Claudio Canuto
Anita Tabacco

Mathematical
Analysis |

@ Springer



2

Functions

Functions crop up regularly in everyday life (for instance: each student of the
Polytechnic of Turin has a unique identification number), in physics (to each point
of a region in space occupied by a fluid we may associate the velocity of the particle
passing through that point at a given moment), in economy {each working day at
Milan’s stock exchange is tagged with the Mibtel index), and so on.

The mathematical notion of a function subsumes all these situations.

2.1 Definitions and first examples

Let X and Y be two sets. A function f defined on X with values in Y is
a correspondence associating to each element x € X at most one element y € Y.
This is often shortened to ‘a function from X to Y’. A synonym for function is
map. The set of x € X to which f associates an element in Y is the domain of
f; the domain is a subset of X, indicated by dom f. One writes

fidomfC X =Y.

If dom f = X, one says that f is defined on X and writes simply f: X — Y.
The element y € Y associated to an element z € dom f is called the image of
z by or under f and denoted y = f(z). Sometimes one writes

[z fz).

The set of images y = f(z) of all points in the domain constitutes the range of
f, a subset of Y indicated by im f.

The graph of f is the subset I'(f) of the Cartesian product X x Y made of
pairs (z, f(z)) when z varies in the domain of f, ie.,

‘F(f}= {(:c,f(J)) =X Y :I:Edomf}. (2.1)
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Figure 2.1. Naive representation of a function using Venn diagrams

In the sequel we shall consider maps between sets of numbers most of the time.
If Y = R, the function f is said real or real-valued. If X = R, the function is
of one real variable. Therefore the graph of a real function is a subset of the
Cartesian plane R2.

A remarkable special case of map arises when X = N and the domain contains
a set of the type {n € N : n > ny} for a certain natural number ny > 0. Such a
function is called sequence. Usually, indicating by a the sequence, it is preferable
to denote the image of the natural number n by the symbol a, rather than a(n);
thus we shall write a : n — a,. A common way to denote sequences is {an }rn>ng
(ignoring possible terms with n < ng) or even {a,}.

Examples 2.1

Let us consider examples of real functions of real variable.

) f:R—=R, f(z)=az+b (a,breal coefficients), whose graph is a straight line
(Fig. 2.2, top left).

ii) f: R — R, f(z) = 2?, whose graph is a parabola (Fig. 2.2, top right).

i) f : R\{0} CR = R, f(z) = 2, has a rectangular hyperbola in the coordinate
system of its asymptotes as graph (Fig. 2.2, bottom left).

iv) A real function of a real variable can be defined by multiple expressions on
different intervals, in which case is it called a piecewise function. An example
is given by f:[0,3] = R
3z fo<z <1,
fle)=<R 44—z ifl<z<2, (2.2)
z—1 if2<x <3,

drawn in Fig. 2.2, bottom right.
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Figure 2.2. Graphs of the maps f(x) = 2z—2 (top left), f(z) = z? (top right), f(z) = L
&

(bottom left) and of the piecewise function (2.2) (bottom right)

Among piecewise functions, the following are particularly important:

v) the absolute value (Fig. 2.3, top left)

z ifxz0
:R — R, )= lzl= S
! . Se= ol {—;I: ifz <0
vi) the sign (Fig. 2.3, top right)
+1 ifx >0,
fR—=Z, f(z)=sign(z)=4 0 ifz=0,
-1 ifz <0

vii) the integer part (Fig.2.3, bottom left), also known as floor function,

f:R—=1Z, f(z)=][z]= the greatest integer <z

(for example, [4] = 4, [vV2] =1, [-1] = =1, [-3] = —2); notice that
[z] <z < [z]+1, Ve eR;
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Figure 2.3. Clockwise from top left: graphs of the functions: absolute value, sign, man-
tissa and integer part

viii) the mantissa (Fig. 2.3, bottom right)

fR-R, f(z)=M(z)=2z-[z]

(the property of the floor function implies 0 < M(z) < 1).

Let us give some examples of sequences now.

ix) The sequence

n
n = 2-3
On =] (2.3)
is defined for all n > 0. The first few terms read
1 2 - 3
ag =0, o =§=0.5, as = §=0.6, a3:Z:0.75.
Its graph is shown in Fig. 2.4 (top left).
) The sequence
1 n
n=11+= 2.4
a ( + n) ( )
is defined for n > 1. The first terms are

9 64 — 625
= e i 2. = —— = 2. = — = 2.44].4 2 .
G =2, = =22, a=g;=237037, ai=g 0625

Fig. 2.4 (top right) shows the graph of such sequence.
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Figure 2.4. Clockwise: graphs of the sequences (2.3}, (2.4), (2.6), (2.5)

xi) The sequence
an — n! (2.5)
associates to each natural number its factorial, defined in (1.9). The graph of
this sequence is shown in Fig.2.4 (bottom left); as the values of the sequence
grow rapidly as n increases, we used different scalings on the coordinate axes.
xii) The sequence
. +1 if n is even, 5
—t — = > .
an = (=1 {—1 if n is odd, (m 20 25}
has alternating values +1 and —1, according to the parity of n. The graph of the
sequence is shown in Fig. 2.4 (bottom right).

At last, here are two maps defined on R? (functions of two real variables).

FiR?P SR, flz,y) = Va2 + 42

maps a generic point P of the plane with coordinates (x,y) to its distance from
the origin.

xiii) The function

xiv) The map

[ RE-R? f(z,y) = (y,2)
associates to a point P the point P’ symmetric to P with respect to the bisectrix
of the first and third quadrants. ]
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Consider a map from X to Y. One should take care in noting that the symbol
for an element of X (to which one refers as the independent variable) and the
symbol for an element in Y (dependent variable), are completely arbitary. What
really determines the function is the way of associating each element of the domain
to its corresponding image. For example, if z,y, 2,t are symbols for real numbers,
the expressions y = f(z) = 3z, = f(y) = 3y, or z = f(t) = 3¢t denote the same
function, namely the one mapping each real number to its triple.

2.2 Range and pre-image

Let A be a subset of X. The image of A under f is the set

flA) ={f(z) : xe A} Cimf

of all the images of elements of A. Notice that f(A) is empty if and only if A
contains no elements of the domain of f. The image f(X) of the whole set X is
the range of f, already denoted by im f.

Let y be any element of Y'; the pre-image of y by f is the set

f'y)={zedomf : f(z) =y}

of elements in X whose image is y. This set is empty precisely when y does not
belong to the range of f. If B is a subset of Y, the pre-image of B under f is
defined as the set

' (B)={zedomf : f(z)€ B},

union of all pre-images of elements of B.

It is easy to check that A C f~!(f(A)) for any subset A of dom f, and
f(f~YB)) = Bnim f C B for any subset B of Y.

Example 2.2

Let f: R — R, f(z) = z2. The image under f of the interval A = [1,2] is the
interval B = [1,4]. Yet the pre-image of B under f is the union of the intervals
[—2,~1] and [1, 2], namely, the set

fT'(B)={zeR : 1< (2| <2}
(see Fig. 2.5).

The notions of infimum, supremum, maximum and minimum, introduced in
Sect. 1.3.1, specialise in the case of images of functions.
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y = f(x) y = f(z)

f(A) B

1 2 —2 1 1,7 3

0 ™
4B)

Figure 2.5. Image (left) and pre-image (right) of an interval relative to the function

flw) = o

Definition 2.3 Let f be a real map and A a subset of dom f. One calls
supremum of f on A (orin A) the supremum of the image of A under f

sup f(z) = sup f(A) =sup{f(z) | € A}.

zeA

Then f is bounded from above on A if the set f(A) is bounded from above,
or equivalently, if sup f(z) < +oc.
TEA
If sup f(x) is finite and belongs to f(A), then it is the maximum of this set.
TEA
This number is the maximum value (or simply, the maximum) of [ on
A and is denoted by max Flx):
TES

The concepts of infimum and of minimum of f on A are defined similarly.
Eventually, f is said bounded on A if the set f(A) is bounded.

At times, the shorthand notations sup 4 f, max4 f, et c. are used.

The maximum value M = max4 f of f on the set A is characterised by the
conditions:

il M is a value assumed by the function on A, i.e.,
there exists 23 € A such that f(xp) = M;
ii] M is greater or equal than any other value of the map on A, so
for any x € A, f(z) < M.
Example 2.4

Consider the function f(z) defined in (2.2). One verifies easily

=3, i =0, =3, inf =1.
o fei=4 o i Loy iy F@
The map does not assume the value 1 anywhere in the interval [1, 3], so there is
no minimum on that set. |



38 2 Functions
2.3 Surjective and injective functions; inverse function

A map with values in Y is called onto if im f = Y. This means that each y € Y
is the image of one element z € X at least. The term surjective (on Y) has the
same meaning. For instance, f : R = R, f(z) = ax + b with a # 0 is surjective
on R, or onto: the real number y is the image of z = yT‘b. On the contrary, the
function f : R — R, f(z) = z? is not onto, because its range coincides with the
interval [0, +00).

A function f is called one-to-one (or 1-1) if every y € im f is the image of a
unique element ¢ € dom f. Otherwise put, if y = f(z;) = f(z2) for some elements
Z1,Z2 in the domain of f, then necessarily x1; = 9. This, in turn, is equivalent to

T #F T2 = f(m1) # f(22)

for all 21,z € dom f (see Fig.2.6). Again, the term injective may be used. If a
map f is one-to-one, we can associate to each element y in the range the unique z
in the domain with f(z) = y. Such correspondence determines a function defined
on Y and with values in X, called inverse function of f and denoted by the
symbol f~. Thus

z=f"y) <= y=/[(z

(the notation mixes up deliberately the pre-image of y under f with the unique
element this set contains). The inverse function f~' has the image of f as its
domain, and the domain of f as range:

dom f~! =im f, im f~! = dom f.

e ¥ v = f(z1)
Z1 im f
dom f F St
= Y2 = f(z2)
= }
T3

Figure 2.6. Representation of a one-to-one function and its inverse
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A one-to-one map is therefore invertible; the two notions (injectivity and invert-
ibility) coincide.

What is the link between the graphs of f, defined in (2.1), and of the inverse
function f=!? One has

(Y ={(f W) eY*xX : yedomf}
={{(f(z),z) €Y x X : z € dom f}.

Therefore, the graph of the inverse map may be obtained from the graph of f by
swapping the components in each pair. For real functions of one real variable, this
corresponds to a reflection in the Cartesian plane with respect to the bisectrix
y =z (see Fig. 2.7 a) is reflected into b)). On the other hand, finding the explicit
expression z = f~1(y) of the inverse function could be hard, if possible at all.
Provided that the inverse map in the form z = f~!(y) can be determined, often
one prefers to denote the independent variable (of f~!) by z, and the dependent
variable by y, thus obtaining the expression y = f~!(z). This is merely a change
of notation (see the remark at the end of Sect.2.1). The procedure allows to draw

the graph of the inverse function in the same frame system of f (see Fig. 2.7, from
b) to c)).

y = f(z)

dom f

im f

a) dom f x b) b f "

y=z

im !

c) dom f 1 T

Figure 2.7. From the graph of a function to the graph of its inverse
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Examples 2.5

i} The function f: R — R, f(z) = az + b is one-to-one for all a # 0 (in fact,
flz1) = f(z2) = azy =azy = 1z = x2). Its inverse is x = f1(y) = yT‘b, or
y=["Hz) = 22

ii] The map f:R — R, f(z) = z? is not one-to-one because f(z) = f(~z) for
any real x. Yet if we consider only values > 0 for the independent variable, i.e.,
if we restrict f to the interval [0, +00), then the function becomes 1-1 (in fact,
flz1) = flx2) = 2% — a3 = (1 —z2)(x1 +T2) =0 = x1 = x2). The inverse
function z = f~'(y) = \/y is also defined on [0, +00). Conventionally one says
that the ‘squaring’ map y = z? has the function ‘square root’ y = /z for inverse
(on [0, +00)). Notice that the restriction of f to the interval (—oo, 0] is 1-1, too;
the inverse in this case is y = —y/z.

iii; The map f : R — R, f(z) = z* is one-to-one. In fact f(z1) = f(z2) =
23— 23 = (1 — 22)(2? + 1172 + 23) = 0 = z; = T since 22 + 179 + 23 =
123 + 23 + (x1 + 72)%] > 0 for any z1 # x2. The inverse function is the ‘cubic

root’ y = /z, defined on all R.

As in Example ii) above, if a function f is not injective over the whole domain,
it might be so on a subset A C dom f. The restriction of f to A is the function

fia A=Y such that fialz) = f(z), VzeA,
and is therefore invertible.

Let f be defined on X with values Y. If f is one-to-one and onto, it is called
a bijection (or bijective function) from X to Y. If so, the inverse map f~! is
defined on Y, and is one-to-one and onto (on X); thus, f~* is a bijection from Y
to X.

For example, the functions f(z) = ax + b (a # 0) and f(z) = z? are bijections
from R to itself. The function f(z) = z? is a bijection on [0,+0c) (i.e., from
[0, +00) to [0,+00)).

If f is a bijection between X and Y, the sets X and Y are in bijective cor-
rispondence through f: each element of X is assigned to one and only one element
of Y, and vice versa. The reader should notice that two finite sets (i.e., containing
a finite number of elements) are in bijective correspondence if and only if they
have the same number of elements. On the contrary, an infinite set can correspond
bijectively to a proper subset; the function (sequence) f: N — N, f(n) = 2n, for
example, establishes a bijection between N and the subset of even numbers.

To conclude the section, we would like to mention a significant interpretation
of the notions of 1-1, onto, and bijective maps just introduced. Both in pure Math-
ematics and in applications one is frequently interested in solving a problem, or
an equation, of the form

flz)=1y,



