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CHAPTER 8

Analytic Geometry in Two
and Three Dimensions

8.1

8.2
8.3
8.4

8.6

8.6

Conic Sections and
Parabolas

Ellipses
Hyperbolas

Translation and
Rotation of Axes

Polar Equations of
Conics

Three-Dimensional
Cartesian
Coordinate System

The oval-shaped lawn behind the White House in
Washington, D.C. is called the Ellipse. It has views of the
Washington Monument, the Jefferson Memorial, the
Department of Commerce, and the Old Post Office Building.
The Ellipse is 616 ft long, 528 ft wide, and is in the shape of
a conic section. Its shape can be modeled using the methods
of this chapter. See page 652.
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SECTION 8.6 Three-Dimensional Cartesian Coordinate System 685

Three-Dimensional Cartesian Coordinate System

What you'll learn about

B Three-Dimensional Cartesian
Coordinates

B Distance and Midpoint
Formulas

® Equation of a Sphere
® Planes and Other Surfaces
® Vectors in Space

B Lines in Space

. . » and why

This is the analytic geometry of
our physical world.

OBJECTIVE

Students will be able to draw three-
dimensional figures and analyze vectors
in space.

MOTIVATE

Ask students why it might be desirable to
create a coordinate system representing
three-dimensional space.

LESSON GUIDE

Day 1: Three-Dimensional Cartesian
Coordinates; Distance and Midpoint
Formulas; Equation of a Sphere

Day 2: Planes and Other Surfaces; Vectors
in Space; Lines in Space

\ _— Origin
\

0,0,0)

Three-Dimensional Cartesian Coordinates

In Sections P.2 and P4, we studied Cartesian coordinates and the associated basic
formulas and equations for the two-dimensional plane; we now extend these ideas
to three-dimensional space. In the plane, we used two axes and ordered pairs to
name points; in space, we use three mutually perpendicular axes and ordered triples
of real numbers to name points. See Figure 8.46.

Z

Z = constant
(©, 07
A ©. . 2)
! 4
[
B Pix, y, 2)
N

| 00
y

7
(x,0,0) -~ 4
/ / y = constant
®
KX constant (x, v, 0)

FIGURE 8.46 The point P(x, y, z) in Cartesian space.

x,0,2)®

Notice that Figure 8.46 exhibits several important features of the three-dimensional
Cartesian coordinate system:

* The axes are labeled x, v, and z, and these three coordinate axes form a
right-handed coordinate frame: When you hold your right hand with fingers
curving from the positive x-axis toward the positive y-axis, your thumb points in
the direction of the positive z-axis.

A point P in space uniquely corresponds to an ordered triple (x, v, z) of real numbers.
The numbers x, v, and 7 are the Cartesian coordinates of P.

» Points on the axes have the form (x, 0, 0), (0, v, 0), or (0, 0, z), with (x, 0, 0} on
the x-axis, (0, v, 0) on the y-axis, and (0, 0, z)} on the z-axis.

In Figure 8.47, the axes are paired to determine the coordinate planes:

* The coordinate planes are the xy-plane, the xz-plane, and the yz-plane, and
have equations z = 0, y = 0, and x = 0, respectively.

* Points on the coordinate planes have the form (x, v, 0), (x, 0, z), or (0, y, z), with
(x, v, 0) on the xy-plane, (x, 0, z) on the xz-plane, and (0, v, z) on the yz-plane.

 The coordinate planes meet at the origin, (0, 0, 0).

» The coordinate planes divide space into eight regions called octants, with the
first octant containing all points in space with three positive coordinates.

FIGURE 8.47 The coordinate planes divide
space into eight octants.

——
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EXAMPLE 1 Locating a Point in Cartesian Space
Draw a sketch that shows the point (2, 3, 5).

SOLUTION To locate the point (2, 3, 5), we first sketch a right-handed three-
dimensional coordinate frame. We then draw the planes x = 2, vy = 3, and z = 5,
which parallel the coordinate planes x = 0, y = 0, and z = 0, respectively. The point
(2, 3, 5) lies at the intersection of the planes x = 2, vy = 3, and z = 3, as shown in
Figure 8.48. Now try Exercise 1.
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FIGURE 8.48 The planes x = 2,y = 3, and z = 5 determine the point (2, 3, 5). (Example 1)

Distance and Midpoint Formulas

The distance and midpoint formulas for space are natural generalizations of the corre-
sponding formulas for the plane.

Distance Formula (Cartesian Space)
The distance d(P, Q) between the points P(xy, v, z;) and Q{x,, v,, 2,) in space is
awp, Q) = \/()ﬁ —x)2+ (1 — )2+ (7 — )%
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TEACHING NOTE

Many of the results discussed in this sec-
tion are fairly intuitive extensions of previ-
ously studied two-dimensional results. You
may wish to present a comparison
between the two-dimensional results and
their three-dimensional counterparts.

SECTION 8.6 Three-Dimensional Cartesian Coordinate System 687

Just as in the plane, the coordinates of the midpoint of a line segment are the averages
for the coordinates of the endpoints of the segment.

Midpoint Formula (Cartesian Space)

The midpoint M of the line segment PQ with endpoints P(x1, v, 71) and
Q(x, ¥2, 20) 18
_ |t ntnaty

M
2 27 2

EXAMPLE 2 Calculating a Distance and Finding
a Midpoint

Find the distance between the points P(—2, 3, 1) and 0@, —1, 5), and find the mid-
point of line segment PQ.

SOLUTION The distance is given by

AP O =V(2 42+ 3+ 12+ 57
=V36+ 16 + 16

=V68 =~ 8.25

The midpoint is

(2+43-11+5

M2’2’2

=(1, 1, 3).

Now try Exercises 5 and 9.

Equation of a Sphere

A sphere is the three-dimensional analogue of a circle: In space, the set of points that
lie a fixed distance from a fixed point is a sphere. The fixed distance is the radius,
and the fixed point is the center of the sphere. The point P(x, v, z) is a point of the
sphere with center (7, k, [) and radius r if and only if

Vi —n)?+ (& —k2+@— D) =r
Squaring both sides gives the standard equation shown below.

Standard Equation of a Sphere
A point P(x, y, z) is on the sphere with center (%, k, I) and radius r if and only if
e —HP + =87+ & —1)F= .
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Drawing Lesson

How to Draw Three-Dimensional Objects to Look Three-Dimensional

1. Make the angle between the z z
positive x-axis and the A
positive y-axis large enough.

X
This Not this

2. Break lines. When one line A A A

passes behind another, break D D D

it to show that it doesn’t /

touch and that part of it is

hidden. /

¢ C C
B B B
Intersecting CD behind AB AB behind CD

3. Dash or omit hidden portions /

of lines. Don’t let the line

touch the boundary of the E [j

parallelogram that represents

the plane, unless the line lies yd

in the plane. Line below plane Line above plane Line in plane
4. Spheres: Draw the sphere . z

K Hidden part

first (outline and equator); dashed P Bradk A cor;tact d}(l)tl

draw axes, if any, later. \ s / Sotfetites Bk

Use line breaks and dashed I

lines. :

|

Sphere first Axes later
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FIGURE 8.49 The intercepts (3, 0, 0),
(0, 4, 0), and (0, 0, 3) determine the plane
12x + 15y + 20z = 60. (Example 4)

SECTION 8.6 Three-Dimensional Cartesian Coordinate System 689

EXAMPLE 3 Finding the Standard Equation of a Sphere
The standard equation of the sphere with center (2, 0, —3) and radius 7 is
(x =22+ y2+ (z +3)2=49.
Now try Exercise 13.

Planes and Other Surfaces

In Section P4, we learned that every line in the Cartesian plane can be written as a first-
degree (linear) equation in two variables; that is, every line can be written as

Ax+ By +C=0,

where A and B are not both zero. Conversely, every first-degree equation in two vari-
ables represents a line in the Cartesian plane.

In an analogous way, every plane in Cartesian space can be written as a first-degree
equation in three variables :

Equation for a Plane in Cartesian Space
Every plane can be written as
Ax+By+ Cz+ D=0,

where A, B, and C are not all zero. Conversely, every first-degree equation in three
variables represents a plane in Cartesian space.

EXAMPLE 4 Sketching a Plane in Space
Sketch the graph of 12x + 15y + 20z = 60.
SOLUTION Because this is a first-degree equation, its graph is a plane. Three

points determine a plane. To find three points, we first divide both sides of
12x + 15y + 20z = 60 by 60:

X vy oz
S+ =1,
5 4 3 1

In this form, it is easy to see that the points (5, 0, 0), (0, 4, 0), and (0, 0, 3) satisfy the
equation. These are the points where the graph crosses the coordinate axes. Figure
8.49 shows the completed sketch.

Now try Exercise 17.
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FIGURE 8.50 The vector v = {v, v5, ¥3).

Equations in the three variables x, v, and z generally graph as surfaces in three-dimen-
sional space. Just as in the plane, second-degree equations are of particular interest.
Recall that second-degree equations in two variables yield conic sections in the
Cartesian plane. In space, second-degree equations in fthree variables yield
quadric surfaces: The paraboloids, ellipsoids, and hyperboloids of revolution that
have special reflective properties are all quadric surfaces, as are such exotic-sounding
surfaces as hyperbolic paraboloids and elliptic hyperboloids.

Other surfaces of interest include graphs of functions of two variables, whose
equations have the form z = f(x, y). Some examples are z = x In y, z = sin{xy), and
z="V1 —x?>—y? The last equation graphs as a hemisphere (see Exercise 63).
Equations of the form z = f{(x, y) can be graphed using some graphing calculators and
most computer algebra software. Quadric surfaces and functions of two variables are
studied in most university-level calculus course sequences.

Vectors in Space

In space, just as in the plane, the sets of equivalent directed line segments (or arrows)
are vectors. They are used to represent forces, displacements, and velocities in three
dimensions. In space, we use ordered triples to denote vectors:

V= <V1, Vo, V3>.

The zero vector is 0 = (0, 0, 0), and the standard unit vectors are i = (1, 0, 0),
j =40, 1,0), and k = (0, 0, 1). As shown in Figure 8.50, the vector v can be expressed
in terms of these standard unit vectors:

v = (v, v, v3) = vii + vyj + vk,
The vector v that is represented by the arrow from P(a, b, ¢) to Q(x, y, 2) is
v=PO0=(x—ay-—bz—o=G—ai+-bj+(z—ok
A vector v = (v, V,, v3) can be multiplied by a scalar (real number) ¢ as follows:
ev = ¢c{vy, vy, Va) = {CVy, CVy, CV3).

Many other properties of vectors generalize in a natural way when we move from two
to three dimensions:

Vector Relationships in Space

For vectors v = (vy, V5, v3) and w = (wy, Wy, Wa),

* Equality: v = wif and only if v; = wy, v, = wy, and v3 = wj

« Addition: v+ w = (v wy, vy W, Vs ws)

¢ Subtraction: V—w =V — Wi, V) — Wa, V3 — Wa)

» Magnitude: vl =V v% + v% + V%

* Dot product:  v.w = vw; + VW, + V3w

 Unit vector: u = v/|v], v # 0, is the unit vector in the direction of v.

——



