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Abstract. The depth-averaged hydrodynamic equations were numerically investigated. Numerical solutions of the 
equations were obtained using Chebyshev polynomials for a given number of operations and various ratios of the number 
of layers and the number of polynomials. 
Numerical solutions were compared with analytical ones using, as an example, the heat conduction equation. The 
performed numerical studies demonstrated the tendency of the numerical solution to the exact one over time in all cases 
considered. The best ratio of the number of layers and the number of polynomials was revealed. 
Comparison of finite-difference solutions with the analytical one for the same number of operations showed the 
advantage of the polynomial method. 

INTRODUCTION 

The beginning of the use of numerical models based on the method of finite differences, designed to solve 
hydrodynamic problems, including for predicting transport processes in open watercourses and reservoirs, is 
associated with the development of computer technology [1 - 15]. The essence of the finite difference method lies in 
the discretization of time and space variables (grid construction) and the required functions (introduction of grid 
functions) from derivatives and integrals of these functions (construction of a difference scheme on a grid). As a 
result, the systems of differential or integral equations in each discrete structure (cell) of the region under 
consideration are replaced by systems of algebraic equations, the solution of which allows finding numerical values 
of the sought functions.  

METHODS 

According to [17 – 11], the general equations of hydrodynamics can be written in the following form: 
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where ui is projection of the current velocity vector onto the axis xi, p is hydrodynamic pressure, i is shear stress 
tensor component,  is density, gi is component of the gravity acceleration vector, qSr  are internal sources of 
substance for Newtonian fluid, 
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 is kinematic fluid viscosity, Sr is some substance that determines the density, for example, temperature, salinity. 

In the case of an incompressible fluid, when considering water bodies, the planned dimensions of which are much 
greater than the depth and introducing the scale of consideration: 
 

M L TL n
2 ,   (3) 

 
here Ln is linear scale with Ln h, here h is flow depth; T L Un , U is intrinsic velocity in the case when  
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the system of equations (1) could be converted in the following system of equations: 
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RESULTS AND DISCUSSION 

Basic requirements for numerical models 

All processes could be considered in time layers (discrete time): 
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Denote by f c is a grid function that is a solution to an algebraic system of equations obtained by discretization, 
and by f n is the projection of the solution of the system of initial equations onto the selected grid. From the point of 
view of the accuracy of the method, the only requirement for the numerical model is the requirement for 
convergence: 
 

, 0 , for 0; 0 ,e n i if f R R     (7) 
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here R i is the size of i-  cell, Ri ,  is a function describing the error with which the desired value is 

determined. At present, the theory of difference schemes does not allow to find the function Ri , and a priori 
estimate the error of the numerical method for complex nonlinear systems. 

However, the rich empirical material accumulated to date on the application of numerical methods in gas 
dynamics and hydraulics makes it possible to outline the conditions under which the finite difference method gives 
an accuracy acceptable for practice. In this case, instead of (2), the requirement is usually imposed on the 
approximation on the template of the initial equations by the difference scheme and the stability of the linearized 
equations. In the case of initial linear equations, these requirements are necessary and sufficient for the convergence 
of the scheme. 

For nonlinear circuits, the approximation requirement is natural since otherwise, as the steps tend to zero, they 
can converge to others and not to the original equations. The requirement of stability of linearized equations is 
discussed in detail in [17, 18, 21], where it is shown that, in addition to the approximation condition, all 
requirements for difference schemes should have the meaning of exact observance of some properties of the original 
equations. It was also shown that not all schemes that satisfy the requirements of approximation and stability give 
satisfactory results. Additional requirements often need to be set, such as: 

 For the scheme to be conservative (divergent), i.e., it is possible to introduce grid functions that are analogues 
of momentum and mass, which would be exactly preserved when summed on the grid, regardless of the size of the 
cell. However, it should be borne in mind that the scheme is conservative within the region under natural boundary 
conditions, i.e. for the Cauchy problem, it can give difference sources of momentum and mass at the boundary, as 
shown in [12 – 17]. 

 For the circuit to have a trivial solution on grids that do not change in time, the fulfilment of this requirement 
is not difficult. If the grid on the real region changes in time, then this requirement leads to the need to introduce 
additional terms in the difference equations. 

 It is necessary that the property of symmetry is fulfilled, i.e. when changing the direction of flow, the solution 
would be the same as before changing. 

 For flows with small Froude numbers ( U gh ), the difference scheme did not contradict the 

approximate self-similarity in the Froude number, i.e. when the speed at the boundary changes by  times, the time 
scale by a factor of 1 the speed inside the region would change by approximately  times. 

 If velocity at the boundary changes by  times, the velocities in a stationary flow (or time-averaged velocities 
in a pulsating flow) should also change  times. The fulfilment of this requirement is necessary so that, using the 
same scheme, it would be possible to calculate sharply stationary, quasi-stationary, and pulsating flows and, in 
addition, stationary flows by the “establishment” method. 

 Invariance of linearized equations concerning transformation U U Ci i , where C is any constant. This 
requirement is very important because, otherwise, small perturbations can be masked by the difference effects. 

 Such an approximation of two-dimensional equations, in which for straightened channels a one-dimensional 
scheme, taking into account the real change in the cross-flow area, would be a consequence of a two-dimensional.  

For the equation of pollution transfer, as the experience of calculations shows [118 – 23], the following 
properties should be required: 

1. Divergence (the property to accurately preserve the mesh analogue of the impurity mass on the pattern). 

2. Invariance of difference equations concerning transformation S S C , here S is admixture 
concentration,  С is constant, 

3. Symmetrical. 
In addition, it is necessary to comply with the requirements for the independence of the stationary state in time. 

Numerical models 

Following [18], the complete equations of motion (without the hydrostatic hypothesis) can be written in the form: 
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When deriving equation (8), it was assumed that the change in stresses along the horizontal coordinates is much 
less than along the vertical ones. Making this assumption about the flow rates, the following will be obtained from 
(8): 
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To consider the problem in vertical limits independent of x, y, a new coordinate system is introduced: 
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In which the flow region lies in the range from 0 to 1. In these coordinates, the equations have practically the 
same form as in the old coordinates, with the replacement W for W 0 : 
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In what follows, the sign “ ” over variables is meant. 
To consider the fundamental approaches to solving the problem, we will assume that  and  are weakly 

dependent functions of coordinates and time, and  - is a given function. In addition, we will neglect the vertical 
convective transport in comparison with the diffusion. These assumptions do not affect the principled approach. In 
addition, a large number of problems can be solved with these assumptions. The solution algorithm, taking into 
account the terms corresponding to them in the equation, will be presented below. 

Under the assumptions made above, the equations are as follows: 
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With boundary conditions: 
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Obviously, conditions (11) are not enough for the solvability of the equations. There is a need for one more 

condition. However, there are no physical prerequisites for it. This happened because, having passed to the 
equations in stresses, the pressure was excluded, i.e. an additional condition is included in the original formulation 
of the problem. Indeed, integrating the first two equations (5), we obtain the missing condition: 
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With the introduction of depth-averaged equations, the problem is posed as closed. In this case, it turns out to be 
more convenient, instead of condition (11.3), to use the averaged continuity equation: 
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In [16-20], an algorithm is given for solving equations (9) for flows with high viscosity using Chebyshev 
polynomials. To study the accuracy of the solution method, the following numerical experiments were carried out: 
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for a given number of operations M nN various relations between the number of layers n and the number of 
polynomials were considered N: 

1) n 1, N 21 
2) n 7, N 3 
Using the example of the heat conduction equation 
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with the initial condition U t t

t t0 0  in the point z 0, the numerical solution was compared with the 

analytical one. 

The performed numerical studies showed the tendency in time of the numerical solution to the exact one in all cases. 
But the obvious advantage of splitting into n 7, N 3 in comparison with other cases. Comparison of the analytical 
solution with the finite-difference solution with the same number of operations showed the advantage of the 
polynomial method. 

An example of such a time-varying solution of the heat conduction equation is the propagation of the - function on 
the segment 
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serves as a good illustration of the advantage of solving it with the help of polynomials and the expediency of 
partitioning into layers with the representation of the function by the number of polynomials N 3. 
A series of numerical experiments were also carried out for N 3 (n 7) with different variants of equations for 

determining a a a j nj j j
0 1 2 1, ,  ( , ) . It turned out that the best option is to use a quadratic polynomial in 

combination with Galerkin's method (Fig.1). 
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FIGURE 1. Comparison of the numerical and analytical solutions of the heat conduction equation for the moments of time T = 
0.035; T = 0.045; T = 0.055. Polynomial method: number of layers M = 7, number of polynomials N = 3. Legend: --- - analytical 
solution; x x – numerical solution. 

CONCLUSIONS 

The accumulated practical experience in using finite-difference schemes in solving dynamic problems made it 
possible to find the necessary conditions under which numerical methods can be used for engineering calculations 
and research of hydrodynamic processes.  

To solve practical problems related to predicting the spread of pollutants in water bodies and watercourses, a 
grid-spectral method was developed, which showed high efficiency in the case of studying stratified currents. It 
turned out that this method requires strong restrictions on the time steps. 
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Especially for solving problems related to the calculation of stratified flows, an algorithm was developed based 
on integro-interpolation methods, characterized by the ability to perform calculations with large time steps. 
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