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Abstract Accretion processes near black hole candidates
are associated with the high-energy emission of radiation
from relativistic particles and outflows. It is widely believed
that the magnetic field plays a crucial role in explain-
ing these high-energy processes near these astrophysical
sources. In this work, we analyze thin accretion disks in
the Bocharova–Bronnikov–Melnikov–Bekenstein (BBMB)
spacetime framework using the Novikov–Thorne model. Our
study examines the thermal and optical characteristics of
these disks, including their emission rate and luminosity
in the specified spacetime. Later, we extend the Novikov–
Thorne model to ionized thin accretion disk. We propose
that the black hole is embedded in an asymptotically uni-
form magnetic field. We investigate the dynamics of charged
particles near a weakly magnetized black hole. Our findings
show that, in the presence of a magnetic field, the radius
of the marginally stable circular orbit (MSCO) for a charged
particle is close to the black hole’s horizon. The orbital veloc-
ity of the charged particle, as measured by a local observer,
has been computed in the presence of the external magnetic
field. We also present an analytical expression for the four-
acceleration of the charged particle orbiting around black
holes. Finally, we determine the intensity of the radiation
emitted by the accelerating relativistic charged particle orbit-
ing the magnetized black hole.

a e-mail: bturimov@astrin.uz
b e-mail: akbar@astrin.uz (corresponding author)

1 Introduction

The observation of astrophysical black holes, such as super-
massive black holes (SMBHs) and stellar black holes, has
sparked renewed interest in studying the behavior of charged
particles in the presence of external electromagnetic fields
around these black holes. It is generally recognized that mag-
netic fields play a crucial role in driving the most energetic
processes near supermassive black holes at the centers of
galaxies, serving as a “feeder” by capturing dust close to the
galaxy’s core. Charged particle motion around the black hole
in the presence of the external magnetic field has been exten-
sively studied in [1–9]. The effect of the radiation reaction
on charged particle motion around back hole is investigated
in [10–17].

The recent detection of the shadow of the supermassive
black hole (SMBH) candidate in the galaxy M87 [18] has
sparked a renewed interest in exploring the characteristics
of extreme gravitational compact objects (see, for instance,
[19–21]). This exploration involves developing methods to
derive information about the object’s mass and spin from
observations while imposing limits on additional parameters
associated with black hole mimickers, such as NUT charges
[22] or mass quadrupole moments [23]. Observational data,
including the orbital motion of stars near an SMBH candi-
date, spectra from accretion disks around the compact object,
and the object’s ’shadow’-like that of the SMBH candidate
in M87-can provide valuable insights. For instance, the mass
of the SMBH candidate at the Milky Way’s center can be
inferred from the Newtonian motion of S2 stars observed
in infrared wavelengths [24,25]. Similarly, the inner edge
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of the SMBH candidate’s shadow in M87 can reveal infor-
mation about the central object’s angular momentum [26].
Additional parameters of gravitational compact objects can
be estimated by analyzing the thermal spectrum of accre-
tion disks and fluorescent iron lines in low-mass X-ray bina-
ries (LMXB) [27,28]. Combining various observational tech-
niques and methods can, in principle, help constrain these
parameters and elucidate the geometry surrounding the com-
pact object.

For example, the mass of the SMBH candidate at the cen-
ter of the Milky Way galaxy can be determined through the
Newtonian motion of S2 stars observed in infrared (IR) wave-
lengths. Similarly, the inner edge of the shadow of the SMBH
candidate in M87 provides insights into the angular momen-
tum of the central object. Other parameters of gravitational
compact objects can be estimated through detailed analy-
ses of the thermal spectra of accretion disks and fluorescent
iron lines in low-mass X-ray binaries (LMXBs). By com-
bining different observations and methods, it is possible to
constrain additional parameters and understand the geometry
surrounding the compact object.

An accretion disk is a complex formation created by dif-
fuse matter orbiting a massive central compact object. In this
environment, gravitational and frictional forces compress
and heat the matter, resulting in the emission of highly ener-
getic electromagnetic radiation. The frequency of this radia-
tion is heavily influenced by the central object’s total mass.
When the accretion rate is sub-Eddington and the opacity is
extremely high, a geometrically thin accretion disk forms.
This disk is thin in the vertical direction and exhibits a disk-
like shape in the orbital plane. The radiation pressure within
the disk can be considered negligible, causing the gas to spi-
ral tightly towards the central object, closely approximating
free Keplerian circular orbits. Thin disks are relatively lumi-
nous and produce thermal electromagnetic black body radi-
ation. Building on the foundational work by Shakura and
Sunyaev [29] on thin accretion disks, the key characteris-
tics of these disks have been further developed by various
researchers (see, for example, [30,31]).

A general relativistic approach is essential for describ-
ing the inner regions of an accretion disk around a black
hole. This framework was initially developed by Novikov,
Page, and Thorne [32–34]. Luminet [35] was the first to cre-
ate simulated optical images of an accretion disk around a
black hole, revealing that even a symmetrically structured
black hole can produce asymmetric images. This asymmetry
arises because the Doppler beaming effect, which is crucial
for maintaining centrifugal equilibrium in the strong gravita-
tional field near the black hole, causes a significant Doppler
redshift on the disk’s receding side and a strong blueshift on
the approaching side. Additionally, light bending distorts the
appearance of the disk, making it seem as though it is not
obscured by the black hole. Recent simulations by Mizuno

et al. [36] using fully relativistic models have been developed
to image various massive candidates for the central compact
object in M87, aiming to constrain the potential existence of
exotic compact objects. The properties of the thin accretion
disk in various spacetime has been studied in [37–58]. In this
paper, we examine a thin accretion disk within the BBMB
spacetime [59,60].

The article is organized as follows. In Sect. 2 we consider
the thermal properties of thin accretion disks in the around the
BBMB black hole using the Novikov–Thorne model [32]. In
particular, we simulate the thermal spectrum of the disk. In
Sect. 3, we study the thermal properties of ionized accretion
disk. Finally, the last Sect. 4 summarizes the main results
and their potential implications for astrophysical black hole
candidates.

2 Novokov–Thorne thin accretion disk model

We now consider the thermal properties of thin accre-
tion disks using the framework originally developed by
Novikov and Thorne [32], extending the model to the BBMB-
spacetime. The Novikov–Thorne model describes an accre-
tion disk around a massive black hole based on general rel-
ativity principles, detailing how matter spirals into a black
hole. This model, which incorporates the effects of general
relativity, can also be applied to the BBMB spacetime. Gen-
eral relativity and alternative theory of gravity explain the
curvature of spacetime around massive objects, leading to
phenomena such as gravitational time dilation and frame-
dragging in the vicinity of black holes.

Accretion around a black hole or extremely compact
object occurs in the region r > rms, where rms is the radius
of the ISCO of test particles. The radius of the marginally
stable orbit serves as the inner edge of the thin accretion disk
rin = rms, while the outer edge rout can be freely chosen.
For our calculations, we have set rout = 30M∗ � rin. As
particles fall from rest at infinity and accrete onto the cen-
tral object, they heat up, converting gravitational energy into
radiation that is then emitted into space.

The Novikov–Thorne model has been influential in astro-
physics, used to interpret observations of black hole X-ray
binaries and active galactic nuclei (AGN). It provides a the-
oretical framework for understanding matter accretion onto
black holes and the energy release as radiation, which can
be used to study these extreme cosmic objects. To model the
thin accretion disk, the following assumptions are made:

– Matter in the accretion disk loses energy as it spirals
inward towards the central object due to friction and grav-
itational forces, resulting in the emission of radiation,
primarily X-rays and other high-energy photons.
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– The accretion disk is a flattened, rotating structure com-
posed of gas, dust, and other matter. As matter falls
inward, it follows nearly circular orbits, gradually losing
angular momentum and spiraling closer to the black hole.
The disk is assumed to be geometrically thin and opti-
cally thick, meaning the radial extension Δr = rout − rin

is much larger than its thickness h << Δr .
– According to the Novikov–Thorne model, there is an

innermost stable circular orbit (ISCO) where matter can
orbit the black hole or exotic object without rapidly
falling in. The radius of this orbit depends on the black
hole’s mass and angular momentum. Inside the ISCO,
matter plunges rapidly into the central object.

– The innermost part of the accretion disk is very close to
the black hole’s event horizon, beyond which nothing can
escape the black hole’s gravitational pull. Radiation emit-
ted near the event horizon is highly redshifted, making
detection difficult.

– The motion of gas particles in the disk approximately
follows circular Keplerian orbits, well-described by test
particles on circular orbits.

– The torque near the inner edge of the accretion disk is
negligible.

– The mass accretion rate of the thin disk is constant and
less than the Eddington mass rate, specifically, Ṁ �
(0.03 − 0.5)ṀEdd, where the Eddington mass rate is
defined as

ṀEdd = 4πGMmp

cσT

with M as the mass of the gravitational object, mp as
the proton mass, and σT as the Thompson cross-section
for the electron. In solar mass units, ṀEdd � 2.33 ×
1018 (M/M�) g · s−1.

– The model predicts that the radiation emitted by the
accretion disk will have a characteristic spectrum, influ-
enced by factors such as the black hole’s mass and spin,
with a distinctive peak in the X-ray part of the electro-
magnetic spectrum.

Now, we focus on the motion of massive particles orbiting
around a spherically symmetric black hole. To describe par-
ticles on accretion disks, we restrict our attention to circular
orbits in the equatorial plane, so the particle’s four-velocity
is given by ẋα = (ṫ, 0, 0, φ̇). The explicit expressions for the
constants of motion, which are the specific energy E , spe-
cific angular momentum L , and angular velocity Ω of test
particles at a radius r , as measured by a distant observer, can
be obtained from:

E = − gtt√−gtt − Ω2gφφ

, (1)

L = gφφΩ
√−gtt − Ω2gφφ

, (2)

Ω = dφ

dt
=

√

− ∂r gtt
∂r gφφ

. (3)

where gtt and gφφ are temporal and azimuthal components
of the metric tensor.

From the conservation laws of energy-momentum (∇μTμν

= 0) and continuity equation (∇μ Jμ = 0) for matter con-
taining on disk, the radiant energy flux of the accretion disk
can be derived as [33,34]

F(r) = − Ṁ

4π
√−g̃

Ω ′

(E − ΩL )2

∫ r

rms

dr(E − ΩL )L ′ ,

(4)

where a prime (′) denotes the derivative with respect to radial
coordinate r and g̃ = √−gtt grr gφφ is the determinant of
the metric tensor in the equatorial plane. Since the accre-
tion disk is assumed to be in local thermal equilibrium, the
disk emission is black-body radiation, for which the Stefan-
Boltzmann law is applicable and the temperature of the disk
is determined as

T (r) = 4

√
F(r)

σ
. (5)

where σ is the Stephan-Bolztman constant.
Another important aspect of mass accretion activity is

the energy efficiency ε, which is determined by the specific
energy of a particle at the marginally stable orbit rms when
all the radiated photons can escape to infinity. This efficiency
ε (which must be non-negative) indicates how effectively the
central object converts rest mass into outgoing radiation. The
accretion efficiency is given by: ε = 1 − Ems.

The spectral luminosity of the radiation can be determined
using the following expression

L(ν) = 8πh cos i

c2

∫ rout

rin

∫ 2π

0

ν3
e rdrdφ

exp
(

hνe
kBT

)
− 1

, (6)

where i represents the inclination angle of the accretion disk,
rin is the inner edge, and rout is the outer edge of the disk.
For simplicity, one can choose ri = rms and rout → ∞,
since at asymptotic infinity r → ∞, the flux over the disk
surface diminishes, as it does for any astronomical object.
The frequency ν is measured by a distant observer while νe
is the frequency of photons emitted from the accretion disk.
These two frequencies are related to each other through the
red-shift factor, i.e. g = νe/ν, which can be expressed as

g = 1 + Ωr sin φ sin i
√−gtt − Ω2gφφ

. (7)
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Fig. 1 The profile of the radiant energy flux of the thin disk in the
BBMB spacetime (solid line) and in the Schwarzschild spacetime
(dashed line) for the value of accretion rate Ṁ = 0.1ṀEdd

Now we consider the thin accretion disk model in the
BBMB spacetime. We first start from calculating of radiant
energy flux from the surface thin disk. Recalling Eq. (4) the
radiant energy flux emitted by the disk surrounded the BBMB
black hole can be expressed as

F(r) = Ṁ c2

8πM2

(
M

r

)3 (
1 − M

r

)−3/2 (
3r − 4M

r − 2M

)

×
⎡

⎣
√

1 − M

r
+

√
M

r
ln

√√
r − M + √

M√
r − M − √

M

√
3 − 1√
3 + 1

−
√

3M

r
+ 2π

3

√
M

r
− 2

√
M

r
tan−1

√

1 − M

r

]

,

(8)

while in the Schwarzschild spacetime, it reads as follows
[35,57]

F(r) = 3Ṁ c2

8πM2

(
M

r

)3 (
1 − 3M

r

)−1

×
⎡

⎣1 −
√

6M

r
+

√
3M

r
ln

√√
r + √

3M√
r − √

3M

√
2 − 1√
2 + 1

⎤

⎦ .

(9)

Figure 1 shows how the radiant energy flux varies radially
across the disk in both BBMB and Schwarzschild space-
times. It’s important to note that the marginally stable circu-
lar orbits differ between these spacetimes, with rms = 4M in

Fig. 2 Temperature profile of the thin disk in the BBMB spacetime
(solid line) and in the Schwarzschild spacetime (dashed line) for the
value of accretion rate Ṁ = 0.1ṀEdd

the BBMB spacetime and rms = 6M in the Schwarzschild
spacetime. As one can see from Fig. 1, the inner edges of the
disks in these spacetimes are different. However, the asymp-
totic behavior of the radiant energy flux is similar in both
cases. On the other hand, numerical calculations showed
that the maximum value of the radiant energy flux in the
BBMB spacetime is more than three times greater than that
in the Schwarzschild spacetime. Using Eq. (5) the radial dis-
tribution of the disk temperature can be illustrated in both
BBMB and Schwazrschild spacetimes as shown in Fig. 2.
The curves exhibit similar behavior with variations in the
intensity parameter of the SBR, comparable to the flux.

As we mentioned before that one of the important fea-
tures of the accretion disk is related to the radiative energy
efficiency of the disk which is independent of the coordi-
nate system. It can be expressed as the difference between
the specific energies of the particle at infinity and at the
marginally stable circular orbit. Our analytical and numeri-
cal calculations showed that energy efficiency in the BBMB
spacetime is η = 1 − 3

√
6/8 � 0.08 (∼ 8%), however, in

the Schwarzschild spacetime it is η = 1 − √
8/9 � 0.06

(∼ 6%).
Figure 3 presents the total spectral luminosity emitted by a

thin accretion disk in the for fixed inclination angle i = π/6.
It is important to note that at χ = π/2, the spectral luminosity
will be zero due to the cos χ factor in Eq. (6). As illustrated in
each panel of Fig. 3, there is negligible variation in the spectra
across different cases in the low-frequency region (covering
infrared (IR), optical, and ultraviolet (UV) bands). However,
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Fig. 3 The spectral luminosity of the thin disk as a function of fre-
quency in the BBMB (solid) and Schwarzschild (dashed) spacetimes
for the value of accretion rate Ṁ = 0.1ṀEdd

in the high-frequency region, particularly the X-ray band,
a significant difference between each curve is observable.
Additionally, the frequency corresponding to the maximum
luminosity is influenced by an external term in the metric
function, implying that such observations could potentially
be used to test the nature of the geometry.

3 Ionized thin accretion disk model

Here we discuss simple this accretion disk in the BBMB
spacetime. In general, it is known that total charge of the
accretion disk is neutral. However we assume that matter in
the accretion contains from mainly charged particles. Now
one can study the charged particle motion in the curved space-
time in the presence of the external external magnetic field.
The Lagrangian for test particle of mass m and charge q can
be written as

L = 1

2
gαβ ẋ

α ẋβ + q

m
Aα ẋ

α , ẋα = dxα

ds
, (10)

where Aα is the vector potential of the electromagnetic field.
Equation of motion for charged particle can be derived as

ẍμ + Γ
μ
αβ ẋ

α ẋβ = q

m
Fα

β ẋ
β , Fαβ = ∂αAβ − ∂β Aα .

(11)

Constants of motion, namely, the specific energy, E and
specific angular momentum, L , of charged particle can be
expressed as

pt = ∂L

∂ ṫ
= gtt ṫ + q

m
At = −E , (12)

pφ = ∂L

∂φ̇
= gφφφ̇ + q

m
Aφ = L . (13)

We consider circular motion of particle in the equatorial plane
with four-velocity of ẋα = (ṫ, 0, 0, φ̇). Then specific energy
and specific angular momentum of particle can be found as

E = − gtt√−gtt − Ω2gφφ

− q

m
At , (14)

L = gφφ√−gtt − Ω2gφφ

− q

m
Aφ , (15)

and the angular velocity of test particle Ω is found from the
following equation:

∂r gtt + Ω2∂r gφφ√−gtt − Ω2gφφ

= −2q

m

(
Frt + ΩFrφ

)
, (16)

which can be obtained from Eq. (11).

3.1 Magnetic field configuration

In realistic astrophysical scenarios, the magnetic field con-
figuration near a gravitational compact object is highly com-
plex. However, for simplicity, one can consider an analytical
expression for the magnetic field. A straightforward approach
is provided by Wald [61]. According to this approach, the
black hole is placed in an asymptotically uniform magnetic
field, and the exact analytical expression for the vector poten-
tial in Schwarzschild space is given as

Aφ = 1

2
Br2 sin2 θ , (17)

where B is the magnetic field strength. Note that the expres-
sion (17) is independent of the mass of the Schwarzschild
black hole and fully satisfied the Maxwell equations in curved
spacetime is given as

∇αF
αβ = 0 . (18)

Similarly, in the background of the BBMB spacetime
Maxwell’s equation can be analytically solved and expres-
sion for the vector potential can be found as

Aφ = 1

2
Bψ(r) sin2 θ , (19)

which is similar to the solution in the Schwarzschild space-
time in (17), however new radial function ψ(r) substituted
instead of r2. Now inserting Eq. (19) into (18), one can obtain

r2 [
f ψ ′(r)

]′ − 2ψ(r) = 0 , (20)
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where a prime denotes the derivative with respect to radial
coordinate. The solution to Eq. (20) can be expressed as
ψ(r) = C(r2 − M2), where C is constant of integration
that should be equal to 1. Finally, the exact analytical solu-
tion of Maxwell equation for the vector potential near the
BBMB black hole can be found as

Aφ = 1

2
B

(
r2 − M2

)
sin2 θ , (21)

non-zero components of the electromagnetic field tensor are
Frφ = Br sin2 θ and Fθφ = B(r2 − M2) sin θ cos θ , while
non-zero components of the magnetic field measured by a
proper observer read

Br̂ = B

(
1 − M2

r2

)
cos θ , B θ̂ = B

(
1 − M

r

)
sin θ .

(22)

To study the magnetic field configuration in the vicinity
of the black hole, we can analyze the magnetic field lines
represented by considering the following the equation Aφ =
const. In Fig. 4, we provide a visualization of the magnetic
field lines near the BBMB black hole. It is apparent that due
to additional term in the metric function the magnetic field
lines extend outward from the black hole in a more uniform
manner.

3.2 Charged particle motion

Now we consider charged particle in the BBMB spacetime in
the presence of the asymptotic uniform magnetic field. Using
the normalization of the four-velocity ẋα ẋα = −1, equation
of the radial motion can be obtained as follows

ṙ2 = E 2 − V (r) , (23)

where the effective potential reads

V (r) =
(

1 − M

r

)2
[

1 +
(
L

r
− ωBr

)2
]

, (24)

where L is the specific angular momentum of charged par-
ticle and it can be shifted as L → L + ωBM2, and ωB is
the magnetic parameter defined as ωB = qB/2m.

Our analyses show that that in the presence of the external
magnetic field the effective potential is divergent at the large
distance:

lim
r→∞ V (r) = ∞, (25)

In the previous section, it was noted that the magnetic field
solution was derived near the black hole. This allows us to

safely use the effective potential in (24) for analyzing the
orbit of a charged particle in the vicinity of the black hole.

By imposing the conditions ṙ = r̈ = 0, the critical values
of the specific energy and specific angular momentum for the
charged particle can be determined as

E =
(r − M)3/2

√
r − 2M − 2KrωB + 2r2(r − M)ω2

B

r(r − 2M)
,

(26)

L = r(K − MrωB)

r − 2M
. (27)

where K =
√
M(r − 2M) + r2(r − M)2ω2

B . The stationary
points of the specific energy and specific angular momentum
in Eqs. (26) and (27) indicate the location of the MSCO for
a charged particle in the BBMB spacetime with an asymp-
totic magnetic field. Careful numerical analysis shows that
the MSCO position rms for both positively and negatively
charged particles decrease in the presence of an external
magnetic field. Figure 5 demonstrates the dependence of
the MSCO position on the magnetic parameter ωB for the
charged particle in both BBMB and Schwarzschild space-
times. As one can see in the plot, the MSCO position for the
positively charged particle reaches the black hole’s horizon in
both metrics, respectively. However, for negatively charged
particle the MSCO position is located a bit far from the hori-
zon of the black hole as shown in Fig. 5. In Fig. 6 we show
dependence of the energy efficiency of positively and neg-
atively charged particles in both BBMB and Schwarzschild
spacetimes. Our numerical calculations reveal that the energy
efficiency for positively charged particles reaches approxi-
mately ∼ 100% in the BBMB spacetime and ∼ 99.9% in
the Schwarzschild spacetime, but never reaches 100%. For
negatively charged particles, the energy efficiency reaches
up to around ∼ 33% in the BBMB spacetime and ∼ 27% in
the Schwarzschild spacetime.

3.3 Charged accreting matter on to black hole

In this subsection, we examine a basic toy model of a thin
accretion disk. We assume that the accreting matter around
the black hole consists of charged particles and ions. With
this setup, we can perform similar calculations to those con-
ducted in the previous section. The measurable quantities for
a charged particle, specific energy, angular momentum and
specific angular velocity in the presence of an asymptotically
uniform magnetic field can be expressed as

E = − gtt√−gtt − Ω2gφφ

, (28)

L = gφφ√−gtt − Ω2gφφ

− q

m
Aφ , (29)

123



Eur. Phys. J. C          (2024) 84:1098 Page 7 of 10  1098 

Fig. 4 The magnetic field lines in the vicinity of BBMB and Schwarzschild black holes in (x/M, z/M) plane for the magnetic field strength of
104G

Fig. 5 Dependence of the MSCO radii for for positively and negatively
charged particles in the BBMB spacetime (solid line) and Schwarzschild
spacetime (dashed line) from the magnetic coupling parameter ωB

∂r gtt + Ω2∂r gφφ√−gtt − Ωgφφ

= −2q

m
Ω2Frφ. (30)

Analytical calculations for the radiant energy and tempera-
ture of a thin disk are quite challenging in the presence of a
magnetic field. Therefore, we rely on numerical methods to
determine the radial dependence of these key quantities. Fig-
ure 7 shows the radial dependence of the radiant energy and

Fig. 6 Dependence of the energy efficiency for for positively and
negatively charged particles in the BBMB spacetime (solid line) and
Schwarzschild spacetime (dashed line) from the magnetic coupling
parameter ωB

temperature of the thin disk surrounding the BBMB black
hole. The results indicate that the external magnetic field
significantly increases both quantities. Another noteworthy
finding is that, for negative values of the magnetic parameter,
the profiles of radiant energy and temperature are noticeably
narrower compared to those for positive values of the mag-
netic parameter. This suggests that the distribution of neg-
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ative particles in this ionized thin accretion model is more
concentrated along the radial distance.

3.4 Synchrotron radiation

We now concentrate on investigating synchrotron radiation
from a relativistic charged particle near a magnetized BBMB
black hole. According to Reference [10], the expression for
the four-momentum loss of the accelerated test particle can
be written as

dPα

dλ
= 2q4

3m2 wβwβ ẋα , (31)

where λ is an afine parameter, wα is the four-acceleration of
charged particle in the presence of the asymptotic uniform
magnetic field defined as wα = ẋβ∇β ẋα and it is always
orthogonal to the four-velocity of particle i.e. wα ẋα ≡ 0. It
is well-known that an accelerated relativistic charged particle
emits electromagnetic radiation. We now concentrate on the
radiation emitted by an accelerated charged particle orbiting
a black hole. The radiation spectrum of relativistic charged
particle in curved spacetime can be expressed as [10,15]

I = −dPα

dλ
ẋα = 2q4

3m2 wβwβ , (32)

For simplicity, we consider the motion of charged particle
in stable circular orbit with ẋα = ṫ(1, 0, 0,Ω) to analyze
the behavior of the radiation spectrum. Since the velocity
and acceleration of the particle are orthogonal to each other,
i.e., wα ẋα ≡ 0, the four-acceleration of the particle can be

expressed as

wα = (0, wr , wθ , 0) = qΩ
√−gtt − Ω2r2

(0, Frφ, Frφ, 0) ,

(33)

and the intensity of charged particle in the presence of the
eternal magnetic field reads

I = − 2q4

3m2

Ω2

gtt + Ω2gφφ

(grr Frφ + gθθ F2
θφ) . (34)

Similarly, one can also consider a more realistic scenario
where a charged particle is falling into a black hole with
the four-velocity ẋα = ṫ(1, u, 0, ω), where u = dr/dt is
the radial velocity and ω = dφ/dt is the angular velocity
of the particle. In this case, from the condition wα ẋα = 0,
it follows that the radial acceleration of the charged particle
vanishes (wr = 0); however, vertical acceleration should still
be present (wθ 
= 0). Finally, the intensity of radiation from
the charged particle can be expressed as

I = − 2q4

3m2

gθθ F2
θφω2

gtt + grru + ω2gφφ

. (35)

4 Conclusions

We have extended the Novikov–Thorne model to analyze the
thermal properties of thin accretion disks in BBMB space-
time, comparing them with those in Schwarzschild space-
time. Our study reveals that while the overall structure and

Fig. 7 Left panel: The profile of the radiant energy flux (left panel) and temperature (right panel) of the thin disk in the BBMB spacetime (solid
line) and in the Schwarzschild spacetime (dashed line) for the value of accretion rate Ṁ = 0.1ṀEdd
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behavior of the accretion disks are similar in both spacetimes,
the BBMB spacetime leads to a higher radiant energy flux and
disk temperature near the black hole. Additionally, the radia-
tive energy efficiency is slightly higher in the BBMB space-
time than in the Schwarzschild case. These differences sug-
gest that observations of accretion disk spectra, particularly
in the high-frequency X-ray region, could provide insights
into the underlying spacetime geometry and help distinguish
between these two gravitational theories.

We have explored the motion of charged particles within
the BBMB spacetime under the influence of an external mag-
netic field. We considered an accretion disk composed pre-
dominantly of charged particles and derived the equations
governing their motion in this curved spacetime. The analysis
of the magnetic field configuration revealed that the magnetic
field lines near the BBMB black hole extend more uniformly
compared to the Schwarzschild spacetime, due to the addi-
tional term in the metric function. The effective potential for
charged particle motion indicated divergence at large dis-
tances, confirming that the magnetic field significantly influ-
ences particle dynamics close to the black hole. The posi-
tions of the marginally stable circular orbits (MSCOs) for
both positively and negatively charged particles were found
to decrease with the presence of an external magnetic field.
Positively charged particles showed MSCOs reaching the
event horizon, while negatively charged particles’ MSCOs
remained slightly distant.

Furthermore, the study demonstrated that the energy effi-
ciency of particle accretion is higher for positively charged
particles, with the maximum efficiency reaching approxi-
mately ∼ 100% in the spacetime of the magnetized BBMB
black hole and nearly ∼ 99.9% in the spacetime of the mag-
netized Schwarzschild black hole. Conversely, negatively
charged particles exhibited lower energy efficiency, with
maximum values around ∼ 33.2% and ∼ 27% in the BBMB
and Schwarzschild spacetime, respectively. These findings
underscore the complex interplay between magnetic fields
and spacetime geometry in determining the dynamics of
charged particles around black holes.

We also explored a simple toy model of a thin accretion
disk around the BBMB black hole, assuming that the accret-
ing matter consists of charged particles and ions. We derived
the measurable quantities such as specific energy, angular
momentum, and specific angular velocity for a charged par-
ticle in the presence of an asymptotically uniform magnetic
field. The findings showed that the external magnetic field
significantly changes both radiant energy and temperature.
Additionally, for negative magnetic parameters, the profiles
of these quantities are more narrowly distributed, indicating
a more concentrated distribution of negative particles along
the radial distance in the ionized thin accretion disk.

Finally, we studied synchrotron radiation generated by
the acceleration of charged particles near the magnetized

BBMB black hole. We have derived explicit formulas for
the intensity of radiation emitted by relativistic charged par-
ticles, accelerated by electromagnetic forces (both Coulomb
and Lorentz), in the vicinity of the magnetized black hole.
Numerical results indicate that the radiation intensity from
these accelerated particles near the magnetized black hole is
on the order of ∼ 1035 erg/s. Additionally, a significant find-
ing reveals that a charged particle falling radially towards the
black hole experiences vertical acceleration, which implies
it can emit electromagnetic radiation in this scenario. Fur-
ther interesting research involves studying the acceleration
of charged particles around a rotating magnetized black hole
(magnetized Kerr black hole), particularly focusing on how
the black hole’s rotation and the external magnetic field affect
the synchrotron radiation emitted by these accelerated parti-
cles. Investigations on these aspects are currently ongoing.
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