogonal matrix is 
orthogonal. 
(b) A product of orthogonal matrices is 
orthogonal. 
(c) If A is orthogonal, then  
                det(A) = 1        or        det(A) = –1. 

EXAMPLE For a rotation matrix 

𝐴𝐴 = cos 𝜃𝜃 − sin 𝜃𝜃
sin 𝜃𝜃 cos 𝜃𝜃  

we have  
det 𝐴𝐴 = cos2 𝜃𝜃 + sin2 𝜃𝜃 = 1 
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The Matrix Diagonalization Problem 
The Eigenvector Problem Given an n x n matrix A, 

does there exist a basis for ℝn consisting of 
eigenvectors of A? 

The Diagonalization Problem (Matrix Form) Given 
an n x n matrix A, does there exist an invertible 
matrix P such that P–1AP is a diagonal matrix? 

  
DEFINITION A square matrix A is called 

diagonalizable if there is an invertible matrix P 
such that P–1AP is a diagonal matrix; the matrix P 
is said to diagonalize A. 
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THEOREM 6 If A is an n x n matrix, then the 
following are equivalent. 
(a) A is diagonalizable. 
(b) A has n linearly independent 
eigenvectors. 
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Diagonalization and 
Quadratic Forms 

Lecture 13 
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Procedure for Diagonalizing a Matrix 

Step 1. Find n linearly independent eigenvectors 
of A, say p1, p2, …, pn. 

Step 2. Form the matrix P having p1, p2, …, pn as 
its column vectors. 

Step 3. The matrix P–1AP will then be diagonal 
with λ1, λ2, … λn as its successive diagonal 
entries, where λi is the eigenvalue 
corresponding to pi for i = 1, 2, …, n. 
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EXAMPLE Find a matrix P that diagonalizes 
 
Solution The characteristic equation of A is  
 
 
and we get the following eigenvalues and eigenvectors: 
 
 
So the matrix A is diagonalizable and 
 
diagonalizes A. As a check,  
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3 2
1 0

A  
=  − 

23 2
det( ) 3 2 0

1
A I

−λ
−λ = = λ − λ + =

− −λ

1 1 2 2

1 2
1: , 2 :

1 1
   

λ = = λ = =   − −   
p p

1 2
1 1

P  
=  − − 

1 1 2 3 2 1 2
1 1 1 0 1 1

P AP− − −   
= =   − − −   

1 0
0 2
 
 
 



THEOREM 2 If v1, v2, …, vk are eigenvectors 
of A corresponding to distinct eigenvalues 
λ1, λ2, … λk, then {v1, v2, …, vk} is a linearly 
independent set. 
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COROLLARY If an n x n  matrix A has n distinct 
eigenvalues, then A is diagonalizable. 



THEOREM 3 If A is a symmetric matrix, then 
(a) The eigenvalues of A are all real numbers. 
(b) Eigenvectors corresponding to distinct 
eigenvalues are orthogonal. 
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THEOREM 4 If A is an n x n matrix, then the 
following are equivalent. 
(a) A is orthogonally diagonalizable. 
(b) A has an orthonormal set of n eigenvectors. 
(c) A is symmetric. 



EXAMPLE  Find an orthogonal matrix P that diagonalizes 

𝐴𝐴 = 7 2
2 4  

Solution The characteristic equation of A is 

det 𝐴𝐴 − 𝜆𝜆𝐼𝐼 = 7 − 𝜆𝜆 2
2 4 − 𝜆𝜆 = 𝜆𝜆2 − 11𝜆𝜆 + 24 = 0 

Solving, we get 

𝜆𝜆1 = 3:  𝐩𝐩1 = 1
−2 ,   𝜆𝜆2 = 8:  𝐩𝐩2 = 2

1  

These vectors are orthogonal. Normalizing them yields 

𝐯𝐯1 = 1 5⁄
− 2 5⁄

,   𝐯𝐯2 = 2 5⁄
1 5⁄

 

Finally, using v1 and v2 as column vectors, we get 

𝑃𝑃 = 1 5⁄ 2 5⁄
− 2 5⁄ 1 5⁄

   and   𝐷𝐷 = 3 0
0 8  
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Quadratic Forms 
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• A linear form: 
a1x1 + a2x2 + … + anxn  

• A quadratic form: 
Ф = 𝑎𝑎11𝑥𝑥1

2 + 𝑎𝑎22𝑥𝑥2
2 + ⋯ + 𝑎𝑎𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛

2 + 
EXAMPLE 
• A quadratic form in the variables x1 and x2 is 

Ф = 𝑎𝑎11𝑥𝑥1
2 + 𝑎𝑎22𝑥𝑥2

2 + 𝑎𝑎12𝑥𝑥1𝑥𝑥2 
• A quadratic form in the variables x1, x2 and x3 is 
 𝑎𝑎11𝑥𝑥1

2 + 𝑎𝑎22𝑥𝑥2
2 + 𝑎𝑎33𝑥𝑥3

2 
+𝑎𝑎12𝑥𝑥1𝑥𝑥2 + 𝑎𝑎13𝑥𝑥1𝑥𝑥3 + 𝑎𝑎23𝑥𝑥2𝑥𝑥3 
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all possible terms  
of the form aij xi xj  

for i < j 

cross-product terms squared terms 



Matrix Representation of Quadratic 
Forms 
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2 2
11 1 22 2 12 1 2a x a x a x x+ + ( ) 11 12 1

1 2
12 22 2

2
2

a a x
x x

a a x
  
  
  

2 2 2
11 1 22 2 33 3 12 1 2 13 1 3 23 2 3a x a x a x a x x a x x a x x+ + + + +

( )
11 12 13 1

1 2 3 12 22 23 2

13 23 33 3

2 2
2 2
2 2

a a a x
x x x a a a x

a a a x

  
  
  
  
  



EXAMPLE 1 Find matrix representation of the 
quadratic form 

 
 
 
EXAMPLE 2 Find the quadratic form from its 

matrix representation 
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2 22 6 7x xy y+ − = ( )
2 3
3 7

x
x y

y
  
  −  

( )
1 5
5 4

x
x y

y
−  

=  −  
2 210 4x xy y− +



• General form of matrix representation: 
  

where x is the column vector of variables, and  
 
 
 

 
 

• A quadratic form in terms of the Euclidean 
inner product: 
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11 12 1

12 22 2

1 2

2 2
2 2

2 2

n

n

n n nn

a a a
a a a

A

a a a

 
 
 =
 
 
 





  



coefficients of the 
squared terms 

half the coefficients 
of the cross-

product terms 

Ф(x) = xTAx 

xTAx = (Ax, x) = (x, Ax) 



Definiteness 
DEFINITION A quadratic form Ф(x) = xTAx is  
• positive definite (положительно 

определенная) if Ф(x) > 0 for all x ≠ 0 (then A 
is a positive definite matrix)  

• negative definite (отрицательно 
определенная) if Ф(x) < 0 for all x ≠ 0 

• indefinite (неопределенная) if Ф(x) has both 
positive and negative values 
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EXAMPLES  
• the form                                 is  
 
 
• the form                                 is 
 
 
• the form                                  is 
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2 2
1 2( ) 2 5x xΦ = +x

2 2
1 2( ) 3x xΦ = − −x

positive 
definite 

2 2
1 2( ) 7 11x xΦ = −x

negative 
definite 

indefinite 
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THEOREM 5 A symmetric matrix A is 
positive definite if and only if all the 
eigenvalues of A are positive. 

THEOREM 6 A symmetric matrix A is 
negative definite if and only if all the 
eigenvalues of A are negative. 



𝐴𝐴 =

𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22

⋯ 𝑎𝑎1𝑛𝑛
⋯ 𝑎𝑎2𝑛𝑛

⋮ ⋮
𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2

⋱ ⋮
⋯ 𝑎𝑎𝑛𝑛𝑛𝑛

 

DEFINITION The leading principal submatrices of A are 

𝐴𝐴1 = 𝑎𝑎11 , 𝐴𝐴2 =
𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22

, 

𝐴𝐴3 =
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

, … , 𝐴𝐴𝑛𝑛 = 𝐴𝐴 

The leading principle minors (угловые миноры) are the 
determinants of these submatrices. 
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Criterion for Definiteness 
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THEOREM 7 (Sylvester’s Criterion for 
Definiteness) A symmetric matrix A is  

• positive definite if and only if det (A1) > 0, 
det (A2) > 0, …  

• negative definite if and only if det (A1) < 0, 
det (A2) > 0, …  

• otherwise, A is indefinite 



EXAMPLE Test for definiteness the matrix  
 
 
 
Solution 
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2 1 3
1 2 4
3 4 9

A
− − 

 = − 
 − 

1 | 2 | 2 0∆ = = >

3

2 1 3
1 2 4
3 4 9

− −
∆ = − =

−

2

2 1
1 2

−
∆ = =

−
3 0>

1 0>

Answer: the matrix A is positive definite. 



Diagonalization of Quadratic Forms 
THEOREM 8 Let Ф = xTAx be a quadratic form in the 

variables x1, x2, …, xn. If P orthogonally diagonalizes 
A, and if x = Py, then  
Ф = 𝐱𝐱𝑇𝑇𝐴𝐴𝐱𝐱 = 𝐲𝐲𝑇𝑇𝐷𝐷𝐲𝐲 = 𝜆𝜆1𝑦𝑦1

2 + 𝜆𝜆2𝑦𝑦2
2 + ⋯ + 𝜆𝜆𝑛𝑛𝑦𝑦𝑛𝑛

2 
where λ1, λ2, …, λn are the eigenvalues of A and 

𝐷𝐷 = 𝑃𝑃𝑇𝑇𝐴𝐴𝑃𝑃 =

𝜆𝜆1 0
0 𝜆𝜆2

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 𝜆𝜆𝑛𝑛
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DEFINITION The matrix P in this theorem is said to 
orthogonally diagonalize the quadratic form or reduce 
the quadratic form to a sum of squares. 



EXAMPLE Find a change of variables that will 
reduce the quadratic form                                     
to a sum of squares, and express the quadratic 
form in terms of the new variables. 

Solution 
 

The characteristic equation of this matrix is 
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2 2
1 2 1 24x x x xΦ = + +

( ) 1
1 2

2

1 2
2 1

x
x x

x
  

Φ =   
  

21 2
det( ) 2 3 0

2 1
A I

−λ
−λ = = λ − λ − =

−λ

so the eigenvalues are λ1 = 3, λ2 = –1. 



Then 
 
 
Thus,  
 
 
or, equivalently, 
 
 
 
The new quadratic form is                         . 
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1 1 2 2

1 2 1 2
3: , 1:

1 2 1 2

   
λ = = λ = − =      −   

p p

1 1

2 2

1 2 1 2

1 2 1 2

x y
x y

    
=      −    

1 1 2

2 1 2

1 2 1 2

1 2 1 2

x y y

x y y

= +

= −

2 2
1 23y yΦ = −



Indices of Inertia  
DEFINITION Suppose  D = PTAP is a diagonal 

matrix. Then 

• the positive index of inertia  i+  : the number 
of positive entries of D 

• the negative index of inertia  i–  : the number 
of negative entries of D 

• the number of zeros of D  i0 

• the rank of A: rank(A) = i+ + i−  
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THEOREM 9 (Law of Inertia for 
Quadratic Forms)  
The positive and the negative indices 
of inertia, and the rank of the 
quadratic form are uniquely defined, 
i.e. are invariants of Ф. 
Useful relationship: 

280 

i+ + i– + i0 = n 



Lagrange's Reduction 

EXAMPLE 
 
 
 
 
Let 
 
Then   

281 

2 2
1 1 2 26 5x x x xΦ = + +

( ) ( )2 22 2
1 2 2 1 2 23 4 3 (2 )x x x x x x= + − = + −

2
1 2

2 2
1 1 2 2

( 3 )

6 9

x x
x x x x
+

= + +

2 2 2 2
1 1 2 2 2 26 9 9 5x x x x x x= + + − +

( )2 2 2
1 2 2 23 9 5x x x x= + − +

1 1 2

2 2

3 ,
2

y x x
y x
= +

 =
2 2
1 2y yΦ = −



Conic Sections and Lines 

Lecture 14 
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DEFINITION Equations of the form 
ax2 + 2bxy + cy2 + dx + ey + f = 0 

where a, b, …, f are real numbers, and at least 
one of the numbers a, b, c is not zero is called 
a quadratic equation in x and y, and 

ax2 + 2bxy + cy2 
is called the associated quadratic form. 
Graphs of quadratic equations are called conics 

(кривые второго порядка) or conic 
sections.  
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Real non-
degenerate 

Real 
degenerate 

Imaginary 

Ellipse:  
𝑥𝑥2

𝑎𝑎2 +
𝑦𝑦2

𝑏𝑏2 = 1 

Intersecting lines: 
𝑥𝑥2

𝑎𝑎2 −
𝑦𝑦2

𝑏𝑏2 = 0 

Imaginary ellipse:  
𝑥𝑥2

𝑎𝑎2 +
𝑦𝑦2

𝑏𝑏2 = −1 

Hyperbola:  
𝑥𝑥2

𝑎𝑎2 −
𝑦𝑦2

𝑏𝑏2 = 1 

Parallel lines:  
 

𝑦𝑦2 − 𝑏𝑏2 = 0 

Imaginary 
parallel lines:  

𝑦𝑦2 + 𝑏𝑏2 = 0 
Parabola:  

𝑦𝑦2 = 2𝑝𝑝𝑥𝑥 
Coincident lines:  

 𝑦𝑦2 = 0 
Imaginary lines, 
intersecting at a real 
point:   

𝑥𝑥2

𝑎𝑎2 +
𝑦𝑦2

𝑏𝑏2 = 0 
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Ellipse: 𝑥𝑥
2

𝑎𝑎2 + 𝑦𝑦2

𝑏𝑏2 = 1 
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PF1 + PF2 = 2a 

P 

F1 (‒ f, 0) F2 (f, 0) 

𝑓𝑓2 = 𝑎𝑎2 − 𝑏𝑏2 

a ‒ a 

b 

‒ b 
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di
re

ct
rix

 

eccentricity 



Hyperbola: 𝑥𝑥
2

𝑎𝑎2 − 𝑦𝑦2

𝑏𝑏2 = 1 

288 

F2 (f, 0) F1 (‒ f, 0) ‒ a a 

|PF1 ‒ PF2|= 2a 𝑓𝑓2 = 𝑎𝑎2 + 𝑏𝑏2 

asymptote 

𝑦𝑦 =
𝑏𝑏
𝑎𝑎

𝑥𝑥 

asymptote 

𝑦𝑦 = −
𝑏𝑏
𝑎𝑎

𝑥𝑥 

P 
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e f a=

http://en.wikipedia.org/wiki/File:Hyperbola_properties.svg


Parabola: 𝑦𝑦2 = 2𝑝𝑝𝑥𝑥  
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1e =

di
re

ct
rix

 



Principal Axes Theorem for ℝ2 

THEOREM 1 Let  
ax2 + 2bxy + cy2 + dx + ey + f = 0  

be the equation of a conic C, and let 
xTAx =  ax2 + 2bxy + cy2 

be the associated quadratic form. Then the coordinate 
axes can be rotated so that the equation for C in the 
new x’y’-coordinate system has the form 

λ1x’2 + λ2y’2 + d’x’ + e’y’ + f = 0 
where λ1 and λ2 are the eigenvalues of A. The rotation can 

be accomplished by the substitution x = Px’, where P 
orthogonally diagonalizes  A and det(P) = 1. 
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Slope-Intercept Equation of a Line 
An equation of a line is  

y = mx + b, 
where m and b are constants 

(parameters):  
• m determines the slope  

(угловой коэффициент) 
of that line,  

• b determines the point at 
which the line crosses the 
y-axis, known as the y-
intercept. 

292 

b

tan( )ym
x

∆
= = θ
∆

 



Properties of a Slope: 
• If m > 0, then the line 

rises from left to right 
• If m = 0, then the line is 

horizontal 
• If m < 0, then the line falls 

from left to right 
• If m is undefined, then 

the line is vertical 
• The greater the absolute 

value of the slope of a 
line, the steeper the line 
is. 
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The Point-Slope Equation of a Line 

Suppose we are given the slope m and the point (x1, y1).          
If (x, y) is any other point on the line, then 

 
We get the point-slope equation of a line: 
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1 1( , )x y
3 3( , )x y

2 2( , )x y
4 4( , )x y

x

y

4 32 1

2 1 4 3

y yy ym
x x x x

−−
= =

− −

1

1

y y m
x x
−

=
−

y – y1 = m(x – x1) 



Principal Axes Theorem for ℝ2 

THEOREM 1 Let  
ax2 + 2bxy + cy2 + dx + ey + f = 0  

be the equation of a conic C, and let 
xTAx =  ax2 + 2bxy + cy2 

be the associated quadratic form. Then the coordinate 
axes can be rotated so that the equation for C in the 
new x’y’-coordinate system has the form 

λ1x’2 + λ2y’2 + d’x’ + e’y’ + f = 0 
where λ1 and λ2 are the eigenvalues of A. The rotation can 

be accomplished by the substitution x = Px’, where P 
orthogonally diagonalizes  A and det(P) = 1. 
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Slope-Intercept Equation of a Line 
An equation of a line is  

y = mx + b, 
where m and b are constants 

(parameters):  
• m determines the slope  

(угловой коэффициент) 
of that line,  

• b determines the point at 
which the line crosses the 
y-axis, known as the y-
intercept. 

296 

b

tan( )ym
x

∆
= = θ
∆

 



Properties of a Slope: 
• If m > 0, then the line 

rises from left to right 
• If m = 0, then the line is 

horizontal 
• If m < 0, then the line falls 

from left to right 
• If m is undefined, then 

the line is vertical 
• The greater the absolute 

value of the slope of a 
line, the steeper the line 
is. 
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http://en.wikipedia.org/wiki/File:Linear_Function_Graph.svg


The Point-Slope Equation of a Line 

Suppose we are given the slope m and the point (x1, y1).          
If (x, y) is any other point on the line, then 

 
We get the point-slope equation of a line: 
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1 1( , )x y
3 3( , )x y

2 2( , )x y
4 4( , )x y

x

y

4 32 1

2 1 4 3

y yy ym
x x x x

−−
= =

− −

1

1

y y m
x x
−

=
−

y – y1 = m(x – x1) 



Vector Equation of a Line: 
 
 
Parametric Equations of a Line:  
 
 
 
(t is a parameter, t ∊ ℝ) 
Symmetric Equation of a Line:  

299 

x

y

0 0 0( , )P x y

0r
p

r

r = r0 + tp 

0 1

0 2

x x tp
y y tp
= +

 = +

0 0

1 2

x x y y
p p
− −

=

Suppose a line contains a point P0(x0, y0) and has a 
direction vector p = (p1, p2). Then 

𝑃𝑃(𝑥𝑥, 𝑦𝑦) 

 



EXAMPLE 

Find the equations of the line passing through 
the point (7, 9) and having the direction vector 
p = (–3, 5). 

Solution  
• parametric equations: 
 
• symmetric equation: 
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7 3
9 5

x t
y t
= −

 = +

7 9
3 5

x y− −
=

−



Two-Point Equation of a Line 

 EXAMPLE Find the equation of the line passing through 
P1(2, –1) and P2(4, 5)  
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1 1

2 1 2 1

x x y y
x x y y
− −

=
− −

2 1
4 2 5 1
x y− +

=
− +

2 1
2 6

x y− +
=

 



Intercept Equation of a Line 

302 



Distance Between a Point and a Line 

THEOREM 3 The distance D between a 
point P0(x0, y0) and the line l: ax + by + c = 
0 can be found using the formula 
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0 0
0 2 2

| |( , ) ax by cD P l
a b
+ +

=
+



Using the Distance Formula 

EXAMPLE  
Find the distance d from the point (1, –2) to the 

line 3x + 4y – 6 = 0. 
 
Solution  
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𝐷𝐷 =
|3 ∙ 1 + 4 ∙ −2 − 6|

32 + 42
=

| − 11|
25

= 2.2 



Conic Sections and Lines 

Lecture 15 

305 



Parallel Lines 

306 

Lines 𝑙𝑙1 and 𝑙𝑙2 are 
parallel 

their direction vectors 
v and w are collinear 

𝑙𝑙1:
𝑥𝑥 − 𝑥𝑥1

𝑣𝑣1
=

𝑦𝑦 − 𝑦𝑦1

𝑣𝑣2
 

is parallel to 

𝑙𝑙2:
𝑥𝑥 − 𝑥𝑥2

𝑤𝑤1
=

𝑦𝑦 − 𝑦𝑦2

𝑤𝑤2
 

𝑣𝑣1

𝑣𝑣2
=

𝑤𝑤1

𝑤𝑤2
 

1l

2l

v 

w 



EXAMPLE Find the symmetric equation of a line 
through the point P0(2, 6) that is parallel to 
𝑥𝑥 − 1

3
=

𝑦𝑦 + 7
5

 

                                        
EXAMPLE Find a pair of parallel lines: 
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1
11 9:
2 4

x yl + −
=

− 2
1 2:

1 3
x yl + −

=
−

3
2 4:

2 1
x yl − +

= 4
5 1:

3 6
x yl − +

=
−

Answer:  
𝑥𝑥 − 2

3
=

𝑦𝑦 − 6
5

 

Answer: 𝑙𝑙1 and 𝑙𝑙4 



Parallel Lines 

308 

Lines 𝑙𝑙1 and 𝑙𝑙2 are 
parallel 

their normal vectors 
n1 and n2 are collinear 

Lines 
 𝑙𝑙1: 𝑎𝑎1𝑥𝑥 + 𝑏𝑏1𝑦𝑦 + 𝑐𝑐1 = 0 

and  
𝑙𝑙2: 𝑎𝑎2𝑥𝑥 + 𝑏𝑏2𝑦𝑦 + 𝑐𝑐2 = 0 

are parallel 

𝑎𝑎1

𝑎𝑎2
=

𝑏𝑏1

𝑏𝑏2
 1n

2n1l

2l



EXAMPLE Find the standard equation of a line through 
the point P0(–7, 2) that is parallel to the line              
3x – 2y + 15 = 0. 

 Answer:   
 
 
EXAMPLE Find a pair of parallel lines:  
 
 
 
                         Answer:      

309 

l2 and l3 

Point-normal form: 3(x + 7) – 2(y – 2) = 0 

Standard form: 3x – 2y + 25 = 0 

l1: 2x + 5y = 11,                            l2: – x + 3y + 7 = 0,   
l3: 2(x + 1) – 6(y – 2) = –5,                  l4: 5x – 2y = 1 



Perpendicular Lines 

310 

Lines 𝑙𝑙1 and 𝑙𝑙2 are 
perpendicular 

their direction vectors 
v and w are orthogonal 

𝑥𝑥 − 𝑥𝑥1

𝑣𝑣1
=

𝑦𝑦 − 𝑦𝑦1

𝑣𝑣2
 

is perpendicular 
to 

𝑥𝑥 − 𝑥𝑥2

𝑤𝑤1
=

𝑦𝑦 − 𝑦𝑦2

𝑤𝑤2
 

𝐯𝐯, 𝐰𝐰 = 𝑣𝑣1𝑤𝑤1 + 𝑣𝑣2𝑤𝑤2 = 0 

1l2l

v 
w 



EXAMPLE Given the line 

𝑙𝑙:
𝑥𝑥 − 3

7
=

𝑦𝑦 − 4
−9

 

• find the symmetric equation of a line 𝑙𝑙1 through the 
point P1(5, –2) that is perpendicular to 𝑙𝑙.  

Solution:                                            
  
• find the standard equation of a line 𝑙𝑙2 through the 

point P2(1, 1) that is perpendicular to 𝑙𝑙. 
Solution: 
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l 1l 2l

n
(7, 9)= −n

𝐯𝐯 = (7, −9), 
𝐰𝐰 = (9, 7) 

v 
w 

Answer: 
𝑥𝑥−5

9
= 𝑦𝑦+2

7
 

Answer: 7 𝑥𝑥 − 1 − 9 𝑦𝑦 − 1 = 0 ↔ 7𝑥𝑥 − 9𝑦𝑦 + 2 = 0 



Perpendicular Lines 

312 

Lines 𝑙𝑙1 and 𝑙𝑙2 are 
perpendicular 

their normal vectors n1 
and n2 are orthogonal 

Lines 
𝑙𝑙1: 𝑎𝑎1𝑥𝑥 + 𝑏𝑏1𝑦𝑦 + 𝑐𝑐1 = 0 

and  
𝑙𝑙2: 𝑎𝑎2𝑥𝑥 + 𝑏𝑏2𝑦𝑦 + 𝑐𝑐2 = 0 

 are perpendicular 

𝐧𝐧1, 𝐧𝐧2  
= 𝑎𝑎1𝑎𝑎2 + 𝑏𝑏1𝑏𝑏2 = 0 

1n

2n
1l2l



EXAMPLE Given the line 𝑙𝑙: 4x + y + 7 = 0,  
• find the standard equation of a line 𝑙𝑙1 through the 

point P1(–5, –8) that is perpendicular to 𝑙𝑙.  
Solution:                Answer:  
  
 
• find the symmetric equation of a line 𝑙𝑙2 through the 

point P2(3, –12) that is perpendicular to 𝑙𝑙.  
Solution: 
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1l 2l

1n

1

2

(4,1)
(1, 4)

=
= −

n
n

Point-normal form: 1(x + 5) – 4(y + 8) = 0 
Standard form: x – 4y – 27 = 0 

2n𝐯𝐯 = (4,1) v 

Answer:  
𝑥𝑥 − 3

4
=

𝑦𝑦 + 12
1

 𝑙𝑙 



Angle between Two Lines 

 
 

 
 
 
EXAMPLE Find the cosine of an angle between the lines 
𝑙𝑙1: 6x + 5y – 3 = 0 and 𝑙𝑙2: 2x – 7y + 1 = 0 
Answer:  
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θ θ

1n
2n

| 6 2 5 ( 7) | 23cos
36 25 4 49 61 53
⋅ + ⋅ −

θ = =
+ ⋅ +

v 

w 

cos 𝜃𝜃 =
|(𝐯𝐯, 𝐰𝐰)|

| 𝐯𝐯 | ∙ | 𝐰𝐰 |
 cos 𝜃𝜃 =

|(𝐧𝐧1, 𝐧𝐧2)|
| 𝐧𝐧1 | ∙ | 𝐧𝐧2 |

 



Planes in 3-Space 

315 



Task Find the equation of the plane passing 
through the point  P0(x0, y0, z0) and having the 
nonzero vector n = (a, b, c) as a normal.  

 
The plane consists of points P(x, y, z) for which  

𝐧𝐧, 𝑃𝑃0𝑃𝑃 = 0 

Since 𝑃𝑃0𝑃𝑃 = (𝑥𝑥 − 𝑥𝑥0, 𝑦𝑦 − 𝑦𝑦0, 𝑧𝑧 − 𝑧𝑧0), we have  
 
This is the point-normal equation of a plane. 

316 

a(x – x0) + b(y – y0) + c(z – z0) = 0 



EXAMPLE Find an equation of the plane passing 
through the point (3, –1, 7) and perpendicular to 
the vector n = (4, 2, –5). 

Solution A point-normal form is  
4(x – 3) + 2(y + 1) – 5(z – 7) = 0 ⇔ 

4x + 2y – 5z + 25 = 0 
 DEFINITION The equation of the form 

 
where a, b, c, and d are constants, which are not all 

zero, is called the general (standard) form of the 
equation of a plane.  

This plane has the vector n = (a, b, c) as a normal. 
 317 

ax + by + cz + d = 0 



Equation of a Plane  
Through Three Points 

THEOREM 1 The equation of the plane passing 
through three points P1(x1, y1, z1), P2(x2, y2, z2), 
and P3(x3, y3, z3) that do not lie in the same 
line is 

𝑥𝑥 − 𝑥𝑥1 𝑦𝑦 − 𝑦𝑦1 𝑧𝑧 − 𝑧𝑧1
𝑥𝑥2 − 𝑥𝑥1 𝑦𝑦2 − 𝑦𝑦1 𝑧𝑧2 − 𝑧𝑧1
𝑥𝑥3 − 𝑥𝑥1 𝑦𝑦3 − 𝑦𝑦1 𝑧𝑧3 − 𝑧𝑧1

= 0 
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Proof 

319 

A point P(x, y, z) lies in the plane 

The vectors                                                ,  
                                                    , and   
                                                     are linearly dependent 

1 1 1 1( , , )PP x x y y z z= − − −


1 2 2 1 2 1 2 1( , , )PP x x y y z z= − − −


1 3 3 1 3 1 3 1( , , )PP x x y y z z= − − −


𝑥𝑥 − 𝑥𝑥1 𝑦𝑦 − 𝑦𝑦1 𝑧𝑧 − 𝑧𝑧1
𝑥𝑥2 − 𝑥𝑥1 𝑦𝑦2 − 𝑦𝑦1 𝑧𝑧2 − 𝑧𝑧1
𝑥𝑥3 − 𝑥𝑥1 𝑦𝑦3 − 𝑦𝑦1 𝑧𝑧3 − 𝑧𝑧1

= 0 

1P

2P

3P

P



EXAMPLE Find the equation of the plane passing 
through the points P1(1, 2, –1), P2(2, 3, 1), and 
P3(3, –1, 2). 

Solution 
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1 2 1
2 1 3 2 1 1
3 1 1 2 2 1

x y z− − +
− − + =
− − − +

1 2 1
1 1 2 0
2 3 3

x y z− − +
=

−

1 2 1 2 1 1
( 1) ( 2) ( 1) 0

3 3 2 3 2 3
x y z− − − + + =

− −

9( 1) ( 2) 5( 1) 0x y z− + − − + =

9 5 16 0x y z+ − − =



Parametric Equations of a Line  
in 3-Space 

Suppose that l is a line in 3-space through the 
point P0(x0, y0, z0) and parallel to the nonzero 
vector v = (v1, v2, v3), which is called the 
direction (направляющий) vector. 

Then l consists precisely of those points P(x, y, z) 
for which 𝑃𝑃0𝑃𝑃 = 𝑡𝑡𝐯𝐯. 
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P0 
P 

v 



In terms of components, this can be written as 
(x – x0, y – y0, z – z0) = (tv1, tv2, tv3) 

So x – x0 = tv1, y – y0 = tv2, and z – z0 = tv3  
We get the equations 
 
 
 
 
which are called the parametric equations for l. 
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�
𝑥𝑥 = 𝑥𝑥0 + 𝑡𝑡𝑣𝑣1
𝑦𝑦 = 𝑦𝑦0 + 𝑡𝑡𝑣𝑣2
𝑧𝑧 = 𝑧𝑧0 + 𝑡𝑡𝑣𝑣3

,   −∞ < 𝑡𝑡 < +∞ 



EXAMPLE 
The line through the point (1, 2, –3) and parallel 

to the vector v = (4, 5, –7) has the parametric 
equations 
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1 4
2 5 ,
3 7

x t
y t t

z t

= +
 = + −∞ < < +∞
 = − −



Symmetric Equations of a Line 
Consider the parametric equations for a line  

𝑥𝑥 = 𝑥𝑥0 + 𝑡𝑡𝑣𝑣1, 𝑦𝑦 = 𝑦𝑦0 + 𝑡𝑡𝑣𝑣2, and 𝑧𝑧 = 𝑧𝑧0 + 𝑡𝑡𝑣𝑣3 
If 𝑣𝑣1, 𝑣𝑣2, and 𝑣𝑣3 are all nonzero, we solve for t: 

𝑥𝑥 − 𝑥𝑥0

𝑣𝑣1
= 𝑡𝑡,

𝑦𝑦 − 𝑦𝑦0

𝑣𝑣2
= 𝑡𝑡,

𝑧𝑧 − 𝑧𝑧0

𝑣𝑣3
= 𝑡𝑡 

Symmetric equations (канонические уравнения): 
𝑥𝑥 − 𝑥𝑥0

𝑣𝑣1
=

𝑦𝑦 − 𝑦𝑦0

𝑣𝑣2
=

𝑧𝑧 − 𝑧𝑧0

𝑣𝑣3
 

If, for example, 𝑣𝑣1 = 0, the symmetric equations become  

𝑥𝑥 − 𝑥𝑥0 = 0   and    𝑦𝑦−𝑦𝑦0
𝑣𝑣2

= 𝑧𝑧−𝑧𝑧0
𝑣𝑣3
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Two-Point Form Equations of a Line 

If the line l passes through two points P0(x0, y0, z0) and 
P1(x1, y1, z1), then the vector   

𝐯𝐯 = 𝑃𝑃0𝑃𝑃1 = (𝑥𝑥1 − 𝑥𝑥0, 𝑦𝑦1 − 𝑦𝑦0, 𝑧𝑧1 − 𝑧𝑧0) 
is parallel to the line. We get the two-point equations:  

�
𝑥𝑥 = 𝑥𝑥0 + 𝑡𝑡(𝑥𝑥1 − 𝑥𝑥0)
𝑦𝑦 = 𝑦𝑦0 + 𝑡𝑡(𝑦𝑦1 − 𝑦𝑦0)
𝑧𝑧 = 𝑧𝑧0 + 𝑡𝑡(𝑧𝑧1 − 𝑧𝑧0)

 

or symmetric equations: 
𝑥𝑥 − 𝑥𝑥0

𝑥𝑥1 − 𝑥𝑥0
=

𝑦𝑦 − 𝑦𝑦0

𝑦𝑦1 − 𝑦𝑦0
=

𝑧𝑧 − 𝑧𝑧0

𝑧𝑧1 − 𝑧𝑧0
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0 1P P=v


0P

1P



EXAMPLE  
The line passing through the points (1, 2, 3) and 

(4, 6, 9) has the two-point form equations:   
 
 
 
 
and the symmetric equations: 
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1 (4 1)
2 (6 2)
3 (9 3)

x t
y t
z t

= + −
 = + −
 = + −

1 3
2 4
3 6

x t
y t
z t

= +
 = +
 = +

1 2 3
3 4 6

x y z− − −
= =



EXAMPLE Intersection of a Line 
and a Plane 

(a) Find parametric equations for the line l 
passing through the points P1(2, 4, –1) and 
P2(5, 0, 7). 

(b) Where does the line intersect the xy-plane? 
(c) Where does the line intersect the plane         

𝜋𝜋: 2x – y + 3z – 65 = 0? 
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Solution (a) Since 𝑃𝑃1𝑃𝑃2 = 3, −4,8 ||𝑙𝑙 and P1(2, 4, –1)∊l,  
x = 2 + 3t,    y = 4 – 4t,    z = –1 + 8t  (–∞ < t < +∞) 

Solution (b) The line l intersects the xy-plane at the point 
where 

 z = –1 + 8t = 0    ⇔   t = 1/8  
Substituting this value of t for l yields  

𝑥𝑥, 𝑦𝑦, 𝑧𝑧 =
19
8

,
7
2

, 0  

Solution (c) Suppose the line l intersects 𝜋𝜋 at the point 
P0(2 + 3t, 4 – 4t, –1 + 8t) for some t. Since P0 ∊ 𝜋𝜋,  

2(2 + 3t) – (4 – 4t) + 3(–1 + 8t) – 65 = 0  ⇔   t = 2 
Thus,  

P0(2 + 3⋅2, 4 – 4⋅2, –1 + 8⋅2) = (8, – 4, 15) 
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EXAMPLE Line of Intersection of Two 
Planes 

Find parametric equations for the line of 
intersection of the planes 3x + 2y – 4z – 6 = 0 
and x – 3y – 2z – 4 = 0 

Solution 
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�3𝑥𝑥 + 2𝑦𝑦 − 4𝑧𝑧 − 6 = 0
𝑥𝑥 − 3𝑦𝑦 − 2𝑧𝑧 − 4 = 0  

𝑥𝑥 =
26
11

+
16
11

𝑡𝑡

𝑦𝑦 = −
6

11
−

2
11

𝑡𝑡
𝑧𝑧 = 𝑡𝑡

 

These are the parametric equations of the line. 



Distance Between a Point and a Plane 

THEOREM 3 The distance D between a 
point P0(x0, y0, z0) and the plane              
ax + by + cz + d = 0 is 
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0 0 0
2 2 2

| |ax by cz dD
a b c
+ + +

=
+ +



EXAMPLE Find the distance D between the point 
(1, –4, –3) and the plane 2x – 3y + 6z = –1. 

Solution 
First rewrite the equation of the plane in the 

form 
2x – 3y + 6z + 1 = 0 

Then 
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2 2 2

| 2 1 ( 3)( 4) 6( 3) 1| | 3 | 3
7 72 ( 3) 6

D ⋅ + − − + − + −
= = =

+ − +



EXAMPLE Find the distance between parallel 
planes x + 2y – 2z = 3 and 2x + 4y – 4z = 7. 

Solution 
Idea: select an arbitrary point in one plane and 

compute the distance to the other plane.  
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2 2 2

| 2 3 4 0 ( 4) 0 7 | 1
62 4 ( 4)

D ⋅ + ⋅ + − ⋅ −
= =

+ + −

y = z = 0 in  
x + 2y – 2z = 3 P0(3, 0, 0) 



Planes and Convex Hulls 

Lecture 16 
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The Angle between Two Planes 

• the angle between 
their normals if it is 
acute 

• the supplementary 
angle otherwise  
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Dihedral angle (двугранный угол) between the 
planes = the smaller (acute) angle between them 

The angle between the two planes is equal to  



EXAMPLE Find the dihedral angle between the 
planes having equations 2x + 3y – 4z = 5 and 
4x – 2y + 3z = 6. 

Solution A pair of normals to the given planes 
are n1 = (2, 3, –4) and n2 = (4, –2, 3). The 
cosine of the angle between n1 and n2 is  

 
 
Since the cosine is negative, then the angle is 

obtuse. Therefore, the angle between two 
planes is  
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1 2

1 2

( , ) 8 6 12 10cos
|| || || || 294 9 16 16 4 9

− −
θ = = = −

⋅ + + + +
n n

n n

arccos(10/29) = cos–1(10/29) 



Relative Position of Two Lines 
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two lines in ℝ2 

coincident intersecting parallel 
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two lines in ℝ3 

coincident 

intersecting 

parallel skew (скрещивающиеся) 



Determining the Relative Position of 
Two Lines 
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the direction vectors are 

linearly dependent linearly independent 

the lines are 
parallel or equal 

the lines are skew 
or intersecting 

1v

2v

1v

2v



EXAMPLE Verify whether two lines 
𝑥𝑥−2
−1

= 𝑦𝑦+3
2

= 𝑧𝑧−7
3

   and   𝑥𝑥+1
2

= 𝑦𝑦−5
−4

= 𝑧𝑧−2
−6

 
are parallel, coincident, intersecting or skew. 
Solution The direction vectors  

v1 = (–1, 2, 3) and v2 = (2, –4, –6)  
are collinear ⇒ l1 and l2 are parallel or 

coincident  
Take a point P1(2, –3, 7) on the line l1 and check 

if it also belongs to l2.  
P1 ∉ l2 ⟹ the lines are parallel  
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EXAMPLE Verify whether two lines 
𝑥𝑥−2
−1

= 𝑦𝑦+3
2

= 𝑧𝑧−7
3

   and   𝑥𝑥+1
3

= 𝑦𝑦−5
−1

= 𝑧𝑧−2
7

 
are parallel, coincident, intersecting or skew. 
Solution The direction vectors  

v1 = (–1, 2, 3) and v2 = (3, –1, 7) 
are not collinear ⇒ l1 and l2 are intersecting or skew.  
Create the vector from P1(2, –3, 7) ∊ l1 to P2(–1, 5, 2) ∊ 

l2. If 𝑃𝑃1𝑃𝑃2 = (−3,8, −5) is linearly dependent with v1 
and v2, then the lines are intersecting. If not, they are 
skew.  

−1 2 3
3 −1 7

−3 8 −5
= 102 ≠ 0  

⟹   the lines are skew 
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1v

2v

1 2PP




The Angle between Skew Lines  
EXAMPLE Find the angle between 
l1:  x = 2 + 3t,    y = 4 – t,    z = 3 + 2t 
l2:  x = 1 – t,    y = 5 + 2t,    z = 6 + 3t 
  
 
Solution  

v1 = (3, –1, 2) || l1 and v2 = (–1, 2, 3) || l2.  
The angle 𝜃𝜃 between the lines = the angle between the 

vectors v1 and v2: 

cos 𝜃𝜃 =
(𝐯𝐯1, 𝐯𝐯2)

𝐯𝐯1 ∙ 𝐯𝐯2
=

−3 − 2 + 6
9 + 1 + 4 ∙ 1 + 4 + 9

=
1

14
 

So the angle is  𝜃𝜃 = arccos(1/14).  
 341 

θ

1v

1v

2v



The Angle between  
a Line and a Plane 

EXAMPLE Find the angle between the line x = 5 – 2t, y = 4 + 7t, z 
= 1 + 4t and the plane 3x – y + 2z + 21 = 0. 

Solution The direction vector is v = (–2, 7, 4), the normal vector is 
n = (3, –1, 2). Then 

(𝐯𝐯, 𝐧𝐧)
𝐯𝐯 ∙ 𝐧𝐧

=
−6 − 7 + 8

4 + 49 + 16 ∙ 9 + 1 + 4
=

−5
966

 

So the angle is 𝜃𝜃 = 𝜋𝜋
2

− arccos 5
966

= arcsin 5
966

. 
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𝜃𝜃 = 𝜋𝜋/2 – (angle between v and n)  

Line → direction vector v 
Plane → normal vector n 



Lines in ℝn  
DEFINITION Given vectors p and v ≠ 0 in ℝn, the set of all 

points x in ℝn such that 
x = p + tv,    where –∞ < t < ∞,  

is called the line through p in the direction of v. 
This equation is called a vector equation for the line.  
If  x = (x1, … , xn), v = (v1, …, vn), and p = (p1, …, pn), then 

(x1, …, xn) = (p1, …, pn) + t(v1, …, vn)  
which holds if and only if 
                     x1 = p1 + tv1  
   ... 
           xn = pn + tvn 
These are parametric equations  
for the line in ℝn. 
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p
v



EXAMPLE Suppose l is the line in ℝ4 through            
P0(1, 2, –7, 8) in the direction of v = (1, –3, 2, 11) 

Then the parametric equations of l are   
x1 = 1 + t  

x2 = 2 – 3t  
x3 = –7 + 2t 
x4 = 8 + 11t 

Note that if we solve for t in both of these 
equations and exclude this variable, we get 

𝑥𝑥1 − 1
1

=
𝑥𝑥2 − 2

−3
=

𝑥𝑥3 + 7
2

=
𝑥𝑥4 − 8

11
 

These are just the symmetric equations of a line. 
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Segments in ℝn 
Suppose we have two distinct points A = p and  
B = q. Consider the vector v = q – p.  
Then all points x = p + tv, where 0 ≤ t ≤ 1, lie on 

the segment joining p and q. Thus the equation  
x = p + tv 

where 0 ≤ t ≤ 1, determines  
the segment joining p and q.  
It can be rewritten in the form 
           x = p + t(q – p) 
or          x = (1 – t)p + tq 
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p v

q

A

B



If x = (x1, … , xn), p = (p1, …, pn), and q = (q1, …, qn), then  
v = q – p = (q1 – p1, …, qn – pn),  

and the segment equation may be written as  
(x1, …, xn) = (p1, …, pn) + t(q1 – p1, …, qn – pn) 

which holds if and only if 
x1 = p1 + t(q1 – p1) 

... 
xn = pn + t(qn – pn) 

These equations are called parametric equations for the 
segment in ℝn. They can be rewritten in the form 

x1 = (1 – t)p1 + tq1  
... 

xn = (1 – t)pn + tqn  
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EXAMPLE Find a parametric equation of the 
segment joining the points A(1, 2, 3, 4) and 
B(–1, 3, –5, 2). 

Solution 
 
 

or 
 

t = 0  ⟹ we get A 
t = 1  ⟹ we get B 
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1

2

3

4

(1 )
2(1 ) 3
3(1 ) 5
4(1 ) 2

x t t
x t t
x t t
x t t

= − −
= − +
= − −

= − +

1

2

3

4

1 2
2
3 8
4 2

x t
x t
x t
x t

= −
= +
= −

= −



EXAMPLE Verify whether the point Q(8, 1, –4, –2) 
belongs to the segment joining A(5, 2, –1, –4) and 
B(20, –3, –16, 6). 

Solution The parametric equations for the segment: 
𝑥𝑥1 = 5 + 15𝑡𝑡
𝑥𝑥2 = 2 − 5𝑡𝑡

𝑥𝑥3 = −1 − 15𝑡𝑡
𝑥𝑥4 = −4 + 10𝑡𝑡

 

Then solve the system of equations 
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�
5 + 15𝑡𝑡 = 8
2 − 5𝑡𝑡 = 1

−1 − 15𝑡𝑡 = −4
−4 + 10𝑡𝑡 = −2

 𝑡𝑡 =
1
5
 

Since 0 ≤ 1/5 ≤ 1, then Q lies on the segment.  



Hyperplanes in ℝn 
DEFINITION Suppose n and p are vectors in ℝn with n ≠ 0. 

The set of all vectors x in ℝn which satisfy the equation 
                                                                                              
 
is called a hyperplane through the point p. We call n a 

normal vector for the hyperplane and we call this 
equation a normal equation for the hyperplane. 

Let n = (a1, a2, …, an), p = (p1, p2, …, pn), and x = (x1, x2, …, 
xn), then  (1)  ⟹ 

a1(x1 – p1) + a2(x2 – p2) + …+ an(xn – pn) = 0 
or 
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n⋅(x – p) = 0 (1) 

a1x1 + a2x2 + … + anxn + d = 0 



Hyperplanes in ℝ2, ℝ3, and ℝ4 

Space Hyperplane Equation 
ℝ1 a point ax + b = 0 ⇔ x = –b/a 
ℝ2 a line ax + bx + c = 0 
ℝ3 a plane ax + bx + cz + d = 0 
ℝn an (n – 1)-dimensional 

affine subspace 
a1x1 + a2x2 + … + anxn + d = 0 

350 

EXAMPLE The set of all points (x, y, z, w) in ℝ4 which satisfy 
– x + 4y + 2z + 3w = 5 

is a 3-dimensional hyperplane with the normal vector  
n = (3, –1, 4, 2). 



Angles between Hyperplanes 

DEFINITION Let G and H be hyperplanes in ℝn with 
normal equations 

m ⋅ (x – p) = 0   and   n ⋅ (x – q) = 0 
respectively, chosen so that m ⋅ n ≥ 0. Then the 

angle between G and H is the angle between m 
and n.  

Moreover, we will say that  
• G and H are orthogonal if m and n are 

perpendicular  
• G and H are parallel if m and n are parallel 
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EXAMPLE 1 Find the angle 𝜃𝜃 between the two 
planes in ℝ4 with equations 
x + 2y – z + 5w + 7 = 0   and   x – 3y – z – 2w = 5 

Solution First note that m = (1, 2, –1, 5) and n = (1, –
3, –1, –2). Since m ⋅ n = –14, we will compute the 
angle between m and – n. Hence 

 
 
 
EXAMPLE 2 The planes in ℝ4 with equations 
3x + y – 2z + 7w = 3    and    6x + 2y – 4z + 14w = 13 

are parallel since their normal vectors m = (3, 1, –2, 
7) and n = (6, 2, –4, 14) are parallel. 
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( , ) 14cos
|| || || || 31 15

−
θ = =

⋅
m n
m n

14arccos
31 15

 θ =  
 



DEFINITION A half-space is either of the two 
parts into which a hyperplane divides ℝn.  

It may be specified by a non-strict inequality: 
a1x1 + a2x2 + … + anxn + d ≥ 0 

where  not all of the real numbers a1, a2, ..., an 
are zero. 
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Space Half-Space Equation 
ℝ1 a ray ax + b ≥ 0 
ℝ2 a half-plane ax + bx + c ≥ 0 
ℝ3 a half-space ax + bx + cz + d ≥ 0 



How to graph a half-plane ax + by + c ≥ 0?  
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1) Graph the line ax + by + c = 0. This line divides the plane into 
two halves.  

2) Choose a test point (x0, y0) not on the line.  
• The coordinates of (x0, y0) satisfy the inequality  ⟹ so do all 

points on the same side of the line ⟹ shade that whole area.  
• The coordinates of (x0, y0) do not satisfy the original inequality 

⟹ shade the portion of the plane on the side of the line in 
which (x0, y0) does not lie. 

 

0ax by c+ + ≥

0ax by c+ + ≤

0 0( , )x y



EXAMPLE Graph 4x – y – 2 ≥ 0.  
Solution We first graph the line 4x – y – 2 = 0. 

We now choose a convenient point not on the 
line, say (0, 0), and plug its coordinates into 
our original inequality: 

       4 ⋅ 0 – 0 – 2 ≥ 0,   (False!) 
Since the inequality does  
not hold, we shade in the  
portion of the plane lying  
on the other side then (0, 0). 
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Convex Sets 
DEFINITION A set C in ℝn is said to be convex if for 

every p, q ∊ C and every real number t, 0 < t < 1, the 
point (1 – t)p + tq ∊ C. 

Geometrically: a set is convex if, given two points in the 
set, every point on the line segment joining these 
two points is also a member of the set.  
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convex nonconvex 



EXAMPLES of convex sets: 
• a point 
• a line 
• a half-line (a ray) 
• a plane 
• a half-plane 
• a half-space 
• a hyperplane 
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THEOREM The intersection of any 
collection of convex sets is convex. 
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DEFINITION A set which can be expressed as the 
intersection of a finite number of closed spaces is 
said to be a polytope (многогранник).  
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DEFINITION A 
nonempty bounded 
polytope is called a 
polyhedron 
(ограниченный 
многогранник).  

COROLLARY Any 
polytope is a convex 
set. 



Convex Hulls 
DEFINITION The convex hull or convex envelope 

(выпуклая оболочка точек) of a set X of points is 
the smallest convex set that contains X.  

Formally, the convex hull may be defined as the 
 intersection of all convex sets  
containing X or as the set of all  
convex combinations  
of points in X.  
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When X is a finite point set on the plane, the 
convex hull may be visualized as the shape 
formed by a rubber band stretched around X.  
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Convex Hull of a Finite Point Set 

EXAMPLE Point out all vertices of a convex hull of the following 
finite point set: A(1, 2), B(2, 1), C(2, 4), D(1, 3), and E(–4, –1). 

 

362 Answer: B, C, E 
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