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Abstract. In this work, we consider the general equation of fluid motion in pressureless 

channels and the functional dependences of the coefficient of hydraulic friction on the 

Reynolds number, relative roughness, and the shape of the live section of the channel, as well 

as the resistance formulas for the simplest channels with respect to the cross-sectional shape 

(round and infinitely wide rectangular), and then for channels with a more complex cross-

sectional shape. To take into account the effect (on the pressure loss) of the channel cross-

sectional shape and the presence of a flow with a free surface in it, additional correction factors 

are introduced (using the hydraulic radius concept). In conclusion, it is concluded that the 

values of the mentioned correction factors can and should be refined only as a result of the 

relevant experiments. The work also examined the patterns of hydraulic resistance in engine 

channels of the correct form of a live section with uniform turbulent fluid motion. Formulas of 

hydraulic resistance in the machine channels of a simple and complex outline of a live section 

are given. 

1. Introduction   

To identify the patterns of hydraulic resistance in engine channels of the correct shape of a living 

section with uniform turbulent fluid motion, we consider the laws of hydraulic resistance in engine 

channels of a simple outline of a live section, and then a complex one shows the patterns of hydraulic 

resistance or determining the flow energy loss for round and infinitely wide rectangular pressure pipes 

using the logarithmic law of Karman’s velocity distribution. For round pipes, the tangential stresses τ0 

on the wall will be the same along the entire perimeter of the section, and for infinitely wide 

rectangular pipes, the value of τ0 on both sides of the pipe can be neglected (figure 1). 
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Figure 1. Distribution of shear stresses a) in a round; b) in wide 

rectangular pipes 

Therefore, in both cases, we can assume that 𝜏𝑜 = 𝜏𝑜𝑐𝑟, here 𝜏𝑜𝑐𝑟- where τ= const is the average 

tangential stress along the entire wetted perimeter. Determining the coefficient of hydraulic friction λ 

from the ratio. 

𝜏𝑜𝑐𝑟/ρ = λū2/8  (1) 

in which ū = υ is the average flow velocity, and bearing in mind that 𝑦∗ = √𝜏0  ср/𝜌, we obtain 

𝑦/𝑦∗ = 2√2/𝜆 or  𝜗/𝜗∗ = √8/𝜆    (2) 

here  Ū∗ = 𝜗∗ is the dynamic flow rate. Therefore, as a measure of hydraulic resistance, it is 

sufficient to consider the ratio 𝑦/𝑦∗ or λ.  

2. Method 

Analysis of the operation of non-pressure machine channels of pumping stations in various modes, 

operating under different hydraulic conditions and different values of h depth of flow, Ṛ is a hydraulic 

radius and χ is the wetted perimeter of the live section of the stream, taking into account the influence 

of roughness of the wetted surface, the shape of the living section of the channel, and the effect of the 

free surface of the flow on the hydraulic resistance (on the coefficient of hydraulic friction λ) of the 

machine channels of pumping stations is a method for studying this work. 

3. Results and Discussion 

Until now, some researchers believed that the patterns expressing hydraulic resistance in pressure and 

pressureless flows are identical. A.P. Zegjda believed that the question of the nature of the size of the 

pressureless flow can be solved by replacing the pipe diameter with a hydraulic radius, and, by 

analogy with the pressure flow, suggested a dependence for λ (assuming a pressureless flow)[1–4]. 

λ = 𝑓(𝑅𝑒𝐷;
𝑘

𝑅
)   (3) 

here ReD=𝜗𝐷/𝜗 is the Reynolds number; R = 𝐷/4 is the hydraulic radius. 
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Figure 2. Dependence 𝜆ℎ =  𝑓( hRe  ) 

1 is the Bazin experiments, series № 2, a rectangular channel, the surface of the bottom and 

walls - cmooth concrete, 2 is the same, series № 24, a semicircular channel, the surface of 

the bottom and walls - cmooth concrete, 3 is the same, series № 6, rectangular channel, the 

surface of the bottom and walls - desks, 4 is the same, series № 26, semicircular channel, 

the surface of the bottom and walls - boards, 5 is the same, series № 4, rectangular channel, 

the surface of the bottom and walls - gravel d = 0, 01-0.02 m, 6 is the same, series № 27, a 

semicircular canal, the surface of the bottom and walls - gravel d = 0.01- 0.02 m, 7 is the 

experiments of the author, series №1, a rectangular channel, the surface of the bottom and 

walls is cmoothly rubbed concrete, 8 is the author’s optics, series № 3, trapezoidal channel, 

the surface of the bottom and walls is cmoothly grinded concrete, 9 is the same, series № 8, 

a rectangular channel, the surface of the bottom and walls are faces d = 0.5 – 0.7 cm. 

 

It is pertinent to note that the indicated arrangement of the dependency curves R  of the Reynolds 

number will change significantly, and with it, the form of the curves themselves will change, for 

example, the value    does not refer to the hydraulic radius Ṛ, and the greatest depth h  in the 

channel, i.e. calculate value h  
 and Reynolds number hRe  = ϑh/v (see figure 2). 

However, the validity of this approach was not justified and requires additional analysis. Moreover, 

recent studies have shown [5–8], what's the attitude й/й∗ or λ depends not only on ReR and the relative 

roughness Δ/R but also on the shape of the live section of the channel Ф and has a dependence of the 

following form: 

λ = λ (ReR; ∆/R;Ф)    (4) 

here ReR = 𝜗𝑅/𝜗 is the Reynolds number; ∆/R is the relative roughness; Ф is the parameter taking 

into account the shape of the cross-section of the channel. To justify the dependence (4), we first 

consider the hydraulic resistance formula (round and rectangular pipes of infinite width) and then 

proceed to consider machine channels of complex cross-sectional shape (for example, trapezoidal). 

Considering a pipe of the circular cross-section with cmooth walls (figure 1, a), we turn to the 

expression:  

𝑦

𝑦∗
= 𝑎𝑠ℎ + 𝑏𝑙𝑛(y𝑦∗/ν),    b=I/ ϰ;   (5) 

 (here ϰ is the Karman constant), which is the velocity distribution equation for a cmooth surface. 

Multiplying both sides of the expression by 2Pṙdṙ, we integrate the resulting ratio in the range from (ṙ0 
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- δ) to 0, where δ is the thickness of the laminar sublayer, ṙ0 is the radius of the pipe. The magnitude of 

the flow in the laminar sublayer can be neglected, and the terms with δ can be discarded. Then we get 

the equation for the average flow velocity in a round pipe with cmooth walls: 
𝑈

𝑈∗
=

𝜗

𝜗∗
 =  𝑎𝑠ℎ  − 𝑏[1,5 − 𝑙𝑛(𝜏0 𝜗∗/𝜗)]   (6) 

In a detailed way, one can obtain the equation for a rectangular pipe of infinite width (figure 1, b). 
𝑈

𝑈∗
=

𝜗

𝜗∗
 =  𝑎𝑠ℎ  − 𝑏[1 − 𝑙𝑛(ℎ 𝜗∗/𝜗)]          (7) 

here: h is the half of the height of the stream. Introducing the hydraulic radii R = ṙ0/2 and R=h in 

the last two equations, respectively, we obtain 
𝑦

𝑦∗
=  𝑎𝑠ℎ  − 𝑏[0.81 − 𝑙𝑛(𝑅 𝑦∗/𝜗)]    (8) 

and 
𝑦

𝑦∗
=  𝑎𝑠ℎ  − 𝑏[1 − 𝑙𝑛(𝑅 𝑦∗/𝜗)]    (9) 

In equations (8) and (9), the quantities   𝑎𝑔𝑙  and b are determined experimentally. Dependencies (8) 

and (9) differ in the values of the coefficients in the second term in the first part. If we take the 

hydraulic radius R as the characteristic size of the channel shape, then it turns out that for the 

considered cases the expressions of the average velocity are not the same[9 –10]. The discrepancy in 

the mean flow velocities here will be cmall. When considering more complex cross-sectional shapes 

(for example, trapezoidal channels), complications arise due to the presence of secondary flows in the 

corners of the channel. Also, in the case of fluid free movement, the free surface serves as an 

additional source of friction. 

Considering the expression for the average velocity in the machine channel of a trapezoidal shape 

according to Karman’s law (for cases when the bisectors of the internal angles of a given shape 

intersect over the living flow section), we see that neglecting the correction terms due to changes in 

the shear stresses on the wall (on the solid boundary), and apparent tangential stresses on the free 

surface can lead to an error (figure 3). 

 

 

Figure 3. Hydraulic resistance in the machine channels of the correct cross-

sectional shape during turbulent fluid motion: ψ1 and ψ2 are the internal 

angles of the channel cross-section; B0 is the width of the base; һ is the 

depth of the stream. 

 

We divide the live section of the channel into zones of infinitely cmall width dy so that all their parts 

are at a minimum distance y from the wall [11–15]. The speed at point P' in one of the zones can be 

expressed as; 
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𝑦

𝑦∗
= 𝑎 + 𝑏𝑙𝑛(

 у𝑦∗

𝜗
) − 𝐾ƒ ·

𝑦

𝑦∗
    (10) 

where y is the distance to the point P' normal to the wall; 𝑦∗ is the dynamic speed corresponding to 

the local tangential stress at the base of the normal from the point Р'; 𝐾ƒ · 𝑦/𝑦∗ correction taking into 

account the effect of the free surface; й is the average speed in a live section;й∗ is the average 

dynamic velocity along a solid boundary, depending on the position of the point Р'. 

The ratio of the local dynamic velocity  𝑢∗  to the average can be described as follows; 

𝑢∗/𝑢∗  = 𝐼 + 𝐾 ∗.   (11) 

 Further replacing 𝑢∗ in dependence (10) by its value from the expression (11); 

𝑢

𝑦∗
= 𝑎 + 𝑏𝑙𝑛

𝑦∗ 𝑦

𝜗
+ 𝑏𝑙𝑛

𝑢∗

𝑢∗
− 𝐾ƒ ·

𝑦

𝑦∗
  (12) 

and discarding cmall quantities in ln 𝑢∗/𝑢∗ = 𝐾∗ · 𝑦/𝑦∗ , containing 𝐾∗, we get; 

𝑢

𝑦∗
= 𝑎 + 𝑏𝑙𝑛

𝑦∗𝑦

𝜗
− (𝐾ƒ − 𝐾∗) ·

𝑦

𝑦∗
  (13) 

Dependence (13) more accurately describes the velocity distribution in the trapezoidal channel with 

cmooth surfaces[16–22]. If we neglect the flow in the laminar sublayer, then the total flow rate of the 

fluid through the living section will be expressed; 

𝑄 =  𝜗 · 𝓌 =  ∫ 𝑢𝑏(𝑦)𝑑𝑦 = ∫ 𝑢𝑑𝓌
ḫ

0

ḫ

0
     (14) 

here: Q is the channel flow rate; 𝜗 = 𝑦 is the average flow rate 𝑑𝓌 =  𝑏(𝑦)𝑑𝑦 is the live sectional 

area of the channel. Length 𝑏(𝑦) any zone is expressed by the ratio;  

𝑏(𝑦) = 𝜒 −  𝜑𝑦 (15) 

here: χ is the wetted perimeter; φ is a function of angles, depending on the position of the point at 

which their bisectors intersect, and having the following form: 

𝜑 = 𝑐𝑡𝑔𝛹1 + 𝑐𝑡𝑔𝛹2 + 2(cos 𝑒𝑐𝛹1 + cos 𝑒𝑠𝛹2 )  (16) 

Live sectional area of the channel 𝓌 defined as; 

𝓌 = ∫ 𝑑𝓌 = ∫ 𝑏(𝑦)𝑑𝑦
ḫ

0

𝜔

0
  (17) 

Substituting Value 𝑏(𝑦) from dependence (15) into dependence (17) and integrating, we obtain; 

𝓌 = ∫ (𝜒 − 𝜑𝑦)𝑑𝑦 = 𝜒ḫ − 𝜑ḫ2ḫ

0
/2 = ḫ(𝜒 −

𝜑ḫ´

2
)   (18) 

The average current velocity can be determined from the expression; 

𝜗 =
𝐼

𝓌
∫ 𝑢𝑑𝓌 =

𝐼

𝓌

𝜔

0
∫ 𝑢𝑏(𝑦)𝑑𝑦

ḫ

0
   (19) 

Substituting the value of U from dependence (18) into dependence (19) we obtain: 
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Ū

Ū∗
=

𝐼

𝓌
∫ [𝑎 + 𝑏𝑙𝑛

Ū∗𝑦

𝜗

𝓌

0
− (𝐾ƒ − 𝐾∗)

Ū

Ū∗
]𝑑𝓌 =

I

𝓌
[∫ αd𝓌 − ∫ (𝐾ƒ − 𝐾∗)𝑑𝓌 + ∫ bln

Ū∗y

ϑ
·

𝓌

0

𝓌

0

𝓌

0

d 𝓌] =
I

𝓌
[∫ ad𝓌 −

Ū

Ū∗

𝓌

0
∫ (𝐾ƒ − 𝐾∗)𝑑𝓌 + ∫ bln

Ū∗

ϑ
d

𝓌

0

𝓌

0
𝓌 + ∫ blnyd𝓌]

𝓌

0
  (20) 

Having accepted, 𝑎𝐾 =
𝐼

𝓌
∫ 𝑎𝑑𝓌

𝓌

0
 ,  𝐾 =

𝐼

𝓌
∫ (𝐾ƒ

𝓌

0
− 𝐾∗)𝑑𝓌, calculating separately the terms 

involved in dependence (20), we have∫ 𝑏𝑙𝑛
𝑈∗

𝜗

𝓌

0
𝑑𝓌 = bln

Ū∗

ϑ
∫ d𝓌 = 𝓌bln

Ū∗

ϑ

𝓌

0
  (21) 

𝐼

𝓌
∫ 𝑏𝑙𝑛

Ū∗

ϑ
d𝓌 = bln

Ū∗

ϑ

𝓌

0
    (22) 

𝐼

𝓌
∫ blnyd𝓌

𝓌

0
=

b

𝓌
∫ ln y b(y)dy =

b

𝓌

h

0
∫ ln y (χ − φy)dy =

b

𝓌
∫ χlnydy −

b

𝓌
∫ φylnydy =

h

0

h

0

h

0
b χ

𝓌
· h · lnh −

bχ h

𝓌
−

φ b

𝓌
·

h2

2
· ln h +

φ b

𝓌
·

h2

4
=

b

𝓌
(χb −

φh2

2
) lnh −

b

𝓌
(χh −

φh2

2
) −

φbh2

4𝓌
−

φbh2

4𝓌
=

blnh − b −
φbh2

4𝓌
   (23) 

Then we get, 

Ū

Ū∗
= 𝑎∗ = 𝐾

Ū

Ū∗
+ 𝑏𝑙𝑛

Ū∗

𝜗
+ 𝑏𝑙𝑛ḫ − 𝑏 −

𝜑𝑏ℎ2

4𝓌
= 𝑎∗ − 𝑏 + 𝑏𝑙𝑛

Ū∗ḫ

𝜗
−

𝜑𝑏ℎ2

4𝓌
−

𝜑𝑏ℎ2

4𝓌
− 𝐾̅

Ū

Ū∗
      (24) 

If in the logarithmic term of equation (24), h is replaced by the hydraulic radius R, by substituting h 

= ℎ ∗ 𝑅/𝑅,  we get: 

𝑏𝑙𝑛
Ū∗ḫ

𝜗
·

𝑅

ḫ
·

ḫ

𝑅
= 𝑏𝑙𝑛

Ū∗·𝑅

𝜗
+ 𝑏𝑙𝑛

ḫ

𝑅
   (25) 

Denoting by Φ the difference, 

𝑙𝑛
ḫ

𝑅
−

φh2

4𝓌
= 𝜙  (26) 

then the expression for the average flow velocity in the machine channel with a trapezoidal shape 

of a living section with a cmooth surface of the bottom and walls when accepted 𝑦∗ = 𝜗 = ϑ  and 

𝑦∗ = 𝜗∗ will have the form: 

𝜗

𝜗∗
= 𝑎𝑔𝑙 − 𝑏[1 − ln(𝑅𝜗/𝜗∗) − ϕ] − 𝐾 · 𝜗/𝜗∗   (27) 

If, the bottom and slopes of the machine channel are rough, then the 𝑎𝑠ℎ of the dependence (27) 

should be replaced by 𝑎𝑠ℎ, then it takes the form for average speed: 

𝜗

  𝜗∗
= 𝑎𝑠ℎ − 𝑏[1 − ln(𝑅/∆) − ϕ] − 𝐾 · 𝜗/𝜗∗    (28) 

If the dependence (27) and (28) is compared with the corresponding equations (8) and (9) for pipes 

of circular cross-section and infinite width, it can be established that they differ in the presence 

𝐾 · 𝜗/𝜗∗ and Φ. These terms reflect the combined effect on the flow energy loss of the presence of a 

free surface and an uneven distribution of shear stresses along the wetted channel perimeter, 

depending on the shape of the living section. Dependencies (27.28) allow us to find the magnitude of 

the error in determining the pressure loss when the terms Φ and 𝐾𝜗/𝜗∗
̅̅ ̅̅ ̅̅ ̅̅  not taken into account. 

Obviously, Ф and and 𝐾 depend on the geometry of the cross-section of the machine channel and will 

vary from section to section. The values 𝑎𝑔𝑙,𝑎𝑠ℎ and b are determined experimentally. 
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4. Conclusions 

For a pressure flow in a round pipe (R = D /4) and infinitely wide rectangular channels (for b>>հ; R = 

h), as well as in machine channels, where the shear stresses are uniformly distributed (τ0) along the 

entire wetted perimeter (τ0 ≈ τосr), the geometric interpretation of the hydraulic radius is justified, in 

other cases (here τ0 ≠ τосr) it makes no sense. 

The non-pressure machine channel of the correct cross-section corresponds to the law of hydraulic 

resistance, determined by the shape of the live section Ф and K taking into account the influence of the 

free surface of the flow during the pressureless movement of water in the machine channels of 

pumping stations. 
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