
 

The role of remote sensing data in providing land 
monitoring information 

Ainura Batykova1,1, Beksultan Tuleev2, Tamchybek Tuleev1, Sobir Ruziboev3, Azim 

Gofirov4, Kuatbay Ismaylov5, Albina Valiyeva3 
 
1Kyrgyz National Agrarian University named after K.I. Skryabin, Bishkek, Kyrgyz Republic 
2 University of Trento,Via Sommarive, 9, 38123 Povo, Trento TN, Italy 
3 “TIIAME” National Research University, Tashkent, Uzbekistan   
4Tashkent State Agrarian University Tashkent, Uzbekistan 
5Karakalpak State University, Nukus city, Uzbekistan 

Abstract. Over the past three decades, remote sensing technologies have 
become increasingly valuable for monitoring sustainable land management 
practices. Remote sensing allows for easy and versatile monitoring through 
various types of imagery, enabling land planners and managers to make well-
informed decisions. This article explores key aspects of using Earth Remote 
Sensing (ERS) tools, particularly for tracking changes in forested areas. By 
leveraging satellite-derived time-series imagery, it is possible to monitor 
large regions continuously, assess forest conditions, and evaluate the impact 
of various natural and human-induced factors over time. This study presents 

an analysis of forest changes over a specific period, providing insights into 
the dynamics and health of these ecosystems. 

1 Introduction 

Land monitoring is the process of keeping an eye on effective land usage, land control, and 

land conservation in general. Following state approval, a single system is used for land 

monitoring, land reclamation processes, and land management kinds and techniques. Land 
monitoring serves as the foundation for the state's control over the intentional and prudent 

use of land resources, the upkeep of the state land cadastre, land usage, land management, 

and information assistance for land preservation organizations. 

The following subsystems are separated into the land fund based on classifications, and 

monitoring is done with the goal of land usage in mind: monitoring lands used for agriculture, 

settlements, industry, transportation, communications, defense, and other uses; monitoring 

lands used for recreation, rehabilitation, and nature preservation; monitoring lands used for 

historical and cultural purposes; monitoring lands used for forests; monitoring lands used for 

water fund purposes; monitoring lands used for reserve purposes. 

A thorough approach to study and database creation is necessary for the Kyrgyz 

Republic's (KR) land management and resource rationalization. Effective land management 

is nearly impossible without an information database. Stated differently, the implementation 
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of contemporary technologies and applications in data collecting and analysis is necessary to 

address many issues pertaining to research, management, and production. It is described in 

KR's Land Law. [1] that monitoring of lands is a system of constant monitoring of the current 

state of land funds for timely detection of changes, its evaluation, warning, and resolving 

negative issues. With the right hardware and software, modern computer systems can process 

large amounts of data accurately and efficiently. GIS and Earth Remote Sensing (ERS) are 

examples of useful software and IT decisions used in land management and governmental 

land cadastre [2]. Web-based mapping and distributed systems for measurement, planning, 

and automation are two examples of how several scientific domains converge to generate 

geographic information systems [3]. Depending on its intended use, a GIS may integrate open 

map data and technical methods with operational, cadastral, environmental, and other data. 
Due to the extremely accurate coordinate computations that are essential in several scientific 

domains, ERS gained a lot of popularity. By using satellite-derived time-series photos, the 

whole region may be regularly monitored. [4–6], the current state of woods, and its evaluation 

due to different changing factors over time either natural or artificial [7–10]. It is crucial to 

have a monitoring system of vegetation coverage because it is a pivotal factor in landscape 

ecology studies [11–14]. These days, specialized processing techniques for satellite-obtained 

photos are employed to monitor lands or address the majority of associated issues. The 

Normalized Difference Vegetation Index (NDVI) is the most often used index in spectral 

study of vegetation. [15–18].  

The primary objective of this study is to evaluate the effectiveness of satellite-based 

remote sensing for land monitoring, focusing on how time-series data like NDVI can provide 

accurate insights into land use, management practices, and environmental changes. The study 
aims to establish a practical framework for monitoring shifts in land cover, assessing 

vegetation health, and understanding the impact of both natural and human activities on land 

degradation. By analyzing patterns like deforestation and urban development, the research 

highlights how remote sensing supports sustainable land management and conservation 

planning in the Kyrgyz Republic. Additionally, the study will provide recommendations for 

integrating remote sensing into land monitoring, considering practical constraints and 

proposing efficient use of geospatial data to support informed, data-driven decision-making. 

2 Methodology  

This research aims to identify and analyze changes in vegetation within the Chui region, 
focusing specifically on the Issyk-Atinsk district. The study area is defined by geographic 

coordinates ranging from 42°52'25.36"N, 75°9'31.31"E (starting point) to 42°49'43.65"N, 

75°16'42.56"E (ending point). This geographic framework situates the research within a 

diverse ecological landscape, providing a basis for examining the dynamics of vegetation 

change in response to both environmental factors and human activities. 

This research utilizes high-resolution satellite imagery from the Landsat 4-5 Thematic 

Mapper (TM) and the Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor 

(TIRS) as the foundational data sources for evaluating vegetation dynamics in the Chui 

region, specifically within the Issyk-Atinsk district. 

For the historical analysis covering the period from 2010 to 2011, a total of X cloud-free 

Landsat 4-5 TM images were systematically selected. These images serve as baseline data 

for understanding historical vegetation conditions within the study area. The selection 
process prioritized images taken at similar times during the year to mitigate seasonal 

variability. Landsat 8 OLI/TIRS: The analysis of more recent vegetation conditions, spanning 

the years 2016 to 2019, involved the selection of Y cloud-free images. Similar to the Landsat 

4-5 dataset, images were selected to represent each season (spring, summer, fall, winter) 
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where feasible [19]. This selection methodology enhances the temporal resolution and 

ensures comprehensive coverage of seasonal growth patterns and disturbances. Temporal 

Resolution: The images chosen were intended to reflect key seasonal growth phases. This 

seasonal approach provides insights into variations in vegetation phenology, thereby enabling 

a robust comparison between historical and contemporary vegetation states. 

To ensure the reliability and accuracy of the analysis across varying time periods and 

sensor types, a rigorous preprocessing workflow was implemented, as illustrated in Figure 1. 

 
Fig. 1. Flowchart of using methodology 

 

To minimize atmospheric interference and achieve accurate surface reflectance values, 

the Dark Object Subtraction (DOS) method was employed. This correction method enhances 
the reliability of reflectance values utilized for vegetation indices, ensuring more precise 

NDVI assessments. The Fmask algorithm was implemented to effectively identify and mask 

cloud and shadow pixels. This algorithm analyzes brightness, temperature, and spectral 

characteristics to accurately delineate cloud cover, ensuring that only clear pixels contribute 

to the NDVI calculations. Exclusion of these masked pixels is crucial to prevent distortions 

in vegetation index assessments. 

All images were geometrically corrected and aligned to a common coordinate system 

using Ground Control Points (GCPs). This correction is vital for eliminating spatial 

misalignments and distortions, which is especially significant when comparing multi-

temporal data from different sensors. Radiometric calibration was performed to convert 

digital numbers (DNs) to top-of-atmosphere reflectance values. This process ensures that the 
reflectance data from Landsat 4-5 and Landsat 8 are comparable, facilitating accurate 

longitudinal analysis. 

The Normalized Difference Vegetation Index (NDVI) was selected as the primary index 

for evaluating vegetation changes due to its simplicity and widespread use in similar research 

studies. NDVI's popularity stems from its effective ability to provide a quick assessment of 

vegetation health by measuring the difference in reflectance between red and near-infrared 

light. However, NDVI does have some limitations. It can struggle to capture changes in areas 

with dense vegetation, where saturation may occur, making it challenging to detect subtle 
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variations in vegetation cover and health [14]. Additionally, soil background can introduce 

"noise" into NDVI results, potentially skewing assessments in regions with sparse vegetation 

or exposed soil. 

To address these limitations, the study also incorporates alternative vegetation indices. 

The Soil Adjusted Vegetation Index (SAVI), for example, includes a soil brightness correction 

factor to reduce soil-related noise, making it more reliable in areas where vegetation is sparse 

or where soil exposure might interfere with readings. Additionally, the Triangular Vegetation 

Index (TVI), which considers specific spectral features to assess vegetation cover, will be 

reviewed and compared with NDVI. By examining SAVI and TVI alongside NDVI, the study 

aims to obtain a more comprehensive understanding of vegetation patterns and health across 

varying landscape conditions [6, 20, 21]. 
NDVI is a valuable tool for quantitatively assessing vegetation cover and health. By 

measuring vegetation reflectance in the red and near-infrared regions of the electromagnetic 

spectrum, NDVI provides insights into the green biomass present in an area. This information 

is particularly important in identifying vegetation stress or degradation, allowing for targeted 

interventions and efficient land management. In cases where vegetation is in poor condition, 

NDVI-based analysis can guide the development of effective solutions to improve plant 

health and optimize land usage. 

In this study area, approximately 20 million hectares make up the land fund of the state, 

with protected natural areas covering 6.1% of this total. NDVI helps to assess the current 

state of vegetation within these lands, offering an indicator of both density and quality. For 

agricultural applications, NDVI is instrumental in evaluating the density of vegetation, 

assessing plant germination, monitoring growth stages, and ultimately evaluating the 
efficiency of land use. This allows growers and land managers to make informed decisions 

regarding crop health and resource allocation. 

The formula for calculating NDVI is as follows: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
    (1) 

where: 

NIR represents the reflectance in the near-infrared spectrum, which is strongly reflected by 

healthy vegetation. 

RED represents the reflectance in the red spectrum, which is absorbed by chlorophyll in green 

plants. 

This calculation yields values between -1 and +1, with higher positive values indicating 

healthier and denser vegetation, while lower or negative values suggest bare soil, water, or 

vegetation stress [23]. 

The Soil Adjusted Vegetation Index (SAVI) is another useful spectral index that enhances 

the sensitivity of vegetation analysis in areas with significant soil background. Developed to 
account for the influence of soil brightness on vegetation reflectance, SAVI incorporates a 

correction factor, L, to minimize soil effects. The formula for calculating SAVI is given by: 

𝑆𝐴𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷+𝐿
∗ (1 + 𝐿)    (2) 

Where: 
NIR is the brightness of the object in the near-infrared wavelength, 

RED is the brightness of the object in the red wavelength, 

L is the soil adjustment factor, which typically ranges from 0 to 1. A common choice for L is 

0.5, particularly in regions with varying vegetation density. 

SAVI is particularly effective in areas where vegetation density is low and soil exposure 

is high, making it a valuable complement to NDVI. 

The Triangular Vegetation Index (TVI) is another index utilized to assess vegetation 

conditions. TVI provides a linear approximation of vegetation cover by measuring the 
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difference between the near-infrared and green reflectance values. The formula for 

calculating TVI is: 

𝑇𝑉𝐼 = 60(𝑁𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁) − 200(𝑅𝐸𝐷 − 𝐺𝑅𝐸𝐸𝑁)  (2) 

NIR is the brightness of the object in the near-infrared wavelength, 

GREEN is the brightness of the object in the green wavelength. 

TVI is advantageous in that it can capture variations in vegetation density and health 

while being less sensitive to soil and atmospheric effects compared to NDVI. Both SAVI and 

TVI serve as important tools alongside NDVI for a comprehensive evaluation of vegetation 

status, especially in diverse landscapes. 

3 Results and discussion 

The analysis of satellite images using NDVI, SAVI, and TVI indices has shown clear changes 

in the vegetative status of the selected natural reserve area over time. The classification based 

on NDVI values allowed us to categorize the landscape types, as presented in Table 1. The 

classification revealed that the overall vegetation coverage with NDVI values higher than 0.5 

(including shrublands, woodlands, and other higher vegetation types) has decreased 

significantly, reaching a minimum of 30 hectares in 2016. This trend is visually represented 

in Figure 2, which illustrates the total area in hectares with NDVI values above 0.5. 
Table 1. Index classification table 

NDVI value Landscape type 
0.8-1 Tropical and subtropical moist forest (TSMF) 
0.67-0.8 Woodlands 
0.4-05 Shrublands and alike vegetation 
0.2-0.4 Grasslands 
0.1-0.2 Soil 
-0.42 - (-0.33) Area filled with water 
-0.55 - (-0.5) Concrete and bitumen 

 

 
Fig. 2. Total sum of Hectares with NDVI >0.5. 

 
Scatterplots detailing the distribution of NDVI values for each year can be found in Appendix 

1 (Figures 3-5). Notably, 2011 recorded higher-than-average precipitation levels, as indicated 

by the FAO report [19], which likely contributed to the high vegetation coverage observed 

that year. Conversely, 2015 was reported as the hottest year on record, according to NASA’s 

observatory report [20], which may account for the reduced vegetation coverage in the 

following years (Figures 4-7). 
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Fig. 3. NDVI, SAVI, TVI, 2010 
 

 
Fig. 4. NDVI, SAVI, TVI 2011 
 

 
Fig. 5 NDVI, SAVI, TVI 2016 
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Fig. 6 NDVI, SAVI, TVI 2019 

 
In addition, the SAVI index proved particularly useful for delineating areas with lower 

vegetation cover (below 40%), as it effectively captured the boundaries of woodland areas. 

Among the indices, NDVI showed the most significant changes across different years, 

highlighting its sensitivity to shifts in vegetation density and health. 

The findings emphasize the importance of remote sensing data in land management and 

decision-making processes. Remote sensing technology provides a valuable tool for tracking 

changes in vegetation and land composition, enabling land managers to make informed 
decisions. Real-time monitoring and assessment of these changes are essential for optimizing 

land use, especially at local levels such as cities and districts. 

4 Conclusion 

In conclusion, satellite imagery and remote sensing data are invaluable tools for 

environmental assessment and land monitoring. This study underscores the importance of 

using such data to track vegetation changes over time and to understand the environmental 

factors driving these variations. Accurate monitoring of vegetation dynamics is crucial for 

effective land management and conservation efforts in natural reserves and similar 

ecosystems. 

The scatterplots in Figures 3 and 5 visually depict the distribution of vegetation in relation to 

NDVI values over time, highlighting notable changes in vegetation cover. Historical climate 

data supports the findings by illustrating how environmental factors influences vegetation. 
For instance, the FAO’s report indicates that the unusually high precipitation in 2011 likely 

contributed to the observed increase in vegetation. Conversely, the extreme heat recorded by 

NASA in 2015 likely resulted in reduced vegetation cover for that year. 

This analysis reaffirms the role of remote sensing as a critical tool in environmental 

management, enabling timely and informed decisions to enhance land use and conservation 

practices. 
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