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Abstract. This (article) work is devoted to one, relatively unbalanced issue of the 

dynamics of hydraulic structures - the determination of hydrodynamic loads on the slabs 

of a high-pressure spillway in a cavitating flow in the presence of erosion-free energy 

absorbers.  

Working on the implementation of these studies, the authors simultaneously studied in 

laboratory pulsation loads on a real structure - elements of the downstream spillway 

devices, below – the Kafirnigan hydroelectric complex. 

1. Introduction  

It should be noted that in cavitation studies carried out until recently, the effect of cavitation on energy 

absorbers was considered only from the point of view of the possibility of an erosion hazard and the 

effects of the flow on the absorbers themselves. There is no doubt, however, that the degree of 

development of cavitation affects the characteristics of pressure pulsation in the cavitating flow not 

only on the surface of the absorbers, but also not on the water column. In non-cavitation modes, the 

pulsation loads on the pond have been studied in some detail for some types of dampers. As for the 

loads on the stand at cavitation modes and erosion – free dampers, they have not been studied.  

1.1. Force effects of the flow on the elements of hydraulic structures in the presence of cavitation. 

As far as we know, the question of the effect of cavitation on the pulsation characteristics of the water 

flow acting on the slabs of the water face during the cavitation regime has not been practically studied. 

However, a qualitative understanding of pressure pulsations behind dampers can be obtained by the 

example of works studying the pulsation characteristics behind various kinds of obstacles (protrusions, 

gates, and so on), since both are essentially sources of cavitation, turbulence and pressure pulsations. 

In work [1], laboratory tests were carried out for a flat valve operating under high-speed flow 

conditions at a head of 200 m. One of the aspects of the work was studied the dynamic effect of the 

cavitating flow on the valve. According to the authors, the values of the standards for pressure 

pulsation on the valve in the presence of developed cavitation are two times higher than the values of 

the standards in its absence. In the supercavitation mode, such data are not presented because the 

author of the work failed to obtain supercavitation. 
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In the works of V. M. Lyatkher and L.V. Smirnov [2, 3], data were obtained on the characteristics 

of pressure pulsations in the flow separation zone at different absolute pressures, according to which 

there is an increase in dispersion and a significant deformation of the pulsation spectrum towards high 

frequencies as development of cavitation. In the separation zone, the spectrum changes during 

cavitation, naturally due to the fact that the most intense pulsations occur in the presence of cavitation. 

A. Lokher and E. Naudasher  carrying out systematic studies, obtained the intensity of pressure 

pulsation on the protruding walls, depending on the number of cavitation. In order to obtain 

information on flow-induced structural vibrations in common cases, pressure pulsations were 

measured on the protruding wall.  It was found that the intensity of pressure fluctuations, linear 

correlation, and the spectra of wall pressure fluctuations strongly depend on the adhesion of the 

flowing stream to the wall; the cases of the absence of cavitation and without adhesion (d / b = 1) were 

initially investigated. At d/b = 1, there was no main frequency in the spectrum of pressure pulsations 

and the intensity of this load was comparatively low  (0.078ρU0
2
/2). In the case of unstable adhesion 

of the flow to the wall (for d/b = 3), the force effects of the flow are distinguished by a high – 

frequency spectrum and pronounced peaks, while the pressure pulsations are much higher 

(0.13ρU0
2
/2). Cavitation at equal stages leads to an increase in flow pulsations, thus leading to more 

intense pressure pulsations in the low-frequency part of the spectrum, but only in those cases when the 

flow does not stick to the streamlined wall [4–9]. 

For a flow with unstable adhesion, cavitation works with it in antiphase, which leads to a decrease 

in the relative intensity of low-frequency oscillations. High-frequency oscillations, as the spectra of 

pressure pulsations show, increase in both cases, in connection with the ultrasonic spectrum of the 

cavitation phenomenon itself. With supercavitation K = 1.8, the pulsation standard decreases 

significantly. The authors of the reports explain the discovered phenomenon by the damping effect of 

air bubbles released from the water in the low pressure zone and accumulating in the displacement 

zone. Apparently, the cavitation steam-gas cavities (flares) themselves have a similar effect. 

In works [10–17], the authors also note an increase in the standard of pressure pulsations in the 

flow separation zones and behind the protrusions of structures. So, in work [13], the research was 

carried out on the model of the construction spillway of the 2nd tier of the Sayano-Shushensko HPP. A 

two-dimensional protrusion was installed on the ceiling of the curved spillway and simulated the 

displacement of one of the elements of the precast concrete floor. The model of the spillway was made 

of plexiglass on a scale of 1:30 A.D. in. the protrusion height was 6 mm and the downstream length 

was 100 mm. The protrusion was the source of cavitation, the various stages of which were recorded 

visually. 

The studies were carried out in a pressure mode of fluid flow. The flow velocity in the section of 

the ledge was 5 – 7 m/s. The pressure pulsations were recorded on the oscillogram both at atmospheric 

pressure inside the test bench and at different vacuum, providing a change in the cavitation process 

from the moment of its occurrence to the developed stages. 

The authors note that the intensity of pressure pulsations in developed cavitation (β = 0.3) is 

significantly higher than in the case of no cavitation regime, the flow around the rib (see Table 1). 

Table 1. 

Ridge Wrap Mode σ р/V
2
/2g 

1 2 3 

Cavitation-free developed cavitation at β=0.3 0.019 

0.020 

0.088 

0.054 

0.025 

0.095 

The above analysis of the oscillogram shows that the frequency and amplitude characteristics of 

pressure pulsations at various points of the cavitation zone depend on the location of these points 

within the indicated zone of the stage of cavitation development. 

Computer processing of realizations of the cavitation-free process and with a developed stage of 

cavitation (β = 0.3) made it possible to obtain the spectral density functions. 
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In the case of a cavitation-free flow around the rib, the bulk of the pressure pulsation energy falls 

on low frequencies (up to 3 Hz). During cavitation, the spectrum shape changes. The contribution of 

low-frequency components decreases, the maxima of the spectrum are shifted to a frequency of 20-30 

Hz. The frequency range expands to high frequencies. 

S. Wiegander and U. Chi [12, 13, 18–20], observing the transformation of the exposure spectrum in 

the region of reattachment of the flow, found an increase in pressure fluctuations by a factor of 6. 

For the first time in hydraulic engineering, the force effects of a cavitating flow on erosion-free 

absorbers were studied by N.N. Rozanova [21–23]. On the basis of cavitation and pressures, the author 

of this work was able to obtain quantitative regularities of horizontal averaged and pulsating loads on 

absorbers, and the development of cavitation. During the experiments, a decrease in drag coefficients 

with the development of cavitation was recorded. The resulting graphical dependence Скав/С0=f(β) for 

a jump in the limiting state indicates a change in the drag coefficients of erosion-free absorbers, and is 

approximated by the dependence Скав/С0=β
0.6

. 

The noted decrease in the drag coefficient during cavitation, especially under the conditions of the 

developed stage and supercavitation, the author explains there that with the development of cavitation 

the nature of this pressure distribution on the streamlined body changes. 

As you know, from the literature, experimental studies of flow around various bodies (cylinder, 

plate, disk, others) show a change in the drag coefficient of a body, its reaction with the development 

of cavitation. Moreover, with a significant development of cavitation, the drag coefficient "C" is rather 

significantly reduced. 

At the second stage, the author studies the ripple loads on the absorbers at their maximum swing. 

The analysis of the research results showed that when the absorbers operate in conditions of cavitation 

(initial and developed), an increase in the instantaneous pulsation component of the load occurs in 

comparison with the non-cavitation mode.  For example, in the cavitation-free mode, the ripple 

coefficient δη is constant and equal to 0.14 while at the developed stage (β=0.5) δη=0.65, i.e. increased 

by 4.6 times, and at β˂0.5 it is planned to decrease. In conclusion, we note that the hydrodynamic 

loads on the cavitation sources and behind them very strongly depend on the stage of cavitation. 

Therefore, it should be expected that a similar pattern can take place with cavitating erosion-free 

energy absorbers on the slabs of the water table in the downstream of the spillway hydraulic 

structures. 

1.2. Discussion of the results based on the analysis of literature sources and setting the research 

objectives. 

As the literature review shows, the operating conditions of the downstream damping devices of 

high-pressure structures are very difficult. 

At flow velocities more than 12 - 15 m/s, downstream damping devices, as a rule, operate in a 

receipt mode. This mode of operation, first of all, gives rise to erosional destruction of the damper 

itself and the slabs located near it.  
This occurs where the cavitation torch closes on the structure. An attempt to avoid these 

undesirable phenomena by lining erosion sites with steel sheets does not always lead to the desired 

result, since often the steel lining is torn off by hydrodynamic forces. 

Tearing off of the cladding occurs in two cases: firstly, when the cladding is loosely in contact with 

the concrete to be protected, and, secondly, when there are not enough anchors. In both cases, 

fractures occur from fatigue phenomena in the metal due to multiple oscillatory cycles from 

hydrodynamic loads. It is difficult to avoid this in cavitation modes, since the spectrum of pressure 

pulsations in this case is very wide, which leads to oscillations of the linings at resonance frequencies. 

Apparently, the issue of the strength of the linings is an object of special research and should be dealt 

with both theoretically and experimentally in the future. 

In [15], it is indicated that a comparison of the pressure pulsation standards obtained in nature 

under conditions of developed cavitation and on a model tested on a vacuum bench with simulated 

external pressure showed that when recalculating data from model to field according to Froude, the 

relative value of the discrepancy between the compared standards ripple does not exceed 9%. 
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Investigations of pressure pulsations on the model at an unmoded external pressure showed that the 

standards of these pulsations, recalculated for natural Froude, are underestimated (by about 2.5 times) 

in comparison with the full-scale values obtained during cavitation. The largest relative discrepancy 

between these data was 63% [2]. 

In addition, it can be noted that under cavitation modes, other important flow characteristics also 

change, such as the weir discharge coefficient, the drag coefficients of the absorbers and the pattern of 

the body flow with the water flow. 

 

 
Figure 1. Shows a graph  illustrating the change in the weir discharge coefficient from the cavitation 

rice 𝐾 and Н/а [1]. 

The given factual material makes it possible to assert that for the correct accounting of hydrodynamic 

loads during cavitation, the models of the investigated structures should also be tested in the cavitation 

mode. Such a way of achieving the indicated modes, such as increasing the flow rate on the model, 

does not solve the problem, since the linear and speed scales of modeling the structure are not 

observed (the main thing is that the hydraulic stuck is not modeled).  

To study the hydrodynamic characteristics of cavitating flows, it is most expedient to carry out 

research in vacuum cavitation stands. They make it possible to study the quantitative characteristics of 

a structure at various degrees of development of cavitation processes on it. As the experience of 

operating real structures with a head of 20 – 30 m and more shows, it is either impossible to exclude 

the phenomenon of cavitation on damping devices, or rather complex engineering measures are 

required. Therefore, there is a desire to go on the assumption of the degree of development of 

cavitation with the use of without erosion structures. This assumption can be found in the works of 

N.P. Rozanov [24]. The principle without erosion absorbers is that at various stages of cavitation, the 

zones of formation and decay of cavitation flares do not have direct contact with solid boundaries of 

the flow. 

2. Methods 

2.1. The experimental technique and processing of experimental data are given in. Results of 

experimental studies of pulsation pressures at individual points of the water basin. 

The question of the pulsation of hydrodynamic pressures and loads on the slabs of the water face 

both with and without dampers in cavitation-free modes have been studied rather well. It has been 
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proven that the presence of absorbers leads to a redistribution of pulsation loads over the area of the 

water face. In other words, in some areas of the water circulation, the pulsation loads can significantly 

exceed their average value, which must be taken into account when designing. 

The question of the influence of cavitation on the redistribution of pulsation loads over the area of 

the water basin is currently practically not studied. Although many researchers have noted that the 

pressure pulsation during cavitation changes. 

 In this regard, during the experiments, the standards of pressure fluctuations along the longitudinal 

and transverse sections of the water section were studied, depending on the stage of cavitation, the 

degree of flooding of the jump and the type without erosion absorbers. A preliminary amplitude 

analysis of the process realizations showed that the intensity of pressure pulsations depends on a 

number of factors: the parameters β and n (where n is the jump flooding coefficient), the location of 

the point under study, and the presence of various designs of energy absorbers in the water cut. 

 

3. Results and Discussion 

The nature of the dependence 𝑃𝑖
′  =  𝑓 (𝑞) where q is the specific water consumption is close to linear. 

In figures 2...4 show the graphs of the pressure fluctuation standard 𝑃𝑖
′normalized by the velocity head 

in the compressed section γV1
2
/ 2g along the length of the water stand without cavitation and in the 

presence of cavitation is different. For example, without cavitation, the maximum and minimum 

standards of pulsations differ by about 4 times, and in the developed stage of cavitation β = β0≈0.5 – 

more than 6 times, where β0 – is the stage of cavitation, at which the greatest hydrodynamic effects of 

the flow are observed for cavitating erosional structures, as well as the maximum intensity of 

cavitation erosion. In our experiments β0≈0.5. The second case is less favorable for the operation of 

the slabs of the slab, since the increased pulsation loads with large irregularities in length can lead to 

an increase in the moment forces on the slabs of the slab. In addition, the normal vertical loads on the 

plate also increase, since the absolute value of the pressure pulsation standard at the advanced stage of 

cavitation increases by more than 2 times.  

 

 

Figure 2. Distribution of the intensity of pressure pulsations along the length of the water wall at 

different stages of cavitation (𝛽 = 𝐾/𝐾𝑐𝑟) for the damper №1 (n=1) 
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Figure 3. Distribution of the intensity of pressure pulsations along the length of the water wall at 

different stages of cavitation (𝛽 = 𝐾/𝐾𝑐𝑟) for the damper №2 (n=1) 

As a result, the study of the distribution of pulsation pressure in the water basin by “point” sensors 

revealed that the standards of pressure pulsation recorded by the sensor located in front of the first row 

of absorbers are practically the same in all stages of cavitation (figure  4, a). The result obtained 

indicates that the pressure pulsations in front of the dampers are practically independent of the 

cavitation stage. This was to be expected, since a violent flow was observed in front of the damper at 

the sensor installation site. Apparently this is mainly due to the fact that the cavitation torch was not 

above the sensor. 

 

Figure 4. Standard of pressure pulsation at the bottom of the pond, depending on the stage of 

cavitation 𝛽, for the damper № 2; с) – before extinguishers; v) after the damper at a distance х = 3ℎ1; 

b) on distance х = 3ℎ1. 
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The greatest hydrodynamic loads are experienced by the slabs of the pond located behind the first row 

of absorbers at a distance of (0.5 – 1.5) h1 from the latter (fig. 4, b). The fact that the greatest pressure 

pulsations are observed is the greatest dissipation of the flow energy due to the formation of turbulent 

vortices and cavitation flows. In this case, the largest value 𝑃𝑖
′/γ V1

2
/2g occurs at the developed stage 

of cavitation β=0.5 and as cavitation develops, the pressure pulsation standards sharply decrease and 

become smaller during supercavitation than in the non-cavitation mode (that is, at β≥1). A sharp 

decrease in hydrodynamic pressures during super cavitation can be explained by the fact that during 

super cavitation a long cavity is formed behind the damper and the transfer of forces to the slab occurs 

through the water - air environment, that is, the loads decrease. Comparison of the obtained values of 

the pressure pulsation standards at individual points of the slabs of the water table in no cavitation 

mode without erosion absorbers № 2, with the data of O.N. Chernykh on the study of pressure 

pulsations on the slabs of the Shamkhor water system [22], showed good agreement of the results. 

It is of some interest to compare the pulsation characteristics without erosion and erosion energy 

absorbers. For erosion-free damper type №  2, cavitation begins in the zone where the damper meets 

the inclined threshold. As cavitation develops, the size of the flame increases and it has a decisive 

effect on the pulsation characteristics of the pressure at the water side (the standard of pulsation 

increases by 2, 3 times). The plume breaking out from the damper is closed in the flow. 

4. Conclusions 
1.  Under cavitation conditions, the extinguishing ability of the absorbers deteriorates (the drag 

coefficient decreases), but this does not mean that the use without erosion absorbers in these cases is 

impractical, since a slight increase in the size of the absorbers can preserve their energy extinguishing 

properties. 

2. A model study of the downstream of spillway hydraulic structures should be carried out on vacuum 

cavitation stands, which allow regulating cavitation modes (simulating a hydraulic jump and 

maintaining the Froude similarity criterion). As a result, it seems possible to trace the influence of the 

degree of development of cavitation on the hydrodynamic loads in the downstream. 

3. As a result of the experiments, the areas of the greatest influence of cavitation on the pulsations of 

hydrodynamic pressures were revealed, and graphical dependencies were also proposed for 

determining the standards of pressure pulsations at individual points of the water stand at different 

stages of cavitation. The highest intensity of pressure fluctuations is observed behind the absorbers at a 

distance of (0.5 – 1.5) h2. The effect of cavitation on pressure pulsations is practically transformed at a 

distance of four compressed depths. 

4. Under cavitation conditions, the hydrodynamic pressures on the slab of the water face increase and 

reach their maximum value in the developed stage of cavitation (β = 0.5). In this case, the standard of 

pressure pulsation at the “points” in the zone of the developed stage of cavitation can increase by a 

factor of 2 – 2.4 in comparison with the non-cavitation regime. 
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