

ББҚ 32.842 Д 79 УДҚ 621.317.7-52

Рецензент доктор технических наук Н. С. Данилин

Редакция литературы по конструированию и технологии производства РЭА

Дубовой Н. Д.

Д 79 Автоматические многофункциональные измерительные преобразователи. — М.: Радио и связь, 1989. — 256 с.: ил.

ISBN 5-256-00296-1.

Освещены вопросы теории, принципы построения и методы инженерного расчетя автоматических измерительных многофункциональных терморезистивных преобразователей. Приведены различные скемы их построения и математический аппарат для расчета основных характеристик. Особое внимание уделено вопросам оптимального выбора схемы построения в зависимости от требований технического задания.

Для специалистов, занимающихся разработкой контрольно-измерительной аппаратуры, приберов и устройств.

Д 2402010000-034 046(01)-89 55-89

ББК 32.842

Производственное издание

ДУБОВОЙ НИКОЛАЙ ДМИТРИЕВИЧ

АВТОМАТИЧЕСКИЕ МНОГОФУНКЦИОНАЛЬНЫЕ ИЗМЕРИТЕЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ

Заведующий редакцией П. И. Никонов Редактор Е. Н. Гарденина Переплет художивка К. М. Прасолова Художественный редактор А. С. Широков Технический редактор И. Л. Ткаченко Корректор Т. Л. Кускова

ИБ № 1516

 Сдано в набор 30.08.88
 Подписано в печать 09.12.88

 Т-21852
 Формат 60×90¹/16
 Бумага кн.-журн. № 2
 Гарнитура литературная

 Печать высокая
 Усл. печ. л. 16,0
 Усл. кр.-отт. 16,0
 Уч.-изд. л. 16,43
 Тираж 13 000 экз.

 Изд. № 21749
 Зак. № 133
 Цена 1 р. 10 к.
 Кырательство «Радно и связь». 101000
 Москва, Почтамт, а/я 693

Московская типография № 5 ВГО «Союзучетиздат». 101000 Москва, ул. Кирова, д. 40

ISBN 5-256-00296-1

(С) Издательство «Радио и связь», 1989

Средства контроля и измерения различных физических величин—неотъемлемая часть современного производства, основа индустрии информатики. Внедрениє средств контроля и измерения постоянно расширяется по мере создания сложных автоматизированных и автоматических производств, так как управление такими производствами невозможно без получения информации о состоянии процессов, сигналов, материалов, оборудования, механизмов, и других компонент, участвующих в производственном цикле. Источники такой информации — измерительные преобраsoватели.

зователи. Особенно широко распространены электронные измерительные преобразователи. Освоение сверхмалых и сверхбольших диапазонов физических величин, ускоренные темпы внедрения электронной техники и автоматических производств во все сферы народного хозяйства привели к необходимости разработки и изготовления огромного количества различных измерительных преобразователей. Это влияет на технико-экономические показатели производства, усложняет эксплуатацию и специализацию производства, создает трудности при разработке и внедрении не оправданного многообразия измерительных преобразователей.

ного многоооразия измерительных преобразователей. В создавшихся условиях при разработке измерительных преобразователей необходим новый подход, позволяющий строить унифицированные схемы преобразователей и вести их расчет независимо от характера измеряемой физической величины. Такой подход расширяет функциональные возможности измерительных преобразователей, делает их многофункциональными. Измерительный преобразователь, построенный по одной и той же схеме, способен преобразовывать различные по природе физические величины. Естественно при этом, что конструкция первичного преобразователя, воспринимающего воздействие измеряемой физической величины, должна учитывать эти особенности.

В книге описываются автоматические многофункциональные преобразователи (МФП), построенные на основе терморезисторов и термисторов. Рассматриваются аналоговые и аналого-цифровые МФП, в том числе с микропроцессорным управлением. Разработка и применение принципа многофункционального преобразования, исключающего взаимное влияние одновременно воздействующих на чувствительный элемент (ЧЭ) физических величин, позволили создать автоматические преобразователи, обеспечивающие высокую точность и быстродействие при работе в условиях воздействия дестабилизирующих факторов. Большое внимание уделено анализу и расчету метрологических характеристик и методам их повышения.

Рассматриваются новые схемы преобразователей различной точности и быстродействия. Для оптимального выбора схемы построения измерительного преобразователя, решающего ту или иную задачу, приводится методика проектирования, основанная на многокритериальном синтезе.

Значительный раздел посвящается экспериментальному исследованию МФП и результатам разработок.

Книга преследует две задачи: первая — показать возможность создания на одной и той же научно-технической основе автоматических специализированных средств измерения различных физиче-Ских величин с достаточно высокими метрологическими характеристиками, решение которой ускоряет разработку новых изделий; вторая — сделать попытку наметить пути разработки автоматических многофункциональных средств измерения, которые могли бы заменить несколько специализированных приборов, что в свою ючередь уменьшило бы количественную потребность в приборах м упростило АСУ и АСК. Кажется, что решение первой задачи удалось показать более наглядно. Вторая задача носит более сложный характер, и ее оптимальное решение определяется конкретными условиями, в которые поставлен разработчик техническим заданием. Для облегчения задачи синтеза новых вариантов МФП следует отметить, что рассмотренные схемы достаточно универсальны и могут реализовать значительно больше различных алгоритмов, чем приведено.

Изложенный подход к решению проблемы практиковался в течение нескольких лет и позволил создать коллектив разработчиков — универсалов, которые способны за короткое время на высоком уровне создавать и внедрять в производство средства измерения и контроля различных по физической природе величин (например, расход жидкостей и газов, мощности электромагнитных колебаний СВЧ диапазона).

Вместе с тем, работа выявила массу проблем по созданию МФП, которые еще ждут своего решения.

ВВЕДЕНИЕ

Рост энерговооруженности производства, укрупнение отдельных машин и устройств, создание сложных агрегатов и систем, иногда сильно рассредоточенных территориально, усложнение производственных процессов и увеличение скоростей их протекания, внедрение сложных многопараметрических объектов. оборудования и технологических линий приводят к тому, что один и даже группа операторов не могут управлять указанными процессами и оборудованием из-за ограниченных способностей человека быстро и правильно реагировать на изменение внешних воздействий, определяющих ход управляемого технологического процесса. Именно поэтому технический прогресс последних лет характеризуется широким внедрением электронных автоматических систем контроля и управления (АСК и АСУ). Работа таких систем определяется наличием информации о параметрах процессов, оборудования, агрегатов, достаточной для выработки суждения об их состоянии и формирования управляющих воздействий. Наличие в составе АСК и АСУ преобразователей физических величин (электрических, магнитных, механических, тепловых, световых временных и т. д.) обеспечивает получение этой информации. Наиболее широкое распространение получили электронные преобразователи физических величин в электрический сигнал.

Совершенствование характеристик электронных преобразователей идет по двум основным направлениям. Цель первого направления (технологического) — построение преобразователей на основе создания ЧЭ, обладающих высокими быстродействием, чувствительностью к преобразуемой величине и стабильностью характеристик. Второе направление (кибернетическое) предусматривает разработку структурных схем, обеспечивающих построение преобразователей с высокими метрологическими характеристиками (быстродействием, точностью, чувствительностью) даже при использовании инерционных ЧЭ с нестабильными во времени характеристиками, изменяющимися также при воздействии параметров окружающей среды. Оба направления актуальны и взаимно дополняют друг друга.

Предметом особых усилий разработчиков является создание избирательных ЧЭ, восприимчивых только к воздействию опреде-

ленного входного сигнала, подлежащего преобразованию. Это трудная, а в ряде случаев невыполнимая задача. Поэтому можно с уверенностью сделать вывод о необходимости широкого проведения работ по разработке и совершенствованию кибернетических методов построения преобразователей, обеспечивающих избирательное преобразование определенной физической величины, позволяющих одновременно учесть и уменьшить влияние на результат преобразования дестабилизирующих факторов. Принцип действия таких преобразователей должен обеспечить получение указанных свойств при использовании обычных широко распространенных ЧЭ, как правило, восприимчивых одновременно ко многим входным воздействиям.

К настоящему времени с использованием различных ЧЭ создано и внедрено в производство большое количество различных типов первичных и вторичных преобразователей. Это стало BO3~ можным благодаря успехам в области радиоэлектроники, теории автоматического управления, измерительной и вычислительной техники, обусловленным работами В А. Котельникова [1], Б. Н. Петрова [2], В. В. Солодовникова [10], П. В. Новицкого [3], Л. Н. Преснухина [4], В. Н. Сретенского [5] и др., а также обобщению, развитию и совершенствованию методов повышения точности и быстродействия преобразователей в работах Б. Т. Коломийца, В. Н. Малиновского [6], Г. К. Нечаева [7], П. П. Орнатского [8, 14], Ю. А. Скрипника [15], Ф. Е. Темникова [11], Н. П. Удалова [12], А. Г. Шашкова, В. М. Шляндина [13], Д. И. Агейкина, Т. М. Алиева, Л. И. Волгина, Ф. Б. Гриневича, Г. Н. Дульнева, Г. И. Кавалерова, М. А. Каганова, К. Б. Карандеева, И. Ф. Клисторина, Л. Ф. Куликовского, М. Н. Левина, А. М. Мелик-Шахназарова, Ю. М. Туза, А. М. Туричина, А. В. Фремке, М. П. Цапенко и др.

Широкое внедрение электронных автоматических систем контроля и управления технологическим оборудованием, процессами, автоматическими линиями приводит к постоянному усложнению оборудования, увеличению количества электрорадиоэлементов в нем, повышению его массогабаритных и стоимостных характеристик, повышению потребляемой мощности, а также к все большему проявлению факторов, значительно увеличивающих трудности технической реализации и эксплуатации.

В связи с применением многопараметрических объектов, усложнением технологических процессов число параметров, подлежащих преобразованию даже в пределах одной системы, постоянно растет, соответственно увеличивается число электронных преобразователей, к характеристикам ксторых предъявляются качественно новые требования.

Одной из мер, значительно упрощающих схемно-конструктивную реализацию оборудования, является создание и использование универсальных автоматических МФП, каждый из которых способен избирательно преобразовывать несколько различных физических величин, одновременно или поочередно подаваемых либо независимо от оператора воздействующих на его вход.

Вполне очевидно, что применение автоматических МФП, обладающих свойством избирательности, особенно эффективно в условиях воздействия большого количества дестабилизирующих факторов, изменяющихся в широких пределах. Существенно уменьшаются погрешности, вызываемые действием дестабилизирующих факторов, а необходимость в элементах и операциях, осуществляющих подстройку и регулировку (установка нуля, калибровка и т. д.), отпадает. Применение таких МФП позволяет в значительной мере снизить число преобразующих элементов и цепей в аппаратуре, уменьшить ее массу, габаритные размеры, стоимость, потребляемую мощность, трудозатраты по изготовлению и т. д.

Анализ показывает, что в настоящее время основы теории и принципы построения автоматических МФП разработаны недостаточно и не получили широкого обобщения. Общие требования к ним не сформулированы, сравнительная эффективность различных схем построения не выявлена, методика проектирования и расчета не создана.

В книге сделана попытка хотя бы частично восполнить указанный пробел. Изложены принципы построения, основы теории, вопросы создания и испытания автоматических терморезистивных электронных МФП. Применение коммутационно-модуляционных методов, методов адаптации, компарирования, замещения, следящего уравновешивания и специальной обработки интегральных выборок импульсных сигналов позволилс создать автоматические МФП различных физических величин в нормированный электрический аналоговый, импульсный или цифровой сигнал. Преобразуемыми физическими величинами могут быть электрические (напряжение, сила тока, мощность электромагнитных колебаний) и неэлектрические (скорость и расход потоков газов и жидкостей, их объем и масса, параметры излучения и др.).

В автоматических МФП используются терморезистивные ЧЭ, восприимчивые одновременно к воздействию различных физических величин. Избирательность преобразователя к каждой из физических величин достигается применением специально разработанных схем и алгоритмов.

Основы теории и принципы построения автоматических МФП обеспечивают единый подход к вопросам расчета устройств и приборов для измерения различных физических величин, позволяющий сократить сроки и повысить качество проектирования.

Созданы и внедрены преобразователи, включая их разновидности, у которых все операции, выполняемые в процессе преобразования (установка нуля, калибровка, компенсация погрешностей, обусловленных влиянием внешних дестабилизирующих факторов, выбор диапазона, вычисление результата), осуществляются автоматически. Существенно (в 10—100 раз) повышено быстродействие, при этом точность разработанных преобразователей с использованием выпускаемых серийно терморезистивных ЧЭ при работе в условиях широкого изменения дестабилизирующих факторов в 2—5 раз превышает характеристики существующих. Структурные схемы обеспечивают создание автоматических МФП, работающих в циклическом или следящем режиме, имеющих нормированный вид функции преобразования, наиболее удобный для обработки результата (линейный, квадратичный, корнеизвлекающий).

Проблема создания теории МФП, развитой до инженерного применения, большое число существующих типов ЧЭ и принципиальные отличия их математических моделей вызвали необходимость ограничить описание автоматических МФП схемами, построенными на основе терморезистивных ЧЭ, обладающих рядом широко известных преимуществ. Но принципы построения, основы теории и пути реализации могут быть легко распространены на задачи создания автоматических МФП, основанных на применении ЧЭ других типов. Достигнута возможность применения в преобразователях без ограничения широко выпускаемых в настоящее время промышленностью и перспективных терморезистивных ЧЭ (без отбора по параметрам).

Разработанные на основе излагаемого в книге материала автоматические МФП могут являться элементной базой для построения систем контроля и управления, сервисных, многофункциональных комбинированных приборов с высокими эксплуатационными характеристиками и успешно используются в течение ряда лет в серийном производстве.

Разработанные приборы и устройства легко сопрягаются с ЭВМ; ряд устройств может быть построен с применением стандартных микропроцессорных наборов.

Публикуемые материалы применимы для различных технических приложений при проектировании широкого класса измерительно-преобразовательных устройств, основанных на различных физических явлениях.

Внедрение в народное хозяйство приборов и устройств, созданных на основе МФП, позволяет: автоматизировать важные технологические процессы и значительно повысить производительность труда; улучшить качество продукции за счет повышения точности и быстродействия средств контроля при работе в условиях широкого изменения дестабилизирующих факторов; сократить парк применяемых средств измерения и упростить их структуру; увеличить реальный ресурс работы контролируемых изделий и оборудования; снизить требования к квалификации и уменьшить количество обслуживающего персонала. 1.1. КЛАССИФИКАЦИЯ МЕТОДОВ ПРЕОБРАЗОВАНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН. ОБОБЩЕННАЯ СТРУКТУРНАЯ СХЕМА ПРЕОБРАЗОВАТЕЛЕЙ И ИХ ПРИМЕНЕНИЕ.

Преобразователи физических величин в электрический сигнал — один из основных элементов автоматических систем контроля и управления измерительных и регулирующих приборов, во многом определяющий их эксплуатационные характеристики, например степень автоматизации, точность, быстродействие. Разработка МФП основывается на достижениях в области автоматики, вычислительной техники, радиоэлектроники, информационно-измерительной техники, метрологии.

Канал передачи информации о физической величине состоит из последовательно включенных звеньев, осуществляющих преобразование ее в электрический сигнал, функциональное преобразование электрического сигнала, масштабное преобразование, преобразование к виду, пригодному для дальнейшего использования (индикации, измерения, регистрации, документирования, формирования управляющего воздействия). Совокупность последовательно включенных звеньев, осуществляющих перечисленные операции, — преобразователь физической величины. В соответствии с этим определением обобщенная структурная схема преобразователя может быть представлена (рис. 1.1), состоящей из ЧЭ, первичного преобразователя ПП, функционального преобразователя ФП, масштабного преобразователя МП, вторичного (выходного) преобразователя ВП.

Функциональный и масштабный преобразователи часто называют промежуточными. В зависимости от конкретного назначения преобразователя в целом и вида преобразуемой физической величины ФП и МП в структуре могут и отсутствовать. В ряде случаев их функции выполняют звенья ПП и ВП.

Основное уравнение преобразования — зависимость между входной преобразуемой величиной x(t) и выходной $y_0(t)$. Эта за-

Рис. 1.1. Обобщенная структурная схема преобразователя

висимость иногда называется функцией преобразования. Для идеализированного случая — отсутствия каких-либо внешних возмущающих и дестабилизирующих воздействий, влияющих на преобразователь, зависимость имеет вид: $y_0(t) = F_0[x(t)]$.

В реальных условиях y(t) зависит не только от x(t), но и от скорости ее изменения, схемы построения преобразователя, параметров применяемых элементов и деталей, а также целого ряда внешних воздействий $z_1(t)$, $z_2(t)$, ..., $z_m(t)$, называемых *дестабилизирующими факторами*. Они, как правило, являются функциями, сравнительно медленно изменяющихся во времени (атмосферное давление, влажность, температура окружающей среды и др.). Для реальных условий применения основное уравнение преобразования записывается в виде [14]:

 $y(t) = F_{d}[x(t), a_{1}, ..., a_{l}, b_{1}, ..., b_{r}, z_{1}, (t), ..., z_{m}(t)],$

где a_1 , ..., a_l — неинформативные параметры входной преобразуемой величины x; b_1 , ..., b_r — параметры преобразователя и его элементов.

Результат преобразования для реально существующих условий принято записывать в виде:

 $y(t) = y_0(t) + \Delta y_z + \Delta y_M + \Delta y_A + \Delta y_M,$

где $y_0(t)$ — номинальное значение результата преобразования, приближающееся к истинному; Δy_z — абсолютная погрешность, возникающая от действия дестабилизирующих факторов $z_1(t)$, $z_2(t)$, ..., $z_m(t)$; $\Delta y_{\rm M}$ — абсолютная методическая погрешность, определяемая выбранным методом; $\Delta y_{\rm R}$ — абсолютная динамическая погрешность, обусловленная изменением преобразуемой величины во времени; $\Delta y_{\rm M}$ — абсолютная инструментальная погрешность, определяемая схемой преобразователя и нестабильностью ее элементов.

Воздействие дестабилизирующих факторов носит, как правило, случайный и независимый характер, трудно поддается компенсации и вызывает наибольшую составляющую погрешности. Введем обозначение $y_0(t) + \Delta y_{\rm M} + \Delta y_{\rm R} + \Delta y_{\rm H} = \tilde{y}(t)$, тогда $y(t) = \tilde{y}(t) + \Delta y_z$. Рассмотрим один из наиболее распространенных случаев, когда характеристика преобразователя линейна и к действию на преобразователь совокупности величин x(t), $z_1(t)$, $z_2(t)$, ..., $z_m(t)$ применим принцип суперпозиции. В процессе разработки всегда стремятся обеспечить линейность уравнения преобразования. Введем обозначение $F_0[x(t), a, ..., a_n, b_1, ..., b_n] = F[x(t)]$, тогда с учетом действия дестабилизирующих факторов уравнение преобразования можно записать в виде:

$$F[x(t)] + \sum_{j=1}^{m} \Phi_{j}[z_{j}(t)] = \widetilde{y}(t) + \sum_{j=1}^{m} y_{z_{j}}(t) = \widetilde{y}(t) + \Delta y_{z},$$

где $\Phi_j[z_j(t)]$ — функция преобразования *j*-го дестабилизирующего фактора $z_j(t)$: $y_{z_j}(t)$ — результат преобразования *j*-го дестабилизирующего фактора.

При отсутствии дестабилизирующих факторов уравнение преобразования принимает вид: $F[x(t)] = \tilde{y}(t)$.

Действие дестабилизирующих факторов искажает результат преобразования, приводит в каждый текущий момент времени t_i к появлению погрешности Δy_z , которая для рассмотренного случая определяется соотношением

$$\Delta y_z = \sum_{j=1}^m y_{z_j}(t) = \sum_{j=1}^m \Phi_j [z_j(t)].$$

Компенсация погрешностей, обусловленных дестабилизирующими факторами, осуществляется структурными или консервативными методами [2]. Структурные методы — создание специальных схем, наиболее полно обобщены в работах Ю. М. Туза. Консервативные методы — конструктивная защита аппаратуры от влияния дестабилизирующих факторов (термостатирование, экранирование, герметизация). Если перечисленные методы не решают задачу создания устройств, обеспечивающих требуемую точность, то предусматривают введение регулировочных и подстроечных элементов для производства вспомогательных операций, таких как установка нуля, калибровка, переключение диапазона.

На классификационной схеме (рис. 1.2) представлено многообразие разработанных и применяемых в настоящее время преобразователей [8, 13]. По виду выходной информации преобразователи могут быть аналоговыми и аналого-цифровыми, а в зависимости от используемых методов обработки информационного сигнала — преобразователями сопоставления и уравновешивания. Преобразователи сопоставления могут быть непрерывного действия, когда каждому значению входной преобразуемой величины соответствует определенное значение результата преобразования, и циклического действия, когда некоторым дискретным значениям входной преобразуемой величины соответствуют определенные дискретные значения результата преобразования. Интервал между моментами времени получения соседних дискретных значений в этом случае называется циклом преобразования.

Преобразователи уравновешивания могут быть следящего и развертывающего действий. В них значение выходной величины непрерывно следит за изменением входной преобразуемой вели-

11

Рис. 1.2. Классификация преобразователей физических величин по методу обработки информационного сигнала

Рис. 1.3. Классификация преобразователей по принципу действия ЧЭ

чины, или значение уравновешивающей величины изменяется повторяющимися циклами по заданному закону до момента равенства с результатом преобразования входной преобразуемой величиной.

Иногда классификацию преобразователей производят по физическому принципу действия ЧЭ. На рис. 1.3 приведена такая классификация, которая хотя и недостаточно полная, но дает представление о возможном многообразии тех или иных типовпреобразователей.

Анализ опубликованных работ показывает, что имеются некоторые общие тенденции развития преобразователей физических величин. К этим тенденциям следует отнести стремление повысить их точность и быстродействие. Другим важным направлением совершенствования преобразователей является разработка принципов построения и конструкций, обеспечивающих их работу в условиях широкого изменения климатических и механических дестабилизирующих воздействий.

Использование в производстве и эксплуатации сложных многопараметрических объектов и технологических процессов с большим числом контролируемых параметров привело к необходимости широкого внедрения АСУ и АСК, а также комбинированных приборов, основными элементами которых являются преобразователи различных физических величин в нормированный электрический сигнал. Количество анализируемых АСУ и АСК параметров достигает нескольких сотен и даже тысяч. К значительному росту парка измерительных приборов приводит постоянно увеличивающееся число физических величин, измеряемых в лабораторной и заводской практике. В этих условиях несомненную актуальность приобретают уменьшение массы, габаритных размеров, энергопотребления, а также улучшение других эксплуатационных характеристик преобразователей. Независимо от выбранной структуры АСУ и АСК обобщенная схема включения преобразователей различных физических величин $x_1(t), x_2(t), ...$..., $x_n(t)$ может быть представлена в виде, изображенном, на рис. 1.4.

Каждая преобразуемая физическая величина $x_i(t)$ подается в свой канал преобразования (см. рис. 1.1). Результат преобразования каждого канала $y_i(t)$ в виде аналоговогоили дискретного сигнала подается в блок обработки информации (БОИ), где сравнивается с эталонной мерой и преобразуется в нормативный электрический аналоговый, цифровой или кодовый сигнал. Из БОИ сигнал поступает на блок индикации или на регуляторы.

Включение преобразователей физических величин по схеме рис. 1.4 в основном является традиционным и общепринятым. По этой схеме разрабатываются отечественные и зарубежные системы управления и контроля, например Minneapolis-Honeywell,

Рис. 1.4. Обобщенная структурная схема включения преобразователей

Thomson-Housten. Эта схема наглядно показывает, что при увеличении числа преобразуемых величин быстро растет объем радиоэлектронного оборудования, а также проявляются факторы: повышение стоимости аппаратуры; увеличение трудоемкости ее изготовления; ухудшение массогабаритных характеристик; увеличение количества электрорадиоэлементов; повышение энергопотребления и т. д.

Для частичного уменьшения влияния этих факторов стремятся максимально возможное число звеньев преобразователей выполнить универсальными и разместить их в БОИ. Уменьшение объема оборудования достигается установкой коммутатора в БОИ, поочередно подключающего преобразователи Пр1, Пр2,, Пр_n к универсальным звеньям.

В сложных системах и приборах, требующих обработки большого количества входных величин, стремятся применять цифровые преобразователи, при использовании которых последующие цепи и сигналы менее подвержены влиянию дестабилизирующих факторов. Однако это не всегда возможно. Большинство типов ЧЭ при воздействии преобразуемых величин выдает аналоговые сигналы весьма малого уровня, поэтому структура и последовательность включения звеньев преобразователей обычно соответствует схеме, приведенной на рис. 1.4. Решить возникающие задачи можно с помощью создания автоматического преобразователя, способного без изменения структуры одним и тем же ЧЭ избирательно преобразовывать несколько однородных или разнородных физических величин, одновременно или поочередно подаваемых на его вход, т. е. выполняющего как бы функции нескольких обычных преобразователей. Каждая физическая величина, воздействующая на ЧЭ такого преобразователя, должна изменяться по своему закону F_i , определяемому *i*-й функцией преобразования *i*-й входной физической величины $x_i(t)$ в *i*-й выходной электрической или в общем случае любой другой сигнал $y_i(t)$. Такой преобразователь называется многофункциональным. В общем виде уравнение многофункциональныя. $F_i(x_i(t)) = y_i(t) \ v_i \in 1, \ n$.

1.2. ВИДЫ МФП

Принцип многофункционального преобразования можно реализовать на основе: структурных схем, работающих в режиме временного или пространственного разделения сигналов; метода замещения в сочетании с временным разделением сигналов [20, 23—26, 28—32, 34—36].

Многофункциональные преобразователи с временным разделением сигналов. Предположим, что ЧЭ преобразователя воспринимает одновременно несколько поданных на его вход разнородных, случайных, независимых физических величин $x_1(t)$, $x_2(t)$, ..., $x_n(t)$ (рис. 1.5). Если к действию входных величин применим принцип суперпозиции, то основное уравнение преобразования можно записать для момента времени t_1 :

$$\sum_{i=1}^{n} F_{i} [x_{i}(t_{1})] = \sum_{i=n}^{n} \widetilde{\mathcal{Y}}_{i}(t_{1}).$$
(1.1)

С учетом воздействия дестабилизирующих факторов $z_1(t)$, $z_2(t)$, ..., $z_m(t)$ основное уравнение преобразования имеет вид

$$\sum_{i=1}^{n} F_{i} [x_{i}(t_{1})] + \sum_{j=1}^{m} \Phi_{j} [z_{j}(t_{1})] = \sum_{i=1}^{n} \widetilde{y}_{i}(t_{1}) + \sum_{j=1}^{m} y_{z_{j}}(t_{1}).$$
(1.2)

Правая часть (1.2) — выходной сигнал преобразователя, разделение которого на составляющие непосредственно после измерения невозможно, хотя с учетом (1.1) имеет место соотношение

$$\sum_{j=1}^{m} \Phi_j [z_j(t_1)] = \sum_{j=1}^{m} y_{z_j}(t_1).$$

Решение (1.2) относительно каждой из преобразуемых величин $x_i(t_1)$ исключением из общей совокупности (подключением ее с помощью коммутатора на вход преобразователя — рис. 1.6) не приводит к исключению погрешности, характерной для схемы

Рис. 1.5. Преобразователь в условиях воздействия на ЧЭ совокупности входных преобразуемых величин и дестабилизирующих факторов

Рис. 1.6. Схема МФП с переключаемым каналом передачи информации

на рис. 1.1, и определяется выражением $y_i(t_1) - \bar{y}_i(t_1) = \sum y_{z_i}(t_1) =$ $=\Delta y_z$. Совокупность величин $x_i(t)$ ВХОДНЫХ может содержать составляющие (температуру, влажность и т. д.) коммутация которых представляет собой весьма трудную задачу. Поэтому для реализации избирательного преобразования і-й входной величины, учитывающего компенсацию воздействия деста-Σ z_j(t), разработан специальный албилизирующих факторов горитм, заключающийся в том, что результат преобразования всей совокупности входных преобразуемых величин и дестабилизирующих факторов, полученный в виде правой части уравнения (1.2), фиксируется в момент времени t_1 запоминающим устройством, имеющимся в БОИ. Затем осуществляется еще один второй такт преобразования, при котором исключается каким-либо образом воздействие на ЧЭ той входной величины, которую необходимо преобразовать, например $x_1(t)$. После этого в момент времени t_2 результат преобразования также фиксируется, а уравнение преобразования для этого второго такта можно записать В виде

$$\sum_{i=2}^{n} F_{i}[x_{i}(t_{2})] + \sum_{j=1}^{m} \Phi_{j}[z_{j}(t_{2})] = \sum_{i=2}^{n} \widetilde{y}_{i}(t_{2}) + \sum_{j=1}^{m} y_{z_{j}}(t_{2}), \qquad (1.3)$$

где $t_2 = t_1 + \Delta t$; Δt — интервал времени между первым и вторым тактами преобразования.

В реально существующих условиях дестабилизирующие факторы представляют собой медленно изменяющиеся функции времени.

Моделируя экстремальные условия эксплуатации, методика действующих стандартов регламентирует при испытаниях аппаратуры определенного класса изменение температуры окружающей среды, например от 20 до 50° С в течение 1-2 ч, т. е. с максимальной скоростью менее 0,01° С/с. Применение современной элементной базы, основанной на достижениях электронной и микроэлектронной техники, позволяет создавать достаточно быстродействующие устройства, у которых значение Δt между первым И вторым тактами преобразования может быть весьма малым, И медленно меняющиеся функции $z_i(t)$, описывающие изменение во времени дестабилизирующих факторов на интервалах времени Δt , можно принять кусочно-постоянными. На очень малом интервале времени Δt значения медленно изменяющихся во времени функций, описывающих изменение дестабилизирующих факторов и результатов их преобразования, можно принять с достаточной степенью точности в моменты t_1 и t_2 равными друг другу:

$$\sum_{j=1}^{m} \Phi_{j} [z_{j}(t_{1})] = \sum_{j=1}^{m} \Phi_{j} [z_{j}(t_{2})];$$

$$\sum_{j=1}^{m} y_{z_{j}}(t_{1}) = \sum_{j=1}^{m} y_{z_{j}}(t_{2}).$$
(1.4)

Функции, описывающие изменение во времени входных преобразуемых физических величин (мощности СВЧ, расхода технологических газов и т. д.), также являются медленно изменяющимися функциями времени, так как в аппаратуре и технологическом оборудовании всегда применяются меры для их стабилизации (питание стабилизированным электрическим напряжением или током, включение специальных регуляторов). Следовательно, для них также можно записать условие

$$\sum_{i=2}^{n} F_{i}[x_{i}(t_{1})] = \sum_{i=2}^{n} F_{i}[x_{i}(t_{2})]; \quad \sum_{i=2}^{n} \widetilde{y}_{i}(t_{1}) = \sum_{i=2}^{n} \widetilde{y}_{i}(t_{2}). \quad (1.5)$$

Вычтем из (1.2) выражение (1.3). Принимая во внимание допущения (1.4) и (1.5), а также $t_1=t_2=t$, получаем

 $F_1[x_1(t)] = \tilde{y}_1(t). \tag{1.6}$

В левой части уравнения остается функция, показывающая операцию преобразования над входной величиной $x_1(t)$, а в правой — результат ее преобразования $\hat{y}_1(t)$, как и в простейшем идеализированном случае преобразования одной входной величины обычным преобразователем.

Аналогичное (1.6) уравнение можно получить относительно любой входной величины $x_i(t)$, которая допускает исключением ее воздействия на ЧЭ во втором такте преобразования хотя бы на малый промежуток времени Δt . Для реализации описанного алгоритма можно синтезировать схему (рис. 1.7) — обобщенную структурную схему построения автоматических МФП с временным разделением сигналов. Исключение влияния одной из входных преобразуемых величин $x_i(t)$ во втором такте преобразования осуществляется соответствующим Кл. Операции запоминания, вычитания и управления ключами Кл1, Кл2, ..., Кл_n выполняются в БОИ. Их реализация не представляет трудностей при обработке аналоговых и ипульсных сигналов и может быть эффективно решена с применением современной коммутационной И микропроцессорной техники.

Анализ принципа действия автоматических МФП с временным разделением сигналов позволяет характеризовать режим их работы как циклический, так как результаты преобразования получаются дискретно, через определенные интервалы времени. Важным достоинством таких преобразователей является способность компенсировать составляющие выходного сигнала $y_{z_1}(t)$, $y_{z_2}(t)$, $y_{z_m}(t)$, обусловленные наличием дестабилизирующих факторов.

Многофункциональные преобразователи с пространственным разделением сигналов. В ряде случаев возникает необходимость контролировать или регулировать достаточно быстро протекающие технологические процессы, которые не допускают даже кратковременного прерывания воздействия физических величин на процесс и получения информации о них в виде дискретных значений. В реальных условиях такие процессы проводятся наибо-

Рис. 1.8. Схема МФП с пространственным разделением сигналов

лее часто при воздействии дестабилизирующих факторов, изменяющихся в широких пределах.

В таких условиях необходимо осуществлять непрерывное преобразование физических величин, участвующих в технологическом процессе, и одновременно компенсацию воздействия дестабилизирующих факторов. Для решения этой задачи может быть построена схема многофункционального преобразователя с пространственным разделением сигналов (рис. 1.8).

Схема состоит из двух идентичных каналов, структура каждого из которых соответствует обычной схеме преобразователя (см. рис. 1.1). Один канал, его элементы обозначены индексом 1, является основным, другой, элементы которого обозначены индексом 2, -- компенсационным. Чувствительные элементы конструктивно установлены таким образом, что на те из них, которые подключаются переключателем П1 к основному каналу, воздействует преобразуемая физическая величина x_i(t) и дестабилизирующие факторы $z_j(t)$, а на ЧЭ, ксторые подключаются пе-Σ i=1 каналу, воздействуют реключателем П2 к компенсационному $z_i(t)$. Сигналы с выхотолько дестабилизирующие факторы Σ i=1вычитающее устройство, дов каждого из каналов подаются на расположенное в БОИ. Разностный сигнал, полученный на выхо-Де вычитающего устройства, определяет значение входной преобразуемой величины. Работа преобразователя может быть описана уравнениями:

для первого (основного) канала при преобразовании x_i(t)

$$F_{i}[x_{i}(t)] + \sum_{j=1}^{m} \Phi_{j1}[z_{j}(t)] = \widetilde{y}_{i}(t) + \sum_{j=1}^{m} y_{z_{j1}}(t), \qquad (1.7)$$

где первая часть — неразделенный на составляющие сигнал на выходе первого канала, заключающий в себе информацию о преобразуемой величине и дестабилизирующих факторах;

для второго (компенсационного) канала

$$\sum_{j=1}^{m} \Phi_{j2} \left[z_{j}(t) \right] = \sum_{j=1}^{m} y_{z_{j2}}(t), \tag{1.8}$$

где правая часть — неразделенный на составляющие сигнал на выходе второго канала, заключающий в себе информацию только о дестабилизирующих факторах.

В выражениях (1.7) и (1.8): Φ_{j1} и Φ_{j2} — функции преобразования дестабилизирующих факторов соответственно первого и второго каналов; $y_{z_{j1}}$ и $y_{z_{j2}}$ — результаты преобразования дестабилизирующего фактора z_j соответственно первым и вторым каналами.

Преобразователи с пространственным разделением сигналов должны обеспечивать одинаковые функции преобразования основного и компенсационного каналов и идентичность воздействия на них дестабилизирующих факторов. Выполнение этих условий дает основание считать, что

$$\sum_{j=1}^{m} \Phi_{j1}[z_j(t)] = \sum_{j=1}^{m} \Phi_{j2}[z_j(t)] \quad \text{H} \quad \sum_{j=1}^{m} y_{z_{j1}}(t) = \sum_{j=1}^{m} y_{z_{j2}}(t).$$
(1.9)

Вычтем из (1.7) уравнение (1.8), тогда с учетом (1.9)

$$F_{i}[x_{i}(t)] = \tilde{y}_{i}(t). \tag{1.10}$$

Очевидно, это выражение (1.10) может быть получено для любой x_i(t), преобразуемой величины.

На практике выполнение (1.9) можно обеспечить только с определенной ограниченной точностью, что приводит к возникновению погрешностей. Это существенный недостаток преобразователей с пространственным разделением сигналов. Тем не менее они нашли применение в приборах и устройствах для измерения мощности СВЧ, расхода газов, разности температур и давлений [3, 7, 8, 11—14, 20].

Многофункциональные преобразователи с замещением преобразуемого сигнала. Метод замещения — наиболее точный метод преобразования, применяемый в случаях, когда действие на ЧЭ преобразуемой величины может быть заменено другой физической величиной, легче поддающейся дальнейшей обработке. Такая замена возможна при идентичности воздействий на ЧЭ преобразуемой и замещающей величин или при наличии достаточно малой погрешности замещения [21].

Для реализации многофункциональных преобразователей с автоматическим замещением преобразуемой величины предложены одноканальные структурные схемы, позволяющие использовать все преимущества временного разделения сигналов и обеспечивающие преобразование заданной входной величины в условиях применимости и неприменимости принципа суперпозиции. Обобщенная схема построения таких преобразователей приведена на рис. 1.9. Она состоит из ключей Кл1, ..., Кл_n, ПП, усилителя У, БОИ с формирователем замещающего сигнала (ФЗС). Алгоритм ее работы предусматривает два такта преобразования.

В момент t_1 при первом такте на ЧЭ подается и воздействует вся совокупность преобразуемых сигналов $x_i(t)$ и дестабилизирующих факторов $z_j(t)$. Уравнение преобразования для первого такта в условиях применимости принципа суперпозиции может быть записано в виде

$$\sum_{i=1}^{n} F_{i}[x_{i}(t_{1})] + \sum_{j=1}^{m} \Phi_{j}[z_{j}(t_{1})] = \sum_{i=1}^{n} \widetilde{y}_{i}(t_{1}) + \sum_{j=1}^{m} y_{z_{j}}(t_{1}).$$
(1.11)

По окончании первого такта преобразования в момент t_1 результат в виде неразделенной на составляющие правой части уравнения (1.11) фиксируется запоминающим устройством, расположенным в БОИ. Перед вторым тактом преобразования, например, входной величины $x_1(t)$ ключ Кл1 размыкается, прекращает подачу входной преобразуемой величины $x_1(t)$ на ЧЭ и включает подачу на ЧЭ регулируемой замещающей величины $P_{33M1}(t)$ с ФЗС. Уравнение преобразования для второго такта

$$F_{P}[P_{\text{Bam 1}}(t_{2})] + \sum_{i=2}^{n} F_{i}[x_{i}(t_{2})] + \sum_{j=1}^{m} \Phi_{j}[z_{j}(t_{2})] =$$

= $\widetilde{y}_{P1}(t_{2}) + \sum_{i=2}^{n} \widetilde{y}_{i}(t_{2}) + \sum_{j=1}^{m} y_{z_{j}}(t_{2}),$ (1.12)

где F_P — функция преобразования замещающей величины $P_{\text{зам1}}(t_2)$; $\tilde{y}_{P1}(t_2)$ — результат преобразования замещающей величины $P_{\text{зам1}}(t_2)$.

Значение $P_{3am1}(t_2)$ изменяется до тех пор, пока устройство сравнения в БОИ не зафиксирует в момент времени t_2 равенство результатов преобразования в первом и втором тактах, т. е. равенство неразделенных на составляющие правых частей уравнений (1.11) и (1.12).

Примем во внимание, что интервал времени $\Delta t = t_2 - t_1$ между тактами весьма мал, а функции $x_i(t)$, $z_j(t)$, F_i , Φ_j медленно изменяются во времени. Тогда с учетом допущений, сделанных ранее,

Рис. 1.9. Схема МФП с замещением преобразуемой физической величины

при равенстве правых частей уравнений (1.11) и (1.12) можно сделать вывод, что

 $F_1[x_1(t)] = F_P[P_{\text{sam1}}(t)].$

Тогда функциональная зависимость между $x_1(t)$ и $P_{3am1}(t)$ имеет вид

 $x_1(t) = \varphi[P_{3aM1}(t)].$ (1.13)

Аналогичный результат можно получить при преобразовании любой входной величины $x_i(t)$, замещая ее воздействие на ЧЭ соответствующей регулируемой величиной $P_{\text{зам }i}(t)$ во втором такте преобразования.

Для случая, когда принцип суперпозиции не применим, можно записать соответственно для первого и второго тактов при преобразовании $x_1(t)$ следующие уравнения:

$$\begin{split} F_{1'}[x_{1}(t_{1}), \dots, x_{n}(t); & z_{1}(t_{1}), \dots, z_{m}(t_{1})] = y_{1}[x_{1}(t_{1}), \dots, x_{n}(t_{1}); \\ z_{1}(t_{1}), \dots, z_{m}(t_{1})]; \\ F_{1}\{\varphi[P_{3aM 1}(t_{2})], x_{2}(t_{2}), \dots, x_{n}(t_{2}); z_{1}(t_{2}), \dots, z_{m}(t_{2})\} = \\ & = y\{\varphi[P_{3aM 1}(t_{2})]x_{2}(t_{2}), \dots, x_{n}(t_{2}); z_{1}(t_{1}), \dots, z_{m}(t_{2})\}, \\ \text{FAE } y'[x_{1}(t_{1}), \dots, x_{n}(t_{1}), z_{1}(t_{1}), \dots, z_{m}(t_{1})] \ H \ y\{\varphi[P_{3aM 1}(t_{2})], x_{2}(t_{2}), \dots \}$$

где $y[x_1(t_1), ..., x_n(t_1), z_1(t_1), ..., z_m(t_1)]$ и $y\{\varphi[P_{3 \text{вм 1}}(t_2)], x_2(t_2), ...$..., $x_n(t_2), z_1(t_1), ..., z_m(t_2)\}$ — функции, определяющие значение выходного сигнала преобразователя соответственно в первый и второй такты.

Изменением $P_{3am1}(t)$ добиваются равенства правых частей, с учетом тех же допущений, что и для уравнений (1.11) и (1.12), следует $F_1[x_1(t)] = F_1[\varphi[P_{3am1}(t)]];$ следовательно, $x_1(t) = = \varphi[P_{3am1}(t)].$ Характерной особенностью автоматических МФП с временным разделением сигналов и замещением преобразуемого воздействия является существенное упрощение тракта преобразования. От него не требуется формирования с высокой точностью и долговременной стабильностью функции преобразования определенного вида, достаточно обеспечить усиление сигнала до значения, необходимого для работы устройства сравнения. Это позволяет применять в тракте преобразования менее стабильные, но зато гораздо более чувствительные звенья и элементы.

Вид функции преобразования определяется в этов случае физической природой преобразуемого и замещающего сигналов. Исследование показало, что такие преобразователи обладают высокими точностью и быстродействием при работе в широком диапазоне изменения дестабилизирующих факторов в условиях применимости и неприменимости принципа суперпозиции '[8, 11, 13—15, 23—31, 34—36].

Анализ принципов построения автоматических МФП и обобщенных уравнений, описывающих их работу, подтверждает принципиальную возможность создания устройств, позволяющих осуществить автоматическое избирательное преобразование требуемой $x_i(t)$ физической величины из общей совокупности $\sum_{i=1}^{n} x_i(t)$, воздействующих на вход МФП, исключив при этом влияние дестабилизирующих факторов. Это определяет предпосылки создания автоматических преобразователей с меньшими погрешностями и высоким быстродействием, а также возможность уменьшения числа преобразователей в составе АСУ и АСК.

1.3. АНАЛИЗ ПОГРЕШНОСТЕЙ И БЫСТРОДЕЙСТВИЯ МФП

Погрешность большинства преобразователей в значительной мере определяется составляющей, которая является: результатом преобразования воздействующих на преобразователь. дестабилизирующих факторов. Влияние этой составляющей особенно сильно проявляется при преобразовании малых входных мощности СВЧ сигналов. Рассмотрим погрешность измерения из-за влияния одного дестабилизирующего фактора - температуры окружающей среды — при использовании широко применяемых в качестве ЧЭ терморезисторов типа ТШ-1 (H≈0,25-0,5 мВт/°С) или ему подобных. Даже при проведении измерений в лабораторно-цеховых условиях с регламентируемой температурой 15-35° С погрешность может составлять ±5 мВт, достигая ±50% верхнего предела измерения и в 25-500 раз превышая нижний предел обычно устанавливаемого для данного класса приборов диапазона (10 мкВт — 10 мВт).

Для снижения погрешности предусматриваются дополнительные компенсационные элементы, иногда подбираемые при настройке, но полностью не решающие поставленной задачи. Это создает необходимость в органах регулирования для проведения перед каждым измерением операций установки нуля «грубо», «точно», калибровки и т. д., а также ухудшает эксплуатационные качества подобных средств измерения, делая невозможным применение их в составе АСУ и АСК и создание на их основе автоматических быстродействующих приборов.

Многофункциональные преобразователи, построенные на основе рассмотренных принципов и алгоритмов, благодаря свойству избирательности свободны от этого недостатка. В выражениях (1.6), (1.10), (1.13) составляющая Δy_z погрешности, обусловленная воздействием совокупности дестабилизирующих факторов $\Sigma z_i(t)$, автоматически исключена. Это качество — важнейшее *i*=1 преимущество автоматических МФП, позволяющее автоматизировать процесс преобразования и значительно снизить общую noгрешность. Естественно, что уменьшение общей погрешности преобразования увеличивает относительную долю составляющих погрешности, обусловленных действием других факторов. Поэтому решение задачи дальнейшего повышения точности требует более детального анализа.

Значение результата преобразования *i*-й входной величины может быть вычислено из идеализированного выражения для функции преобразования $F_{0i}[x_i(t)] = y_{0i}(t)$, которое определяется принципом действия ЧЭ, физической природой преобразуемой величины и для подавляющего большинства случаев выражается линейной, показательной, экспоненциальной или другой достаточно простой функцией.

Абсолютная инструментальная погрешность Δy_{mi} определяется способом построения преобразователя, параметрами его элементов, их качественными характеристиками. Составляющая может быть определена только при разработке конкретного типа преобразователя. Поэтому для простоты и сокращения излагаемого материала эту составляющую в последующих соотношениях временно опустим. Ее анализ и методы расчета будут изложены и обобщены в последующих главах применительно к многофункциональным преобразователям, построенным на терморезистивных ЧЭ.

Анализ процессов и вывод выражений, описывающих функции преобразования МФП, основан на вполне реальном для большинства практических случаев предположении, что интервал времени между тактами (время преобразования) очень мал, а функции, описывающие изменение во времени входных преобразуемых величин $x_1(t)$, $x_2(t)$, ..., $x_n(t)$, дестабилизирующих факторов $z_1(t)$, $z_2(t)$, ..., $z_m(t)$ и функций преобразования каналов F_1 , F_2 , ..., F_n , Ф₁, Ф₂, ..., Ф_m, являются медленно изменяющимися во времени и на интервале, равном времени преобразования, могут быть приняты неизменными (кусочно-постоянными).

Быстродействие всех известных электронных схем и элементов, определяющее время преобразования t_{np} , имеет хоть и малое, но вполне конечное, поддающееся измерению и учету значение. И за этот интервал времени даже медленно изменяющиеся функции получают вполне определенные приращения, которые определяют наличие методической и динамической погрешностей.

Абсолютная динамическая погрешность $\Delta y_{\pi i}$ — характеризуется изменением входной преобразуемой величины за время преобразования, т. е. за интервал времени с момента восприятия преобразователем мгновенного значения преобразуемой величины до получения результата в установившемся режиме.

Абсолютная методическая погрешность Δy_{mi} — результат преобразования изменения входных величин, не подлежащих преобразованию, и дестабилизирующих факторов за время одного такта преобразования определенным методом.

Динамическая и методическая погрешности определяются характером функциональных зависимостей, описывающих изменение во времени преобразуемых величин, дестабилизирующих факторов, функций преобразования, и временем преобразования. Поэтому эти составляющие могут быть представлены в общем виде применительно к обобщенным схемам МФП.

Многофункциональные преобразователи с временным разделением сигналов. Время получения результата преобразования *i*-й входной величины в соответствии с алгоритмом работы автоматического многофункционального преобразователя определяется как сумма

$$t_{\rm np\,i} = t_{\rm r1i} + t_{\rm si} + t_{\rm r2i} + t_{\rm Bi}, \tag{1.14}$$

где $t_{np\,i}$ — время получения результата преобразования *i*-й входной величины; t_{r1i} , t_{r2i} — время соответственно первого и второго тактов; t_{si} — время запоминания; t_{bi} — время вычисления результата.

При преобразовании *п* входных величин получим

$$\sum_{i=1}^{n} t_{\rm np \ i} = \sum_{i=1}^{n} (t_{\rm T \ 1i} + t_{3i} + t_{\rm T \ 2i} + t_{\rm B \ i}). \tag{1.15}$$

Выражения (1.14) и (1.15) показывают, что для повышения быстродействия МФП необходимо уменьшать составляющие $t_{\text{т1}i}$, $t_{\text{т2}i}$, t_{3i} , t_{bi} .

Преобразование сигналов в первом и втором тактах осуществляется одним и тем же каналом, и поэтому $t_{r1i} = t_{r2i}$. Обычно для цифровых преобразователей выполняется соотношение $t_{si} \approx t_{Bi}$, тогда $t_{r1i} + t_{si} = t_{r2i} + t_{Bi} = t_{np}/2$. При преобразовании, например, входной величины $x_1(t)$ за время $t_{\tau_1}+t_{3i}=t_{np}/2$ входные преобразуемые величины $x_2(t), ..., x_n(t)$ и дестабилизирующие факторы $z_1(t), z_2(t), ..., z_m(t)$, являющиеся аргументами функции в уравнении (1.3), получают соответственно приращения $\Delta x_2, ..., \Delta x_n$ и $\Delta z_1, \Delta z_2, ..., \Delta z_m$. Вычисляя скорости изменения указанных функций и переходя к их бесконечно малым приращениям, для второго такта преобразования можно записать следующее уравнение:

$$\sum_{i=2}^{n} F_{i}[x_{i}(t)] + \sum_{j=1}^{m} \Phi_{j}[z_{j}(t)] + \left[\sum_{i=2}^{n} \left(\frac{dF_{i}}{dx_{i}} \frac{dx_{i}}{dt}\right) + \sum_{j=1}^{m} \left(\frac{d\Phi_{j}}{dz_{j}} \frac{dz_{j}}{dt}\right)\right] \frac{t_{\mathrm{np}}}{2} = \sum_{i=2}^{n} \widetilde{y}_{i}(t) + \sum_{j=1}^{m} y_{z_{j}}(t) + \left[\sum_{i=2}^{n} \dot{y}_{i} + \sum_{j=1}^{m} \dot{y}_{z_{j}}\right] t_{\mathrm{np}}/2,$$
(1.16)

где $t_{\text{пр}} = t_{\text{пр}} \forall i \in I, n.$

Уравнение (1.2) первого такта преобразования осталось неизменным. В соответствии с алгоритмом работы вычтем из (1.2) уравнение (1.16):

$$F_{1}[x_{1}(t)] + \left[\sum_{i=2}^{n} \left(\frac{dF_{i}}{dx_{i}} \frac{dx_{i}}{dt}\right) + \sum_{j=1}^{m} \left(\frac{d\Phi_{j}}{dz_{j}} \frac{dz_{j}}{dt}\right)\right] t_{\mathrm{np}}/2 = \widetilde{y_{1}}(t) + \left[\sum_{i=2}^{n} \widetilde{y_{i}} + \sum_{j=1}^{m} \widetilde{y_{z_{j}}}\right] t_{\mathrm{np}}/2.$$

$$(1.17)$$

Выражение в квадратных скобках левой части свидетельствует о том, что на преобразователь воздействуют приращения входных преобразуемых величин $x_i(t)$ и дестабилизирующих факторов $z_j(t)$, которые, будучи преобразованы, приведут к возникновению на выходе преобразователя соответствующих погрешностей. Функции преобразования также несколько изменяются за время $t_{пр}/2$.

Действительно, вычтя из (1.17) (1.6), получим

$$\begin{bmatrix} \sum_{i=2}^{n} \left(\frac{dF_i}{dx_i} \frac{dx_i}{dt} \right) + \sum_{j=1}^{m} \left(\frac{d\Phi_j}{dz_j} \frac{dz_j}{dt} \right) \end{bmatrix} t_{\rm np}/2 = \\ = \left(\sum_{i=2}^{n} \dot{y}_i + \sum_{j=1}^{m} \dot{y}_{z_j} \right) t_{\rm np}/2.$$
(1.18)

Соотношения (1.16), (1.17) и (1.18) справедливы в условиях применимости к составляющим принципа суперлозиции; функции $x_i(t)$ и $z_j(t)$ являются случайными и взаимно независимыми. Поэтому для вычисления максимального значения погрешности составляющие в этих уравнениях необходимо суммировать по модулю. Составляющая правой части (1.18), определяемая выражением $\Delta \tilde{y}_{\text{M,B1}} = \left(\sum_{i=2}^{n} y_i + \sum_{j=1}^{m} y_{z_j}\right) t_{\text{пр}}/2$, представляет собой абсолютную методическую погрешность, которая свойственна многофункциональным преобразователям с временным разделением сигналов.

Для нахождения абсолютной методической погрешности преобразования в единицах преобразуемой входной величины $\Delta x_{\text{м,B}1}$ необходимо составляющие, определяющие $\Delta y_{\text{м,B}1}$, подвергнуть обратному преобразованию относительно функции преобразования F_1 входной величины $x_1(t)$, т. е.

$$\Delta x_{\text{M.B1}} = F_1^{-1} (\Delta y_{\text{M.B1}}) = F_1^{-1} \left[\left(\sum_{i=2}^n \dot{y}_i + \sum_{j=1}^m \dot{y}_{z_j} \right) t_{\text{HD}} / 2 \right], \quad (1.19)$$

где F_1^{-1} — функция, обратная F_1 .

Аналогично может быть получено выражение для абсолютной методической погрешности преобразования любой из *n* величин, воздействующих на вход преобразователя.

За время преобразования изменяется во времени и сама преобразуемая величина $x_i(t)$, в нашем случае $x_1(t)$, а также и ее функция преобразования F_1 . Это определяет наличие динамической погрешности $\Delta x_{\mathbf{д},\mathbf{B}1}$, абсолютное значение которой, принимая во внимание (1.18), можно вычислить по формуле

$$\Delta y_{\mathbf{\pi}-\mathbf{B}\mathbf{1}} = \left(\frac{dF_{\mathbf{1}}}{dx_{\mathbf{1}}} \frac{dx_{\mathbf{1}}}{dt}\right) t_{\mathrm{np}} = y_{\mathbf{1}} t_{\mathrm{np}}$$

или по аналогии с (1.19)

$$\Delta x_{\mathrm{g,B1}} = F^{-1}(\Delta y_{\mathrm{g,B1}}) = F^{-1}[\dot{y}_1 t_{\mathrm{np}}].$$
(1.20)

Рассматривая (1.14) и (1.20), можно сформулировать предложение о порядке следования тактов преобразования для уменьшения динамической погрешности: в первый такт необходимо воздействовать на ЧЭ суммой всех входных преобразуемых величин и дестабилизирующих факторов, исключив воздействие $x_i(t)$, подлежащей преобразованию; во второй такт — суммой всех входных величин и дестабилизирующих факторов. Это позволяет использовать в (1.20) в качестве второго сомножителя вместо $t_{\rm пр}$ меньшее значение приращения аргумента t, определяемое из (1.14): $t_{\rm r2i} + t_{\rm Bi} = t_{\rm пp}/2$. Тогда для абсолютной динамической погрешности преобразования любой *i*-й величины получим выражение

$$\Delta x_{\mathbf{g},\mathbf{B}i} = F^{-1} i [\dot{y}_1 t_{np}/2]. \tag{1.21}$$

Анализ (1.19) и (1.21) показывает, что для уменьшения методической и динамической погрешностей преобразования необходимо повышать быстродействие преобразователя.

Многофункциональные преобразователи с пространственным разделением сигналов. При пространственном разделении сигна-

лов быстродействие МФП определяется временем передачи сигнала по каналу преобразования, временем вычисления результата и, следовательно, соотношением

$$t_{\rm np \, i} = t_{\rm ri} + t_{\rm pi}, \tag{1.22}$$

где $t_{np\,i}$ — время получения результата преобразования входной величины; t_{Ti} — время передачи сигнала по каналу преобразования; t_{Bi} — время вычисления результата преобразования.

При преобразовании *п* входных величин получим $\sum_{i=1}^{n} t_{np i} =$

 $=\sum_{i=1}^{n} (t_{Ti} + t_{Bi}).$ Для определения погрешности преобразования,

полагая, что применим принцип суперпозиции, составляем уравнения преобразования обоих каналов с учетом отличия основных влияющих на них факторов: неидентичности функций преобразования каналов; отличия значений дестабилизирующих факторов, воздействующих на основной и компенсационный каналы. Тогда уравнение преобразования основного канала имеет вид

$$F_{i}[x_{i}(t)] + \left(\frac{{}^{t}dF_{i}}{dx_{i}}\frac{dx_{i}}{dt}\right)t_{np} + \sum_{j=1}^{m} \Phi_{j1}[z_{j1}(t)] + \left(\sum_{j=1}^{m}\frac{d\Phi_{j1}}{dz_{j1}}\frac{dz_{j1}}{dt}\right)t_{np} =$$

= $\widetilde{y}_{i}(t) + \dot{y}_{i}t_{np} + \sum_{j=1}^{m}y_{z_{j1}}(t) + \sum_{j=0}^{m}\dot{y}_{j1}t_{np},$ (1.23)

где z_{j1} — воздействующий на основной (первый канал преобразования) *j*-й дестабилизирующий фактор; Φ_{j1} — функция преобразования основным (первым) каналом *j*-го дестабилизирующего фактора; $y_{z_{j1}}$ — результат преобразования основным (первым) каналом *j*-го дестабилизирующего фактора.

Для компенсационного канала уравнение преобразования имеет вид

$$\sum_{j=1}^{m} \Phi_{j_2}[z_{j_2}(t)] + \left(\sum_{j=1}^{m} \frac{d \Phi_{j_2}}{dz_{j_2}} \frac{dz_{j_2}}{dz}\right) t_{\text{op}} = \sum_{j=1}^{m} y_{z_{j_2}}(t) + \sum_{j=1}^{m} y_{z_{j_2}} t_{\text{op}}, \quad (1.24)$$

где $z_{j2}(t)$ — воздействующий на компенсационный (второй) канал *j*-й дестабилизирующий фактор; Φ_{j2} — функция преобразования компенсационным (вторым) каналом *j*-го дестабилизирующего фактора; $y_{z_{j2}}(t)$ — результат преобразования компенсационным (вторым) каналом *j*-то дестабилизирующего фактора.

В соответствии с алгоритмом работы вычтем из (1.23) уравнение (1.24):

$$F_{i}[x_{i}(t)] + \left(\frac{dF_{i}}{dx_{i}}\frac{dx_{i}}{dt}\right)t_{mp} + \sum_{j=1}^{m} \Phi_{j}[z_{j1}(t)] -$$

28

$$-\sum_{j=1}^{m} \Phi_{j_{2}}[z_{j_{2}}(t)] + \left[\left(\sum_{j=1}^{m} \frac{d \Phi_{j_{1}}}{dz_{j_{1}}} \frac{dz_{j_{1}}}{dt} \right) = \left(\sum_{j=1}^{m} \frac{d \Phi_{j_{2}}}{dz_{j_{2}}} \frac{dz_{j_{2}}}{dt} \right) \right] t_{\mathrm{np}} =$$

= $\widetilde{y}_{i}(t) + \dot{y}_{i}t_{\mathrm{np}} + \sum_{j=1}^{m} y_{z_{j_{1}}}(t) - \sum_{j=1}^{m} y_{z_{j_{2}}}(t) + \left(\sum_{j=1}^{m} \dot{y}_{j_{1}} - \sum_{j=1}^{m} \dot{y}_{z_{j_{2}}} \right) t_{\mathrm{np}}.$
(1.25)

Погрешность преобразования получим, вычитая из (1.25) уравнение идеального преобразования (1.10) любой *i*-й величины. В левой части результирующего выражения — совокупность факторов, действующих на преобразователь и вызывающих погрешность. В правой части — сумма составляющих, определяющая абсолютную методическую и динамическую погрешности преобразования $\Delta y_{\text{м.п.i}}$ и $\Delta y_{\text{д.n.i}}$ при пространственном разделении сигналов:

$$\Delta y_{\text{M.n }i} = \sum_{j=1}^{m} y_{z_{j_1}}(t) - \sum_{j=1}^{m} y_{z_{j_2}}(t) + \left(\sum_{j=1}^{m} \dot{y}_{j_1} - \sum_{j=1}^{m} \dot{y}_{z_{j_2}}\right) t_{\text{np}}.$$

Выражение для абсолютной методической погрешности преобразования при пространственном разделении сигналов $\Delta x_{\text{м.п}\,i}$ в единицах преобразуемой величины $x_i(t)$ имеет вид

$$\Delta x_{\text{M.II} i} = F_i^{-1} \left\{ \sum_{j=1}^m y_{z_{j_1}}(t) - \sum_{j=1}^m y_{z_{j_2}}(t) + \left(\sum_{j=1}^m \dot{y}_{z_{j_1}} - \sum_{j=1}^m \dot{y}_{z_{j_2}} \right) t_{\text{IIP}} \right\}.$$
(1.26)

Динамическая погрешность $\Delta x_{д,n}$, обусловленная изменением преобразуемой величины $x_i(t)$ за время преобразования, находится, как и при временном разделении сигналов, выражением, аналогичным (1.21):

$$\Delta x_{\text{g.n.}i} = F^{-1}_{i} (\dot{y}_{1} t_{\text{mp}}), \qquad (1.27)$$

где $t_{\rm пр}$ определяется из (1.22).

Для уменьшения динамической погрешности многофункциональных преобразователей с пространственным разделением сигналов необходимо повышать быстродействие преобразователя, так как при $t_{\rm T}+t_{\rm B}=t_{\rm np}\rightarrow 0$ динамическая погрешность $\Delta x_{\rm d,n\,i}$ также стремится к нулю. При разработке МФП с пространственным разделением сигналов наиболее трудно выполнимыми являются условия, вытекающие из (1.25). Они могут быть записаны в следующем виде:

$$\sum_{j=1}^{m} z_{j1} = \sum_{j=1}^{m} z_{j2}; \qquad \sum_{j=1}^{m} \Phi_{j1} [z_{j1}(t)] = \sum_{j=1}^{m} \Phi_{j2} [z_{j2}(t)];$$
$$\sum_{j=1}^{m} y_{z_{j1}}(t) = \sum_{j=1}^{m} y_{z_{j2}}(t); \qquad \sum_{j=1}^{m} \dot{y}_{z_{j1}} t_{\pi p} = \sum_{j=1}^{m} \dot{y}_{z_{j2}} t_{\pi p},$$

т. е. действие дестабилизирующих факторов на элементы основного и компенсационного каналов должно быть одинаково, функ-

ции преобразования каналов идентичны и, как следствие, результаты преобразования каналами дестабилизирующих факторов равны. Выполнение этих условий достигается подбором и установкой попарно идентичных элементов в каналы преобразования, введением органов подстройки и регулировки, а также конструктивным выполнением первичных преобразователей, обеспечивающих специальное размещение ЧЭ основного и компенсационного каналов.

Многофункциональные преобразователи с замещением преобразуемого сигнала. В соответствии с принципом действия МФП с замещением изменение регулируемой замещающей величины $P_{3aM\,i}(t)$ производится до тех пор, пока результаты преобразования первого и второго тактов, описываемые соответственно правыми частями выражений (1.11) и (1.12), не станут равны. В момент их равенства изменение $P_{3aM\,i}(t)$ прекращается и фиксируется. Зафиксированное значение $P_{3aM\,i}(t)$ в соответствии с (1.13) определяет $x_i(t)$. Полученный результат может быть искажен наличием в сравниваемых сигналах составляющих, обусловленных изменением за время преобразования:

преобразуемых величин $x_1(t)$, $x_2(t)$, ..., $x_n(t)$;

дестабилизирующих факторов $z_1(t), z_2(t), ..., z_m(t);$

функций преобразования F₁, F₂, ..., F_n и Ф₁, Ф₂, ..., Ф_m.

С учетом этих факторов уравнение второго такта преобразования аналогично (1.16) примет вид

$$F[P_{\text{BBM 1}}(t)] + \sum_{i=2}^{n} F_{i}[x_{i}(t)] + \left[\sum_{i=2}^{n} \left(\frac{dF_{i}}{dx_{i}} \frac{dx_{i}}{dt}\right)\right] \frac{t_{\text{mp}}}{2} + \sum_{j=1}^{m} \Phi_{j}[z_{j}(t)] + \left[\sum_{j=1}^{m} \left(\frac{d\Phi_{j}}{dz_{j}} \frac{[dz_{j}]}{dt}\right)\right] t_{\text{mp}} = y_{P_{\text{BBM 1}}}(t) + \sum_{i=2}^{m} y_{i}(t) + \left[\sum_{l=2}^{n} \dot{y}_{l}\right] \frac{t_{\text{mp}}}{2} + \sum_{j=1}^{m} y_{z_{j}}(t) + \left[\sum_{j=1}^{m} \dot{y}_{z_{j}}\right] t_{\text{mp}}. (1.28)$$

Вычитая из (1.28) уравнение (1.11) и принимая во внимание (1.13), для абсолютной методической погрешности $\Delta x_{\text{м.з1}}$ МФП с замещением получаем

$$\Delta x_{\text{M.81}} = F_1^{-1} \left\{ \left[\sum_{i=2}^n \dot{y}_i + \sum_{j=1}^m \dot{y}_{z_j} \right] t_{\text{np}} \right\}.$$
(1.29)

Время преобразования t_{np} и динамическая погрешность $\Delta x_{д.st}$ определяются аналогично (1.15) и (1.20).

Анализ выражений показывает, что для снижения динамической и методической погрешностей МФП с замещением необходимо увеличивать его быстродействие.

Значение абсолютной инструментальной погрешности Δy_{ni} для каждого типа преобразователя должно быть выражено в единицах преобразуемой величины, т. е. $\Delta x_{ni} = F^{-1}{}_i (\Delta y_{ni})$.

Вычисление составляющих общей погрешности преобразования дает возможность сформулировать условие применения МФП в виде неравенства

 $|\Delta x_{\mathrm{M}i}| + |\Delta x_{\mathrm{M}i}| + |\Delta x_{\mathrm{M}i}| < \Delta x_{\mathrm{M}on} i,$

где $\Delta x_{\text{доп} i}$ — заданное техническим заданием допустимое значение абсолютной погрешности преобразования *i*-й физической величины.

Принцип многофункционального преобразования полностью согласуется с принципом двухканальности, сформулированным акад. Б. Н. Петровым и обеспечивающим построение инвариантных систем.

1.4. ОСНОВНЫЕ ПРЕДПОСЫЛКИ ВЫБОРА ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА МФП

Существуют разнообразные типы преобразователей, отличающихся принципом действия ЧЭ (рис. 1.3). Анализ принципа действия МФП показывает, что и они могут быть построены на основе различных типов ЧЭ.

Необходимость создания схемотехнических основ построения автоматических многофункциональных аналоговых и аналого-цифровых преобразователей, исследования их характеристик, теоретического обобщения методов анализа, вывода соотношений для инженерного расчета основных параметров и разработки САПР требует сопоставления возможностей различных ЧЭ и выбора конкретного типа, пригодного для решения поставленной задачи. Рассматривая этот вопрос с точки зрения применения ЧЭ в многофункциональных преобразователях, следует обращать внимание на метрологические, эксплуатационные и производственно-технологические характеристики ЧЭ.

Одной из характерных особенностей подавляющего большинства существующих ЧЭ является то, что они реагируют одновременно на воздействие различных физических величин. Это качество отрицательно влияет на метрологические характеристики преобразователей при обычном способе их построения. Для устранения этого влияния применяются различные методы, такие как экранирование, термостатирование, включение компенсирующих элементов, имеющих обратную зависимость выходной величины от воздействия компенсируемого фактора, и др.

При построении МФП непременным условием является наличие ЧЭ, реагирующих одновременно на возможно большее число различных физических величин. Кроме того, ЧЭ должны отличаться высокой чувствительностью, простотой и удобством конструкции, малыми табаритными размерами и массой, низкой стоимостью, высокой надежностью, устойчивостью к механическим и климатическим воздействиям, способностью работать в трудно-

доступных и агрессивных средах. Одним из типов ЧЭ, в наибольшей степени удовлетворяющим изложенным требованиям, являются терморезистивные ЧЭ [7, 12]. Классификация их возможного применения в составе МФП для преобразования различных физических величин приведена на рис. 1.10. Серийное производство терморезисторов хорошо освоено. Возможности терморезисторов были подмечены еще в тридцатые годы. Начиная с работ Б. Т. Коломийца, исследования свойств терморезисторов и схем их включения ведутся широким фронтом. Многие фундаментальные работы определили подход к исследованию характеристик терморезисторов. Академик А. Ф. Иоффе отмечал целесообразность широкого и многостороннего применения терморезисторов. Решающее значение для аналитического описания процессов в терморезисторе имели работы Г. Н. Дульнева. Трудно переоценить большое значение исследований цепей с терморезисторами, ксторые выполнены Г. К. Нечаевым и Н. П. Удаловым. Ими разработано огромное количество схем и элементов автоматики, использующих те или иные свойства терморезисторов [7, 12]: Г. К. Нечаев разработал методы расчета мостовых схем с терморезисторами; Н. П. Удалов предложил графоаналитический метод построения вольт-амперных характеристик терморезисторов. Широкие обобщения и глубокие исследования цепей с терморезисторами проведены А. Г. Шашковым. В этот же период исследование свойств терморезисторов и схем их включения проводили многие зарубежные ученые.

Рис. 1.10. Применение МФП с терморезистивными ЧЭ

Работы в области исследования и применения терморезисторов показывают, что в настоящее время их свойства изучены достаточно глубоко и всесторонне. Разработаны методы расчета и построения их характеристик и схем включения. Создано больщое число схем контроля и измерения различного назначения.

Если рассматривать эволюцию исследований терморезисторов и схем их включения в крупном плане, то наблюдается явно выраженный этап решения электротехнической задачи, когда теплообмен происходит по закону Ньютона, и этап, когда происходит теплообмен со средой, параметры которой изменяются.

Анализ литературных данных убедительно показывает возможность применения терморезисторов для преобразования различных физических величин. Это же доказывает их восприимчивость к различным физическим величинам и, следовательно, подтверждает возможность их использования в МФП. К настоящему времени создана основополагающая теория и достаточно развитое производство терморезистивных ЧЭ. Естественным продолжением развития этого направления является создание на основе терморезистивных ЧЭ автоматических МФП, обеспечивающих высокую точность, быстродействие и полную автоматизацию процесса преобразования.

Сопротивление терморезисторов определяется температурой рабочего тела, которая, в свою очередь, зависит от значения рассеиваемой в нем мощности. Каждому значению рассеиваемой мощности $P_{\rm r}$ соответствует определенное сопротивление терморезистора $R_{\rm r}$:

$$R_{\rm T} = f(P_{\rm T}).$$
 (1.30)

Наибольший интерес для дальнейшего применения представляют полупроводниковые терморезисторы, важнейшей характеристикой которых является зависимость сопротивления от температуры тела:

$$R_{\rm T} = R_{20} e^{(B/T - B/273)}$$

где T — температура тела терморезистора, К; $R_{\rm T}$ — сопротивление при температуре T; B — постоянная, зависящая от материала; R_{20} — сопротивление при $T = +20^{\circ}$ С.

При прохождении электрического тока $I_{\rm H}$ в терморезисторе $R_{\rm T}$ выделяется мощность

$$P_{\rm H} = I_{\rm H}^2 R_{\rm T}.$$
 (1.31)

Мощность $P_{\rm H}$, подводимая к терморезистору, частично рассеивается в окружающую среду ($P_{\rm cp}$), частично затрачивается на нагрев тела терморезистора ($P_{\rm T}$). Это условие записывается в виде уравнения теплового баланса:

 $P_{\rm H} = P_{\rm cp} + P_{\rm T}.$ (1.32)
2–133
33

При изменении параметров окружающей среды и постоянстве подводимой к терморезистору мощности ($P_{\rm H}$ =const) мощность, рассеиваемая в окружающую среду, изменяется и, следовательно, изменяется мощность $P_{\rm T}$, рассеиваемая в теле терморезистора, изменяя его температуру и сопротивление $R_{\rm T}$. Это изменение сопротивления регистрируется и является мерой параметров, влияющих на условия теплообмена.

Если на терморезистор подавать электрические сигналы, изменяющие подводимую к $R_{\rm T}$ мощность, считая постоянными параметры окружающей среды и, следовательно, $P_{\rm cp}$ =const, то это также приведет к изменению $P_{\rm T}$ и, как и в предыдущем случае, сопротивления $R_{\rm T}$.

На выполнении условия теплового баланса и основано применение терморезисторов. Условие теплового баланса для режима постоянной температуры терморезистора обычно записывается в виде

$$I_{\rm H}^2 R_{\rm T} = H \left(T - \theta \right) + C_{\rm T} \frac{dT}{dt} , \qquad (1.33)$$

где H — коэффициент рассеяния терморезистора, Bt/°C; θ — температура окружающей среды, °C; $C_{\rm T}$ — теплоемкость терморезистора, Bt/°C.

Из (1.33) следует, что при подаче на терморезистор электрических сигналов увеличивается мощность подводимая к $R_{\rm T}$ (в левой части уравнения). Для восстановления баланса необходимо уменьшить $P_{\rm H} = l^2_{\rm H} R_{\rm T}$. При изменении параметров окружающей среды, определяющих условия теплообмена, изменяется первый член правой части уравнения, коэффициент H которого по теории теплового подобия через критериальные зависимости (Ньютона, Рейнольдса, Пекле-Ре, Прандтля, Нуссельта) определяется физическими свойствами тел, участвующих в теплообмене, и механическими характеристиками их движения. В соответствии с (1.33) для восстановления постоянства температуры терморезистора необходимо изменить мощность $P_{\rm H}$, подводимую к терморезистору. При этом сигнал, определяющий $P_{\rm H}$, будет нести информацию о физических величинах, воздействующих на терморезистор.

1.5. АНАЛИЗ ПОГРЕШНОСТИ ЗАМЕЩЕНИЯ

Основным фактором, определяющим возможность применения метода замещения при преобразовании различных физических величин, является малый уровень погрешности замещения, которая характеризуется неодинаковым воздействием на терморезистивный ЧЭ преобразуемых и замещающих величин.

Необходимость анализа погрешности замещения приобретает наибольшую актуальность при измерении Р_{СВЧ} — мощности СВЧ сигналов, измерение которой основано на допущении, что измене-

ния сопротивления терморезистора при нагреве его равными по значению мощностями СВЧ и постоянного тока будут также одинаковы. Однако, если длина терморезистора соизмерима с длиной волны высокочастотных колебаний или если глубина проникновения тока в тело терморезистора любого типа меньше его радиуса, это равенство всегда будет нарушаться. Для термочувствительных сопротивлений следует учитывать и своеобразное явление теплового поверхностного эффекта, существенно влияющее на распределение тока высокой частоты по сечению. Вопросы анализа погрешности замещения рассматривались многими авторами, но только применительно к бусинковым термисторам. Однако полученные выводы нельзя полностью применять к наиболее часто используемым в настоящее время стержневым термисторам (ТШ-1, ТШ-2). О дополнительной погрешности изменения P свч, определяемой неэквивалентностью ее замещения мощностью постоянного тока в предположении линейности измерительного устройства можно судить по выражению

 $\delta = (\Delta R' - \Delta R) / \Delta R',$

где $\Delta R'$ и ΔR — изменение сопротивления термистора при подаче на него равных по значению P_{CB4} и мощности постоянного тока соответственно.

Оценка погрешности замещения сводится к предварительному определению значений $\Delta R'$ и ΔR с учетом влияния электрического и теплового поверхностного эффектов.

Любой проводник с током можно рассматривать как тело с внутренним источником тепла, поэтому рассуждение можно вести одинаково и для металлических проволочных болометров, и для стержневых термисторов типов ТШ-1 и ТШ-2. Эти термисторы представляют собой стержень цилиндрической формы с радиусом r=0,075 мм и длиной l=1,5 мм. Отношение l/r достаточно велико, чтобы в первом приближении можно было бы пренебречь теплоотводом через торцевые стенки стержня. Подобное допущение тем более справедливо для проволочных или пленочных болометров.

Для определения $\Delta R'$ и ΔR необходимо решить уравнение теплопроводности, которое для тела с внутренним источником тепла в общем случае можно записать в следующем виде:

$$\gamma p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{f \partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) + p, \qquad (1.35)$$

где γ , ρ , λ — теплоемкость, плотность, коэффициент теплопроводности материала проводника соответственно; T — температура проводника в точке с координатами x, y, z; P — напряженность внутреннего источника тепла, определяемая подводимой мощностью к единице объема проводника.

32

(1.34)

Так как термистор имеет форму цилиндра, то рационально перейти к цилиндрическим координатам, z, φ , r, а учитывая фактическое соотношение l/r, считать, что распределение температуры в отдельных плоских сечениях, перпендикулярных оси z, будет одинаково. Учитывая осевую симметрию сечения проводника, можно принять, что T(r) не зависит от угла φ радиуса-вектора, т. е. принять z = const, $\varphi = \text{const}$, а ось z, совпадающей с осью проводника.

В конечном итоге представляет интерес установившееся состояние температурного поля, поэтому следует также принять $\partial I/\partial t = 0$. Тогда (1.35) принимает вид

$$\frac{d^2T}{dr^2} + \frac{1}{r}\frac{dT}{dr} + \frac{p}{r} = 0.$$
 (1.36)

Из выражения (1.36) определяют температуру в любой точке цилиндрического проводника. Умножим обе части уравнения (1.36) на *rdr*, а *p* выразим через плотность тока и удельную проводимость о, отнесенную к единице объема термистора. Но о является функцией температуры и получает различные значения в разных точках сечения проводника, однако, принимая во внимание то, что температура проводника постоянна, можно упростить задачу, считая некоторое эффективное значение $\sigma = \sigma_{эф}$, как бы осредненное по сечению проводника. Тогда выражение для *p* получим в следующем виде:

$$p = 0.24 i^2 / \sigma_{\rm sp},$$
 (1.37)

где *i* — плотность тока через терморезистор.

Интегрируя уравнение (1.36),

$$T = \frac{0.24 i^2}{\lambda \sigma_{\partial \Phi}} \cdot \frac{r^2}{4} + C_1 \ln r + C_2, \tag{1.38}$$

где *C*₁ и *C*₂ — постоянные интегрирования.

Если после первого интегрирования положить r=0, то и $C_1=$ =0. Постоянная C_2 может быть определена из условий на поверхности проводника: количество тепла dQ_1 , притекающего к элементу поверхности, и количество тепла dQ_2 , переходящее от этого элемента в окружающую среду в установившемся состоянии, должны быть одинаковыми, т. е.

$$-\lambda (dT/dr) = \lambda (T - \theta). \tag{1.39}$$

Выражение (1.39) не зависит от формы поверхности проводника, справедливо для установившегося состояния и изменяющегося распределения температур. Подставив в (1.39), dT/dr и $C_1=0$, получим

$$C_{2} = \theta + \frac{0.24 \, i^{2}}{4\lambda\sigma_{a\phi}} \, r_{0}^{2} \left(1 - \frac{r^{2}}{r_{0}^{2}} + \frac{2\lambda}{\alpha \, r_{0}} \right), \tag{1.40}$$

где r₀ — радиус цилиндрического терморезистора.
Тогда окончательным выражением для Т будет

$$T = \theta + \frac{0.24 \, i^2}{4\lambda \sigma_{a\phi}} \, r_0^2 \left(2 - \frac{r^2}{r_0^2} + \frac{2\lambda}{\alpha \, r_0} \right). \tag{1.41}$$

Эффективная проводимость $\sigma_{s\phi}$ соответствует некоторой эффективной температуре $T_{s\phi}$ в сечении проводника. Это позволяет по характеристике термистора R = f(T) определить значение $\sigma_{s\phi}$. Запишем выражение для разности температур на расстоянии rот оси проводника, в зависимости от количества проводимого тепла dQ

$$T_{a\phi} - \theta = \frac{dQ}{C\gamma 2\pi r \, dr} \,, \tag{1.42}$$

где dQ — элемент объема проводника единичной длины. Тогда, используя (1.41), можно записать:

$$dQ = \frac{0.24 i^2 \pi r_0^2 C \gamma}{2 \lambda \sigma_{\partial \phi}} \left(2 + \frac{2\lambda}{\alpha r_0} - \frac{r^2}{r_0} \right) r dr.$$
(1.43)

Интегрируя уравнение (1.43) в пределах от 0 до r₀, получаем

$$Q = \frac{0.24 t^2 \pi r_0^2 C \gamma}{2\lambda \sigma_{\theta \Phi}} \left(2 + \frac{\lambda}{\alpha r_0}\right).$$
(1.44)

Из (1.42) и (1.44) нетрудно получить соотношение

$$T_{a\phi} = \theta + \frac{0.24 \, i^2 \, r_0^2}{4\lambda \sigma_{a\phi}} \left(2 + \frac{\lambda}{\alpha r_0}\right),\tag{1.45}$$

Подсчитав значение T для r=0 и $r=r_0$, можно убедиться в том, что $T_{э\phi}$ есть среднее арифметическое значение температуры на поверхности проводника и на его оси. Это позволяет установить, что зависимость между изменением температуры по направлению радиуса и изменением массы цилиндра с увеличением радиуса расположения рассматриваемой точки при принятых допущениях практически имеет линейный характер.

Расчеты соответствуют случаю подведения к термистору мощности постоянного тока. При питании его высокочастотным током они будут несколько неточны за счет иного распределения тока по сечению из-за поверхностного эффекта и соотношение (1.37) будет отражать истинную картину лишь весьма приближенно. Как известно, глубина проникновения тока в проводник определяется постоянной

$$\beta = \sqrt{\sigma_{\mu} w/r}, \qquad (1.46)$$

а плотность тока изменяется на глубине в соответствии с соотношением

$$I = I_0 \exp{-\beta y}, \tag{1.47}$$

37

где I_0 — ток на поверхности проводника; I — ток на расстоянии y от поверхности; ω — круговая частота; μ — магнитная проницаемость материала проводника; σ — удельная проводимость.

Следовательно, для уточнения значения изменения температуры по радиусу термистора при подаче на него высокочастотной мощности необходимо вторично решить уравнение (1.36), но при новом значении

$$p' = \frac{0.24 I_0^2}{\sigma_{s\phi}} e^{-2\beta/(r_0 - r)}, \qquad (1.48)$$

где r — текущее значение радиуса проводника; $\sigma'_{s\phi}$ — новое эффективное значение проводимости.

Основное уравнение теплопроводности принимает вид

$$\frac{d^2T'}{dr^2} + \frac{1}{r}\frac{dT'}{dr} + \frac{0.24I_0^2}{\lambda\sigma'_{s\phi}} e^{-2\beta(r_0 - r)} = 0.$$
(1.49)

Используя подстановку $\frac{dT}{dr} = U$ и принимая $p_0 = 0,24I^2_0 e^{-2\beta r}$, по-

лучаем

$$d(Ur) = -\frac{p_0}{\lambda \sigma'_{s\phi}} e^{2\beta r} r dr.$$
(1.50)

Первая постоянная интегрирования C'₁ определяется по-прежнему при r=0:

$$C_1' = -\frac{p_0}{4\lambda\beta^2 \sigma_{s\phi}'}.$$
(1.51)

Вторичное интегрирование с учетом (1.51) дает

$$T' = \frac{p_0}{4\lambda\beta^2 \sigma'_{9\Phi}} \left[\sum_{1}^{k} \frac{(2\beta r)^k}{kk!} - e^{2\beta r} \right] + C'_2.$$
(1.52)

Так как βr имеет малое значение, функцию в скобках можно заменить первыми членами разложения:

$$T' = \frac{p_0}{4\lambda\beta^2 \sigma_{s\phi}} [2\beta r + \beta^2 r^2 - e^{2\beta r}] + C'_2.$$
(1.53)

Определяя C'_2 исходя из тех же условий, что и для C_2 , но уже с соответственно новыми значениями dT/dr и T', приводим (1.53) к виду

$$T' = \theta + \frac{p_0}{4\lambda\beta^2 \sigma_{s\phi}} \left[(2\beta r + \beta^2 r^2 - e^{2\beta r}) - e^{2\beta r^0} \left(\frac{\lambda}{\alpha r_0} + \frac{2\lambda\beta}{\alpha} - 1 \right) - 2\beta r_0 - \beta^2 r_0^2 + \frac{\lambda}{\alpha r_0} \right].$$
(1.54)

Учитывая, что $\beta r < 1$ и $\beta r_0 < 1$, можно упростить выражение (1.54) и записать его в виде приближенного равенства

$$T' = \theta + \frac{p_0}{4\lambda \sigma'_{s\phi}} r_0^2 \left[1 - \frac{r^2}{r_0^2} + \frac{2\lambda}{\alpha r_0} \left(1 + 2\beta r_0 \right) \right].$$
(1.55)

Выражение (1.55) отличается от (1.41) только дополнительным слагаемым при коэффициенте $2\lambda/\alpha r_0$. Этот коэффициент — функция наружного радиуса и параметра β , определяющего глубину проникновения тока в проводник на данной частоте. Значение эффективной средней температуры $T_{эф}$ определяется как среднее арифметическое температур на поверхности и оси проводника:

$$T'_{s\phi} = \theta + \frac{p_0}{4\lambda\sigma_{s\phi}} r_0^2 \left[\frac{1}{r} + \frac{2\lambda}{\alpha r_0} \left(1 + 2\beta r_0 \right) \right].$$
(1.56)

Зная $T'_{\mathfrak{s}\phi}$ и $T_{\mathfrak{s}\phi}$, можно сделать выводы и о соотношении между $\Delta R'$ и ΔR , а также получить сведения о степени эквивалентности нагрева термистора мощностью постоянного и высокочастотного токов.

Зависимость сопротивления термистора от температуры определяется соотношением

$$R_{t} = R_{20} \exp(B/T - B/293), \qquad (1.57)$$

где R_{20} — сопротивление термистора при $t=20^{\circ}$ С; B — постоянная, определяемая свойствами материала термистора (для ТШ-2 $B=1850^{\circ}$ С); T — температура термистора, за которую в данном случае будем принимать ее эффективное значение, определяемое (1.45) и (1.56).

Пользуясь (1.57), сопротивления термистора для случаев нагрева его мощностью постоянного R_t и высокочастотного R'_t токов могут быть вычислены по аналогичным выражениям:

$$R_{t} = R_{20} \exp(B/T_{s\phi} - B/293),$$

$$R'_{t} = R_{20} \exp(B/T'_{s\phi} - B/293).$$
(1.58)

Продифференцировав (1.58) по $T_{\mathfrak{s}\Phi}$ в предположении равенства $dT_{\mathfrak{s}\Phi} = dT'_{\mathfrak{s}\Phi}$ и перейдя к конечным приращениям, получим

$$\Delta R = \frac{BR_{20} e^{-B/293}}{T_{9\phi}^2} e^{B/T_{9\phi}} \Delta T_{\phi\phi},$$

$$\Delta R' = \frac{BR_{20} e^{-B/293}}{T_{9\phi}'^2} e^{B/T'_{9\phi}} \Delta T_{\phi\phi}'.$$
(1.59)

Тогда формула (1.34) для δ оценки эквивалентности нагрева термистора мощностью постоянного и высокочастотного токов запишется в виде

$$\delta = \frac{\Delta R' - \Delta R}{\Delta R'} \approx \left[1 - \frac{T_{g\phi}^*}{T_{g\phi}^2} \left(1 - \frac{B}{T_{g\phi}} + \frac{B}{T_{g\phi}} \right) \right]. \tag{1.60}$$

39

Так как $T'_{\mathfrak{s}\Phi} > T_{\mathfrak{s}\Phi}$ и выражение в круглых скобках формулы (1.60) больше единицы, то погрешность замешения & всегда отрицательна, и фактически мощность, измеренная методом замещения, будет меньше истинной на значение, определяемое радиусом термистора и коэффициентом В. Конкретные значения В в зависимости от частоты тока, проводимости о и магнитной проницаемости и материала термистора изменяются в очень широких пределах. Естественно, что и поправочный коэффициент в формуле (1.56), равный 2βг, будет принимать значение, изменяющееся в очень широких пределах от нескольких тысячных до десятых долей единицы. Следовательно, погрешность замещения может доходить в отдельных случаях до нескольких процентов. Этот эффект будет проявляться еще интенсивней при использовании термисторов, изготовленных с примесями ферромагнитных материалов (окислов Ni, Co и др.), так как и у подобных материалов существенно больше единицы.

Следует заметить, что температура проводника непостоянная по длине его радиуса. Она тем ниже, чем ближе рассматриваемая точка к поверхности. Следовательно, проводимость (плотность тока) также будет различной для отдельных точек сечения проводника. Очевидно, при положительном температурном коэффициенте сопротивления (ТКС) проводника (металлические болометры) плотность тока будет больше на периферии проводника, чем на его оси. Это явление — своеобразный тепловой поверхностный эффект; у проводников с отрицательным ТКС будет, наоборот, приводить к некоторой концентрации плотности тока ближе к оси. При питании проводника током высокой частоты наличие поверхностного эффекта в некоторой степени ослабляет указанное явление.

Эти выводы применимы к проволочным или пленочным болометрам и стержневым термисторам. Однако в технике измерения мощности используются также и бусинковые термисторы, имеющие специфическую геометрию: токовводы введены в сферу бусинки на значительную глубину, причем с существенным их перекрытием по оси вводов. Благодаря такой геометрии при постоянном токе основная доля тепла выделяется в пространство между проволочками вводов. Это пространство (или зона концентрации) очень мало. Поэтому задача о температурном поле бусинкового термистора могла бы быть сведена к задаче о температурном поле сферы с точечным источником тепла в центре бусинки. Однако ранее совершенно не учитывалось наличие поверхностного эффекта при питании бусинки высокочастотным током. Этот ток будет проходить не только по зоне концентрации, а еще и по поверхностному слою бусинки, следовательно, предположение о точечности источника тепла в этом случае требует некоторого уточнения.

Ранее были получены уравнения, определяющие закон изменения температуры в стержневом термисторе по направлению радиуса при питании его постоянным (1.41) или высокочастотным (1.55) током. Но в реальных измерительных устройствах фактически термистор находится под одновременным воздействием и постоянного и высокочастотного токов, причем всегда доля мощности высокочастотного тока существенно меньше доли мощности постоянного. Суммарная мощность Ро выбирается из условий согласования R_т с волновым сопротивлением высокочастотного тракта, в который он включен. Для уменьшения погрешностей, определяемых нелинейностью характеристики R_T=f(P₀), влиянием теплопотерь и прочими условиями, доля мощности СВЧ в Ро берется очень небольшой. Положим, что измеряемая мощность СВЧ связана с суммарной P_0 выражением $P_{CBU} = kP_0$, где $k \ll 1$, тогда преобразованное основное уравнение теплопроводности запишется в виле

$$d(Ur) = -\frac{1}{\lambda} \left[\frac{(1-k) t_0^2}{\sigma_{\partial \phi}} \right] r dr - \frac{1}{\lambda} \frac{k t_0^2}{\sigma_{\partial \phi}} e^{2\beta r_0} r dr, \qquad (1.61)$$

где *i*₀ — плотность тока при *P*₀.

После интегрирования и определения постоянных С"₁ и С"₂ получим уравнение для температуры в любой точке термистора при одновременном воздействии на него мощностей постоянного и высокочастотного токов

$$T = \theta + \frac{0.24 t_0^2 r_0^2}{4\lambda \sigma_{\theta\phi}} \left[2 - \frac{r^2}{r_0^2} + \frac{2\lambda}{\alpha r_0} \left(1 + 2k\beta r_0 \right) \right].$$
(1.62)

Допустимое значение P_0 для термисторов ТШ-2 обычно не превосходит 18—20 мВт, при этом измеряемая мощность СВЧ берется порядка 1,5—2,0 мВт, следовательно, коэффициент k в (1.61) можно принять равным 0,1. Для конкретного термистора значение слагаемого $2k\beta r_0$ будет являться функцией только частоты.

На рис. 1.11 приведен график $2k\beta r_0 = \varphi(f)$, построенный в полулогарифмическом масштабе, из которого видно, что эффект неэквивалентности очень резко возрастает с увеличением частоты. Роль добавочного слагаемого в (1.62) особенно велика при использовании термисторов, имеющих в своем составе окислы ферромагнитных материалов (кривые 1, 2).

Следует помнить, что общая неэквивалентность нагрева термистора токами НЧ и СВЧ определяется не только наличием поверхностного эффекта. Активная проводимость термистора определяется в некоторой степени внутренними свойствами конкретного полупроводника за счет действия малых емкостей между отдельными зернами материала, шунтирующее действие которых увеличивается с ростом частоты.

Рис. 1.11. Зависимость погрешности замещения от частоты

42

Рис. 1.12. Зависимость отношения активной составляющей сопротивления термистора току СВЧ к сопротивлению постоянному току

На рис. 1.12 показан примерный характер изменения отношения $R_{\sim}/R_{=}$ в зависимости от частоты: A — закон изменения сопротивления термистора за счет поверхностного эффекта; B — внутреннего эффекта; C — результирующая кривая, определяющая влияние обоих факторов. Как видно, по кривой C результирующее значение $R_{\sim}/R_{=}$ для термистора изменяется с частотой немонотонно, достигая минимума на частотах порядка 48—70 ГГц. На частотах 150—200 ГГц влияние поверхностного эффекта становится преобладающим (кривая B) и активная проводимость термистора изменяется главным образом за счет поверхностного эффекта, что вполне согласуется и с приведенными соображениями. Роль этой дополнительной погрешности измерения можно уменьшить с помощью вспомогательных градуировочных графиков, получаемых при сличении показаний измерителя мощности с показаниями, например, образцового калориметрического прибора.

1.6. АНАЛИЗ СХЕМ ВКЛЮЧЕНИЯ ЧЭ

Наиболее эффективными схемами включения резистивных ЧЭ являются электрические мостовые схемы [3, 7, 8, 12, 20]. Преимущества этих схем столь велики, что исследования, наиравленные на их совершенствование, и до настоящего времени ведутся достаточно широко. Анализ периодической печати и обобщений за последние десять — двадцать лет показал, что наиболее эффективными схемами включения терморезистивных ЧЭ при использовании их в МФП являются электрические мосты уравновешивания, свойства которых изучены и описаны.

Одним из главных достоинств мостовых схем уравновешивания является их высокая чувствительность. Обеспечение высокой чувствительности схемы включения ЧЭ в МФП приобретает особенно важное значение, так как при использовании одного и того же ЧЭ для преобразования нескольких различных физических величин его чувствительность к преобразуемым величинам различна, а к некоторым из них недостаточна.

Использование МФП в составе АСК и АСУ ставит другую важную задачу — обеспечение высокого быстродействия. Это диктуется необходимостью уменьшения динамических и методических погрешностей (терморезисторы — инерционные элементы, постоянная времени $\tau_{\rm T}$ которых для выпускаемых серийно типов составляет 0,4—115 с). При включении терморезистора в одно из плеч обычного электрического моста сопротивлений эквивалентная постоянная времени схемы почти не изменяется относительно постоянной времени терморезистора. Совершенно ясно, что важнейшим условием использования мостовых схем с терморезисторами в составе автоматических МФП является существенное повышение их быстродействия, которое достигается применением схем автобалансных мостовых преобразователей (АМП) уравновешивания [12].

Включение терморезистора в одно из плеч АМП обеспечивает его работу в режиме постоянного сопротивления с незначительными отклонениями от рабочей точки при переходных процессах. Это позволяет проводить анализ таких преобразователей с нелинейными полупроводниковыми терморезисторами методом структурных схем, наглядно показывающим взаимосвязь Между процессами рассеивания тепла терморезистором и процессами, происходящими в электрической схеме. Методика расчета динамических характеристик мостовых схем с терморезисторами впервые предложена академиком А. Г. Шашковым. Эта методика базируется на линеаризации дифференциальных уравнений при исследовании процесса в условиях малых приращений (вариаций). Наиболее эффективными схемами включения терморезистивных ЧЭ являются АМП.

1.7. ПЕРСПЕКТИВНЫЕ ПАРАМЕТРЫ МФП

Одно из самых важных требований к МФП — это возможно более широкая многофункциональность, т. е. способность избирательно преобразовывать различные (в общем случае разнородные) физические величины в условиях одновременного воздействия их множества на ЧЭ. Конструктивно МФП могут быть выполнены на основе одного (рис. 1.7) или нескольких однотипных ЧЭ, установленных в различных трактах системы. В последнем случае ЧЭ подключается к каналу преобразования через коммутатор, при этом линии связи ЧЭ со схемой преобразовательного канала могут быть достаточно протяженными. Наличие протяженных линий связи с ЧЭ, а также то, что большинство ЧЭ преобразует входную величину в аналоговый сигнал весьма малого уровня, делает цепи подверженными влиянию помех. Возникают задачи повышения помехозащищенности МФП и разработки методики анализа помехозащищенности как инструмента поиска оптимальных схемотехнических и конструктивных решений.

При проектировании МФП как блочно-модульного элемента АСУ и АСК необходимо обеспечивать его универсальность, т. е. возможность многократного использования в системе для решения различных задач. Примером такого использования может быть применение преобразователя мощности СВЧ для измерения и контроля мощности СВЧ, контроля чувствительности приемника, стабилизации мощности СВЧ, контроля частоты сигнала, измерения коэффициента стоящей волны (КСВ) напряжений низкой и высокой частоты.

Для упрощения задачи обработки информации МФП должны формировать заранее нормированную функцию преобразования (линейную, квадратичную, корнеизвлекающую). Выполнение этого требования позволяет уменьшить статическую относительную погрешность при работе преобразователей в системах регулирования.

Использование МФП в АСУ и АСК, а также в приборах для научных исследований ставит актуальную задачу полной автоматизации процесса преобразования — операций установки нуля, калибровки, переключения диапазонов, коррекции погрешностей, вычисления результата преобразования.

Сопоставление основных характеристик и схем МФП показало, что наиболее перспективными, с точки зрения метрологических и эксплуатационных характеристик, являются МФП с временным разделением сигналов. Основные их преимущества: отсутствие погрешности, обусловленной различием коэффициентов передачи каналов; возможность применения менее стабильных, но более чувствительных элементов; отсутствие второго канала, т. е. меньшее число деталей, меньший объем, масса и т. д.

Зарубежная и отечественная промышленность до настоящего времени все еще выпускает преобразователи и измерительные приборы, требующие специальных мер для стабильной работы приборов и систем в условиях широкого диапазона климатических воздействий. К таким мерам относятся термостатирование термисторных головок измерителей мощности СВЧ, подбор и установка деталей для обеспечения параметрической компенсации температурных погрешностей. Это значительно снижает производственные и эксплуатационные показатели выпускаемых изделий и усложняет технологический процесс их изготовления. Разрабатываемые МФП должны быть технологичны, не требовать установки специально подобранных по параметрам элементов и термостатирования при работе в условиях широкого изменения температур и других дестабилизирующих факторов.

Важнейшая характеристика МФП — погрешность преобразования. Требования современного производства диктуют необходимость совершенствования структуры преобразовательных и измерительных устройств для снижения их погрешности. При разработке МФП наряду с выполнением перечисленных требований должна ставиться задача снижения погрешности преобразования в 2—5 раз по сравнению с серийно выпускаемыми в настоящее время приборами, имеющими ручные органы управления и регулировки.

Применение МФП в системах и приборах, предназначенных для регулирования и регистрации сравнительно быстро протекающих процессов, предъявляет к ним требование повышенного быстродействия.

Для внедрения в сферу производства и широкого применения необходимо создать основы теории и инженерного расчета аналоговых и аналого-цифровых МФП, обеспечивающих автоматизацию процесса преобразования, высокое быстродействие, малые погрешности, возможность применения ЧЭ без предварительного подбора по характеристикам, работающих в условиях эксплуатации с широким диапазоном климатических и механических воздействий, имеющих нормированную функцию преобразования.

Принимая во внимание отмеченные положительные качества аналоговых АМП и эффективность их применения как схем включения терморезистивных ЧЭ, представляется целесообразным на первом этапе проведение более подробного их анализа и создание на этой основе импульсных АМП, обеспечивающих непосредственное преобразование аналогового сигнала с терморезистивного ЧЭ в частотно- или время-импульсный сигнал.

ГЛАВА 2. АВТОБАЛАНСНЫЕ МОСТОВЫЕ ПРЕОБРАЗОВАТЕЛИ

2.1. АНАЛОГОВЫЕ АМП

При построении преобразователей с терморезистивными ЧЭ все более широкое применение находят аналоговые АМП постоянного и переменного тока. Это объясняется их неоспоримыми преимуществами: автоматизацией операции балансировки моста и возможностью уменьшения постоянной времени схемы относительно постоянной времени терморезистора.

Рис. 2.1. Автобалансный мостовой преобразователь

Разработка и внедрение аналоговых АМП позволили на определенном этапе несколько улучшить параметры разрабатыва-емых приборов и систем [7, 12]. Однако стремление улучшить метрологические характеристики средств управления и контроля на основе аналоговых АМП привело к более яркому проявлению и их недостатков, таких как нелинейность функции преобразования, недостаточная чувствительность, плохая помехозащищенность (так как связь ЧЭ со схемой включения осуществляется с помощью аналогового сигнала малого уровня), а также аналоговый

вид выходной информации. Если при проектировании обычных преобразователей перечисленные недостатки ухудшают метрологические характеристики, то при построении МФП они не только ухудшают характеристики, но и делают невозможным реализацию ряда эффективных структур. Синтезированы новые АМП с частотно- и время-импульсным выходными сигналами [24, 28], применение которых обеспечило построение высокоэффективных автоматических МФП. Исследования по построению АМП носят до настоящего времени разрозненный характер и нуждаются в обобщении.

Схема аналогового автобалансного преобразователя приведена на рис. 2.1. Любое внешнее воздействие на терморезистор, будь то преобразуемая физическая величина $x_i(t)$ из множества $\{x_1(t), x_2(t), ..., x_n(t)\}$ или дестабилизирующий фактор $z_j(t)$ из множества $\{z_1(t), z_2(t), ..., z_m(t)\}$, в соответствии с уравениями теплового баланса (1.32) и (1.33) приводит к изменению мощности, рассеиваемой в теле терморезистора (затрачиваемой на изменение его теплосодержания). Следовательно, воздействие $x_i(t)$ и $z_j(t)$ в общем случае может рассматриваться как некоторое изменение мощности, рассеиваемой в теле терморезистора, обусловленное воздействием подводимой либо отбираемой мощности.

В дальнейшем для общности подхода и изложения следует исходить из условия выполнения баланса мощностей, определяющих тепловое состояние терморезистора. При этом входные преобразуемые величины будем обозначать $P_x(t)$, а действие изменяющих условия теплообмена факторов, к которым, например, относятся температура, давление, плотность, вязкость, влажность окружающей среды, — $P_{cp}(t) = \sum_{i=1}^{m} P_{z_j}(t) = H(T-\theta)$. Уравнение баланса мощностей — основное соотношение, описывающее работу АМП. С учетом введенных обозначений это уравнение принимает вид

$$P_{o.c}(t) + P_x(t) = P_T + P_{cp}(t)$$
(2.1)

или

$$I_{T}^{2}(t)R_{T}+P_{x}(t)=P_{T}+H(T-\theta), \qquad (2.2)$$

где $P_{o.c}(t) = I_{T}^{2}(t) R_{T} = U_{M}^{2}(t)/4R_{T}$ — мощность, подводимая к терморезистору по цепи обратной связи; $I_{T}(t)$ — ток, протекающий по терморезистору при подаче на мост напряжения обратной связи $U_{M}(t)$ с выхода усилителя.

Автобалансный мостовой преобразователь (см. рис. 2.1) работает следующим образом. При воздействии $P_x(t)$ на терморезистор возникает разбаланс моста ΔU , который усилителем У с коэффициентом усиления k подается по цепи обратной связи на мост в виде изменения $P_{o.c}(t)$, определяемой изменением напряжения питания моста $U_M(t)$, в такой фазе, чтобы вернуть мост к состоянию баланса. Баланс моста поддерживается с тем большей точностью, чем больший коэффициент усиления k имеет усилитель. Полного баланса тем не менее не будет, так как непременным условием работы схемы является наличие ΔU . Изменения R_{τ} малы, и можно принять $R_{\tau} = R_1 = R_2 = R_3$, а $P_{\tau} = \text{const.}$ Следовательно, можно записать уравнение, в котором алгебраическая сумма мощностей, стоящих в правой и левой частях, постоянна в любой момент времени:

$$P_{\tau} = P_{o.c}(t) + P_{x}(t) - \sum_{j=1}^{m} P_{z_{j}}(t) = \text{const.}$$
 (2.3)

При появлении или изменении составляющих $P_x(t)$ и $\sum_{j=1}^{\infty} P_z(t)$ условие (2.3) сохраняется за счет противоположного по знаку изменения $P_{o,c}(t)$, определяемого $U_{\rm M}(t)$.

В соответствии с рассмотренным принципом действия выведем выражение для функции преобразования. Предположим, что в некоторый начальный момент времени t_1 на ЧЭ действует преобразуемая величина $P_x(t_1)$, а в следующий момент времени $t_2 - P_x(t_2)$. Тогда для моментов t_1 и t_2 можно записать уравнение баланса мощностей:

для $t = t_1$

$$P_{\rm T} = P_{\rm o.c}(t_1) + P_{\rm x}(t_1) - \sum_{j=1}^m P_{z_j}(t_1); \tag{2.4}$$

для $t = t_2$

$$P_{\rm T} = P_{\rm o.c}(t_2) + P_{\rm x}(t_2) - \sum_{j=1}^m P_{z_j}(t_2). \tag{2.5}$$

47

Вычтем из (2.4) уравнение (2.5). На основе допущений (см. гл. 1) и принимая во внимание, что t_2-t_1 очень мало, можно считать в пределах указанного интервала времени составляющую $\sum_{j=1}^{m} P_{z_j}(t)$ неизменной. Тогда $P_x(t_2)-P_x(t_1)=P_{o.c}(t_1)-P_{o.c}(t_2)$

или $\Delta P_x = [U^2_{M}(t_1) - U^2_{M}(t_2)]/4R_{T}$. Полагая, что в момент t_1 преобразуемая величина $P_x(t_1) = 0$ и $R_T = R_1 = R_2 = R_3$, так как мост находится в квазиуровновешенном состоянии, можно записать:

$$P_{x}(t_{2}) = [U^{2}_{M}(t_{1}) - U^{2}_{M}(t_{2})]/4R_{\tau}.$$
(2.6)

Вводя обозначение $k_0 = 1/4R_{\tau}$ и подставляя k_0 в выражение (2.6), получаем выражение для функции преобразования аналогового АМП постоянного или переменного тока:

$$P_{\mathbf{x}}(t) = k_0 [U_{M}^2(t_1) - U_{M}^2(t_2)].$$
(2.7)

Анализ этого выражения показывает, что функция преобразования носит ярко выраженный нелинейный характер.

Напомним, что любое воздействие $x_1(t)$, вызывающее изменение температуры (сопротивления) терморезистора, можно рассматривать в уравнении баланса мощностей как некоторое эквивалентное значение изменения мощности $P_x(t)$, равное по значению изменению мощности $P_{o.c}(t)$. Следовательно, $\Delta P_x = \Delta P_{o.c}$.

Одной из основных характеристик преобразователей является чувствительность

$$S^{(A)} = \lim_{\Delta P_x \to 0} \frac{\Delta U_M}{\Delta P_x} = \lim_{\Delta P_{o,c} \to 0} \frac{\Delta U_M}{\Delta P_{o,c}} = \frac{dU_M}{dP_{o,c}}, \qquad (2.8)$$

где $\Delta U_{\rm M}$ — изменение выходного сигнала при изменении входного на ΔP_x .

Величину $U_{M}(t)$ выразим через $P_{o.c}(t)$, получим

$$U_{\rm M}(t) = 2\sqrt{P_{\rm o.c}(t)R_{\rm T}}.$$
(2.9)

Тогда в соответствии с (2.8) чувствительность аналогового АМП определится выражением

$$S^{(A)} = dU_{\rm M}/dP_{\rm o.c} = \sqrt{R_{\rm T}/P_{\rm o.c}} = \sqrt{R_{\rm T}} / \sqrt{P_{\rm T} + \sum_{j=1}^{m} P_{z_j}(t) - P_{x}(t)}, (2.10)$$

которое показывает, что чувствительность сложно и нелинейно зависит от $P_x(t)$ (рис. 2.2).

Анализ динамических характеристик аналоговых АМП показывает, что разомкнутая схема представляет собой апериодическое звено с передаточной функцией, определяемой выражением

$$\mathcal{V}(p) = k/(\tau_{\rm T} p + 1). \tag{2.11}$$

Принимая во внимание, что для передаточной функции замкнутой системы существует выражение [10], можно записать

$$W_{\rm AM\Pi}(p) = W(p) / [1 + W(p)].$$
(2.12)

48

Рис. 2.2. Зависимость чувствительности АМП с терморезистивным ЧЭ от значения преобразуемой величины

Рис. 2.3. Переходные процессы в цепи преобразователя с терморезистором: *a*— без обратной связи: *б*— с обратной связью

После подстановки (2.11) в (2.12) получим выражение для передаточной функции АМП:

$$W_{\rm AM\Pi}(p) = \frac{k/(k+1)}{\tau_{\rm AM\Pi} p + 1} \approx \frac{1}{\tau_{\rm AM\Pi} p + 1},$$
(2.13)

где $\tau_{AM\Pi} = \tau_T / (k+1)$ — постоянная времени АМП.

Введение обратной связи (2.13) позволяет существенно уменьшить постоянную времени АМП относительно т_т терморезистора. Этот вывод несколько идеализированный, однако согласуется с ранее опубликованными результатами. Реальные соотношения носят более сложный характер.

На рис. 2.3 показаны экспериментально полученные осциллограммы переходных процессов для схемы (см. рис. 2.1) с терморезистором ТШ-1 в качестве ЧЭ. Длительность переходного процесса после введения обратной связи 8 мс, увеличилось быстродействие примерно в 150 раз.

Автобалансный мостовой преобразователь обеспечивает: автоматическую балансировку, постоянство сопротивления терморезистора, работу системы «в малом» и уменьшение постоянной времени АМП относительно постоянной времени терморезистора. Вместе с тем, анализ основных характеристик наглядно показал и недостатки АМП, к которым прежде всего относятся нелинейность функции преобразования и аналоговый вид выходной информации, для устранения которых были созданы автобалансные АМП с частотно- и время-импульсным преобразованиями.

2.2. АВТОБАЛАНСНЫЕ МОСТОВЫЕ ЧАСТОТНО-И ВРЕМЯ-ИМПУЛЬСНЫЕ ПРЕОБРАЗОВАТЕЛИ

Способ питания АМП импульсным напряжением известен давно. Для достижения баланса на терморезистор, включенный в одно из плеч, должна быть подана мощность, опреде-

Рис. 2.4. Схема балансного частотноимпульсного преобразователя с ручным уравновешиванием

ляемая рабочей точкой на характеристике $R_{\rm T} = \varphi(P_{\rm T})$. Действительно, если к терморезистору с сопротивлением $R_{\rm T}$ приложить импульсное напряжение, то на нем будет рассеиваться некоторая мощность

$$P_{\pi} = U^{2}_{m} \tau / \bar{R}_{T} T_{n} = U^{2}_{m} \tau F_{n} / \bar{R}_{T},$$
(2.14)

где $P_{\rm II}$ — мощность, подводимая к терморезистору; U_m , τ_s

T_n, *F_n* — амплитуда, длительность, период повторения, частота импульсов напряжения, приложенного к терморезистору.

Анализ (2.14) показывает, что в качестве переменного параметра, изменение которого позволит регулировать мощность, подводимую к терморезистору, могут быть выбраны амплитуда, частота или длительность импульсов напряжения, приложенного к терморезистору.

На основе балансных мостов с ручным уравновешиванием была построена схема (рис. 2.4). Импульсное напряжение, формируемое генератором импульсов регулируемой частоты ГИРЧ, подается на мост активных сопротивлений. Одним из плеч моста является терморезистор $R_{\rm T}$. Под действием напряжения, питающего мост, на $R_{\rm T}$ рассеивается некоторая мощность, разогревающая его и определяющая значения температуры и сопротивления $R_{\rm T}$. Изменяя частоту следования импульсов, следует подобрать такое значение $F_n(t_1)$, при котором сопротивление $R_{\rm T}$ в момент t_1 и при отсутствии $P_x(t)$ будет равно сопротивлению остальных плеч моста, т. е. мост окажется сбалансированным. Значение мощности, необходимой для баланса моста, определится выражением

$$P_{\pi}(t_1) = U^2_m \tau F_n(t_1) / 4R_{\tau}.$$
(2.15)

где $P_n(t_1)$ — мощность, подводимая к терморезистору и необходимая для баланса моста до подачи $P_{x}(t)$.

Состояние равновесия моста фиксируется нуль-индикатором, а значение частоты $F_n(t_1)$, при которой мост сбалансирован, измерителем частоты ИЧ. После подачи $P_x(t)$ температура и сопротивление терморезистора изменяются, мост выходит из состояния равновесия. Для вторичной балансировки моста изменим частоту $F_n(t)$ следования импульсов питающего напряжения до некоторого значения $F_n(t_2)$, при котором на R_r подается мощность

$$P_{\rm II}(t_2) = \frac{U_m^2 \tau}{4R_{\rm T}} F_n(t_2). \tag{2.16}$$

Частота $F_n(t_2)$ измеряется ИЧ. Очевидно, что до и после подачи $P_x(t)$ суммарная мощность, воздействующая на терморезистор R_r , окажется неизменной, так как и в том и другом случае $R_r = R_1 = R_2 = R_3 = \text{const}$, т. е. можно записать:

$$P_{\pi}(t_1) - \sum_{j=1}^{m} P_{z_j}(t_1) = P_{\pi}(t_2) - \sum_{j=1}^{m} P_{z_j}(t_2) + P_{x}(t) = \text{const}, \quad (2.17)$$

где $\sum_{j=1}^{m} P_{z_j}(t)$ — мощность, рассеиваемая в окружающую среду.

В соответствии с принятыми допущениями, считая функции $P_{z_i}(t)$ кусочно-постоянными, можно утверждать, что на малом интервале времени t_2-t_1 выполняется равенство

$$\sum_{j=1}^{m} P_{z_j}(t_1) = \sum_{j=1}^{m} P_{z_j}(t_2).$$
(2.18)

Принимая во внимание (2.18), из выражений (2.15)—(2.17) нетрудно получить

$$P_{\mathbf{x}}(t) = P_{\mathbf{n}}(t_1) - P_{\mathbf{n}}(t_2) = U^2_m \tau [F_n(t_1) - F_n(t_2)] / 4R_{\tau}, \qquad (2.19)$$

т. е. мощность, эквивалентная преобразуемому воздействию, прямо пропорциональна разности отсчетов частот $F_n(t_1)$ и $F_n(t_2)$ и

$$P_{x}(t) = k_{\text{ЧИ}}[F_{n}(t_{1}) - F_{n}(t_{2})] = k_{\text{ЧИ}}\Delta F_{n}(t), \qquad (2.20)$$

где $k_{\rm 4H} = U^2_m \tau / 4R_{\rm T}$, а чувствительность $S_{\rm 4H} = \Delta F_n / \Delta P_x = 4R_{\rm T} / U^2_m \tau$.

Из (2.20) следует весьма важный вывод о том, что, питая терморезистивный мост импульсным напряжением, можно получить линейную зависимость изменения частоты на выходе от значения мощности, эквивалентной преобразуемой величине. Аналогично можно получить выражение, определяющее зависимость изменения длительности импульсов питающего напряжения от значения мощности, воздействующей на $R_{\rm T}$.

Практическое применение рассмотренного преобразователя затруднительно из-за довольно сложного процесса получения ревультата и значительного времени измерения, обусловленного необходимостью ручного уравновешивания моста. Для автоматизации операции измерения необходимо обеспечить автоматическую балансировку моста до и после подачи преобразуемой величины $P_x(t)$, а также осуществить автоматизацию операций отсчета частот и вычисления их разности.

Автобалансные мостовые частотно-импульсные преобразователи (АМЧИП). Схему АМЧИП (рис. 2.5) можно построить, основываясь на методе следящего уравновешивания, если охватить схему терморезистивного моста (ТМ) обратной связью и автоматически

Рис. 2.5. Схема АМЧИП

осуществлять изменение частоты импульсного напряжения питания ТМ напряжением его разбаланса.

Основными узлами АМЧИП являются равноплечий ТМ с терморезистором *R*_т, импульсный усилитель разбаланса У, детектор Д, генератор импульсов управляемой частоты ГИУЧ, измеритель частоты ИЧ, формирующее устройство ФУ.

Напряжение Ucd с выхода моста подается на импульсный усилитель, а затем на детектор. Получаемое постоянное напряжение, пропорциональное степени разбаланса моста, управляет частотой следования импульсов выходного напряжения ГИУЧ, которое в качестве напряжения обратной связи через ФУ, поддерживающее постоянными амплитуду и длительность импульсов, подается на диагональ ab питания ТМ. Такое построение схемы позволяет автоматически поддерживать балансное состояние моста при изменении внешних воздействий, приложенных к терморезистору. Изменение сопротивления терморезистора под влиянием внешних воздействий приводит к появлению разбаланса моста, который, в свою очередь, вызывает изменение частоты напряжения питания, а также подводимой к терморезистору по цепи обратной связи мощности. В результате сохраняется равновесное состояние, т. е. R₁=R₁=R₂=R₃. Выходным сигналом является изменение частоты ГИУЧ. Необходимые выходные характеристики преобразователя задаются соответствующими параметрами ФУ, которые определяют амплитуду и длительность импульсов напряжения питания моста.

Функция преобразования АМЧИП может быть получена из уравнений баланса мощностей, соответствующих: моменту t₁, ког-52 да $P_x(t)$ отсутствует, и моменту t_2 , когда $P_x(t_2)$ воздействует на ЧЭ, т. е.

$$P_{T} = P_{o.c}(t_{1}) - \sum_{j=1}^{m} P_{z_{j}}(t_{1});$$

$$P_{T} = P_{o.c}(t_{2}) - \sum_{j=1}^{m} P_{z_{j}}(t_{2}) + P_{x}(t_{2})$$
(2.21)

На основании ранее сделанных допущений можно принять, что $\sum_{j=1}^{m} P_{z_j}(t_1) = \sum_{j=1}^{m} P_{z_j}(t_2)$ при $t_2 - t_1 \rightarrow 0$, а мощность, подводимая к терморезистору по цепи обратной связи, $P_{o.c} = U^2_m \tau F_n / 4R_\tau - k_{\rm ЧИ} F_n$ при $U_{o.c} = \text{const}$ и $\tau = \text{const}$. Тогда по аналогии с (2.19) и (2.20) получим для функции преобразования АМЧИП

$$\Delta F_n = S_{\mathbf{u}|\mathbf{u}|} P_{\mathbf{x}}(t), \qquad (2.22)$$

где $S_{\rm HN} = 4R_{\rm T}/U^2_m \tau = 1/k_{\rm HN}$.

Один из основных вопросов, возникающих при использовании АМЧИП, — наличие специфических искажений выходных импульсов. Причина таких искажений — паразитные емкости, шунтирующие плечи моста. Устранить искажения можно емкостной балансировкой или синхронным детектированием.

Остановимся несколько подробнее на способе устранения искажений с помощью синхронно-следящего пикового детектора (СД), включенного как показано на рис. 2.6. Следящий детектор пропускает сигнал разбаланса моста только во время действия короткого стробирующего импульса, формируемого после исчезновения на-

Рис. 2.6. Схема АМЧИП с коррекцией

пряжения помехи (рис. 2.7). Роль такого детектора мо-ГУТ выполнять различные диодные или транзисторные демодуляторы или селектируемые детекторы. Необходимое время задержки t_{зп} формирования стробирующего импульса тси по отношению к моменту подачи импульса питания моста может быть определено исходя из наименьшей погрешности, вносимой искажением формы импульса, и наибольшей чувствительности. Время задержки t_{ап} приближенно можно оп-

ределить из следующего соотношения: $t_{3д} \ge 10_{\text{TRC}}$, где τ_{RC} — постоянная времени фильтра детектора.

Другим условием, определяющим время $t_{s,t}$, специфичным для импульсных мостов с терморезисторами, является линейное нарастание напряжения на выходе при действии импульса. Это приводит к тому, что амплитуда напряжения, до которого заряжается запоминающая емкость детектора, будет зависеть от значения $t_{s,t}$. Если детектор включается на время $\tau_{c,t} < \tau$ (рис. 2.7), а в остальное время емкость его отключена, то на выходе детектора действуют импульсы с амплитудой

$$U_{\rm BMX}(t) = k_0 U_m \frac{\Delta R_{\rm T}}{\tau} (t_{\rm 3.R} + \tau_{\rm c.M}), \qquad (2.23)$$

где ΔR_{τ} — максимальное отклонение сопротивления терморезистора при подаче $P_x(t)$; $\tau_{c.u}$ — длительность стробирующего импульса.

Для увеличения амплитуды напряжения на выходе моста необходимо $t_{3\pi}$ выбирать по возможности большим. Предельное значение $t_{3\pi}$ определяется неравенством $t_{3\pi} \max < \tau - \tau_{c.n}$. Тогда максимальное значение выходного напряжения

$$U_{\text{Bbix}}(t)_{\max} = k_0 U_m \Delta R_{\text{T}}.$$
(2.24)

Учитывая, что t_{s_A} всегда должно быть меньше $t_{s_A max}$, чтобы включение детектора не совпало со срезом U_{cd} , максимально возможное напряжение на выходе моста будет меньше, чем определяемое (2.24). Это учтено в схеме на рис. 2.6. Выходные импульсы генератора ГИУЧ задерживаются линией задержки ЛЗ на время t_{s_A} и запускают формирующее устройство ФУ1, на выходе которого лоявляются короткие стробирующие импульсы с амплитудой $U_{c.н}$ и длительностью $\tau_{c.н}$, подключающие запоминающую емкость Со детектора к выходу усилителя. Параметры детектора и длительность стробирующего импульса выбираются такими, чтобы полный заряд емкости (до амплитуды импульса на выходе усилителя) происходил за время одного или, по крайней мере, двух, трех импульсов. Последнее может существенно отражаться на динамических свойствах схемы. Формирующее устройство ФУ2 служит для формирования и стабилизации U_m и т.

Временные диаграммы (рис. 2.7) показывают, что напряжение на запоминающей емкости C_0 имеет ступенчатую форму. Для некоторого сглаживания его в схеме предусмотрен сглаживающий фильтр (Φ).

Автобалансные мостовые время-импульсные преобразователи (АМВИП). В некоторых случаях может возникнуть задача получения информации о физических величинах в широко распространенной в вычислительной технике время-импульсной форме. Используя в качестве питающего прямоугольное импульсное напряжение, можно создать автобалансную мостовую схему с непосредственным линейным преобразованием мощности в длительность импульса [45].

Рассмотрим схему на рис. 2.8. Из выражения (2.14) для мощности, рассеиваемой на R_{τ} под действием импульсного сигнала обратной связи, видно, что значение этой мощности можно изменять, регулируя длительность импульсов т. Тогда по аналогии с (2.20), полученным для АЧИМП, можно записать

 $P_{\mathbf{x}}(t) = U^2_m F_n[\tau(t_1) - \tau(t_2)] = k_{\text{BH}} \Delta \tau(t) / 4R_{\tau},$ (2.25) где $\tau(t_1)$ и $\tau(t_2)$ — длительности импульсов сигнала обратной свя-

Рис. 2.8. Автобалансный время-импульсный мостовой преобразователь

зи, необходимые для балансировки TM до и после подачи измеряемого воздействия $P_x(t)$; $k_{\rm BH}$ — коэффициент преобразования автобалансной время-импульсной мостовой схемы.

Значение $P_x(t)$ может быть сколь угодно мало, тогда выражения для чувствительности и функции преобразования имеет вид

$$S_{\rm BH} = \Delta \tau / \Delta P_x = 4R_\tau / U^2_m F_n; \qquad (2.26)$$

$$\Delta \tau = S_{\rm BM} P_x(t). \tag{2.27}$$

Анализ (2.26), (2.27) показывает, что функция преобразования АМВИП линейна во всем диапазоне изменения $P_x(t)$. Реализация АМВИП возможна при наличии в контуре регулирования генератора импульсов управляемой длительности ГИУД и формирователя ФУ2, осуществляющего стабилизацию значений амплитуды U_m и частоты F_n импульсного сигнала обратной связи (рис. 2.8).

Значения амплитуды, длительности и частоты следует определять из следующих соображений. При малых τ усложняется последующая обработка информации, например преобразование её в цифровую форму. С другой стороны, увеличение τ также нежелательно, так как при этом уменьшается частота следования импульсов. Повысить частоту F_n можно, уменьшая амплитуду, чтобы значение мощности $P_{o.c}$ оставалось неизменным. Однако возможности уменьшения U_m также ограничены. Действительно, с уменьшением амплитуды при постоянной частоте F_n требуемое для балансировки значение длительности импульса $\tau \Rightarrow T_n = 1/F$. В предельном случае $\tau = T_n$, т. е. переходим к питанию постоянным током.

Определим минимальное значение U_m , при котором $\tau = T_n$. Длительность импульса напряжения питания терморезистивного моста определяется выражением $\tau = 4R_T P_{o.c} T_n / U_m^2$.

Для выполнения равенства $\tau = T_n$ необходимо, чтобы $4R_{\tau}P_{o.c}/U^2_{m\min} = \tau/T_n = 1$, откуда $U_{m\min} = \sqrt{4P_{o.c}R_{\tau}} = 2\sqrt{P_{o.c}R_{\tau}}$. Обычно выбирают $T_n = 2\tau$, тогда $U_m = \sqrt{8P_{o.c}R_{\tau}}$.

Характерная особенность АМЧИП и АМВИП — линейность функций преобразования $\Delta F(t) = k_{\rm ЧИ}P_x(t)$ и $\Delta \tau(t) = k_{\rm BH}P_x(t)$. Кроме того, частотно- и время-импульсный виды выходной информации обеспечивают простоту преобразования в цифровую форму и облегчают построение интерфейсных устройств для связи с ЭВМ. Связь с ЧЭ осуществляется более помехоустойчивыми импульсными сигналами. Перечисленные преимущества не исчерлывают всех достоинств импульсных автобалансных схем.

2.3. АВТОБАЛАНСНЫЕ МОСТОВЫЕ ПРЕОБРАЗОВАТЕЛИ ПОВЫШЕННОЙ ЧУВСТВИТЕЛЬНОСТИ

Анализ принципа действия автоматических МФП показывает, что кратковременный цикл преобразования с компенсаций дополнительной погрешности при получении результата позволяет применить для построения МФП менее стабильные, но более чувствительные элементы. Это послужило причиной поиска способов и схемных решений повышения чувствительности аналоговых и импульсных АМП.

Повышение чувствительности аналоговых АМП. Анализ (2.10) показывает, что для повышения чувствительности S^(A) необходимо уменьшать мощность, подаваемую на терморезистор по цепи обратной связи для компенсации влияния преобразуемых величин

 $P_{x}(t)$ и внешних воздействий $\Sigma P_{z_j}(t)$, т. е. необходимо умень-

шать $V P_{\tau} + \sum_{j=1}^{m} P_{z_j}(t)$. Принципиально это может быть достигну-

то уменьшением мощности P_{τ} . Однако значение P_{τ} часто обусловлено другими требованиями, например выбором сопротивления R_{τ} (согласованием с СВЧ-трактом), заданным дипазоном внешних воздействий (температурой окружающей среды и т. д.). Другая возможность повышения чувствительности — уменьшение $\sum_{j=1}^{m} P_{z_j}(t)$. Например, размещением R_{τ} в термостатированном объ-

еме, однако это сложно технически и может существенно снизить динамический диапазон значений преобразуемых величин.

Достаточно эффективное средство повышения чувствительности — дополнительный разогрев терморезистора мощностью $P_{\rm Д\Gamma}$, подаваемой от внешнего дополнительного генератора ДГ. В простейшем случае мощность может формироваться подачей на $R_{\rm T}$ напряжения постоянного тока от дополнительного источника питания, но это исключает применение для калибровки и замещения в схемах уравновешивания напряжения постоянного тока. Для устранения недостатка была предложена схема повышения чувст-

вительности с помощью подачи на $R_{\rm T}$ некоторого значения $P_{\rm Д\Gamma}$, определяемого выходным напряжением генератора высокой частоты ГВЧ.

В автобалансных мостовых схемах переменного тока частота ГВЧ ω_1 и резонансная частота ω_2 усилителя У разносятся как можно дальше друг от друга, чтобы выполнялось соотношение $\omega_1 \gg (50-200) \omega_2$. Кроме того, для исключения

Рис. 2.9. Аналоговый автобалансный мостовой преобразователь с дополнительным разогревом терморезистора

возможных влияний в цепи ГВЧ и моста включаются LC-фильтры. Значение $P_{\rm dr}$ должно быть достаточно стабильным, так как нестабильность его вносит дополнительную составляющую погрешности.

Для дополнительного разогрева R_{τ} в схеме на рис. 2.9 предусмотрен ГВЧ, от которого на R_{τ} подается P_{dr} . При этом уравнение баланса мощностей на R_{τ} принимает вид

$$P_{\tau} = P_{o.c}(t) + P_{x}(t) - P_{cp}(t) + P_{\mu \Gamma}(t).$$
(2.28)

Определяя $P_{o.c}(t)$ из (2.28) и подставляя полученное выражение в (2.10), для чувствительности аналогового АМП с дополнительным источником разогрева терморезистора можно записать:

$$S_{\mu\Gamma}^{(A)} = \sqrt{R_{\rm T}} / \sqrt{P_{\rm T} + P_{\rm ep}(t) - P_{\rm x}(t) - P_{\mu\Gamma}(t)}.$$
(2.29)

Сравнение (2.10) и (2.29) показывает, что $S^{(A)}_{\Gamma} > S^{(A)}$. График зависимости $S^{(A)}_{\Gamma}$ от $P_{\Gamma}(t)$ иллюстрирует, что с увеличением, $P_{\Gamma}(t)$ чувствительность возрастает (рис. 2.10). Полученные соотношения указывают на то, что $S^{(A)}_{\Gamma\Gamma}$ зависит еще и от $P_x(t)$.

На рис. 2.11 построено семейство кривых $S^{(\Lambda)}_{\Gamma} = \varphi[P_x(t)]$ при различных значениях $P_{\Gamma}(t)$ для автобалансной мостовой схемы с терморезистором Т8Е ($R_{\tau} = 150$ Ом, $P_{\tau} = 9$ мВт). Из графика следует что применение дополнительного нагрева R_{τ} может обеспечить повышение чувствительности в 2—5 раз.

Повышение чувствительности импульсных АМП. Чувствительность автобалансных мостовых схем с частотно- (рис. 2.12, а: ФАД — формирователь амплитуды и длительности) и время-импульсным (рис. 2.12,6: ФАЧ — формирователь амплитуды и частоты) преобразованием определяется выражениями: $S_{\rm HH} = \Delta F_n / \Delta P_x = 4R_T / U^2_m \tau$ и $S_{\rm BH} = \Delta \tau / \Delta P_x = 4R_T / U^2_m F_n$, т. е. S будет увеличиваться при уменьшении U_m , τ и F_n .

Уменьшение амплитуды U_m питающих мост импульсов нежелательно, в этом случае уменьшается чувствительность по напряжению и возрастает влияние помех. Поэтому U_m выбирают как мож-

Рис. 2.10. Зависимость чувствительности от Р_{ИГ}

Рис. 2.12. Автобалансные мостовые преобразователи: *a* – с частотно-импульсным преобразованием; *б* – с время нипульсным преобразованием

но большей из условия допустимой температуры перегрева терморезистора.

Элементы монтажно-конструктивного крепления R_{τ} вносят в мостовую схему значительную паразитную емкость C_n , достигающую десятков и даже сотен пикофарад, значение которой изменяется в зависимости от условий эксплуатации (влажности, температуры и т. д.). Наличие и непостоянство C_n приводит к появлению значительных погрешностей, обусловленных переходным процессом в мостовой схеме и изменением длительности фронтов импульсов напряжения питания моста. Для уменьшения этих составляющих погрешности значения т выбирают из соотношения $\tau_{min} \gg 20R_1C_{n_s}$ в большинстве практических случаев оно 10—20 мкс. Это ограничивает возможность существенного повышения чувствительности с помощью выбора параметров импульсов напряжения питания.

Решение задачи создания импульсных автобалансных АМП повышенной чувствительности было найдено путем построения схем (рис. 2.13), импульсный сигнал обратной связи которых имеет структуру, отличную от структуры выходного сигнала [22]. Установлено, что для частотно-импульсных схем деление частоты импульсного сигнала обратной связи на *n* с помощью делителя

Рис. 2.13. Автобалансные мостовые преобразователи с частотно-импульсным преобразованием повышенной чувствительности:

a — с делителем частоты; b — с радиоимпульсным питанием; b — комбииированная частоты ДЧ (рис. 2.13,а) позволяет повысить чувствительность, которая будет определяться выражением

$$S'_{\rm HI} = 4R_{\rm T} n/U_m^2 \tau = n \, S_{\rm HI}. \tag{2.30}$$

Это значение чувствительности при неизменных U_m и т в n раз больше $S_{\rm чи}$, определяемого выражением (2.22).

Питание мостовой схемы может быть осуществлено радиоимпульсным напряжением (рис. 2.13,6). Для этого в цель обратной связи включается генератор ударного возбуждения ГУВ. Тепловое действие электрического тока определяется эффективным значением напряжения, которое в этом случае равно $U_m \sqrt{2}$. Подставляя в (2.19) и (2.20) вместо U_m значение $U_m \sqrt{2}$, получим

$$S'_{\rm HII} = 8R \tau / U_m^2 \tau = 2S_{\rm HW}.$$
 (2.31)

В цепь обратной связи могут быть включены одновременно ДЧ и ГУВ (рис. 2.13,*в*). В этом случае чувствительность определяется следующим выражением:

$$S_{\Pi\Pi}^* = 8R_{\pi} n/U_m^2 \tau = 2n S_{\Psi \mu}.$$
 (2.32)

Анализ (2.22), (2.30)—(2.32) показывает, что при уменьшении энергии, поступающей в единицу времени на R_{τ} по цепи обратной связи, одним и тем же значениям измеряемого сигнала будут соответствовать большие изменения частоты выходного сигнала ГИУЧ.

В схемах повышенной чувствительности верхнее значение диапазона изменения частоты выходного сигнала ГИУЧ должно выбираться соответственно в 2, *n* и 2*n* раз больше значения, найденного из уравнения баланса мощностей, а модуляционная характеристика ГИУЧ должна обеспечивать изменение частоты в этих более широких пределах.

Аналогично (2.30) — (2.32) могут быть получены выражения для чувствительности автобалансных мостовых схем с время-импульсным преобразованием, однако в этом случае в цепь обратной связи включается делитель длительности.

Применение АМП повышенной чувствительности позволяет значительно улучшить метрологические характеристики измерительных приборов. Кроме того, установка в цепь обратной связи нескольких делителей частоты и автоматическое управление их включением позволяют создать приборы с адаптацией чувствительности к уровню преобразуемых сигналов, т. е. с автоматическим выбором диапазона измерения.

2.4. ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИМПУЛЬСНЫХ АМП

Для анализа динамических характеристик импульсных АМП можно использовать математический аппарат и основные положения теории линейных непрерывных систем. Справедливость такого подхода обусловлена тем, что частота следования импульсов напряжения обратной связи во много раз больше граничных частот фильтров низких частот, которыми являются терморезистор и фильтр детектора. Известно, что при увеличении частоты следования импульсов через звенья системы их импульсные передаточные функции приближаются по виду к передаточным функциям непрерывных звеньев.

На основании схемы (рис. 2.6) можно составить структурную схему преобразователя (рис. 2.14,*a*), являющегося системой автоматического регулирования. С точки зрения теории автоматического регулирования данный преобразователь рассматривается как система стабилизации температуры терморезистора или его сопротивления R_{τ} =const.

Можно считать коэффициент передачи детектора равным единице, так как емкость детектора заряжается до амплитудного значения напряжения за время одного импульса. После запоминающей емкости для сглаживания пульсаций напряжения обычно ставится фильтр, представляющий собой апериодическое звено с постоянной времени T_{Φ} . Поэтому $W_1(p) = 1/(T_{\Phi}p+1)$. Передаточная функция терморезистора достаточно точно может быть определена выражением $W_2(p) = k_{\rm T}/(\tau_{\rm T}p+1)$. Значение $k_{\rm T}$ определяется чувствительностью терморезистора по мощности и приводится в паспорте, там же указывается постоянная времени $\tau_{\rm T}$.

Рис. 2.14. Структурные схемы АМЧИП: а-в режиме стабилизации температуры терморезистора; б-в режиме преобразования «мощность – частота»; в – для оценки динамических характеристик

Принимая за входное воздействие P_x , получим структурную схему (рис. 2.14,6), которая после упрощения может быть приведена к виду, показанному на рис. 2.14,6. Передаточная функция $\Phi(p)$ такой системы определяется выражением

$$\Phi(p) = \frac{k/(\tau_{\rm T} p + 1) (T_{\oplus} p + 1)}{1 + kk_4/(\tau_{\rm T} p + 1) (T_{\oplus} p + 1)} = \frac{k}{(\tau_{\rm T} p + 1) (T_{\oplus} p + 1) + kk_4}.$$
(2.33)

Выражение (2.33) позволяет определить частотные и переходную характеристики системы, а соответствующий выбор параметров элементов системы обеспечивает требуемое качество регулирования.

Для анализа систем автоматического регулирования (САР) разработана методика [16] системы мащинного анализа и синтеза (МАСС), позволяющая осуществить моделирование САР на ЦВМ. Структурная схема САР описывается функциональными блоками, образующими библиотеку специального входного языка МАСС.

Структурная схема АМЧИП, составленная в базисе функциональных блоков МАСС, показана на рис. 2.15: K — усилитель входного сигнала; «+» — сумматор; AN — апериодическое звено; G — цепь обратной связи. Решение задачи расчета переходных процессов для k_2 =50, 100, 200, 500 и 1000 осуществлялся при следующих числовых значениях параметров модели: $\tau_{\rm T}$ =0,5 с; $k_{\rm T}$ = $2 \cdot 10^4$ Ом/Вт; k_1 =0,02 В/Ом; T_{ϕ} =0,01 с; k_3 =10⁴ Гц/В; k_4 =10⁻⁶ Вт/Гц. Анализ переходных процессов, показал, что: переходный процесс в системе имеет характер затухающих колебаний, а перерегулирование минимально при k_2 =100; время регулирования и колебательность зависят от k_2 и являются также наименьшими при k_2 =100; переходный процесс имеет характер расходящихся колебаний при k_2 >1000.

Сопоставление результатов расчета и экспериментальных данных показало их удовлетворительное совпадение, а применение

методики МАСС значительно сокращает сроки проектирования и при минимальных трудозатратах на программирование позволяет получить переходную функцию системы в виде таблиц и графиков с цифропечатающего устройства (ЦПУ).

Рис. 2.15. Схема модели АМЧИП в базисе МАСС

ГЛАВА 3. АНАЛОГОВЫЕ АВТОМАТИЧЕСКИЕ МФП ЦИКЛИЧЕСКОГО ДЕЙСТВИЯ С ЗАМЕЩЕНИЕМ

3.1. ОБЩИЕ ЗАМЕЧАНИЯ

При создании автоматических устройств одним из основных требований является быстродействие. Это требование выполняется при использовании в качестве: ЧЭ инерционных терморезистивных элементов; схем включения ЧЭ аналоговых автобалансных мостовых схем. В ряде работ показано, что эквивалентная постоянная времени такой схемы включения в идеальном случае может быть в (k+1) раз меньше постоянной времени собственно терморезистора. Последующие звенья МФП должны иметь также высокое быстродействие.

Существенным недостатком аналоговых АМП является сложный нелинейный вид функции преобразования, который может быть устранен с помощью *метода замещения*, когда воздействие на ЧЭ преобразуемой физической величины замещается идентичным воздействием известного сигнала. Метод замещения хорошо сочетается с принципом многофункционального преобразования. В качестве замещающей величины могут быть использованы сигналы различной физической природы, но удобней всего применять электрические сигналы постоянного или переменного тока. Это позволяет: получить линейную функцию преобразования при преобразовании напряжений и токов; корнеизвлекающую — при преобразовании мощности и энергии; достаточно легко рассчитать значение функции преобразования при других видах преобразуемых воздействий. Основным условием применения метода замещения [21] является малая погрешность замещения.

Автоматическое решение системы уравнений (1.11) и (1.12) многофункционального преобразования с замещением преобразуемого воздействия может быть обеспечено с помощью метода развертывающего уравновешивания. Сопоставляются результаты преобразования неизвестного входного сигнала и известной замещающей величины, т. е. определяется разность между развертывающей и определяемой функций с фиксацией нулевого уровня разности, названный Ф. Е. Темниковым методом динамической компенсации.

Использование описанных методов, схем и приемов в сочетании с коммутирующими устройствами, обеспечивающими требуемую последовательность вычислительных и логических операций, позволило создать аналоговые автоматические МФП с однократным и двойным компарированием циклического действия. Необходимым условием избирательного преобразования входного воздействия является прерывание подачи на ЧЭ этого воздействия на время, определяемое быстродействием преобразовательного тракта. В зависимости от физической природы преобразуемой величины могут быть применены прерыватели, ключи, размыкатели, выключатели, клапаны, экраны и т. д. Наиболее просто эта операция реализуется при преобразовании физических величин, представляющих собой поток излучения или частиц вещества, например мощность электромагнитных колебаний, электрический ток, расход, объем, масса жидкости или газа и т. д.

В дальнейшем для простоты изложения и удобства графического изображения схем будем рассматривать случай преобразования одного входного сигнала в условиях воздействия дестабилизирующих факторов. При этом любые внешние воздействия на терморезистивный ЧЭ, приводящие к изменению условий теплообмена, эквивалентны некоторой мощности, затрачиваемой на его теплосодержание.

Целесообразно рассматривать входное преобразуемое воздействие в виде некоторой мощности $P_x(t)$, подаваемой на вход преобразователя, а совокупность воздействий дестабилизирующих факторов, среди которых, как правило, превалирует изменение температуры окружающей среды, — в виде мощности $\sum_{j=1}^{m} P_{z_j}(t)$. Введение этих обозначений значительно упрощает вывод аналитических соотношений, нисколько не нарушая общности результатов.

3.2. АНАЛОГОВЫЕ АВТОМАТИЧЕСКИЕ МФП ЦИКЛИЧЕСКОГО ДЕЙСТВИЯ С ОДНОКРАТНЫМ КОМПАРИРОВАНИЕМ

В основу автоматического преобразования с однократным компарированием [26] положено сравнение предварительно запомненного результата преобразования входного воздействия, включающего в себя преобразуемый сигнал $P_x(t)$, с результатом преобразования входного воздействия, в котором входной сигнал $P_x(t)$ замещен некоторой специально формируемой, преобразуемой и измеряемой величиной $P_{\text{зам}}(t)$. В момент фиксации нулевого уровня разности между указанными результатами преобразования в соответствии с (1.11) и (1.12) можно считать, что $P_x(t) = P_{\text{зам}}(t)$.

Рассмотрим схему, приведенную на рис. 3.1, и временные диаграммы ее работы (рис. 3.2). В исходном состоянии выключатель В1 замкнут и на терморезистивный ЧЭ, включенный в одно из плеч автобалансного мостового преобразователя, подается $P_{xt}(t)$. В соответствии с (2.1), характеризующим состояние терморезистора, включенного в АМП, можно записать уравнение баланса

Рис. 3.1. Схема автоматического МФП с однократным компарированием

Рис. 3.2. Временные диаграммы работы автоматического МФП с однократным компарированием

9-193

мощностей, воздействующих на терморезистор в первый такт (t'1-t1) преобразования:

$$P_{o.c1}(t_1) + P_{x1}(t_1) - \sum_{j=1}^{m} P_{z_j}(t_1) = P_T = \text{const}$$

или

$$U_{\rm B1}^2(\overline{t_1})/k_{\rm B}^2 4R_{\rm T} + P_{x1}(t_1) - \sum_{j=1}^m P_{z_j}(t_1) = P_{\rm T} = \text{const.}$$
(3.1)

где $U_{\rm B1}(t) = k_{\rm B}U_{\rm o.c}(t); U_{\rm B1}(t_1)$ — выходное напряжение вторичного преобразователя (ВП) в первый такт; $k_{\rm B}$ — коэффициент передачи ВП; $U_{\rm o.c}(t_1)$ — напряжение обратной связи АМП; $\sum_{j=1}^{m} P_{z_j}(t_1)$ —

мощность, эквивалентная воздействию на ЧЭ дестабилизирующих факторов во время первого такта. На выходе ВП установится напряжение U_{в1} (рис. 3.2, а). Переключатель П находится в положении I и напряжение U_{в1} будет зафиксировано запоминающим устройством ЗУ. Для осуществления второго такта преобразования переключатель П переводится в положение II. При этом напряжение, ранее запомненное ЗУ, подается на вход б компаратора К. Специальными командами с блока управления БУ размыкается выключатель В и тем самым прекращается подача преобразуемого сигнала $P_{x1}(t_1)$ на терморезистивный чувствительный элемент R_{τ} , включенный в одно из плеч АМП. В соответствии с уравнением баланса мощностей для восполнения мощности, подаваемой на R_{τ} , резко возрастает $P_{o.c}(t)$ до значения $P_{o.c2}(t_1) = U^2_{B2}(t_1)/4R_{\tau}$. Одновременно также командой с блока управления включается генератор пилообразного возрастающего напряжения ГПН, формирующий замещающую преобразуемый сигнал P_{x1}(t) мощность $P_{\text{зам}}(t_2)$ (рис. 3.2, в). Замещающая мощность $P_{\text{зам}}(t_2)$ подается на терморезистивный чувствительный элемент R_т вместо преобразуемого воздействия $P_{x1}(t_1)$. Из условия баланса мощностей, по мере нарастания $P_{sam}(t_2)$ выходное напряжение АМП и $U_{B2}(t_2)$ будут уменьшаться (рис. 3.2,*a*). Уравнение баланса мощностей для второго такта преобразования можно записать в виде $P_{o.c2}(t_2)$ + $+P_{\text{зам}}(t_2) - \sum_{n=1}^{m} P_{z_2}(t_2) = P_{T} = \text{const или}$

$$U_{B2}^{2}(t_{2})/4R_{T} + P_{BM}(t_{2}) - \sum_{i=1}^{m} P_{z_{j}}(t_{2}) = P_{T} = \text{const}, \qquad (3.2)$$

где $P_{sam}(t_2)$ определяется U_r — выходным напряжением ГПН:

$$P_{\text{sam}}(t_2) = U^2_{r}(t_2)/4R_{r}; \tag{3.3}$$

^т $\sum_{j=1}^{m} P_{z_j}(t_2)$ — мощность, эквивалентная воздействию на ЧЭ дестабилизирующих факторов во время второго такта. Увеличение $U_r(t)$ будет происходить до тех пор, пока уменьшающееся под его действием выходное напряжение автобалансной мостовой схемы, а вместе с ним $U_{\rm B2}(t)$ не станет равным $U_{\rm B1}$. Это равенство фиксируется компаратором в момент t_2 . В этот момент времени выходной сигнал компаратора отключает питание ГПН, рост напряжения $U_r(t)$ прекращается (рис. 3.2,e) и включает ОРУ, которое фиксирует в момент t_2 значение напряжения $U_r(t_2)$.

В системе уравнений (3.1), (3.2) фиксируется равенство $U_{\text{B1}}(t_1) = U_{\text{B2}}(t_2)$. Принимая во внимание, что за малый интервал времени преобразования $t_2 - t_1$ возможны лишь малые изменения $\sum_{j=1}^{m} P_{z_j}(t)$ в пределах методической погрешности, т. е. $\sum_{j=1}^{m} P_{z_j}(t_1) \approx \sum_{j=1}^{m} T_{z_j}(t_1) = 0$

 $\approx \sum_{j=1}^{m} P_{z_j}(t_2)$, можно сделать вывод, что $P_{\text{зам}}(t) = P_{x1}(t)$ и выход-

ное напряжение ГПН является мерой преобразуемой величины $P_{x1}(t)$ в соответствии с выражением (3.3):

$$P_{x1}(t) = U_r^2(t_2)/4R_r = k_0 U_r^2(t_2)$$
или

$$U_r(t_2) = \sqrt{P_{x1}(t)/k_0},$$
где $k_0 = 1/4R_r.$
(3.4)

Выражение (3.4) представляет собой *функцию преобразования*, полученную при идеализированном рассмотрении принципа действия преобразователя. В действительности, в силу определенного структурного построения схемы и под влиянием различных дестабилизирующих факторов, происходят систематические и случайные отклонения выходного сигнала преобразователя от значения, соответствующего идеализированной функции преобразования при заданном значении P_{x1} , т. е. появляются погрешности.

3.3. АНАЛИЗ ПРОЦЕССОВ ПРИ АВТОМАТИЧЕСКОМ ПРЕОБРАЗОВАНИИ С ОДНОКРАТНЫМ КОМПАРИРОВАНИЕМ

Рассмотрим процессы, происходящие при преобразовании с автоматическим однократным компарированием [41], и выведем соотношения для основных характеристик преобразователя: времени преобразования $t_{np\,i} = f_i(P_{x_i})$, определяющего быстродействие преобразователя; функции преобразования $U_{\text{вых}\,i}(t) = -F_i[P_{x_i}(t)]$, определяющей зависимость между входной и выходной величинами.

На временных интервалах (t'_1-t_1) и (t_1-t_2) , соответствующих подаче $P_x(t)$ и P_{sam} (см. рис. 3.2) на терморезистор, справедливы уравнения баланса мощностей, характерные для автобалансной мостовой схемы, которые, предполагая, что

$$\sum_{j=1}^{m} P_{z_j}(t_1) = \sum_{j=1}^{m} P_{z_j}(t_2) = P_{\text{cp 1}}(t) = P_{\text{cp 2}}(t) = P_{\text{cp (}t)},$$
(3.5)

Рис. 3.3. Временные диаграммы при автоматическом преобразовании с однократным компарированием

можно записать в слелуюшем виле лля интервала t'i-ti

 $U_{0,c}^{2}(t)/4R_{T}+P_{x}(t)=P_{T}$

(3.6)

(3.9)

С vчетом обозначений, сделанных в (3.1),

 $U_{\rm B1}^2(t)/4R_{\rm T}k_{\rm B}^2+P_{\rm T}(t)=P_{\rm T}$ (3.7)

На этапе замешения (1- $-t_2$) преобразуемого воздействия мошностью постоянного тока Разм иравнение баланса мошностей имеет вил

 $U_{B2}^{2}(t)/4R_{T}k_{B}^{2}+k_{0}U_{\Gamma}^{2}(t)=P_{u}$ (3.8)

Предположим, ЧТО в простейшем случае возрастающее выходное напряжение ГПН формируется за заряда конденсатора. счет

Следовательно, закон его изменения экспоненциальный, тогда $U_{\rm r}(t) = U_{\rm BMX}(t)$ — напряжение на выходе ГПН определяется временем заряда конденсатора формирующей цепи и соотношением

$$U_{\rm r}(t) = U_{\rm r} m [1 - \exp(-t/\tau_{\rm r})],$$

где U_{г m} — напряжение питания ГПН; t — время заряда конденсатора формирующей цепи ГПН; т - постоянная времени формирующей цепи ГПН.

С учетом (3.9) уравнение (3.8) можно записать в форме $U_{\rm B}^2(t)/4R_{\rm T}k_{\rm B}^2 + k_0 U_{\rm T}^2 m [1 - \exp(-t/\tau_{\rm T})]^2 = P_{\rm T}.$ (3.10)

Время замещения t_к (рис. 3.3, точка О') можно определить из условия срабатывания компаратора

$$U_{\rm B}(t_{\rm K}) = U_{\rm B1} \exp\left(-t_{\rm K}/\tau_0\right) + \Delta U_{\rm K}, \qquad (3.11)$$

где то — постоянная времени разряда запоминающего ства; 68

 $U_{\rm B}(t_{\rm R})$ — напряжение на выходе ВП в момент срабатывания компаратора; $\Delta U_{\rm K}$ — порог чувствительности компаратора; $U_{\rm BI}$ уровень выходного напряжения ВП, запомненный ЗУ, который можно определить из уравнения (3.7):

$$U_{\rm B1} = \sqrt{4R_{\rm T}k^2_{\rm B}[P_{\rm T} - P_{\rm x}(t)]}.$$
(3.12)

Тогда нахождение времени замещения t_{κ} сводится к решению системы трансцендентных уравнений (3.10) и (3.11):

$$U_{\rm B}^{2}(t_{\rm R})/4R_{\rm T} k_{\rm B}^{2} + k_{0} U_{\rm T}^{2} m \left[1 - \exp\left(t_{\rm R}/\tau_{\rm T}\right)\right]^{2} = P_{\rm T}; U_{\rm B1} \exp\left(-t_{\rm R}/\tau_{0}\right) + \Delta U_{\rm R} = U_{\rm B}(t_{\rm R}).$$
(3.13)

Точное решение данной системы в элементарных функциях не представляется возможным, поэтому найдем приближенное значение $t_{\rm R}$. Считая точки O_1 и O_2 (см. рис. 3.3) весьма близкими друг к другу ($t_{O_1} \approx t_{O_2}$), уравнение касательной 1—1' к кривой $U_{\rm B}(t)$ в точке O' можно записать в виде

$$U - U_{\rm B1} = tg \, a \, (t - t_{O_1}), \tag{3.14}$$

где U — текущее значение ординаты касательной 1—1'; $U_{\rm B1}$ — ордината точки O_1 ; t_{O_1} — абсцисса точки O_1 . Подставляя (3.12) в (3.10), находим

$$t_{O_{t}} = \tau_{r} \ln \left[1 - \frac{1}{U_{r\,m}} \sqrt{\frac{P_{x}(l)}{k_{0}}} \right].$$
(3.15)

Дифференцированием по t обеих частей равенства (3.10) и с учетом (3.12) получим следующее значение tg α в точке $O_1(O_2)$:

$$\operatorname{tg} \alpha = \frac{d U_{\mathrm{B}}(t)}{dt} \Big|_{t=t_{O_{1}}} = -\frac{2k_{\mathrm{B}} U_{\mathrm{F}\,\mathrm{m}} \sqrt{R_{\mathrm{T}}\,k_{0}}}{\tau_{\mathrm{T}}} \sqrt{\frac{P_{x}(t)}{P_{\mathrm{T}}}} \left[1 - \frac{1}{U_{\mathrm{F}\,\mathrm{m}}} \sqrt{\frac{P_{x}(t)}{k_{0}}} \right].$$
(3.16)

Так как т₀≫t_к, уравнение (3.11) можно записать в упрощенном виде:

$$U_{\rm B}(t_{\rm K}) = U_{\rm B1}(1 - t_{\rm K}/\tau_0) + \Delta U_{\rm K}. \tag{3.17}$$

Таким образом, нахождение t_{κ} можно свести к решению системы двух линейных уравнений (3.14) и (3.17):

$$\begin{aligned} & U_{\rm B}(t_{\rm R}) - U_{\rm B1} = \text{tg} \,\alpha \,(t_{\rm O1} - t_{\rm R}); \\ & U_{\rm B}(t_{\rm R}) = U_{\rm B1} \left(1 - t_{\rm R}/\tau_0\right) + \Delta U_{\rm R}, \end{aligned}$$
 (3.18)

где параметры U_{B1} , t_{O_1} , $tg\alpha$ вычисляются по формулам (3.12), (3.15), (3.16).

Решая систему (3.18), получим для t_к выражение

$$t_{\rm B} = \frac{\Delta U_{\rm R} + 2k_{\rm B} U_{\rm Fm} \sqrt{R_{\rm T} k_0}}{-\frac{2k_{\rm B} U_{\rm Fm} \sqrt{P_{\rm T} k_0}}{\tau_{\rm F}} \sqrt{\frac{P_{\rm x}(t)}{P(T)}} \left(1 - \frac{1}{U_{\rm Fm}} \sqrt{\frac{P_{\rm x}(t)}{k_0}}\right) \times \\ + \frac{2k_{\rm B} U_{\rm Fm} \sqrt{P_{\rm T} k_0}}{\tau_{\rm F}} \sqrt{\frac{P_{\rm x}(t)}{P(T)}} \left(1 - \frac{1}{U_{\rm Fm}} \sqrt{\frac{P_{\rm x}(t)}{k_0}}\right) + \\ + \frac{\chi \ln \left(1 - \frac{1}{U_{\rm Fm}} \sqrt{\frac{P_{\rm x}(t)}{k_0}}\right)}{\tau_0} \left(1 - 0.5 \frac{P_{\rm x}(t)}{P_{\rm T}}\right)} .$$
(3.19)

При значениях $P_x(t)$, в 5—10 раз меньших P_{τ} , выражение (3.19) может быть преобразовано к виду

$$t_{\kappa} = A/(1-BZ) - [\tau_r \ln(1-y)]/(1-1/BZ),$$
 (3.20)

где

$$A = \Delta U_{\rm k} \tau_0 / 2k_{\rm B} \sqrt{R_{\rm T} P_{\rm r}}; \qquad (3.21)$$

$$B = \tau_0 k_0 U^2_{\Gamma m} / P_{\Gamma} \tau_{\Gamma}; \qquad (3.22)$$

$$\boldsymbol{z} = \frac{1}{U_{\mathrm{F}\,m}} \, \sqrt{\frac{P_{\boldsymbol{x}}(t)}{k_0}} \left[1 - \frac{1}{U_{\mathrm{F}\,m}} \, \sqrt{\frac{P_{\boldsymbol{x}}(t)}{k_0}} \right]; \tag{3.23}$$

$$1 - y = 1 - \frac{1}{U_{\rm F} m} \sqrt{\frac{P_x(t)}{k_0}} .$$
 (3.24)

При малых значениях ΔU_{κ} в инженерной практике можно пользоваться следующим выражением:

$$t_{\rm R} = \frac{-\tau_{\rm r} \ln \left(1 - y\right)}{1 - 1/BZ} \tag{3.25}$$

Разложим множитель $\frac{1}{1-1/BZ}$ выражения (3.25) в ряд:

$$\frac{1}{1 - 1/BZ} = 1 + \frac{1}{BZ} + \frac{1}{B^2 Z^2} + \frac{1}{B^3 Z^3} + \dots$$
(3.26)

Пользуясь тем, что при малых $P_x(t)$ $BZ \gg 1$, ограничимся двумя членами разложения. Подставляя (3.26) в (3.25), получим

$$t_{\rm R} = -\tau_{\rm F} \left(1 + \frac{1}{BZ}\right) \ln\left(1 - y\right). \tag{3.27}$$

Подставляя (3.22) — (3.24) в (3.27), находим выражение для t_{κ} :

$$t_{\rm R} = f_1(P_{\rm x}) = -\tau_{\rm p} \left[1 + \frac{P_{\rm T} \tau_{\rm p} / (\tau_0 U_{\rm Fm} / / k_0)}{\sqrt{P_{\rm x}(t)} \left[1 - \frac{1}{U_{\rm Fm}} \sqrt{\frac{P_{\rm x}(t)}{k_0}} \right]} \right] \times \\ \times \ln \left[1 - \frac{1}{U_{\rm Fm}} \sqrt{\frac{P_{\rm x}(t)}{k_0}} \right].$$
(3.28)

70

Практически время t_{np} преобразования $P_x(t)$ в напряжение $U_{\text{вых}}(t)$ определяется временем t_{κ} , так как временное запаздывание, определяемое срабатыванием компаратора и коммутатора, на два-три порядка меньше, чем t_{κ} . Следовательно

$$t_{\rm np} \approx t_{\rm K}.\tag{3.29}$$

Зная закон изменения напряжения замещения (в данном случае он экспоненциальный), время замещения и выбрав значение напряжения $U_{\rm r\,m}$, легко получить выражение для функции преобразования:

$$U_{\rm BMX}(t) = U_{\rm r} \, m [1 - \exp\left(-t_{\rm K}/\tau_{\rm r}\right)]. \tag{3.30}$$

Для случая малых значений $\Delta U_{\rm K}$, подставляя (3.28) в (3.30), получаем

$$U_{\text{BMX}}(t) = U_{\text{r}m} [1 - (1 - y)^{1 + 1/BZ}].$$
(3.31)

Поскольку y < 1, а $BZ \gg 1$, то, разлагая функцию $(1-y)^{1+1/BZ}$ в биноминальный ряд ограничиваясь тремя членами разложения, находим

$$U_{\text{BEST}}(t) = U_{\text{F}m} \left(y + \frac{1}{BZ} y - \frac{1}{2BZ} y^2 \right).$$
(3.32)

Подставив (3.23) и (3.24) в (3.32), получаем

$$U_{\text{BEIX}}(t) = f_{2}[P_{x}(t)] = \frac{P_{T}\tau_{r}}{2k_{0}\tau_{0}U_{rm}} \left[\frac{2 - \frac{1}{U_{rm}}\sqrt{\frac{P_{x}(t)}{k_{0}}}}{1 - \frac{1}{U_{rm}}\sqrt{\frac{P_{x}(t)}{k_{0}}}} \right] + \sqrt{\frac{P_{x}(t)}{k_{0}}}$$
(3.33)

Выражение (3.33) показывает, что выходное напряжение преобразователя зависит не только от $P_x(t)$, но и от ряда других параметров элементов схемы. Эта зависимость указывает на то, что на практике любая случайная реализация функции преобразования может отличаться от определяемой выражением (3.33), так как зависит от степени влияния дестабилизирующих факторов в данный момент времени на параметры элементов схемы.

3.4. ПОГРЕШНОСТИ ПРЕОБРАЗОВАТЕЛЕЙ С ОДНОКРАТНЫМ КОМПАРИРОВАНИЕМ

Временные диаграммы (рис. 3.4) показывают, что различные факторы, такие как погрешность сравнения компаратора, погрешность запоминающего устройства, время срабатывания коммутирующих устройств, приводят к тому, что выходное напряжение преобразователя фиксируется в момент времени, отличный от момента t_2 , соответствующего идеальному преобразованию. При известной временной нестабильности элементов и выбранном

Рис. 3.4. Временные диаграммы процесса замещения при автоматическом преобразовании с однократным компарированием

законе формирования замещающего напряжения (например, экспоненциальном), когда изменения уровня этого напряжения однозначно связаны с соответствующими интервалами времени, суммарная погрешность преобразования может быть найдена из соотношения временных интервалов, характеризующих быстродействие отдельных элементов схемы.

Рассмотрим участок временной диаграммы рис. 3.4, характеризующий процесс замещения в схеме (рис. 3.1). Линия 1—2 (рис. 3.4,*a*) соответствует значению напряжения $U_{\rm B1}$, запомненному ЗУ при подаче $P_{\rm x}(t)$.

При отсутствии погрешности ЗУ, идеальном компараторе (погрешность сравнения $\Delta U_{\kappa}=0$) и бесконечно малом времени переключения схема должна сработать в момент t_2 (точка A на рис. 3.4,a). К этому моменту выходное напряжение ГПН возрастет до значения $U_{вых}$ (точка 3 на рис. 3.4, δ), равного

$$U_{\rm BMX}(t) = U_{\rm r}(t) = U_{\rm r} m [1 - \exp(-(t_2 - t_1)/\tau_{\rm r})]. \qquad (3.34)$$
Разложим экспоненциальную функцию (3.34) в степенной ряд:

$$\exp\left(-\frac{\tau_{2}-t_{1}}{\tau_{r}}\right) = 1 - \frac{t_{2}-t_{1}}{\tau_{r}} + \frac{1}{2!}\left(\frac{t_{2}-t_{1}}{\tau_{r}}\right)^{2} - \frac{1}{3!}\left(\frac{t_{2}-t_{1}}{\tau_{r}}\right)^{3} + \dots$$

Учитывая, что в реальных схемах всегда $\tau_r \gg (t_2 - t_1)$, и ограничиваясь первыми двумя членами разложения, для выходного напряжения преобразователя можно получить выражение

$$U_{\rm BLIX}(t) = U_{\rm r} \, m(t_2 - t_1) / \tau_{\rm r}, \tag{3.35}$$

которое позволит определить значение $P_x(t)$.

В реальной схеме ЗУ в течение $t_2 - t_1$ будет разряжаться с постоянной времени τ_0 и срабатывание компаратора произойдет в момент t'_2 , т. е. на Δt_1 позднее (точка *B* на рис. 3.4,*a*). Вместе с тем в течение времени Δt_1 напряжение ГПН $U_r(t)$ возрастет до точки 4 и будет далее расти до точки 5. Временная координата точки 5 определяется значением Δt_2 , которое является суммой времен срабатывания компаратора и соответствующих коммутирующих элементов в блоке управления.

После отключения питания $U_r(t)$ начнет уменьшаться по экспоненте с постоянной времени разряда τ_p , а отсчетно-регистрирующее устройство (ОРУ) зафиксирует значение $U_r(t) = U'_{вых}$ только через отрезок времени Δt_3 , являющийся суммой времени формирования управляющих команд и времени от запуска ОРУ до конца отсчета. Таким образом, ОРУ зафиксирует напряжение (точка 6 на рис. 3.4,6)

$$U'_{\rm Bbix} = U_{\rm Bbix} + \Delta U_{\rm Bbix}. \tag{3.36}$$

Значение $\Delta U_{\text{вых}}$ и будет характеризовать погрешность преобразования для случая, когда погрешностью, вносимой компаратором, можно пренебречь.

Начиная с момента t_1 , напряжение $U_{3y}(t)$ изменяется по закону

$$U_{3y}$$
 (t) = $U_{\rm B1} \exp(-t/\tau_0)$. (3.37)

Следовательно, ΔU_{3y} к моменту $t = t_2 + \Delta t_1$ станет равным

$$\Delta U_{3y} = U_{B1} - U_{B1} \exp\left(-\frac{(t_2 - t_1 + \Delta t_1)}{\tau_0}\right) = U_{B1} \left[1 - \exp\left(-\frac{t_2 - t_1 + \Delta t_1}{\tau_0}\right)\right].$$
(3.38)

Разложим экспоненциальную функцию в ряд

$$\exp\left(-\frac{t_2 - t_1 + \Delta t_1}{\tau_0}\right) = 1 - \frac{t_2 - t_1 + \Delta t_1}{\tau_0} + \frac{(t_2 - t_1 + \Delta t_1)^2}{2! \tau_0} =$$

Учитывая, что $(t_2-t_1+\Delta t_1)\ll \tau_0$, и ограничиваясь первыми двумя членами разложения, получим

$$\Delta U_{3y} = U_{\rm B1} (t_2 - t_1 + \Delta t_1) / \tau_0. \tag{3.39}$$

С другой стороны, при малом значении Δt_1 можно считать, что касательная к $U_{\rm B}(t)$ в точке А практически проходит и через точку В. Тогда значение $\Delta U_{\rm 3V}$ можно также определить из прямоугольного треугольника ABC:

$$\Delta U_{3y} = \Delta t_1 \left| \frac{dU_B(t)}{dt} \right|_{t=t_2}.$$
(3.40)

Приравнивая (3.39) и (3.40), получаем

$$\Delta t_{1} = \frac{U_{B1}(t_{2}-t_{1})}{\left(\tau_{0} \left| \frac{dU_{B1}}{dt} \right|_{t=t_{2}} - U_{B1} \right)}.$$
(3.41)

Значение Δt_2 для конкретной схемы определяется типами компаратора и исполнительных коммутационных элементов в БУ. Тогда напряжение ГПН к моменту отключения питания (точка 5 на рис. 3.4,6) определяется из соотношения

$$U_{r5} = U_{rm} \left[1 - \exp\left(-\frac{t_2 - t_1 + \Delta t_1 + \Delta t_2}{\tau_r} \right) \right].$$
(3.42)

Разлагая экспоненциальную функцию в ряд и учитывая, что $(t_2-t_1+\Delta t_1+\Delta t_2)\ll \tau_r$, при ограничении первыми двумя членами разложения получим

$$U_{r5} = U_{rm} (t_2 - t_1 + \Delta t_1 + \Delta t_2) / \tau_r.$$
(3.43)

Начиная с момента времени $t=t_2+\Delta t_1+\Delta t_2$ (точка 5), U_{r5} будет уменьшаться и через время Δt_3 (точка 6) упадет до значения

$$U'_{\rm BMX} = U_{\rm r6} = U_{\rm r5} \exp\left(-\Delta t_3/\tau_{\rm p}\right) \approx U_{\rm r5} \left(1 - \Delta t_3/\tau_{\rm p}\right).$$
 (3.44)

Именно это напряжение и будет зарегистрировано отсчетно-регистрирующим устройством. Абсолютная погрешность отсчета, учитывая (3.35) и (3.44), после несложных преобразований может быть записана в виде соотношения

$$\Delta U_{\text{BEX}} = U'_{\text{FEX}} - U_{\text{BEX}} = U_{r6} - U_{r3} =$$

$$= U_{rm} \Big[(\Delta t_1 + \Delta t_2) \left(\frac{1}{\tau_r} - \frac{\Delta t_3}{\tau_r \tau_p} \right) - \frac{\Delta t_3}{\tau_r \tau_p} \left(t_2 - t_1 \right) \Big]. \tag{3.45}$$

Относительная погрешность при этом будет определяться выражением

$$\gamma' = \Delta U_{\text{BMX}} / U_{\text{BMX}} = [(\Delta t_1 + \Delta t_2) (\tau_p - \Delta t_3))/(t_2 - t_1) \tau_p - \Delta t_3 / \tau_p].$$
(3.46)

Анализируя (3.41) и (3.46), видим, что погрешность преобразования уменьшается при соблюдении следующих условий: увеличении значений преобразуемых величин $P_x(t)$; обеспечении больших значений постоянных времени τ_0 и τ_p разряда ЗУ и ГПН; увеличении крутизны напряжения $U_{\rm B}(t)$; уменьшении интервалов времени Δt_2 и Δt_1 , т. е. при использовании быстродействующих компараторов и коммутационных элементов в БУ и ОРУ.

Существенное влияние на точность преобразования может оказать рациональный выбор постоянной времени τ_r , значение которой определяется $\tau_{AM\Pi}$ и $\tau_{B\Pi}$ — постоянными времени АМП и ВП ($\tau_r \gg \tau_{AM\Pi} + \tau_{B\Pi}$). Для увеличения быстродействия АМП следует стремиться к уменьшению τ_r . Однако при чрезмерном уменьшении τ_r увеличивается относительная доля общей погрешности, определяемая постоянными величинами Δt_2 и Δt_3 . Поэтому выбор τ_r для каждого случая должен отвечать конкретным требованиям и соответствовать применяемым элементам.

Рассмотрим погрешности преобразователя с учетом $\Delta U_{\rm k}$. Наличие конечного значения порога чувствительности $\Delta U_{\rm k}$ приведет к срабатыванию компаратора не в точке *B* (см. рис. 3.4), а в точке *B'*. Следовательно, реальное значение $\Delta t'_1$ будет меньше, чем подсчитанное по (3.41), и характерные точки на графике напряжения $U_{\rm r}(t)$ сместятся из точек 4, 5, 6 соответственно в точки 4', 5', 6'. При этом OPV зарегистрирует напряжение $U''_{\rm BMX} < U'_{\rm BMX}$, а реальная погрешность примет значение $\Delta U'_{\rm BMX} < \Delta U_{\rm BMX}$.

Определим значение $\Delta t'_1$ с учетом известного значения порога чувствительности $\Delta U_{\rm K}$. Из рассмотрения подобных треугольников AB'C' и ABC (см. рис. 3.4) можно записать, что AC'/AC = C'B'/CB, где $AC' = \Delta t'_1$; $AC = \Delta t_1$.

Напряжение ЗУ, если за начало отсчета принять момент $t = t_1$, изменяется следующим образом:

$$U_{3y} = U_{\rm B1} \exp[-(t-t_1)/\tau_0]; \qquad (3.47)$$

к моменту $t = t_2 + \Delta t'_1$ оно уменьшится на

$$\Delta U'_{3y} = U_{\rm B1} \left[1 - \exp\left(-\frac{t_2 - t_1 + \Delta t'_1}{\tau_0} \right) \right]. \tag{3.48}$$

Если $\tau_0 \gg t_2 - t_1 + \Delta t'_1$, то, ограничившись первыми двумя членами разложения экспоненциальной функции в ряд, получим

$$\Delta U'_{3V} = U_{B1} (t_2 - t_1 + \Delta t'_1) / \tau_0.$$
(3.49)

Принимая во внимание, что C'B' = C'K - B'K, $B'K = \Delta U_{\kappa}$, а $C'K = \Delta U'_{3y}$, значение C'B' можно определить следующим образом: $C'B' = \Delta U'_{3y} - \Delta U_{\kappa}$. Из подобия треугольников AC'B' и ACB следует, что $\Delta t'_1 / \Delta t_1 = (\Delta U'_{3y} - \Delta U_{\kappa}) / \Delta U_{3y}$, откуда $\Delta t'_1 = \Delta t_1 (\Delta U'_{3y} - \Delta U_{\kappa}) / \Delta U_{3y}$.

Срабатывание компаратора из-за наличия порога чувствительности ΔU_{κ} произойдет на Δt_1 позднее относительно точки A, соответствующей идеальным условиям. И напряжение ГПН в момент выключения напряжения питания (точка 5') определяется соотношением

$$U_{r5'} = U_{rm} \left[1 - \exp\left(- \frac{t_2 - t_1 + \Delta t_1' + \Delta t_2}{\tau_r} \right) \right]$$
(3.50)

или, учитывая, что $\tau_r \gg t_2 - t_1 + \Delta t'_1 + \Delta t_2$,

$$U_{r5'} = U_{rm} (t_2 - t_1 + \Delta t'_1 + \Delta t_2) / \tau_r.$$
(3.51)

Начиная с момента $t=t_2+\Delta t'_1+\Delta t_2$ (точка 5'), $U_r(t)$ будет уменьшаться и через Δt_3 (точка 6') достигнет значения, определяемого выражением

$$U''_{\rm BLX} = U_{\rm r6'} = U_{\rm r5'} \exp\left(-\Delta t_3/\tau_{\rm p}\right) \approx U_{\rm r5'} \left(1 - \Delta t_3/\tau_{\rm p}\right). \tag{3.52}$$

Это напряжение фактически и зарегистрирует отсчетно-регистрирующее устройство, а выражение для абсолютной погрешности примет вид

$$\Delta U'_{\text{BEX}} = U''_{\text{BEX}} - U_{\text{BEX}} = U_{\text{r6}'} - U_{\text{r}_{8}} =$$

$$= U_{\text{rm}} \left[(\Delta t'_{1} + \Delta t_{2}) \left(\frac{1}{\tau_{\text{r}}} - \frac{\xi \Delta t_{3}}{\tau_{\text{r}} \tau_{\text{p}}} \right) - \frac{\Delta t_{3}}{\tau_{\text{r}} \tau_{\text{p}}} (t_{2} - t_{1}) \right]. \tag{3.53}$$

Тогда относительная погрешность

$$\gamma = \frac{\Delta U'_{\text{BEIX}}}{U_{\text{BEIX}}} = \frac{\left(\Delta t'_1 + \Delta t_2\right) \left(\tau_p - \Delta t_3\right)}{\left(t_2 - t_1\right) \tau_p} - \frac{\Delta t_3}{\tau_p}.$$
(3.54)

Принимая во внимание, что $\Delta t_1 = \frac{\Delta t_1}{\Delta U_{3y}} (\Delta U_{3y} - \Delta U_{R})$, получаем

$$\gamma = \left\{ \frac{\left[\Delta t_{\mathbf{i}} \left(\Delta U_{3\mathbf{y}}^{*} - \Delta U_{\mathbf{R}}\right) + \Delta t_{2} \Delta U_{3\mathbf{y}}\right] \left(\tau_{\mathbf{p}} - \Delta t_{\mathbf{s}}\right)}{\Delta U_{3\mathbf{y}} \left(t_{2} - t_{\mathbf{i}}\right) \tau_{\mathbf{p}}} - \frac{\Delta t_{\mathbf{s}}}{\tau_{\mathbf{p}}} \right\}.$$
 (3.55)

Выражение (3.55) определяет систематическую погрешность, которой сопровождается автоматическое преобразование с одно-

компарированием. кратным Если наиболее существенную при преобразовании с роль компарированиоднократным ем играет погрешность, обусловленная порогом чувствикомпаратора $\Delta U_{\rm K}$, **тел**ьности то значение этой погрешности можно вычислить следующим (рис. 3.5). Приниобразом мая во внимание, что значезамешаюшей мощности ние $P_{\text{зам}}(t)$ определяется выраже-

Рис. 3.5. Временные диаграммы для определения $\Delta P_{\kappa} = \varphi(\Delta U_{\kappa})$

нием $P_{\text{зам}}(t) = k_0 U_{rm}^2 [1 - \exp(-t/\tau_r)] \approx k_0 U_{rm}^2 (t/\tau_r)^2$, для момента t_1 можно записать:

$$t_1 = \frac{\tau_{\rm r}}{U_{\rm rm}} \sqrt{P_{\rm BAM}/k_0} = \frac{\tau_{\rm r}}{U_{\rm rm}} \sqrt{P_{\rm x}/k_0}$$

Наличие $\Delta U_{\rm K}$ приводит к появлению $\Delta P_{\rm K}$, и, следовательно, для момента t_2 можно записать равенство $P_{\rm 32M} + \Delta P_{\rm K} = k_0 U^2_{\rm r} m \times (t_2/\tau_{\rm r})^2$, откуда

$$t_2 = \frac{\tau_{\rm F}}{U_{\rm FM}} \sqrt{(P_x + \Delta P_{\rm H})/k_0}.$$

Выразив из уравнения баланса мощностей (3.1) напряжение U_в(t), подаваемое на вход компаратора, получим

$$U_{\mathbf{B}}(t) = k \bigvee P_{\mathbf{T}}(t) + \sum_{j=1}^{m} P_{z_j}(t) - k_0 \frac{U_{\mathbf{T}m}^2 t^2}{\tau_{\mathbf{T}}^2}$$
, где $k = k_{\mathbf{B}} / \sqrt{k_0}$.

Подставляя в выражение для $U_{\rm B}(t)$ соотношения для t_1 и t_2 , находим соответственно выражения для $U_{\rm B1}$ и $U_{\rm B2}$. Тогда для вычисления $\Delta U_{\rm K}$, учитывая $\Delta U_{\rm K} = U_{\rm B1} - U_{\rm B2}$, получаем

$$\Delta U_{\rm K} = k \left[\sqrt{P_{\rm T}(t) + \sum_{j=1}^{m} P_{z_j}(t) - P_{x}(t)} - \sqrt{P_{\rm T}(t) + \sum_{j=1}^{m} P_{z_j}(t) - P_{x}(t) - \Delta P_{\rm K}} \right].$$

Из выражения для ΔU_{κ} можно получить зависимость $\Delta P_{\kappa} = -\varphi(\Delta U_{\kappa})$, а именно:

$$\Delta P_{\mathrm{H}} = \frac{\Delta U_{\mathrm{K}}}{k} \left[2 \sqrt{P_{\mathrm{T}}(t) + \sum_{j=1}^{m} P_{z_j}(t) - P_{x}(t)} - \frac{\Delta U_{\mathrm{K}}}{k} \right].$$

Погрешность, обусловленная ΔU_{κ} , при малых значениях P_x может достигать 10%. Поэтому применение преобразователей с однократным компарированием целесообразно в случаях, когда погрешностью, вносимой ΔU_{κ} , можно пренебречь, т. е. при наличии высококачественных компараторов или при преобразовании достаточно больших входных воздействий.

В инженерной практике (3.55) не всегда удобно пользоваться, так как не всегда известны значения всех входящих в него величин и зависимость от значения преобразуемого воздействия выражена в неявной форме. Выведем соотношения, определяющие погрешность преобразования в зависимости от преобразуемого воздействия и параметров элементов схемы. При этом будем учитывать, что под влиянием вариации параметров элементов от воздействия на них различных дестабилизирующих факторов появляется случайная составляющая погрешности. Следовательно, для определения общей погрешности преобразования необходимо найти выражения для систематической и случайной составляющих погрешностей.

Абсолютная систематическая погрешность формирования замещающего напряжения (см. рис. 3.4)

$$\Delta U'_{\text{BMX}} = U''_{\text{BMX}} - U_{r3}, \tag{3.56}$$

где $\Delta U'_{\rm вых}$ — абсолютная систематическая погрешность формирования выходного напряжения; $U''_{\rm вых}$ — выходное напряжение реального преобразователя с учетом систематической погрешности; $U_{r3} = \sqrt{P_x/k_0}$ — выходное напряжение идеализированного преобразователя без учета систематической погрешности (точка 3 на рис. 3.4).

Для случая, когда $\Delta U_{\rm R}$ мало и его влиянием можно пренебречь, подставляя (3.4) и (3.33) в (3.56), получаем выражение для абсолютной систематической погрешности формирования напряжения замещения

$$\Delta U'_{\text{BMX}} = \frac{P_{T} \tau_{\Gamma}}{2k_{0} \tau_{0} U_{\Gamma m}} \left[\frac{2 - \frac{1}{U_{\Gamma m}} \sqrt{\frac{P_{x}}{k_{0}}}}{1 - \frac{1}{U_{\Gamma m}} \sqrt{\frac{P_{x}}{k_{0}}}} \right].$$
(3.57)

Относительная систематическая погрешность формирования напряжения замещения

$$\gamma_{\text{сист}} = \Delta U'_{\text{вых}} / U_{\text{г3}}. \tag{3.58}$$

Подставляя (3.57) в (3.58) и учитывая (3.4), получаем выражение для относительной погрешности формирования замещающего напряжения:

$$\gamma_{c_{RCT}} = \frac{P_{T}\tau_{r}}{2\tau_{0} U_{rm} \sqrt{k_{0}}} \left[\frac{2 - \frac{1}{U_{rm}} \sqrt{\frac{P_{x}}{k_{0}}}}{P_{x} \left(1 - \frac{1}{U_{rm}} \sqrt{\frac{P_{x}}{k_{0}}}\right)} \right].$$
(3.59)

Найдем соотношение между относительной погрешностью формирования напряжения замещения и относительной погрешностью преобразования мощности $\gamma_{P \text{ сист}}$. Из выражения (3.4) при малых приращениях $\Delta U_r = \Delta U_{\text{вых}}$ определяем приращение

$$\Delta P_x = 2k_0 U_r \Delta U_r. \tag{3.60}$$

С учетом (3.60) и (3.4) для относительной систематической погрешности можно записать

$$\gamma_{P \text{ сист}} = \Delta P_x / P_x = 2 \gamma_{\text{сист}}. \tag{3.61}$$

Из формулы (3.59) видно, что погрешность преобразования зависит главным образом от нестабильности следующих парамет-

ров: выходного напряжения источника питания ГПН $U_{\rm rm}$; постоянной времени ГПН $\tau_{\rm r}$; постоянной времени τ_0 разряда ЗУ; мощности P_{τ} , рассеиваемой на терморезисторе; параметра k_0 , определяемого нестабильностью элементов мостовой схемы преобразователя.

Для оценки случайных погрешностей необходимо получить вероятностные характеристики погрешности преобразования: математическое ожидание и среднеквадратическое отклонение.

Рассматривая τ_{r} , U_{rm} , k_{0} , P_{τ} , τ_{0} как случайные независимые величины, имеющие весьма малые отклонения $\Delta \tau_{r}$, ΔU_{rm} , Δk_{0} , ΔP_{τ} , $\Delta \tau_{0}$ относительно своих средних значений, можно записать:

$$\delta = \frac{\partial \left(\Delta U'_{\text{BEIX}}\right)}{\partial \tau_{\text{r}}} \Delta \tau_{\text{r}} + \frac{\partial \left(\Delta U'_{\text{BEIX}}\right)}{\partial U_{\text{rm}}} \Delta U_{\text{rm}} + \frac{\partial \left(\Delta U'_{\text{BEIX}}\right)}{\partial k_{0}} \Delta k_{0} + \frac{\partial \left(\Delta U'_{\text{BEIX}}\right)}{\partial P_{\text{T}}} \Delta P_{\text{T}} + \frac{\partial \left(\Delta U'_{\text{BEIX}}\right)}{\partial \tau_{0}} \Delta \tau_{0}, \qquad (3.62)$$

где δ — приращение функции (3.57), соответствующее отклонениям $\Delta \tau_r$, ΔU_{rm} , Δk_0 , ΔP_τ , $\Delta \tau_0$. Частные производные в (3.62) вычислены при средних значениях τ_r , U_{rm} , k_0 , P_τ , τ_0 и фиксированном P_{∞} .

Анализ (3.62) с учетом допустимых отклонений величин τ_r , U_{rm} , k_0 , P_{τ} , τ_0 от их средних значений показывает, что сумма последних трех слагаемых на два-три порядка меньше, чем сумма первых двух. Это позволяет, вычисляя соответствующие производные записать

$$\delta \approx \frac{P_{\rm T}}{2\tau_0 \, k_0 \, U_{\rm Fm}} \left(\frac{2-y}{1-y}\right) \Delta \tau_{\rm F} + \frac{P_{\rm F} \, \tau_{\rm F}}{2k_0 \, \tau_0 \, U_{\rm Fm}^2} \left[\frac{(1-y)^2 + 1}{(1-y)^2}\right] \Delta U_{\rm Fm}, \tag{3.63}$$

где $y = \frac{1}{U_{\rm rm}} \sqrt{\frac{P_x}{k_0}}.$

Правая часть (3.63) равна сумме двух случайных независимых величин:

$$X_{\tau_{\mathbf{r}}} = \frac{P_{\mathbf{r}}}{2\tau_{\mathbf{0}}k_{\mathbf{0}}U_{\mathbf{r}m}} \left(\frac{2-y}{1-y}\right) \Delta \tau_{\mathbf{r}}; \tag{3.64}$$

$$X_{U_{\Gamma m}} = \frac{P_{\Gamma} \tau_{\Gamma}}{2k_0 \tau_0 U_{\Gamma m}^2} \left[\frac{(1-y)^2 + 1}{(1-y)^2} \right] \Delta U_{\Gamma m}.$$
(3.65)

Применяя формулу для нахождения математического ожидания суммы двух независимых случайных величин X_{τ_r} и $X_{U_{rm}}$, получаем

$$M(\delta) = MX_{\tau_{\mathbf{r}}} + MX_{U_{\mathbf{r}m}}.$$
(3.66)

Допуская, что каждая из случайных величин $\Delta \tau_r$ и ΔU_{rm} распределена по нормальному закону с нулевым математическим

ожиданием и среднеквадратичными отклонениями соответственно σ_{τ} и σ_{U} , находим

$$M(\mathbf{\delta}) = 0. \tag{3.67}$$

Значение σ_{δ} вычисляем по формуле для среднеквадратического отклонения суммы двух независимых случайных величин $X_{\tau_{\Gamma}}$ и $X_{U_{\Gamma_{m}}}$:

$$\sigma_{\delta} = \sqrt{\sigma_{\tau_{p}}^{2} + \sigma_{U_{rm}}^{2}} = \frac{P_{T}}{2\tau_{0} k_{0}} \sqrt{\left[\frac{2-y}{(1-y) U_{rm}}\right]^{2} \sigma_{\Delta \tau_{p}} + \left\{\frac{\left[(1-y)^{2}+1\right] \tau_{r}}{(1-y)^{2} U_{rm}^{2}}\right\} \sigma_{\Delta U_{pm}}^{2}}.$$
 (3.68)

Таким образом, $\delta(\Delta U'_{\rm вых})$ как композиция нормально распределенных независимых величин $X_{\tau_{\Gamma}}$ и $X_{U_{FM}}$ также распределена по нормальному закону с нулевым математическим ожиданием и среднеквадратическим отклонением, вычисляемым по формуле (3.68).

Эмпирическое распределение значений δ при каждом фиксированном P_x незначительно отличается от нормального закона распределения. Поэтому с большой вероятностью можно вычислить значение *предельной погрешности* как утроенное значение среднеквадратического отклонения:

$$\delta_{\text{пред}} \approx 3\sigma_{\delta}. \tag{3.69}$$

Учитывая (3.68) для среднеквадратического значения случайной погрешности и (3.69), запишем выражение для абсолютной предельной случайной погрешности формирования напряжения замещения:

$$\delta_{\Pi p e \pi} = \frac{3P_{T}}{2\tau_{0} k_{0}} \sqrt{\left[\frac{2-y}{(1-y) U_{rm}}\right]^{2} \sigma_{\Delta}^{2} \tau_{p}} + \left\{\frac{\left[(1-y)^{2}+1\right] \tau_{r}}{(1-y)^{2} U_{rm}^{2}}\right\} \sigma_{\Delta}^{2} U_{p}}.$$
 (3.70)

Предельная случайная относительная погрешность формирования напряжения замещения определяется выражением $\gamma_{cлуч.пред} = -\delta_{npe_d}/U_r$. Подставляя в выражение для $\gamma_{cлуч.пред}$ (3.70) и (3.4), получаем

$$\gamma_{\text{случ.пред}} = \frac{3P_{\text{T}}}{2\tau_0 \sqrt{P_x k_0}} \sqrt{\frac{(2-y)^2}{(1-y)^2 U_{\text{r}m}^2}} \sigma_{\Delta \tau_{\text{p}}}^2 + \left\{ \frac{[(1-y)^2+1] \tau_{\text{r}}}{(1-y)^2 U_{\text{r}m}^2} \right\} \sigma_{\Delta U_{\text{r}m}}^2.$$
(3.71)

Для предельной случайной относительной погрешности преобразования мощности по аналогии с выражением (3.61) можно записать

$$\gamma P_{\text{случ.пред}} = 2 \gamma_{\text{случ.пред.}}$$
(3.72)

На основании (3.61) и (3.72) абсолютные погрешности преобразования мощности определяются соотношениями:

$$\Delta P_{x \text{ сист}} = P_{x} \gamma_{P \text{ сист}}; \qquad (3.73)$$

$$\Delta P_{x \text{ случ.пред}} = P_{x} \gamma_{P \text{ случ.прец}}. \qquad (3.74)$$

Подставляем в (3.73) выражения (3.61) и (3.59), а в (3.74) — (3.72) и (3.71), получаем выражения соответственно для абсолют-

ной систематической и предельной случайной погрешностей преобразования мощности:

$$\Delta P_{x \text{ cnor}} = \frac{P_{T} \tau_{r} \left(2 - \frac{1}{U_{rm}} \sqrt{\frac{P_{x}}{k_{0}}}\right) \sqrt{P}}{\tau_{0} U_{rm} \sqrt{k_{0}} \left(1 - \frac{1}{U_{rm}} \sqrt{\frac{P_{x}}{k_{0}}}\right)}; \qquad (3.75)$$

$$\Delta P_{x \text{ случ.пред}} = \frac{3P_{\text{r}} \sqrt{P_{x}}}{2\tau_{0} \sqrt{k_{0}}} \sqrt{\frac{(2-y)^{2}}{(1-y)^{2} U_{\text{rm}}^{2}}} \sigma_{\Delta \tau_{\text{r}}}^{2} \left[\frac{(1-y)^{2}+1}{(1-y)^{2} U_{\text{rm}}^{2}} \right] \sigma_{\Delta U_{\text{r}}}^{2}.$$
(3.76)

3.5. АНАЛОГОВЫЕ АВТОМАТИЧЕСКИЕ МФП ЦИКЛИЧЕСКОГО ДЕЙСТВИЯ С ДВОЙНЫМ КОМПАРИРОВАНИЕМ

В преобразователях с однократным компарированием одним из существенных факторов, влияющих на погрешность преобразования, является несовершенство параметров компаратора. Особенно сильно это влияние сказывается при преобразовании малых входных величин. Для устранения влияния погрешности сравнения компаратора на результат преобразования на основе принципа временного разделения сигналов с замещением может быть применена схема построения (рис. 3.6) автоматического МФП с двойным компарированием [23, 43, 44].

Отличительная особенность (рис. 3.7) автоматического многофункционального преобразования с двойным компарированием результат преобразования замещающей мощности $P_{\text{зам}}$ сравнивается с некоторым специально формируемым напряжением

$$U_{\rm y} = U_{\rm B1} - \Delta U_{\rm K}, \tag{3.77}$$

отличающимся от результата преобразования P_x на значение ΔU_{κ} , взятое с таким знаком, что погрешность, определяемая зоной нечувствительности компаратора, оказывается скомпенсированной, следовательно, в момент отсчета

$$U_{B2} = U_{y} - \Delta U_{\kappa}. \tag{3.78}$$

В исходном состоянии В1, В2, ..., В_n разомкнуты.

Рис. 3.6. Схема автоматического МФП с двойным компарированием

Рис. 3.7. Временные диаграммы работы автоматического МФП с двойным компарированием

Схема преобразователя начинает работать в момент t_1 . При этом управляющее напряжение УН с блока управления БУ подается на выключатель В1, переводит его в замкнутое состояние и тем самым подает входную преобразуемую величину $P_{x_1}(t)$ на чувствительный элемент R_r автобалансной мостовой схемы (рис. 3.7,6). Это начало первого такта преобразования, описываемого в соответствии с (1.19) уравнением

$$U_{o.c1}^{2}(t)/4R_{\tau} + P_{x1}(t) - \sum_{j=1}^{m} P_{z_{j}}(t_{1}) = P_{\tau}.$$
(3.79)

Тогда на выходе АМП устанавливается некоторый уровень напряжения $U_{0,c1}$ и на вход *a* компаратора К подается напряжение $U_{B1} = U_{0,c1}k_B$. На второй вход б через БУ и усилитель У подается U_0 , определяемое источником опорного напряжения ИОН. Спустя некоторое время $t_{3,c}$, необходимое для окончания переходных процессов, У переводится в режим интегрирования, а на его вход подается ступенчатое напряжение, вызывающее на его выходе линейно-нарастающее изменение напряжения $U_y(t)$ от некоторого начального уровня U_0 . Это линейно-нарастающее напряжение $U_y(t)$ (рис. 3.7,*a*) подается на вход б компаратора. Рост $U_y(t)$ будет происходить до момента t_3 сравнения его на компараторе с напряжение U_{B1} , определяющим P_x .

В момент $t_3 U_{\rm B1}(t_3) = U_{\rm y}(t_3) + \Delta U_{\rm K}$, компаратор срабатывает и состояние схемы может быть описано уравнением

$$\frac{[U_{\mathbf{y}}(t_3) + \Delta U_{\mathbf{F}}]^2}{4R_{\mathbf{T}}k_{\mathbf{B}}^2} + P_{\mathbf{x}1}(t) - \sum_{j=1}^m P_{z_j}(t_3) = P_{\mathbf{T}}.$$
(3.80)

При этом выходной импульс К через БУ осуществляет следующие операции: переводит усилитель в режим запоминания значения напряжения $U_y(t_3) = U_{B1} - \Delta U_K$, размыкает выключатель B1, прекращая подачу $P_{x1}(t)$, при этом в соответствии с (3.79) напряжения $U_{o.c}$ обратной связи АМП и $U_B(t)$ резко возрастают; включает ГПН, выходное напряжение которого $U_r(t)$ подается на терморезистор R_T автобалансной мостовой схемы в качестве замещающего, формируя $P_{3am}(t)$ (рис. 3.7, θ). Это второй такт преобразования, описываемый в интервале времени t_3-t_4 уравнением

$$P_{o.c2}(t) + P_{3aM}(t) - \sum_{j=1}^{m} P_{z_j}(t) = P_{T}.$$
(3.81)

Увеличение $U_{\rm r}(t)$, формирующего $P_{\rm зам}(t)$ будет происходить до того момента t_4 (рис. 3.7,*a*), когда уменьшающееся в соответствии с уравнением баланса мощностей напряжение $U_{\rm o.c} = U_{\rm B}/k_{\rm B}$ сравнится на компараторе с ранее запомненным напряжением $U_{\rm y}(t_3)$. В момент t_4 компаратор срабатывает и отключает питание ГПН, рост $U_{\rm r}(t)$ прекращается и его значение фиксируется ОРУ. В момент $t_4 U_{B^2}(t_4) = U_y(t_4) + \Delta U_k$ и состояние схемы может быть описано уравнением

$$[U_{\nu}(t_{4}) + \Delta U_{R}]^{2}/4R_{T}k_{B}^{2} + P_{BM}(t_{4}) - \sum_{j=1}^{m} P_{z_{j}}(t_{4}) = P_{T}.$$
(3.82)

В соответствии с принятыми допущениями, принимая во внимание, что интервал времени $t_4 - t_3$ весьма мал, а также скорость изменения $\sum_{j=1}^{m} P_{z_j}(t)$ и ΔU_{κ} относительно мала, можно принять $\sum_{j=1}^{m} P_{z_j}(t_1) \approx \sum_{j=1}^{m} P_{z_j}(t_4); \quad \Delta U_{\kappa}(t_3) = \Delta U_{\kappa}(t_4) = \Delta U_{\kappa}.$ Равенство первых членов уравнений (3.80) и (3.82) будет за-

фиксировано компаратором. Следовательно, все члены уравнения (3.80) равны соответствующим членам (3.82) и можно записать

$$P_{x1}(t) = P_{sam}(t) = U^2_r(t)/4R_r = k_0 U^2_r(t_4)$$

или
$$U_{\mathbf{r}}(t_4) = \sqrt{P_{\mathbf{x}1}(t)/k_0}.$$
 (3.83)

Для компенсации влияния погрешности компаратора выходное напряжение $U_{\mathbf{r}}(t)$ должно быть зафиксировано при $U_{\mathbf{B2}} = U_{\mathbf{B1}}$. Действительно, в момент t_3 обеспечивается выполнение соотношения $U_{\mathbf{y}} = U_{\mathbf{B1}} - \Delta U_{\mathbf{K}}$, а в момент t_4 для выходного напряжения ВП можно записать $U_{\mathbf{B2}} = U_{\mathbf{y}} + \Delta U_{\mathbf{K}}$. Тогда $U_{\mathbf{B1}} = U_{\mathbf{B2}}$, т. е. погрешность формирования $U_{\mathbf{r}}(t)$, определяемая $\Delta U_{\mathbf{K}}$, будет устранена.

3.6. АНАЛИЗ ПРОЦЕССОВ ПРИ АВТОМАТИЧЕСКОМ ПРЕОБРАЗОВАНИИ С ДВОЙНЫМ КОМПАРИРОВАНИЕМ

Основными характеристиками преобразователя являются: $U_{\text{вых}}(t) = F_i[P_{x_i}(t)]$ — функция преобразования, показывающая зависимость между входной и выходной величинами; $t_{\text{пр}_i} = f_i(P_{x_i})$ — время преобразования, определяющее быстродействие преобразователя ([43].

С момента подачи P_{x_i} на терморезистор и до t_2 (интервал времени t_1-t_2) напряжение U_y на выходе усилителя остается постоянным: $U_y = U_0$, где U_0 — абсолютное значение опорного напряжения. В интервале времени t_2-t_3 усилитель работает как интегратор. Определим напряжение на выходе усилителя, работающего в режиме интегрирования с постоянной времени τ_y при подаче на его вход ступенчатого воздействия

$$U_{y}(t) = U_{0} + U_{x}(t_{3} - t_{2})/\tau_{y},$$

где $U_{\mathbf{z}}$ — значение напряжения, поданного на вход усилителя, переведенного в режим интегрирования.

Срабатывание компаратора произойдет в момент времени при выполнении условия

$$U_{y}(t_{3}) = U_{0} + \frac{U_{R}}{\tau_{y}} (t_{3} - t_{2}) = U_{B1} - \Delta U_{R1}, \qquad (3.84)$$

где $U_{\rm B1}$ — напряжение на выходе ВП при подаче P_{x_t} ; ΔU_{κ_1} — порог чувствительности К при первом срабатывании (в момент t_3).

Из (3.84) находим время интегрирования $t_n = t_3 - t_2$ или

$$t_{\mathbf{n}} = (U_{\mathbf{n}1} - \Delta U_{\mathbf{n}1} - U_0) \tau_{\mathbf{y}} / U_{\mathbf{n}}.$$
(3.85)

Выражая $U_{\text{o.c}}$ через U_{B} с помощью коэффициента передачи ВП $(U_{\text{o.c}} = U_{\text{B}}/k_{\text{B}})$ и подставляя полученное значение в (3.79), получаем

$$U_{\rm B1} = \sqrt{4R_{\rm T} k_{\rm B}^2 (P_{\rm T} - P_{x_1})}.$$
(3.86)

Подставляя (3.86) в (3.85) и пренебрегая членом, содержащим ΔU_{κ_1} , ввиду его малости по сравнению с остальными слагаемыми, после несложных преобразований находим

$$t_n = A' - B' P_{x_n}$$

где A' и B' — величины, определяемые параметрами схемы:

$$A' = 2\tau_{y} k_{B} \sqrt{R_{T} P_{T}} / U_{R} - U_{0} \tau_{y} / U_{R};$$

$$B' = \tau_{y} k_{B} \sqrt{R_{T}} / U_{R} \sqrt{P_{T}}.$$

Усилитель У переводится в режим аналогового ЗУ и запоминает $U_y(t_3)$, определяемое по (3.84).

Определим $t_{\rm k}$ — время замещения P_{x_i} мощностью постоянного тока ГПН. Предположим, что, так же как в предыдущем случае, возрастающее выходное напряжение ГПН формируется за счет заряда конденсатора, следовательно, закон его изменения экспоненциальный. Тогда на этапе замещения P_{x_i} мощностью постоянного тока ГПН, учитывая условие (1.4,*a*), позволяющее опустить для простоты выкладок $P_{\rm cp}$, уравнение баланса мощностей можно записать в виде

$$U_{\mathbf{B}}^{2}(t)/4R_{\mathbf{T}}k_{\mathbf{B}}^{2}+k_{0}U_{\mathbf{T}m}^{2}\left[1-\exp\left(-t_{\mathbf{K}}/\tau_{\mathbf{T}}\right)\right]^{2}=P_{\mathbf{T}}.$$
(3.87)

Время замещения t_{κ} (см. рис. 3.8, точка *O*) можно определить из условия вторичного срабатывания компаратора:

$$U_{\rm B}(t_{\rm K}) = U_{\rm y} \exp\left(-t_{\rm K}/\tau_0\right) + \Delta U_{\rm K2},\tag{3.88}$$

где τ_0 — постоянная времени разряда интегрирующего конденсатора аналогового ЗУ; $U_{\rm B}(t_{\rm K})$ — напряжение на выходе ВП в момент срабатывания К; $\Delta U_{\rm K2}$ — порог срабатывания К при вторичном сравнении.

Рис. 3.8. Временные диаграммы процесса замещения при автоматическом двойном компарировании:

а — на входах компаратора; б — на выходе ГПН

В свою очередь,

$$U_{y} = U_{B}(t) - \Delta U_{\kappa 1} = \sqrt{4R_{T}k^{2}_{B}(P_{T} - P_{\kappa_{l}})} - \Delta U_{\kappa 1}, \qquad (3.89)$$

где U_y — уровень напряжения, запомненный в момент t_3 первого срабатывания К.

Нахождение времени t_к сводится к решению системы трансцендентных уравнений

$$U_{\rm B}^{2}(t_{\rm R})/4R_{\rm T} k_{\rm B}^{2} + k_{0} U_{\rm Tm}^{2} \left[1 - \exp(t_{\rm R}/\tau_{\rm T})\right]^{2} = P_{\rm T}; U_{\rm B}(t_{\rm R}) = U_{\rm y} \exp\left(-t_{\rm R}/\tau_{\rm 0}\right) + \Delta U_{\rm R2}.$$
(3.90)

Приближенное решение (3.90) возможно с помощью замены кривой $U_{\rm B}(t)$ в интервале $t_{O'}-t_{O_2}$ некоторой весьма близкой по координатам прямой. Проведем касательную к кривой $U_{\rm B}(t)$ в точке O'. Считая точки O_1 и O_2 весьма близкими друг к другу $(t_{O_1} \approx t_{O_2})$, уравнение касательной 1-1' и кривой $U_{\rm B}(t)$ в точке 86

 O_{I} можно записать в виде $U - U_{BI} = tg \alpha(t_{O_{I}} - t)$, где U — текущее значение ординаты касательной 1 - 1'; U_{BI} — ордината точки O_{I} ;

аление t_{O_1} находим, полагая в (3.87) $U_{\rm B}(t_{O_1}) = U_{\rm B} \approx \sqrt{\frac{4R_{\rm T}k^2_{\rm B}}{4R_{\rm T}k^2_{\rm B}}}$, т. е.

$$t_{o_i} = -\tau_r \ln\left(1 - \frac{1}{U_{rm}}\sqrt{\frac{P_{x_i}}{k_0}}\right). \tag{3.91}$$

Найдем первую производную функции U_в(t) из (3.87) и, подставляя в (3.91), получаем формулу для вычисления тангенса угла наклона касательной 1—1' к оси абсцисс, т.е.

$$\operatorname{tg} \alpha = \left| \frac{dU_{\mathbf{B}}(t)}{dt} \right|_{t=t_{O_{\mathbf{I}}}} = -\frac{2k_{\mathbf{B}}U_{\mathbf{F}m}\sqrt{R_{\mathbf{T}}k_{\mathbf{0}}}}{\tau_{\mathbf{F}}} \sqrt{\frac{P_{\mathbf{x}_{\mathbf{i}}}}{R_{\mathbf{T}}}} \left(1 - \frac{1}{U_{\mathbf{F}m}} \sqrt{\frac{P_{\mathbf{x}_{\mathbf{i}}}}{k_{\mathbf{0}}}} \right).$$
(3.92)

где U_в(t) удовлетворяет в любой момент времени условию (3.87). Так как $\tau_0 \gg t_{\rm K}$, (3.88) можно записать в виде $U_{\rm B}(t_{\rm K}) = \dot{U}_{\rm V}(1 - t_{\rm K})$ $-t_{\kappa}/\tau_0$ + ΔU_{κ_2} .

Таким образом, нахождение t_к можно свести к решению системы двух линейных уравнений

$$U_{\rm B}(t_{\rm R}) - U_{\rm B1} = \operatorname{tg} \alpha \left(t_{O_{\rm I}} - t_{\rm R} \right); U_{\rm B}(t_{\rm R}) = U_{\rm y} \left(1 - t_{\rm R} / \tau_0 \right) + \Delta U_{\rm R2},$$
 (3.93)

где U_{y} , t_0 , $\sqrt{tg} \alpha$ вычисляются по (3.89), (3.91), (3.92). Решая эту систему уравнений, получаем выражение

$$t_{\mathrm{R}\,i} = \frac{\sqrt{k_0} \sqrt{\frac{P_{x_i}}{P_{\mathrm{T}}}} U_{\mathrm{F}\,m} \left(1 - \frac{1}{U_{\mathrm{F}m}} \sqrt{\frac{P_{x_i}}{k_0}}\right) \ln \left(1 - \frac{1}{U_{\mathrm{F}m}} \sqrt{\frac{P_{x_i}}{k_0}}\right)}{-\frac{\sqrt{k_0}}{\tau_{\mathrm{F}}} U_{\mathrm{F}\,m} \sqrt{\frac{P_{x_i}}{P_{\mathrm{T}}}} \left(1 - \frac{1}{U_{\mathrm{F}m}} \sqrt{\frac{P_{x_i}}{k_0}}\right) + \frac{\sqrt{P_{\mathrm{T}}}}{\tau_0} \left(1 - 0.5 \frac{P_{x_i}}{P_{\mathrm{T}}}\right)}.$$
(3.94)

Из (3.94) следует, что порог чувствительности компаратора ΔU_{κ} не оказывает влияния на погрешность преобразования при условии $\Delta U_{\kappa_1} = \Delta U_{\kappa_2}$, которое обычно выполняется, так как в малом интервале времени t_4 — t_3 можно принять $\Delta U_{\rm K}$ =const. При известном законе формирования замещающего напряжения его значение определяется временем формирования.

Постоянная времени то обычно очень велика (400-500 с), поэтому, пренебрегая $\frac{P_{T}}{\tau_{o}} \left(1 - 0.5 \frac{P_{x_i}}{P_{T}} \right)$ в знаменателе дроби (3.94), получаем

$$t_{\rm Ri} = -\tau_{\rm r} \ln(1 - \sqrt{P_{x_i}}/U_{\rm rm}\sqrt{k_0}). \tag{3.95}$$

Значение времени преобразования (см. рис. 3.7) можно вычислить по формуле

$$t_{np\,i} = f_i \left(P_{x_i} \right) = t_{n\,i} + t_{R\,i} + t_{s.c}, \tag{3.96}$$

где $t_{3.c} = t_2 - t_1$ — время задержки переключения усилителя в режим интегрирования, определяемое временем установления напряжения на выходе ВП. Временами срабатывания управляющих и коммутирующих элементов пренебрегаем, так как их сумма на два-три порядка меньше основных составляющих времени измерения в (3.96).

Выражение (3.96) показывает, что быстродействие преобразователя в значительной мере зависит от составляющей t_m , которая, в свою очередь, определяется U_0 источника опорного напряжения ИОН. Увеличение указанного напряжения для повышения быстродействия ограничивается минимальным уровнем выходного напряжения ВП, соответствующим подаче на терморезистор максимального уровня P_{x_i} .

С учетом времени $t_{c.\kappa}$ срабатывания ключа, отключающего источник питания ст ГПН, в течение которого нарастание выходного напряжения ГПН будет продолжаться, легко получить выражение для функции преобразования *i*-й входной величины:

$$U_{\text{BEIX } i}(t) = F_{i}[P_{x_{i}}(t)] = U_{rm} \left[1 - \exp\left(-\frac{t_{c_{sR}} + t_{R_{i}}}{\tau_{r}}\right) \right].$$
(3.97)

Подставляя в (3.97) выражение для $t_{\kappa i}$ из (3.95), получаем $U_{\text{вых }i}(t) = F_i [P_{x_i}(t)] =$

$$= U_{\mathrm{r}\,m} \left\{ 1 - \exp\left(\frac{t}{\tau_{\mathrm{r}}}\right) \left[1 - \frac{1}{U_{\mathrm{r}m}\sqrt{k_0}} \sqrt{P_{x_i}(t)} \right] \right\}.$$
(3.98)

Реальная функция преобразования: во-первых, отличается от идеальной, что определяет наличие систематической погрешности; во-вторых, значения параметров, от которых она зависит, могут изменяться по случайному закону, в связи с чем возникает случайная погрешность преобразования.

3.7. ПОГРЕШНОСТИ ПРЕОБРАЗОВАТЕЛЕЙ С ДВОЙНЫМ КОМПАРИРОВАНИЕМ

Преобразование с двойным компарированием сопровождается погрешностями, отличающимися от рассмотренных ранее при анализе преобразователя с однократным компарированием. Применение двойного компарирования позволило уменьшить влияние погрешности сравнения компаратора на результат преобразования [44].

Сравнение выражений для идеальной (3.83) и реальной (3.98) функций преобразования позволяет определить систематическую погрешность преобразования, а учет вариации параметров элементов под воздействием дестабилизирующих случайно действующих факторов дает возможность оценить вероятностные характеристики случайной погрешности преобразования, определяемой главным образом нестабильностью следующих факторов и параметров: момента включения и отключения источника питания ГПН, напряжения источника питания ГПН; постоянной времени ГПН; параметра k_0 , определяемого элементами мостовой схемы преобразователя.

Абсолютная систематическая погрешность $\Delta U_{\text{вых}\,i}$ преобразователя определяется выражением

$$\Delta U_{\text{Bbix } i} = U_{\text{Bbix } i} - U_{\text{r}i}, \qquad (3.99)$$

где $U_{\text{вых i}}$ — выходное напряжение реального преобразователя с учетом систематической погрешности; U_{ri} — выходное напряжение идеализированного преобразователя без учета систематической погрешности. Выходные напряжения реального и идеализированного преобразователей определяются выражениями (3.83) и (3.98).

Экспоненциальная функция в (3.98) может быть упрощена, поскольку всегда выполняется условие т_т $\gg t_{c.к.}$ После разложения этой функции в ряд, ограничившись двумя первыми членами разложения, можно записать

$$\exp\left(-t_{\mathbf{c}.\kappa}/\tau_{\mathbf{r}}\right) \approx 1 - t_{\mathbf{c}.\kappa}/\tau_{\mathbf{r}}.$$
(3.100)

Подставив (3.83), (3.98), (3.100) в (3.99) и произведя алгебраические преобразования, получим выражение для абсолютной систематической погрешности

$$\Delta U_{\text{Bbix } i} = \frac{U_{\text{rm}} t_{\text{c.R}}}{\tau_{\text{r}}} - \frac{t_{\text{c.R}}}{\tau_{\text{r}}} \sqrt{P_{x_i}}.$$
(3.101)

Рассматривая $U_{\rm rm}$, $\tau_{\rm r}$, k_0 , $t_{\rm c.\kappa}$ как случайные величины, имеющие весьма малые отклонения относительно своих средних значений, можем записать

 $\delta \approx d \left(\Delta U_{\text{BMX} i} \right),$

(3.102)

где δ — приращение функции (3.101), соответствующее отклонениям $\Delta U_{\rm rm}$, $\Delta \tau_{\rm r}$, Δk_0 , $\Delta t_{\rm c.k}$, т. е. случайная погрешность формирования замещающего напряжения; $d(\Delta U_{\rm BMX i})$ — полный дифференциал функции (3.101).

Запишем полное приращение функции (3.101) и, подставив его значение в (3.102), получим после преобразований случайную по-грешность формирования замещающего напряжения:

$$\delta \approx U_{\mathrm{r}\,m} \frac{t_{\mathrm{c},\mathrm{R}}}{\tau_{\mathrm{r}}} \frac{\Delta U_{\mathrm{r}\,m}}{U_{\mathrm{r}\,m}} - U_{\mathrm{r}m} \left(1 - \frac{1}{U_{\mathrm{r}\,m}} \sqrt{\frac{P_{x_{i}}}{k_{0}}}\right) \frac{t_{\mathrm{c},\mathrm{R}}}{\tau_{\mathrm{r}}} \frac{\Delta \tau_{\mathrm{r}}}{\tau_{\mathrm{r}}} + U_{\mathrm{r}\,m} \left(1 - \frac{1}{U_{\mathrm{r}\,m}} \sqrt{\frac{P_{x_{i}}}{k_{0}}}\right) \frac{t_{\mathrm{c},\mathrm{R}}}{\tau_{\mathrm{r}}} \frac{\Delta t_{\mathrm{c},\mathrm{R}}}{t_{\mathrm{c},\mathrm{R}}} + 0.5 \sqrt{\frac{P_{x_{i}}}{k_{0}}} \frac{t_{\mathrm{c},\mathrm{R}}}{\tau_{\mathrm{r}}} \frac{\Delta k_{0}}{k_{0}}.$$

$$(3.103)$$

Анализ правой части выражения с учетом допустимых отклонений величин U_{rm} , $t_{c.\kappa}$, τ_r , k_0 от их средних значений показывает, что второе и четвертое слагаемые в сумме составляют 2,7, а первое — 33% от значения третьего слагаемого, что позволяет, пренебрегая вторым и четвертым членами суммы, записать

$$\delta = \frac{t_{\text{c.R}}}{\tau_{\text{p}}} \Delta U_{\text{rm}} + \frac{1}{\tau_{\text{p}}} \left(U_{\text{rm}} - \sqrt{\frac{P_{x_l}}{k_0}} \right) \Delta t_{\text{c.R}}.$$
(3.104)

Правая часть выражения равна сумме двух случайных независимых величин $X_{U_{rm}} = t_{c.\kappa} \Delta U_{rm} / \tau_r; X_{\Delta t_{c.\kappa}} = (U_{rm} - \sqrt{P_{x_1}/k_0}) \Delta t_{c.\kappa} / \tau_r.$

Применяя формулу для нахождения математического ожидания суммы двух независимых случайных величин $X_{U_{rm}}$ и $X_{\Delta t_{c.k}}$, получаем

$$M [\delta] = \frac{t_{\text{c.R}}}{\tau_{\text{p}}} M [\Delta U_{\text{pm}}] + \frac{1}{\tau_{\text{r}}} \left(U_{\text{pm}} - \sqrt{\frac{P_{x_{\ell}}}{k_0}} \right) M [\Delta t_{\text{c.R}}].$$
(3.105)

Допуская, что каждая из случайных величин ΔU_{rm} и $\Delta t_{c.\kappa}$ распределена по нормальному закону с нулевым математическим ожиданием и среднеквадратическим отклонением соответственно σ_U и σ_t , находим $M[\delta] = 0$.

Значение σ_{δ} вычисляем по формуле среднеквадратического отклонения суммы двух независимых случайных величин $X_{U_{pm}}$ и $X_{\Delta t_{c,h}}$:

$$\sigma_{\delta} = \frac{1}{\tau_{\mathrm{r}}} \sqrt{t_{\mathrm{c.\kappa}}^2 \sigma_U^2 + \left(U_{\mathrm{rm}} - \sqrt{\frac{P_{x_i}}{k_0}}\right)^2 \sigma_t^2}.$$
(3.106)

Таким образом, σ_{δ} как композиция нормально распределенных независимых величин $X_{U_{rm}}$ и $X_{\Delta t_{c.H}}$ также распределяется по нормальному закону с нулевым математическим ожиданием и среднеквадратическим отклонением.

Из (3.106) видно, что существенного уменьшения σ_{δ} можно добиться за счет увеличения τ_{r} , ибо σ_{δ} обратно пропорционально значению τ_{r} , а также за счет уменьшения максимального напряжения на выходе ГПН — U_{rm} , или повышения стабильности источника питания ГПН, т. е. уменьшения σ_{U} . Максимальное значение среднеквадратического отклонения получаем при $P_{x_{I}} \rightarrow 0$:

$$\sigma_{\delta \max} = \frac{1}{\tau_{\rm r}} \sqrt{t_{\rm c.\kappa}^2 \sigma_U^2 + U_{\rm rm}^2 \sigma_t^2} \,. \tag{3.107}$$

Наиболее вероятно, что значения случайной погрешности распределены по нормальному закону, поэтому с большой степенью вероятности за величину предельной погрешности можно принять значение утроенного среднеквадратического отклонения

$$\delta_{\text{пред}} \approx 3\sigma_{\delta^{\overline{\bullet}}} \tag{3.108}$$

Выражение для выходного напряжения преобразователя с двойным компарированием с учетом абсолютных значений систематической $\Delta U_{\text{вых}\,i}$ и случайной δ погрешностей преобразования принимает вид $U_{\text{вых}\,i} = U_{ri} + \Delta U_{\text{вых}\,i} \pm \delta_{\text{пред}}$, где U_{ri} , $\Delta U_{\text{вых}\,i}$, $\delta_{\text{пред}}$ вычисляются соответственно по (3.83), (3.101), (3.108).

Найдем соотношение между относительной погрешностью формирования напряжения замещения у и относительной погрешностью преобразования мощности у_{Pi}. Из (3.83) при малых приращениях $\Delta U_{\rm r}$ определяем

$$\Delta P_{x_i} \approx 2k_0 U_{r_i} \Delta U_{r_i}. \tag{3.109}$$

Тогда из (3.109) и (3.83) получаем для относительной погрешности преобразования $P_{x_{\ell}}$

$$\gamma_{P_i} = \Delta P_{x_i} / P_{x_i} = 2\gamma_i, \tag{3.110}$$

где γ_i=⊲ΔU_{ri}/U_{ri} — относительная погрешность формирования замещающего напряжения, вычисляемая по формуле

$$\gamma_{i} = \frac{\Delta U_{\text{Bbix} i} \pm \delta (\Delta U_{\text{Bbix} i})_{\text{пред}}}{U_{\text{r}i}} = \gamma_{\text{сист} i} \pm \gamma_{\text{случ.пред} i}.$$
(3.111)

Правая часть выражения записана в виде суммы систематической относительной погрешности формирования замещающего напряжения усист і и случайной относительной погрешности формирования замещающего напряжения услуч.пред і.

Из формул (3.83), (3.101), (3.107), (3.108) можно получить выражение для усист и услуч.пред i:

$$\gamma_{\text{CHCT} i} = \frac{\Delta U_{\text{BHX} i}}{U_{\text{r}_{i}}} \frac{\sqrt{k_{0}} U_{\text{rm}} t_{\text{c.R}}}{\tau_{\text{r}} \sqrt{P_{x_{i}}}} - \frac{t_{\text{c.R}}}{\tau_{\text{r}}}; \qquad (3.112)$$

$$\gamma_{\text{CHYR-INPER} i} = \frac{\delta_{\text{PPER}}}{U_{\text{r}i}} = 3 \sqrt{k_{0} \left[t_{\text{c.R}}^{2} \sigma_{U}^{2} + \left(U_{\text{rm}} - \sqrt{\frac{P_{x_{i}}}{k_{0}}} \right)^{2} \sigma_{t}^{2} \right]} \frac{1}{\sqrt{P_{x_{i}}} \tau_{\text{r}}}. \qquad (3.113)$$

Из (3.110), (3.112), (3.113) находим варажение для полной погрешности преобразования:

$$\Delta P_i = \Delta P_x \operatorname{cuct} \pm \Delta P_x \operatorname{cnyy.nped} i, \qquad (3.114)$$

где $\Delta P_{x' \text{сист i}}$ — систематическая абсолютная погрешность преобразования, вычисляемая по формуле

$$\Delta P_{x \text{ curr } i} = 2P_{x_i} \gamma_{\text{curr } i}; \qquad (3.115)$$

 $\Delta P_{x \text{ случ.пред } i}$ — случайная предельная абсолютная погрешность преобразования, вычисляемая по формуле

$$\Delta P_{x \text{ случ.пред } i} = 2P_{x_i} \gamma_{\text{случ.пред } i}. \tag{3.116}$$

Подставляя (3.112) и (3.113) соответственно в (3.115) и (3.116), получаем соотношения, определяющие абсолютные значения систематической и случайной предельной погрешностей в следующем виде:

$$\Delta P_{x \text{ curr } i} = \frac{2 \sqrt{k_0} U_{\text{Fm}} t_{\text{C.H}}}{\tau_{\text{F}}} \sqrt{P_{x_i}} - \frac{2t_{\text{C.H}}}{\tau_{\text{F}}} P_{x_i}; \qquad (3.117)$$

$$\Delta P_{\mathbf{x} \text{ случ.пред}} = 6 \sqrt{k_0 \left[t_{\text{с.к}}^2 \sigma_U^2 + \left(U_{\text{г.m}} - \sqrt{\frac{P_{x_i}}{k_0}} \right)^2 \sigma_t^2 \right] \frac{\sqrt{P_{x_i}}}{\tau_{\text{г}}}}.$$
(3.118)

Используя (3.117), находим выражение для относительной систематической погрешности преобразования

$$\gamma_{P \text{ CHCT } i} = \frac{\Delta P_{x \text{ CHCT } i}}{P_{x_i}} = \frac{2\sqrt{k_0}t_{\text{C,R}}U_{\text{Fm}}}{\tau_{\text{F}}\sqrt{P_{x_i}}} - \frac{2t_{\text{C,R}}}{\tau_{\text{F}}}.$$
(3.119)

Соответственно из (3.118) получаем выражение для предельной относительной случайной погрешности преобразования

$$\gamma_{P \text{ случ. пред }i} = \frac{\Delta P_{x \text{ случ. пред }i}}{P_{x_i}} = 6 \sqrt{k_0 \left[t_{c,\kappa}^2 \sigma_U^2 + \left(U_{rm} - \sqrt{\frac{P_{x_i}}{k_0}} \right)^2 \sigma_t^2 \right]}.$$
(3.120)

Для уменьшения погрешности следует увеличивать τ_{Γ} — постоянную времени ГПН, уменьшая значение и нестабильность максимального выходного напряжения ГПН, уменьшать значение k_0 и увеличивать быстродействие коммутирующих элементов. Результаты исследования показали, что применение принципа двойного компарирования в значительной мере расширяет диапазон значений измеряемых величин ($P_{x \min}$ уменьшено в 10 раз), снижая при этом погрешности в 2—5 раз по сравнению с преобразователями однократного компарирования. Удовлетворительное совпадение расчетных и экспериментально полученных результатов (см. гл. 7) позволяет сделать вывод о том, что выведенные соотношения правильно отражают происходящие физические процессы и пригодны для расчетов при проектировании.

3.8. ПРИМЕНЕНИЕ ПРИНЦИПА АДАПТАЦИИ В АНАЛОГОВЫХ МФП С КОМПАРИРОВАНИЕМ

Принцип адаптации может быть применен для повышения быстродействия и уменьшения погрешностей автоматических МФП. Рассматривая преобразователи с двойным компарированием, следует отметить, что компенсация погрешности, определяемой $\Delta U_{\rm k}$, значительно увеличивает время преобразования, которое (см. рис. 3.7), может быть в основном определено суммой $t_{\rm np} = t_{\rm H} i + t_{\rm K} i + t_{\rm s.c.} i$.

Рассмотрим составляющую $t_{\rm H} = (U_{\rm Bl} - U_0 - \Delta U_{\rm K})\tau_y/U_{\rm H}$. $U_{\rm H}/\tau_y = v_{\rm H}$ - скорость интегрирования, тогда $t_{\rm H} = (U_{\rm Bl} - U_0 - \Delta U_{\rm K})/v_{\rm H}$, т. е. время интегрирования прямо пропорционально начальной разности сравниваемых напряжений и обратно пропорционально скорости интегрирования. Следовательно, уменьшения времени $t_{\rm H}$ можно достигнуть за счет увеличения скорости интегрирования $v_{\rm H}$ и уменьшения начальной разности $U_{\rm Bl} - U_0 - \Delta U_{\rm K}$.

Увеличение скорости интегрирования ограничивается быстродействием компаратора, так как при достаточно больших скоростях изменения сравниваемых на компараторе напряжений появляется дополнительная динамическая погрешность. Кроме того, для компенсации влияния помехи скорости изменения сравниваемых напряжений при первом и втором срабатываниях компаратора должны быть одинаковы. Поэтому после выбора $v_{\rm H}$ дальнейшее уменьшение $t_{\rm H}$ возможно за счет уменьшения разности $U_{\rm Bl}-U_0-\Delta U_{\rm K}$.

Из уравнения баланса мощиостей (3.79) с учетом $U_{\rm B} = U_{\rm o.c}k_{\rm B}$ при воздействии на терморезистор максимальных значений преобразуемой величины $P_{\rm xmax}(t)$ и минимальном значении $\sum_{j=1}^{m} P_{z_{j\min}}(t)$ определим $U_{\rm B\min} = 2k_{\rm B}$ $\sqrt{R_{\rm T}} \sqrt{P_{\rm T}} + \sum_{j=1}^{m} P_{z_{j\min}}(t) - \frac{1}{-P_{\rm x\max}(t)} = 2k_{\rm B} \sqrt{R_{\rm T}} \sqrt{P_{\rm o.c\min}(t)}.$

В этом случае время интегрирования будет минимальным: $t_{\rm H \,min} = (U_{\rm B \,min} - U_0 - \Delta U_{\rm K})/v_{\rm H} = (2k_{\rm B}\sqrt{R_{\rm T}}\sqrt{P_{\rm o.c\,min}(t)} - U_0 - \Delta U_{\rm K})/v_{\rm H}.$

При минимальных значениях преобразуемых величин $P_{x \min}$ и максимальном $\sum_{j=1}^{m} P_{z_{j \max}}$ значение $U_{B \max} = 2k_{B}\sqrt{R_{T}}\sqrt{P_{0.c \max}(t)}$, а время интегрирования будет максимальным: $t_{H \max} = [2k_{B}\sqrt{R_{T}} \times \sqrt{P_{0.c \max}(t)} - U_{0} - \Delta U_{K}]/v_{u}$.

Для избежания ложных срабатываний компаратора (рис. 3.7) должно выполняться условие $|U_0| \leq |U_{\rm B\,min} - \Delta U_{\rm K}|$. Подставив в неравенство выражение для $U_{\rm B\,min}$, получим $U_0 \leq 2k_{\rm B}\sqrt{R_{\rm T}} \times \sqrt{\frac{P_{\rm o.c\,min}(t)}{P_{\rm o.c\,min}(t)}} - \Delta U_{\rm K}$. И $t_{\rm H\,max} = 2k_{\rm B}\sqrt{R_{\rm T}}(\sqrt{\frac{P_{\rm o.c\,max}(t)}{P_{\rm o.c\,max}(t)}} - \sqrt{\frac{P_{\rm o.c\,min}(t)}{P_{\rm o.c\,min}(t)}})/v_{\rm H}$.

Время интегрирования $t_{и max}$ может достигать больших значений (порядка нескольких секунд), существенно увеличивая время преобразования. Для уменьшения времени интегрирования было предложено [27] устройство, схема которого приведена на рис. 3.9, а временные диаграммы работы — на рис. 3.10. Отличие этой схемы от приведенной на рис. 3.6 — наличие двух вторичных пре-

Рис. 3.9. Схема автоматического МФП с двойным компарированием и адаптацией начальных условий интегрирования при k_{B1}>k_{B2}

образователей BΠ1 И ВП2. Коэффициент перепреобразователя дачи ВП2 выбирается несколько меньше коэффициента передачи преобразователя ВП1, таким, чтобы выполнялось соотношение $k_{\text{B2}} = k_{\text{B1}} - \varepsilon$, где $k_{\text{B2}} \gg \varepsilon$ и к_{в1}≫ε. Выходное напряжение ВП2 используется качестве начального B уровня интегрирования вместо опорного напряжения U₀. Так как выходные напряжения ВП1 и ВП2 определяются выходнапряжением автоным балансной мостовой схемы, то выходное напря-

Рис. 3.10. Временные диаграммы работы автоматического МФП с двойным компарированием и адаптацией начальных условий интегрирования жение ВП2 при изменении $P_x(t)$ и $P_{cp}(t)$ будет следить за выходным напряжением ВП1, оставаясь несколько меньше (рис. 3.10,*a*). Для выходных напряжений ВП1 и ВП2 можно записать соответственно $U_{B1}(t) = 2k_{B1}\sqrt{R_T}\sqrt{P_{0.c}(t)}$; $U_{B2}(t) = 2(k_{B1}-\varepsilon)\sqrt{R_T}\sqrt{P_{0.c}(t)}$. Из условия $|U_{B2}| < |U_{B1}-\Delta U_K-\Delta U_H|$, где ΔU_H напряжение

Из условия $|U_{B2}| < |U_{B1} - \Delta U_{\kappa} - \Delta U_{H}|$, где ΔU_{H} — напряжение помехи, которая может привести к ложным срабатываниям компаратора (обычно $\Delta U_{\kappa} \gg \Delta U_{\Pi}$), определяют є. Пренебрегая для простоты значением ΔU_{μ} и подставляя в формулу для t_{H} значения U_{B1} и U_{B2} , получаем для схемы с адаптацией $t_{H}^{(A)} = [2k_{B1}\sqrt{R_{T}} \times \sqrt{P_{0.c}(t)} - 2(k_{B1} - \varepsilon)\sqrt{R_{T}}]\sqrt{P_{0.c}(t)}/v_{H} = 2\varepsilon\sqrt{R_{T}}\sqrt{P_{0.c}(t)}/v_{H}$.

После введения адаптации начала интегрирования к результату преобразования P_x время интегрирования уменьшилось примерно в $k_{\rm B1}/\epsilon$ раз. Из выражения для $t_{\rm H}^{(\rm A)}$ следует, что и после введения адаптации время интегрирования зависит от значений преобразуемых величин и дестабилизирующих воздействий.

На рис. 3.11 изображена схема, обеспечивающая минимальное время интегрирования, независимое от значений преобразуемой величины и внешних дестабилизирующих факторов. Отличие схемы от приведенной на рис. 3.9 состоит в том, что коэффициенты передачи ВП1 и ВП2 выбираются равными. Разница значений напряжений на входе компаратора обеспечивается суммированием (СУ) выходного напряжения ВП2 с напряжением ΔU , определяемым ИОН. Время интегрирования этой схемы определяется выражением $t_{\rm H}^{(\Lambda)} = \Delta U/v_{\rm H}$, где $\Delta U = U_{\rm B1} - U_{\rm B2} + \Delta U_{\rm H} + \Delta U_{\rm K} = = {\rm const.}$

Значение ΔU может быть выбрано очень малым (десятые и сотые доли вольта). Для устойчивой работы схемы его необхо-

Рис. 3.11. Структурная схема автоматического МФП с двойным компарированием и адаптацией начальных условий интегрирования при k_{B1}=k_{B2}

димо выбирать исходя из обеспечения помехоустойчивости схемы, т. е. $\Delta \hat{U} \ge \Delta U_{\kappa} + \Delta U_{\Pi}$.

Введение адаптации начальных условий интегрирования к результату преобразования $P_x(t)$ позволяет уменьшить время инте-грирования до нескольких десятых долей секунды, существенно увеличив быстродействие преобразователя.

Анализ МФП с однократным компарированием показал, что наиболее существенными факторами, влияющими на точность, являются погрешности, определяемые порогом чувствительности компаратора ΔU_{κ} и снижением уровня напряжения на запоминающем устройстве за время преобразования. Абсолютные значения этих погрешностей возрастают с ростом сравниваемых и запоминаемых сигналов. При использовании в качестве ЧЭ терморезистивных серийно изготавливаемых датчиков, включенных по автобалансной мостовой схеме, значения сравниваемых и запоминаемых напряжений могут быть довольно значительными и еще более возрастают в МФП, применяемых в условиях широкого диапазона внешних воздействий.

Для уменьшения этих погрешностей в [27] было предложено осуществлять адаптацию начальных условий компарирования к минимально допустимому уровню сравниваемых напряжений. Исследование происходящих при этом процессов проведено в [33].

В основу построения системы адаптации начальных условий компарирования положена возможность повышения чувствительности АМП с терморезисторами подачей дополнительной мощности разогрева на ЧЭ (гл. 2).

В соответствии с уравнением баланса мощностей (2.31), рассеиваемых на терморезисторе, включенном в автобалансную мо-стовую схему, приращение преобразуемой величины ΔP_x равно изменению мощности $\Delta P_{o.c.}$, подаваемой на ЧЭ по цепи обратной связи, и для чувствительности преобразователя можно записать

$$S^{(A)} = \Delta U_{o.c} / \Delta P_x = d U_{o.c} / dP_{o.c}.$$
(3.121)

Мощность, подаваемая на ЧЭ по цепи обратной связи, Po.c (t) = $= U_{M}^{2}(t)/4R_{T} = U_{o.c}^{2}(t)/4R_{T}$, откуда $U_{o.c}(t) = 2\sqrt{P_{o.c}(t)R_{T}}$. Про-дифференцировав выражение для $U_{o.c}$ по $P_{o.c}$ в соответствии с (3.121), получим

$$S^{(A)} = \sqrt{R_{\rm T}} / \sqrt{P_{\rm o.c}(t)}. \tag{3.122}$$

Из выражения (3.122) следует, что для обеспечения постоян-ства чувствительности $S^{(A)}$ необходимо, чтобы $P_{o.c}(t) = \text{const. } C$ другой стороны, для повышения чувствительности необходимо, чтобы $P_{o.c}(t) = \min$. Из уравнения баланса мощностей (2.31) для преобразователей с дополнительным источником подогрева ЧЭ

следует, что

$$P_{o.c}(t) = P_{T} + \sum_{j=1}^{m} P_{z_{j}}(t) - P_{x}(t) - P_{Д\Gamma}(t), \qquad (3.123)$$

где $P_{\text{дг}}$ — мощность дополнительного генератора. Выражение (3.123) показывает, что $P_{o,c}(t)$ изменяется в зави-симости от $P_x(t)$, неся информацию о преобразуемой величине, и при изменении $\sum_{j=1}^{m} P_{z_j}(t)$. Значение $P_{o.c}(t)$ может быть достаточно велико. Диапазон изменения Po.c(t) определяется из уравнений:

$$P_{o.c \min}(t) = P_{T} + \sum_{j=1}^{m} P_{z_{j\min}}(t) - P_{x\max}(t) - P_{\mathcal{A}\Gamma}(t); \qquad (3.124)$$

$$P_{o.c \max}(t) = P_{T} + \sum_{j=1}^{m} P_{z_{j\max}}(t) - P_{x\min}(t) - P_{\beta\Gamma}(t).$$
(3.125)

Анализ (3.122), (3.124) и (3.125) вполне очевидно показыва-ет, что при использовании МФП с компарированием в условиях широкого диапазона изменения внешних дестабилизирующих воздействий чувствительность не будет постоянной, а значения сравниваемых и запоминаемых напряжений Uo.c при различных $P_{x}(t)$ и $\sum_{j=1}^{m} P_{z_{j}}(t)$ будут изменяться в достаточно широких предеj=1 5 лах. Это обстоятельство, кроме того, предопределяет зависимость погрешности преобразования от $P_{x_i}(t)$ и $P_{z_j}(t)$.

Из (3.124) и (3.125) также видно, что выполнение условия $P_{o.c\,\min}(t) = \text{const}$ возможно при изменениях $P_{\text{ДГ}}(t)$, противоположных по знаку и равных по значению изменениям $P_x(t)$ и $\sum P_{z_i}$, а именно:

$$P_{o.c \min}(t) = P_{T} + \sum_{j=1}^{m} P_{z_{j\min}} - P_{x\max}(t) - P_{\mathcal{I}\Gamma\min}(t) = \text{const};$$

$$P_{o.c\min}(t) = P_{T} + \sum_{j=1}^{m} P_{z_{j\max}} - P_{x\min}(t) - P_{\mathcal{I}\Gamma\max}(t) = \text{const}.$$
(3.126)

Следовательно, диапазон изменения мощности управляемого генератора, дополнительно подаваемой на ЧЭ, можно определить из уравнений (3.126):

$$P_{\mathcal{A}\Gamma\min}(t) = P_{T} + \sum_{j=1}^{m} P_{z_{j\min}}(t) - P_{x\max}(t) - P_{o.c\min}(t);$$

$$P_{\mathcal{A}\Gamma\max}(t) = P_{T} + \sum_{j=1}^{m} P_{z_{j\max}}(t) - P_{x\min}(t) - P_{o.c\min}(t).$$
(3.127)

4 - 133

Осуществляя адаптивное изменение $P_{\rm dr}(t)$ в соответствии с (3.127), можно стабилизировать на минимально выбранном уровне $P_{\rm o.c\ min}$. При этом сравнение результатов воздействия на преобразователь $P_x(t)$ и $P_{\rm sam}(t)$ будет произведено на уровне всегда постоянного значения $U_{\rm o.c}$, соответствующего $P_{\rm o.c\ min}(t)$.

Для реализации адаптивного изменения $P_{\rm Дr}(t)$ в [27] предложена схема, изображенная на рис. 3.12. В состав преобразователя входят: АМП, вторичный преобразователь ВП, вычитающее устройство ВУ, источник опорного напряжения ИОН, компаратор К, интегратор И, генератор дополнительной мощности разогрева ДГ, выключатель входного воздействия B_n , генератор пилообразного замещающего напряжения ГПН, отсчетно-регистрирующее устройство ОРУ и блок управления, обеспечивающий необходимую логическую последовательность работы устройства.

Адаптация начальных условий компарирования основана на использовании дополнительной системы автоматического регулирования, содержащей АМП, ВП, ВУ, И, ДГ, с астатизмом первого порядка. Рассмотрим принцип ее работы. Выходное напряжение АМП после преобразования вторичным преобразователем сравнивается с опорным напряжением U_0 блока ИОН на вычитающем устройстве ВУ, и образующаяся разность ΔU через нормально замкнутые контакты 1 и 3 ключа Кл подается на вход И. Изменяющееся под действием этой разности выходное напряжение интегратора воздействует на ДГ, меняя значение его выходного сигнала и дополнительную мощность разогрева терморезистора до тех пор, пока напряжение на выходе вторичного преобразователя $U_{\rm B}$ не станет примерно равным выбранному значению

$\sum_{j=t}^{m} P_{x_j}(t) = P_{cp}(t)$)
Z,(t) Z2(t),	Zm (t)

Рис. 3.12. Схема автоматического МФП с адаптацией начальных условий компарирования

опорного напряжения U_0 . При этом значение разности между ними ΔU приближается к нулю и определяется выбранной рабочей точкой интегратора $U_{p.r}$ и приведенным дрейфом $e_{дp}$ интегратора, т. е. в установившемся состоянии $\Delta U = U_{p.r} + e_{дp}$. Конденсатор С1, подключенный ко входу И и ко входу а компаратора, заряжен до значения напряжения ΔU . Это установившееся исходное состояние схемы, которое характеризуется на диаграммах (рис. 3.13) временным интервалом $t_0 - t_1$.

Процесс преобразования начинается в момент времени t_1 после подачи с блока управления команды, которая замыкает один

Рис. 3.13. Временные диаграммы работы автоматического МФП с адаптацией начальных условий компарирования

из выключателей B_n . При этом на ЧЭ подается преобразуемая величина $P_{x_l}(t)$; выходное напряжение АМП, а вместе с ним и $U_{\rm B}$ уменьшаются, сигнал рассогласования ΔU возрастает и изменяет $U_{\rm Д\Gamma}$ до тех пор, пока $U_{\rm B}$ не станет равным U_0 , а сигнал рассогласования снова станет равным $\Delta U = U_{\rm P.T} + e_{\rm AP}$. Это первый такт преобразования. На временных диаграммах (рис. 3.13) ему_соответствует интервал $t_1 - t_2$.

После окончания переходных процессов к моменту t_2 состояние схемы описывается уравнением, составленным на основе (3.126), $P_{o.c\,\min} = P_{\tau} + \sum_{j=1}^{m} P_{z_i}(t_2) - P_{x_i}(t) - P_{\mu}(t_2) = \text{const,}$ или с учетом $U_{\text{B}} = U_{o.c}k_{\text{B}} = U_0 - \Delta U$ и $P_{\mu}(t) = U^2_{\mu}(t)/R_{\tau}$

$$(U_0 - \Delta U)^2 / 4R_{\rm T} k_{\rm B}^2 = P_{\rm T} + \sum_{j=1}^m P_{z_j}(t_2) - P_{x_i}(t) - U_{\rm JI\Gamma}^2(t_2) / R_{\rm T} = \text{const.}$$
(3.128)

Напряжение ΔU подается на вход a компаратора и запоминается конденсатором С1, подключенным ко входу интегратора. После завершения первого такта преобразования (интервал $t_1 - t_2$) в момент t_2 по команде с БУ контакты 1 и 3 Кл размыкаются, разрывая систему автоматического регулирования. Выключатель В_n размыкается, и подача P_{x_i} на ЧЭ прекращается. При этом $U_{
m o.c.}$ $U_{\rm B}$ и ΔU увеличиваются. Напряжение рассогласования ΔU во втором такте преобразования через контакты 1 и 2 Кл подаются на вход б компаратора. Блок управления в момент t2 включает ГПН, выходное напряжение которого $U_r(t)$ подается на ЧЭ, формируя $P_{\text{вам}}(t)$. По мере возрастания $U_r(t)$ напряжения $U_{\text{o.c}}$ и $U_{\text{в}}$ $=U_0-\Delta U$ уменьшаются. В связи с этим уменьшается и ΔU , подаваемое на вход б компаратора. Это второй, заключительный, такт преобразования. На временных диаграммах ему соответствует интервал t_2 — t_3 . В момент t_3 , когда ΔU , подаваемое на вход б компаратора, станет равным ΔU ранее в первом такте, которое запомнил конденсатор C1 и которое подается на вход a, компаратор срабатывает, фиксируя их равенство. Выходной сигнал компаратора через БУ прекращает рост $U_r(t)$ и включает ОРУ, которое и регистрирует $U_r(t_3)$ в момент t_3 . Состояние схемы в момент времени t₃ может быть описано уравнением

$$\frac{(U_0 - \Delta U)^2}{4R_T k_a^2} = P_T + \sum_{j=1}^m P_{z_j}(t_3) - P_{\text{BBM}}(t_3) - \frac{U_{\mu\Gamma}^2(t_3)}{R_T}.$$
 (3.129)

В (3.128) и (3.129) равенство левых частей уравнений устанавливается компаратором по равенству ΔU , $P_{\rm T}$ =const, $U_{\rm Д\Gamma}$ (t_2) = $=U_{\rm Д\Gamma} t_3$, поскольку управляющее воздействие на входе интегратора остается постоянным и равным ΔU . В соответствии с услови-100 ем (1.4) $\sum_{j=1}^{m} P_{z_j}(t_2) = \sum_{j=1}^{m} P_{z_j}(t_3)$, так как скорость изменения P_{z_j}

мала и интервал времени $t_3 - t_2$ также мал вследствие высокого быстродействия преобразователя. Следовательно

$$P_{x_{i}}(t) = P_{\text{3aM}\,i}(t_{3}) = U^{2}_{r}(t_{3})/4R_{\tau}.$$
(3.130)

Равенство преобразуемой и замещающей величин устанавливается с помощью запоминания и сравнения полученных в результате первого и второго такта напряжений ΔU , которые невелики. Запоминание и сравнение малых значений напряжений могут быть осуществлены со значительно меньшей абсолютной погрешностью, следовательно, погрешность данной схемы будет меньше, чем при однократном и двойном компарировании без адаптации, когда сравниваемые напряжения достигают нескольких вольт. Применение адаптации начальных условий компарирования позволяет уменьшить значения сравниваемых и запоминаемых напряжений до 0,1—0,5 В. При этом абсолютная погрешность преобразования, обусловленная несовершенством устройств сравнения и запоминания, не превышает 3—5 мкВт.

Кроме того, поддержание постоянства и уменьшение абсолютной величины $P_{o.c}$ за счет наличия и адаптивного регулирования $P_{\rm Д\Gamma}$ позволяют в соответствии с (3.122) повысить и стабилизировать чувствительность.

3.9. КОРРЕКЦИЯ ПОГРЕШНОСТЕЙ АНАЛОГОВЫХ МФП ДВУХТАКТНЫМ ЗАМЕЩЕНИЕМ ПРЕОБРАЗУЕМОЙ ВЕЛИЧИНЫ

Многофункциональные преобразователи с однократным и двойным компарированием, а также адаптацией начальных условий компарирования обеспечивают высокое быстродействие, полную автоматизацию процесса преобразования, достаточно малые погрешности (до 3—5 мкВт), обусловленные в основном $\Delta U_{\rm k}$ компаратора, погрешностью запоминающего устройства, нестабильностью параметров генератора замещающего напряжения. Однако при преобразовании достаточно малых значений $P_x(t)$ (5—10 мкВт) возникает задача еще большего снижения влияния нестабильности параметров элементов схемы. Решение этой задачи было предложено в [25].

Рассмотрим схему МФП, изображенную на рис. 3.14. Она состоит из калибровочных делителей Д1, Д2, ..., Д_n входных преобразуемых величин $P_{x1}(t)$, $P_{x2}(t)$, ..., $P_{x_n}(t)$, выключателей входного воздействия В1, В2, ..., В_n, АМП, вторичного преобразователя ВП, компаратора К, запоминающего устройства ЗУ, генераторов замещающего пилообразного напряжения ГПН1 и ГПН2, переключателя П, вычитающего устройства ВУ, отсчетно-регистрирующего устройства ОРУ и блока управления БУ.

Рис. 3.14. Схема автоматического МФП с двухтактным замещением преобразуемой величины

Построение схемы и ее работа подобны схеме преобразователя с однократным компарированием. Отличие в том, что вначале по значению замещающей мощности с ГПН1 определяется $P_{x_i}(t)$, а затем по значению замещающей мощности с ГПН2 определяется часть $P_{x_i}(t)$, равная $P_{x_i}(t)/k_{\pi_i}$. За меру преобразуемой величины $P_{x_i}(t)$ берется разность замещающих мощностей.

На первом этапе входное преобразуемое воздействие, например, $P_{x1}(t)$, минуя делитель Д1, через замкнутые контакты выключателя В1 подается на ЧЭ автобалансного мостового преобразователя. На выходе АМП в соответствии с уравнением баланса мощностей устанавливается некоторое напряжение U_{0,C1}, соответствующее значению Россі, подаваемой по цепи обратной связи на ЧЭ. Это напряжение Uo.c1 после преобразования вторичным преобразователем ВП запоминается запоминающим устройством ЗУ. После окончания переходных процессов по команде с БУ выключатель B1 размыкается. Подача $P_{x1}(t)$ на схему прекращается. Включается ГПН1, который формирует замещающую мощность $P_{3am1}(t)$, подаваемую через переключатель П на ЧЭ взамен $P_{x1}(t)$. Результат преобразования $P_{3aM1}(t)$ после вторичного преобразователя ВП подается на вход а компаратора. На вход б компаратора в это время подается ранее запомненный результат преобразовання $P_{x1}(t)$ с ЗУ. В момент равенства результатов преобразования $P_{x1}(t)$ и $P_{\text{зам 1}}(t)$ компаратор срабатывает, останавливает рост напряжения ГПН1, которое по команде с БУ подается на вход 1 вычитающего устройства ВУ. Это первый этап работы схемы, который в соответствин с принципами многофункционального преобразования состоит из двух тактов и описывается следующей системой уравнений:

$$P_{T} - P_{x1}(t) + \sum_{j=1}^{m} P_{z_{j}}(t) = P_{0.c1}(t);$$

$$P_{T} - P_{BAM 1}(t) + \sum_{j=1}^{n} P_{z_{j}}(t) = P'_{0.c1}(t).$$
(3.131)

Ранее неоднократно отмечалось, что $P_{\rm T}$ const, сумма дестабилизирующих воздействий $\sum_{i=1}^{m} P_{z_i}(t)$ за весьма малое время коммутации и преобразования $P_{x1}(t)$ практически не изменяется. Равенство $P_{\rm o.c.1}(t) = P'_{\rm o.c.1}(t)$ устанавливается по равенству входных сигналов компаратора: $U_{\rm B1} = U_{\rm o.c.1}k_{\rm B} = U'_{\rm B1} + \Delta U_{\rm K} = U'_{\rm o.c.1}k_{\rm B} + \Delta U_{\rm K}$. С учетом сказанного можно сделать вывод, что в уравнениях (3.131) $P_{x1}(t) = P_{\rm 3am1}(t)$, или

$$P_{x1}(t) = P_{\text{sam1}}(t) = U^2_{r1}(t) / 4R_{\tau} = k_0 U^2_{r1}(t). \qquad (3.132)$$

Выражение (3.132) соответствует функции преобразования многофункционального преобразователя с однократным компарированием, которая определяется выражением (3.33), следовательно,

$$U_{r1}(t) = \frac{P_{r}\tau_{r1}}{2k_{0}\tau_{0}U_{r1m}} \left[\frac{2 - \frac{1}{U_{r1m}}\sqrt{\frac{P_{x1}(t)}{k_{0}}}}{1 - \frac{1}{U_{r1m}}\sqrt{\frac{P_{x1}(t)}{k_{0}}}} \right] + \sqrt{\frac{P_{x1}(t)}{k_{0}}} + \Delta U_{r1}(\Delta U_{r}).$$
(3.133)

В отличие от (3.33) в выражение (3.133) введена для общности рассмотрения составляющая $\Delta U_{r1}(\Delta U_k)$, представляющая собой погрешность, обусловленную порогом чувствительности компаратора ΔU_k . Эта составляющая при выводе формулы (3.33) была опущена для простоты изложения в предположении, что схемы МФП применяются при преобразовании достаточно больших значений $P_{x1}(t)$, когда влиянием ΔU_k можно пренебречь. Напряжение U_{r1} подается на вход 1 вычитающего устройства ВУ. После этого начинается второй такт работы схемы. При этом входная преобразуемая величина $P_{x1}(t)$ подается на ЧЭ преобразователя через калиброванный делитель Д1 с коэффициентом деления $k_{д1}$. Результат запоминается, как и в первом такте, ЗУ. Замещение воздействия $P_{x1}(t)/k_{д1}$ на преобразователь осуществляется формированием $P_{3am 2}(t)$ генератором ГПН2. По аналогии с первым этапом преобразования процессы, происходящие в схеме, могут быть описаны следующей системой уравнений:

$$P_{T} - P_{x1}(t)/k_{\Pi 1} + \sum_{j=1}^{m} P_{z_{j}}(t) = P_{0, c_{2}}(t);$$

$$P_{T} - P_{BAM 2}(t) + \sum_{j=1}^{m} P_{z_{j}}(t) = P'_{0, c_{2}}(t).$$
(3.134)

По аналогии с первым тактом можно записать

$$P_{x}(t)/k_{\Pi^{1}} = P_{3aM 2}(t) = U^{2}_{r2}(t)/4R_{\tau} = k_{0}U^{2}_{r2}(t). \qquad (3.135)$$

Следовательно, для второго этапа замещения в соответствии с (3.33) функция преобразования может быть представлена в виде

$$U_{r_{2}}(t) = \frac{P_{r} \tau_{r_{2}}}{2k_{0} \tau_{0} U_{r_{2}m}} \left[\frac{2 - \frac{1}{U_{r_{2}m}} \sqrt{\frac{P_{x1}(t)}{k_{\mu_{1}}k_{0}}}}{1 - \frac{1}{U_{r_{2}m}} \sqrt{\frac{P_{x1}(t)}{k_{\mu_{1}}k_{0}}}} \right] + \sqrt{\frac{P_{x1}(t)}{k_{\mu_{1}}k_{0}}} + \Delta U_{r_{2}}(\Delta U_{h}).$$
(3.136)

Напряжение $U_{r2}(t)$ подается на вход 2ВУ. При этом результат преобразования определяется разностью выходных напряжений ГПН1 и ГПН2, которая и фиксируется ОРУ, т. е.

$$U_{\rm BMX}(t) = U_{\rm P1}(t) - U_{\rm P2}(t). \tag{3.137}$$

Если выбрать параметры ГПН2, равными $U_{r^2m} = U_{r^1m} / \sqrt{k_{\mu^2}}$ и $\tau_{r^2} = \tau_{r^1} / \sqrt{k_{\mu^1}}$, то после подстановки U_{r^2m} и τ_{r^2} в (3.136) и определения разности выражений (3.133) и (3.136) в соответствии с (3.137) получим

$$U_{\rm BLIX 1}(t) = \frac{\sqrt{k_{\rm H1}} - 1}{\sqrt{k_{\rm H1}}} \sqrt{\frac{P_{\rm x1}(t)}{k_0}}.$$
 (3.138)

Двухтактное замещение преобразуемой величины и введение структурно-параметрической коррекции позволяет получить аналитическое выражение для функции преобразования, в которое не входят $\Delta U_{\rm k}$, τ_0 , τ_r , U_{rm} . Следовательно, вариация их параметров не влияет на результат преобразования.

3.10. АНАЛИЗ ВЛИЯНИЯ ПОМЕХ НА АНАЛОГОВЫЕ МФП

Терморезистивный ЧЭ (термистор) нашел широкое применение для измерения различных физических величин. Основные недостатки этого элемента — большая инерционность и нелинейность характеристики. Первый недостаток в значительной степени преодолевается включением $R_{\rm T}$ в АМП, где автоматически обеспечивается баланс моста при воздействии на $R_{\rm T}$ различных возмущающих воздействий, в том числе и измеряемой величины x. В этом случае, поскольку режим термистора и температура его рабочего тела практически постоянны, эквивалентная постоянная времени АМП много меньше тепловой постоянной времени $R_{\rm T}$.

Для исключения второго недостатка (нелинейности характеристики) $R_{\rm T}$ измерительные устройства разрабатываются с использованием принципа разновременного сравнения измеряемого и замещаемого (уравновешивающего) сигналов [23—27]. В качестве замещающего сигнала целесообразно использовать напряжение постоянного тока, формирование и регистрацию значений которого с высокой точностью легко обеспечить весьма простымн схемотехническими средствами. Для исключения корреляционной связи между замещающим сигналом и сигналом балансировки моста в качестве последнего используется мост переменного тока.

Измерительное устройство (рис. 3.15), построенное по методу разновременного сравнения на базе АМП переменного тока, работает следующим образом. При подаче напряжения питания возникает генерация на резонансной частоте избирательного усилителя ИУ, поскольку напряжение разбаланса моста ΔU и выходное напряжение ИУ синфазны. По окончании переходного процесса на выходе ИУ устанавливается амплитуда напряжения, обеспечивающая балансировку моста. Остаточный разбаланс зависит от коэффициента k усиления ИУ и определяется как $\Delta U \approx U_{0,c}/k$.

Рис. 3.15. Структурная схема измерительного преобразователя с разновременным сравнением

При подаче на R_{τ} измеряемого сигнала x через переключатель П1 происходит дополнительный нагрев терморезистора, что вызывает уменьшение амплитуды $U_{o.c}$ до значения U_1 , обеспечивающего состояние баланса моста. При этом можно записать уравнение баланса мощностей

 $U_{\rm o.c.1}^2/4R_{\rm T}+x=P_{\rm T},$

где x — эквивалентное значение мощности входного сигнала, воздействующего на R_{τ} ; P_{τ} — мощность, необходимая для разогрева R_{τ} в точке баланса моста; $U^{2}_{o.c.1}/4R_{\tau}$ — мощность, поступающая на R_{τ} по цепи обратной связи АМП.

(3.139)

Напряжение U_{0,с1} после детектирования и фильтрации устройством ДФ поступает через контакты I переключателя П2 на аналоговое ЗУ, затем на вход 1 компаратора К. Потом происходит отключение измеряемого сигнала х от ЧЭ элемента. Это вызывает увеличение амплитуды Uo.c до значения, обеспечивающего сохранение состояния баланса моста. По окончании переходного процесса устройством управления УУ запускается генератор пилообразного напряжения ГПН, возрастающее выходное напряжение которого обеспечивает дополнительный нагрев R_т, что, в свою очередь, вызывает уменьшение напряжения U_{0.с}. При этом выходное напряжение ДФ через контакты II переключателя П2 подается на вход 2 компаратора. В момент, когда тепловое воздействие замещающего (уравновешивающего) сигнала ГПН на R_т станет равным тепловому воздействию измеряемого сигнала х. выходное напряжение ДФ — ранее запомненному в ЗУ напряжению, сработает компаратор, запускающий ОРУ, которое фиксирует значение выходного напряжения ГПН, связанное со значением x (по мощности разогрева \bar{R}_{τ}) соотношением

 $x = k_0 U_{3aM}^2,$ (3.140)

где k_0 — коэффициент пропорциональности; U_{3am} — замещающее напряжение.

Помехозащищенность — одно из основных требований, предъявляемых к измерительным устройствам. Поэтому исследование помехозащищенности, определение количественных соотношений между погрешностью измерения, параметрами преобразователя и помехи, а также разработка рекомендаций по выбору того или иного метода преобразования в зависимости от вида помехи [39] представляют большой практический интерес.

При исследовании помехозащищенности необходимо рассматривать действие помехи на наиболее чувствительные к их воздействию узлы и звенья прибора. Наиболее чувствительным к помехам звеном является компаратор. Проведем анализ действия помех в предположении, что на один из входов компаратора действует постоянное напряжение U_{3y} , на которое накладывается напряжение помехи U_n . Влияние помехи обусловливает нестабиль-106 ность момента срабатывания компаратора, а это приводит к погрешности измерения.

В преобразовательном тракте анализируемый сигнал проходит через фильтр нижних частот, поэтому напряжение помехи на входе компаратора присутствует как узкополосный низкочастотный случайный процесс, который можно представить в общем виде

$$U(t) = V(t)\cos\psi(t),$$

где V(t), $\psi(t)$ — некоторые случайные функции времени. Определим закон распределения случайных погрешностей измерения, а также доверительные интервалы для заданных уровней входного сигнала x при некоторых ограничениях, наложенных на вид помехи. В частности, когда амплитуда помехи значительно превышает ее флюктуации, справедливо соотношение

$$U_{\pi} = U_m \sin(\omega t + \varphi) \tag{3.142}$$

(здесь ω — круговая частота помехи), т. е. помеха рассматривается как детерминированное гармоническое напряжение.

Для наглядности воспользуемся временной диаграммой напряжений, поступающих на вход компаратора (рис. 3.16). На один из входов компаратора поступает постоянный уровень напряжения U_{3y} , на который наложена помеха. Используя принцип суперпозиции, для суммарного напряжения можно записать $U = U_{3y} + U_m \sin(\omega t + \varphi)$. На другой вход компаратора поступает изменяющийся под действием замещающей мощности сигнал $U_y(t)$, который не коррелирован с помехой, поэтому значение фазы φ можно считать случайной величиной, распределенной с постоянной плотностью вероятности $W(\varphi)$ в интервале (— π , $+\pi$). Интервал времени от реального момента срабатывания компаратора t_p до идеального t_n , который обеспечивается при отсутствии помехи, много меньше времени уравновешивания, и, следовательно, напряжение $U_y(t)$ на входе компаратора за интервал $t_n - t_p$

Рис. 3.16. Временная диаграмма напряжения на входе компаратора

(3.141)

допустимо считать линейной функцией времени. В этом случае согласно рис. 3.16 можно записать: $U_y(t) - U_{3y} = \text{tg } \beta(t - t_{\text{R}})$, где $\text{tg } \beta = - \left| \frac{dU_y(t)}{dt} \right|_{t=t_{\text{R}}}$ — абсолютная величина углового коэффициента касательной к кривой $U_y(t)$ в точке $t = t_{\text{R}}$.

Для нахождения координаты точки А пересечения двух функций сравниваемых напряжений необходимо решить систему уравнений

$$U = U_{m} \sin(\omega t + \varphi) + U_{3y}; U - U_{3y} = \operatorname{tg} \beta (t - t_{y}).$$
(3.143)

Поскольку рассматриваем узкополосную помеху с малым уровнем флуктуации, случайные величины $U_{\rm c}$ и $t_{\rm c}$ можно выразить как функции одного аргумента

$$U_{\rm c} = U(\varphi); t_{\rm c} = t(\varphi).$$
 (3.144)

Для нахождения закона распределения случайной величины $U_{\rm c}$ достаточно знать: интервал девиации величины $U_{\rm c}$ при изменении фазы φ в интервале (— π , + π) и производные $dU(\varphi)/d\varphi$; $dt(\varphi)/d\varphi$.

Как видно из рис. 3.16, случайный уровень срабатывания компаратора U_c ограничен U_0 и $U_m + U_{3y}$, которые определяются крайними возможными точками пересечения напряжения помехи с функцией $U_y(t)$ (крайние положения отмечены 1—1', 3—3').

Для нахождения производной dt (q)/dq используем (3.143):

$$U_m \sin(\omega t + \varphi) + tg \beta(t_c - t_{\scriptscriptstyle H}) = 0. \tag{3.145}$$

Подставляя в (3.145) $t_c = t(\varphi)$ и дифференцируя по φ , получаем $U_m \cos(\omega t_c + \varphi) \left[\omega \frac{dt_c}{d\varphi} + 1 \right] + \operatorname{tg} \beta \frac{^{r} dt_c}{d\varphi} = 0.$ Тогда

$$\frac{dt_{\rm c}}{d\,\varphi} = -\frac{U_m\cos\left(\omega\,t_{\rm c}+\varphi\right)}{U_m\,\omega\cos\left(\omega\,t_{\rm c}+\varphi\right)+\,{\rm tg}\,\beta}\,.\tag{3.146}$$

Подставив во второе уравнение системы (3.143) значения U_c, t_c из (3.144), получим тождество при | $\varphi | \leq \pi$, из которого найдем дифференциал

$$\frac{dU_{\rm c}}{d\varphi} = -\operatorname{tg}\beta \frac{dt_{\rm c}}{d\varphi}.$$
(3.147)

C учетом (3.146) и (3.147) $\frac{dU_{c}}{d\varphi} = \frac{\operatorname{tg}\beta U_{m}\cos\left(\omega t_{c} + \varphi\right)}{U_{m}\omega\cos\left(\omega t_{c} + \varphi\right)\operatorname{tg}\beta}.$

Плотность вероятности распределения случайной величины U_c определяем по формуле

$$W(U_{\rm c}) = W(\varphi) \Delta \varphi / \Delta U_{\rm c}, \qquad (3.148)$$

где $W(\phi) = 1/2\pi$ — плотность вероятности распределения ϕ ;

$$\Delta U_{\rm c} = \frac{dU_{\rm c}}{d\varphi} \Delta \varphi = \frac{\operatorname{tg} \beta U_m \cos \left(\omega t_{\rm c} + \varphi\right) \Delta \varphi}{U_m \omega \cos \left(\omega t_{\rm c} + \varphi\right) + \operatorname{tg} \beta}.$$
(3.149)
Подставляя соотношение (3.149) в (3.148), получаем

 $W(U_{\rm c}) = \omega/2\pi \operatorname{tg} \beta + 1/2\pi U_m \cos(\omega t_{\rm c} + \varphi).$ (3.150)

Так как $\overline{U}_c = U_c - U_{3y}$, где $U_{3y} = \text{const}$, то $\frac{d\overline{U}_c}{d\varphi} = \frac{dU_c}{d\varphi}$. Следовательно, законы распределения \overline{U}_c и U_c совпадают, т. е. $W(\overline{U}_c) = W(U_c)$. Принимая во внимание равенство $\overline{U}_c = U_m \sin(\omega t_c + \varphi)$, получаем

$$U_m \cos(\omega t_c + \varphi) = \sqrt{U_m^2 - U_c^2} = U_m \sqrt{1 - (U_c/U_m)^2}.$$
 (3.151)

Окончательно можно записать выражение для плотности вероятности распределения случайной величины \bar{U}_{c} :

$$W(\overline{U}_{c}) = \frac{\omega}{2\pi \operatorname{tg} \beta} + \frac{1}{2\pi U_{m} \sqrt{1 - (\overline{U}_{c}/U_{m})^{2}}}.$$

При постоянной амплитуде напряжения помехи U_m погрешность порога срабатывания \overline{U}_c компаратора удовлетворяет условию $\overline{U}_0 < \overline{U}_c < U_m$. Поэтому при определенных значениях tg β и U_m имеем следующий закон распределения U_c :

$$W(\overline{U}_{c}) = \begin{cases} \frac{\omega}{2\pi \ \text{tg} \ \beta} + \frac{1}{2\pi U_{m} \sqrt{1 - (\overline{U}_{c}/U_{m})^{2}}} & \text{для } \overline{U}_{0}^{*} < \overline{U}_{c} < U_{m}; \\ 0 & \text{для } U_{c} \leq U_{0}. \end{cases}$$
(3.152)

Следовательно, можно записать:

$$1 = \int_{\overline{U}_0}^{U_m} W(\overline{U}_c) \, d\overline{U}_c = \int_{\overline{U}_0}^{U_m} \left[\frac{\omega}{2 \pi \, \text{tg} \, \beta} + \frac{1}{2 \pi \, U_m \, \sqrt{1 - (U_c/\overline{U}_m)^2}} \right] d\overline{U}_c.$$

Интегрируя правую часть данного выражения, получаем уравнение для определения \overline{U}_0 :

$$1 = \int_{\overline{U}_0}^{U_m} \frac{\omega d\overline{U}_c}{2 \pi \lg \beta} + \int_{\overline{U}_0}^{U_m} \frac{d\overline{U}_c}{2 \pi U_m \sqrt{1 - (\overline{U}_c/U_m)^2}} = \frac{\omega (U_m - \overline{U}_0)}{2 \pi \lg \beta} + \frac{1}{2\pi} [\arcsin 1 - \arcsin (\overline{U}_0/U_m)].$$
(3.153)

Поскольку $\arcsin 1 = \pi/2$ и $\arcsin (\overline{U}_0/U_m) \approx \overline{U}_0/U_m$ для малых значений $\overline{U}_0/U_m \ll 1$, уравнение (3.153) упростится:

$$1 = \frac{\omega (U_m - \bar{U}_0)}{2\pi \, \mathrm{tg}\beta} + \frac{1}{4} - \frac{\bar{U}_0}{2\pi \, U_m} \,. \tag{3.154}$$

Решая уравнение относительно \overline{U}_0 , получаем

$$\overline{U}_{0} \approx \frac{\omega U_{m} - 4.7 \operatorname{tg} \beta}{\omega + \operatorname{tg} \beta / U_{m}}.$$
(3.155)

В рассматриваемых преобразователях мерой измеряемой тепловой мощности х является эквивалентная мощность замещения постоянного тока $P_{3am} = k_0 U_{3am}^2$. Используя формулу дифференциала и полагая $\Delta x \approx \Delta P_{3am}$, определяем

$$\Delta x = c \left(t_{\rm H} \right) \Delta t, \tag{3.156}$$

где $c(t_{\mu}) = 2k_0 U_{3am} \frac{dU_{3am}}{dt} > 0$ при $t = t_{\mu}$. (3.157)

Погрешность порога срабатывания компаратора при наличии синусоидальной помехи равна

$$\bar{U}_{c} = \operatorname{tg} \beta \left(t_{\scriptscriptstyle H} - t_{\scriptscriptstyle P} \right) \approx \operatorname{tg} \beta \Delta t, \qquad (3.158)$$

где $\Delta t = t_{\rm H} - t_{\rm p} > 0$ — временная погрешность срабатывания компаратора.

Определяя Δt из (3.158) и подставляя это соотношение в (3.156), получаем

$$\Delta x = c \left(t_{\rm H} \right) \bar{U}_{\rm c} / {\rm tg} \,\beta. \tag{3.159}$$

Подставляя в (3.159) вместо \bar{U}_{c} предельные значения случайного порога срабатывания компаратора, определим максимальные и минимальные значения абсолютной погрешности измерения по мощности:

$$\Delta x_{\max} = c(t_{\mu}) U_m / tg \beta; \qquad (3.160)$$

$$\Delta x_{\min} = c(t_{\mu}) \overline{U}_0 / \lg \beta. \tag{3.161}$$

Значение $c(t_{\rm H})$ будем определять в предположении, что форма вамещающего напряжения $U_{3am} = U_{\rm r}(t)$, поступающего с выхода ГПН, носит экспоненциальный характер, как наиболее просто реализуемый:

$$U_{\rm r}(t) = U_{\rm rm} (1 - {\rm e}^{-t/\tau} {\rm r}), \qquad (3.162)$$

где U_{rm} — напряжение питания интегрирующей *RC*-цепочки ГПН; т_г — постоянная времени RC-цепочки ГПН.

Дифференцируя (3.162) по t и переходя к конечным приращениям, получаем

$$\Delta U_{\rm F} = \Delta U_{\rm BBM} \frac{U_{\rm F}}{\tau_{\rm F}} \,\mathrm{e}^{-t/\tau_{\rm F}} \,\Delta t. \tag{3.163}$$

С учетом выражения $x = P_{sam} k_0 U_r^2 (1 - e^{-t/\tau})^2$ находим

$$e^{-t/\tau_{\rm F}} = 1 - \frac{1}{U_{\rm F}} \sqrt{x/k_0} \,. \tag{3.164}$$

Подставляя (3.164) в (3.163), с учетом (3.140), (3.157) для момента срабатывания компаратора $x = P_{\text{зам}}$ получаем

$$c(t_{\rm m}) = \frac{2\sqrt{k_0 x} U_{\rm F} \left(1 - \frac{1}{U_{\rm F}} \sqrt{x/k_0}\right)}{r_{\rm F}}.$$
 (3.165)

Для нахождения tg β используем уравнение баланса мощностей на этапе уравновешивания, опуская для простоты $P_{cp}(t)$,

$$P_{\rm T} = P_{\rm o.c} + P_{\rm 3aM} = \frac{U_{\rm y}^2(t)}{4R_{\rm T} k_{\rm y}^2} + k_0 U_{\rm r}^2 (1 - e^{-t/\tau_{\rm r}})^2.$$

Выражая отсюда функцию $U_y(t)$ и дифференцируя ее по t, получаем с учетом (3.164) соотношение

$$\operatorname{tg}\beta = -\frac{dU_{y}(t)}{dt} = \frac{2k_{0}U_{r}\sqrt{R_{T}k_{0}}\sqrt{x}}{\tau_{r}\sqrt{P_{T}-x}} \left(1 - \frac{1}{U_{r}}\sqrt{\frac{x}{k_{0}}}\right). \quad (3.166)$$

Принимая во внмание соотношения (3.155), (3.165) и (3.166), а также неравенство tg $\beta/U_m \ll \omega$, которое всегда можно обеспечить выбором параметров ГПН, для предельных значений случайной погрешности можно записать:

$$\Delta x_{\max} = c(t_{R}) U_m / \mathrm{tg} \,\beta = U_m \, \sqrt{P_{\mathrm{o.c}}} / k_0 \, \sqrt{R_{\tau}}; \qquad (3.167)$$

$$\Delta x_{\min} = c(t_{\rm H}) = \overline{U}_0/\mathrm{tg}\,\beta = \Delta x_{\max} - 4.7\mathrm{tg}\,\beta\,\sqrt{P_{\rm o.c}/\omega}k_0\,\sqrt{R_{\rm T}}.$$
 (3.168)

Анализ соотношений показывает, что максимальная абсолютная погрешность измерения, обусловленная гармонической помехой, определяется только амплитудой U_m помехи, в то время как минимальное значение погрешности зависит еще от частоты о помехи и скорости изменения замещающей мощности, определяющей значение tg β. Из (3.167) и (3.168) нетрудно убедиться, что при фиксированных параметрах схемы и постоянстве амплитуды пульсаций U_m величина Δx_{\min} носит систематический характер, т. е. является постоянной составляющей случайной погрешности и может быть учтена при калибровке преобразователя. Из соотношения (3.168) видно, что Δx_{\min} возрастает с увеличением частоты помехи. Вследствие слабой корреляции значений амплитуды U_m помехи и случайной составляющей $\Delta x_{max} - \Delta x_{min}$ погрешности значение последней практически остается постоянным при флюктуации амплитуды помехи в широких пределах. Если обозначим вероятности событий $U_0 < U_c < \theta U_m$ и $x_{\min} < \Delta x < \theta \Delta x_{\max}$, где $U_0/\hat{U}_m < \theta < 1$, соответственно как $P(\vec{U}_0 < \vec{U}_c < U_m)$ и $P(\Delta x_{\min} < \Delta x < \theta \Delta x_{\max})$, то получим очевидное равенство

$$P(\overline{U}_0 < \overline{U}_c < U_m) = P(\Delta x_{\min} < \Delta x < \theta \Delta x_{\max}).$$
(3.169)

Зная закон распределения \bar{U}_c , можно записать вероятность $P(\bar{U}_0 < \bar{U}_c < \theta U_m)$ в следующем виде:

$$P(\overline{U}_{0} < \overline{U}_{c} < \theta U_{m}) = \int_{\overline{U}_{0}}^{\theta U_{m}} \left[\frac{\omega}{2\pi \operatorname{tg} \beta} + \frac{1}{2\pi U_{m}} \frac{1}{\sqrt{1 - (\overline{U}_{c}/U_{m})^{2}}} \right] \times dU_{c} = \frac{\omega (U_{m} \theta - U_{0})}{2\pi \operatorname{tg} \beta} + \frac{1}{2\pi} \left[\operatorname{arcsin} \theta - \operatorname{arcsin} (\overline{U}_{0}/U_{m}) \right].$$
(3.170)

111

Определив $\frac{1}{2\pi}$ arcsin $\frac{\overline{U}_0}{U_m}$ из уравнения (3.153) и подставив его в (3.170), после некоторых преобразований с учетом (3.169) получим окончательное соотношение для расчета вероятности существования случайной погрешности, обусловленной грамоническим напряжением помехи в заданном интервале:

 $P(\Delta x_{\min} < \Delta x < \theta \Delta x_{\max}) = 0.748 - [\omega - U_m(1 - \theta)]/\lg \beta + 1$

 $+0,159 \arcsin \theta$,

где значения U_0 , tg β определяются соответственно из (3.155) и (3.166).

Анализируя полученное выражение, можно сделать вывод, что при возрастании $\lg \beta$ или скорости убывания выходного напряжения фильтра $U_{\Phi}(t)$ вероятность попадания Δx в заданный интервал возрастает, поскольку минимальное значение случайной погрешности U_0 порога срабатывания компаратора при этом уменьшается, тогда как максимальное значение погрешности U_m остается постоянным. Увеличение частоты или амплитуды помехи приводит к обратному эффекту.

Для определения среднего значения случайной погрешности Δx найдем значение математического ожидания $M[\Delta x]$. На основании (3.152) имеем

$$M\left[\overline{U}_{c}\right] = \int_{\overline{U}_{c}}^{U_{m}} W\left(\overline{U}_{c}\right) \overline{U}_{c} d\overline{U}_{c} = \frac{\omega\left(U_{m}^{2} - \overline{U}_{0}^{2}\right)}{4\pi \operatorname{tg} \beta} - \frac{U_{m}}{4\pi \operatorname{tg} \beta}$$

$$2\pi$$
 (0.150) (0.165) (0.166) -

С учетом (3.159), (3.165) и (3.166) получим

$$M [\Delta x] = \frac{(U_m^2 - \overline{U}_0^2) \ \omega \ \tau_r \ (P_r - x)}{8\pi k_0^2 \ U_r \ R_r \ \sqrt{k_0 x} \left(1 - \frac{1}{k_0} \ \sqrt{\frac{x}{k_0}}\right)} - \frac{U_m \ \sqrt{P_r - x}}{k_0 \ \sqrt{R_r}} \sqrt{1 - \left(\frac{\overline{U}_0}{U_m}\right)^2}.$$
(3.171)

Эту формулу можно использовать для расчета среднего значения погрешности измерения от воздействия на вход компаратора моногармонической помехи, которое можно определить по результатам серии замеров.

Все полученные соотношения справедливы для гармонической помехи с малым уровнем флюктуации ее амплитуды. Однако на практике нередко уровень флюктуаций соизмерим с амплитудой несущей частоты напряжения помехи. Поэтому представляет большой практический интерес получение вероятностных оценок погрешностей, обусловленных наличием помех при некоторых более общих предположениях: уровень флюктуации произвольный; процесс, описываемый уравнением (3.141), стационарный, нормальный, обладающий эргодическим свойством; огибающая процесса V(t) — медленно меняющаяся функция времени и за время измерения можно считать V(t) = const; круговая частота $d\psi(t)/dt$ — также медленно меняющаяся функция времени. Такой квазигармонический процесс можно наблюдать в виде шума на выходе узкополосной избирательной системы, которой как раз и является автобалансный мост совместно с детектором и фильтром.

Колебания представляют собой нормальный процесс, внешне близкий к модулированному гармоническому. Закон амплитудной модуляции является медленно меняющейся случайной функцией времени. Фаза колебаний также медленно и случайно меняется во времени. В этом случае фазу процесса можно представить в виде

$$\psi(t) = \omega_0 t + \Phi(t),$$
 (3.172)

где $\Phi(t)$ — начальная фаза случайного процесса, представляющая собой также медленно меняющуюся функцию времени; ω_0 — средняя круговая частота гармонического колебания. Подставив (3.172) в (3.141), получим $U(t) = V(t) \cos \Phi(t) \cos \omega_0 t +$ $+V(t) \sin \Phi(t) \sin \omega_0 t$. Введем обозначения: $\overline{V_1} = \overline{V}(t) \cos \Phi(t)$; $\overline{V_2} = V(t) \sin \Phi(t)$. Геометрически $\overline{V_1}$ и $\overline{V_2}$ — проекции $\overline{V}(t)$ на вращающуюся ось времени и ортогональную к ней ось в начальный момент отсчета t=0. Поскольку V_1 и $\overline{V_2}$ являются в любой момент времени t сечениями случайного процесса U(t), то $\overline{V_1}$ и $\overline{V_2}$ также обладают свойствами стационарности, нормальности и эргодичности. Параметры их распределений в любой момент времени совпадают.

Обозначим математическое ожидание и среднеквадратическое отклонение процессов V_1 и V_2 соответственно через a и σ . Законы распределения случайных процессов V_1 и V_2 имеют соответственно вид:

$$W(\overline{V}_1) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(\overline{V}_1 - a)^2}{2\sigma^2}}; \quad W(\overline{V}_2) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(\overline{V}_2 - a)^2}{2\sigma^2}}.$$

Для случайного процесса (3.141) огибающая $V(t) = V V^2_1(t) + V^2_2(t)$ распределена по обобщенному закону Релея:

$$W(V) = \begin{cases} \frac{V}{\sigma^2} e^{\frac{-V^2 + \alpha}{2\sigma^2}} I_0\left(\frac{\alpha V}{\sigma^2}\right) & \text{для } V > 0; \\ 0 & \text{для } V < 0, \end{cases}$$

где $\alpha^2 = 2a^2$; $I_0\left(\frac{\alpha V}{\sigma^2}\right) -$ функция Бесселя нулевого порядка мнимого аргумента.

В общем случае при расчете $P(V < V_0)$ — вероятности того, что амплитуда огибающей не превосходит значения V_0 , приходится пользоваться кривыми обобщенного интегрального закона распределения Релея, которые построены для различных значений параметра α/σ .

Ранее были получены соотношения (3.160) и (3.161) для предельных значений абсолютной погрешности, обусловленной влиянием гармонической помехи. Зададим максимальное и минимальное значения относительной погрешности измерения и найдем вероятность существования относительной погрешности внутри интервала, ограниченного данными значениями погрешности. Обозначим: γ_1 — наименьшее граничное значение относительной погрешности измерения в соответствии с (3.161), определяемое поформуле

$$\gamma_1 = \Delta x_1 / x = \overline{U}_0(V_1) c(t_{\mu}) / x \lg \beta,$$
 (3.173)

где Δx_1 — наименьшая граничная погрешность измерения x; γ_2 — наибольшее граничное значение относительной погрешности измерения в соответствии с (3.160)

$$\gamma_2 = \Delta x_2 / x = V_2 c \left(t_{\mu} \right) / x \operatorname{tg} \beta, \qquad (3.174)$$

где Δx_2 — наибольшая граничная погрешность измерения x.

Значение относительной погрешности γ_1 определяется минимальным значением случайной погрешности U_0 порога срабатывания компаратора по напряжению при минимальной амплитуде $V_{\rm F}$ огибающей, а γ_2 — максимальной амплитуде V_2 огибающей помехи. Поскольку вероятность нахождения амплитуды V огибающей в интервале $V_1 - V_2$ равна вероятности нахождения случайной погрешности $\overline{U}_{\rm c}$ компаратора в диапазоне $U_0(V_1 - V_2)$, т. е.

$$P(V_1 < V < V_2) = P[\bar{U}_0(\bar{V}_1) < \bar{U}_c < V_2], \qquad (3.175)$$

то можно записать $P(V_1 < V < V_2) = P(\gamma_1 < \gamma < \gamma_2)$, так как каждый член неравенства правой части выражения (3.175) помножен на постоянную величину $c(t_n)/xtg\beta$.

Выразим искомые V_1 и V_2 через γ_1 и γ_2 . Для этого подставим (3.155) в (3.173). Решая полученное квадратное уравнение относительно V_1 , находим

$$V_{1} = \frac{(4.7 \operatorname{tg} \beta c (t_{\mathrm{H}}) + \gamma_{1} \operatorname{tg} \beta \omega x) +}{2\omega c (t_{\mathrm{H}})}$$

$$\rightarrow \frac{+\sqrt{(4.7 \operatorname{tg} \beta c (t_{\mathrm{H}}) + \gamma_{1} \operatorname{tg} \beta \omega x)^{2} + 4\omega \gamma_{1} c (t_{\mathrm{H}}) x \operatorname{tg}^{2} \beta}}{2}$$

а из уравнения (3.174) находим $V_2 = \gamma_2 x \operatorname{tg} \beta/c(t_{\text{H}})$.

114

Для всякого интегрального закона распределения $P(V_1 < V < V_2) = P(V < V_2) - P(V < V_1) = P(\gamma_1 < \gamma < \gamma_2)$

Тогда, определяя значения $P(V < V_2)$ и $P(V < V_1)$ из графи-ков обобщенного интегрального закона распределения Релея при заданном значении параметра а/о, находим искомую вероятность Р (у1 < у < у2) существования погрешности в заданном интервале погрешностей.

Для нахождения параметра α/σ используем эргодическую гипотезу, согласно которой математическое ожидание а и ее среднеквадратическое отклонение о, подсчитанное для произвольной достаточно длительной реализации, являются общими и для всего случайного процесса на входе компаратора.

Оценку математического ожидания M[U(t)] огибающей производим по формуле $a = [U(t_1) + U(t_2) + ... + U(t_n)]/n$. Среднеквадратическое отклонение оценивается по формуле

$$S = \sqrt{\frac{[U(t_1) - a]^2 + [U(t_2) - a]^2 + \dots + [U(t_n) - a]^2}{n - 1}}.$$

Полагая приближенно $M[U(t)] = a; \sigma^2 = S^2$, находим параметр $a/\sigma = a V 2/\sigma$ и вычисляем вероятность по (3.176).

Полученные соотношения позволяют производить вероятностные оценки погрешности измерения, обусловленные наличием квазигармонической узкополосной помехи со случайными амплитудой и фазой. Эффективность рассмотренной методики была проверена при построении автоматического измерителя мощности CB4 [23].

ГЛАВА 4. АНАЛОГОВЫЕ АВТОМАТИЧЕСКИЕ МФП СЛЕДЯЩЕГО ДЕЙСТВИЯ С ПЕРИОДИЧЕСКИМ ЗАМЕЩЕНИЕМ

4.1. ОСНОВНЫЕ ПОЛОЖЕНИЯ МЕТОДА ПЕРИОДИЧЕСКОГО СРАВНЕНИЯ

Рассмотрим метод периодического сравнения [14, 15] на примере преобразователя (рис. 4.1), построенного с применением в качестве схемы включения ЧЭ аналогового АМП переменного тока с частотой выходного сигнала о и амплитудой выходного напряжения, изменяющейся в зависимости от условий теплообмена терморезистора. При попеременной периодической подаче через переключатель АП, автоматически управляемый модуляционным генератором Го, на терморезистор различных по

(3.176)

Рис. 4.1. Схема преобразователя с периодическим сравнением

значению преобразуемой $P_x(t)$ и замещающей $P_{\text{зам}}(t)$ мощностей выходное переменное напряжение АМП частоты ω окажется промодулированным по амплитуде с частотой модуляционного генератора Ω прямоугольным напряжением. В соответствии с периодичностью подачи на терморезистор преобразуемой и замещающей мощностей для выходного напряжения АМП можно записать

$$U_{\rm M}(t) = \begin{cases} U_1(t), & nT_{\Omega} < t < nT_{\Omega} + \tau; \\ U_2(t), & nT_{\Omega} + \tau < t < (n+1)T_{\Omega}, \end{cases}$$
(4.1)

где n=0, 1, 2, 3... — номер периода импульсного сигнала модуляционного генератора Γ_{Ω} ; T_{Ω} — период повторения импульсов выходного сигнала генератора Γ_{Ω} ; $\tau=T_{\Omega}/2$ — длительность импульсов генератора Γ_{Ω} ; $U_1(t) = U_{1m} \sin(\omega t + \omega_1)$ — выходное напряжение АМП, амплитуда U_{1m} которого соответствует воздействию на терморезистор преобразуемой мощности $P_x(t)$; $U_2(t) = U_{2m} \sin(\omega t + \omega_2)$ — выходное напряжение АМП, амплитуда U_{2m} которого соответствует воздействию на терморезистор замещающей мощности $P_{\text{зам}}(t)$.

Принимая во внимание, что ω выходного сигнала АМП значительно больше Ω модуляционного генератора ($\omega \gg \Omega$), при дальнейшем анализе можно считать $\varphi_1 = \varphi_2 = \varphi$. Тогда выражение для выходного напряжения АМП примет вид

$$U_{\mathsf{M}}(t) = [U_0 + U(\Omega, t)]\sin(\omega t + \varphi), \qquad (4.2)$$

где $U_0 = (U_{1m} + U_{2m})/2$ — амплитуда несущего колебания в отсутствие модуляции, при $P_x = P_{\text{зам}}$; $U(\Omega, t)$ — прямоугольный модулирующий сигнал с периодом T_{Ω} .

После разложения в ряд Фурье

$$U(\Omega, t) = \frac{4}{\pi} \left(\frac{U_{2m} - U_{1m}}{2} \right) \left(\sin \Omega t + \frac{\sin 3\Omega t}{3} + \frac{\sin 5\Omega t}{5} + \dots \right) =$$

= $\frac{4}{\pi} \left(\frac{U_{2m} - U_{1m}}{2} \right) \sum_{n=1}^{\infty} \frac{\sin (2n-1) \Omega t}{2n-1}.$ (4.3)

116

Подставив значения U_0 и $U(\Omega, t)$ в (4.2), получим полное выражение для выходного напряжения АМП при попеременной периодической подаче на терморезистор различных значений преобразуемой и замещающей мощностей:

$$U_{\rm M}(t) = \left[\frac{U_{1m} + U_{2m}}{2} \div \frac{4}{\pi} \left(\frac{U_{2m} - U_{1m}}{2}\right) \sum_{n=1}^{\infty} \frac{\sin(2n-1)\Omega t}{2n-1} \right] \sin(\omega t + \varphi) = \\ = \frac{U_{1m} + U_{2m}}{2} \left[1 \div \frac{4}{\pi} \frac{U_{2m} - U_{1m}}{U_{1m} + U_{2m}} \sum_{n=1}^{\infty} \frac{\sin(2n-1)\Omega t}{2n-1} \right] \sin(\omega t + \varphi).$$

$$(4.4)$$

Выходной сигнал АМП представляет собой синусоидальные колебания частоты ω , промодулированные прямоугольным напряжением частоты Ω с амплитудой, равной полуразности амплитуд напряжений $U_1(t)$ и $U_2(t)$. Поэтому (4.4) можно записать в виде амплитудно-модулированного сигнала

$$U_{\rm M}(t) = U_0 \left[1 + m_{\rm a} \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n-1)\,\Omega t}{2n-1} \right] \sin(\omega t + \varphi), \tag{4.5}$$

где $m_a = (U_{2m} - U_{1m})/(U_{1m} + U_{2m})$ — коэффициент амплитудной модуляции. Дальнейшая обработка $U_{\rm M}(t)$ производится линейным амплитудным детектором АД с фильтром нижних частот. Выходное напряжение детектора определяется выражением

$$U_{A\Pi} = k_{A\Pi} \left[U_0 + U(\Omega, t) \right] = k_{A\Pi} \frac{U_{1m} + U_{2m}}{2} \left[1 + \frac{4}{\pi} \frac{U_{2m} - U_{1m}}{U_{1m} + U_{2m}} \sum_{n=1}^{\infty} \frac{\sin(2n-1)\Omega t}{2n-1} \right].$$
(4.6)

Выходное напряжение $U_{A\Pi}$ амплитудного детектора усиливается усилителем Y_{Ω} с емкостной связью, при этом выделяется напряжение огибающей частоты Ω

$$U_{y_{\Omega}} = k_{A,\Pi} k_{y_{\Omega}} \frac{4}{\pi} \frac{U_{2m} - U_{1m}}{2} \sum_{m=1}^{\infty} \frac{\sin(2n-1)\Omega t}{2n-1} = k_{A,\Pi} k_{y_{\Omega}} \frac{U_{2m} - U_{1m}}{2} \operatorname{sign} \sin\Omega t, \qquad (4.7)$$

где

$$\operatorname{sign} \sin \Omega t = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin (2n-1) \Omega t}{2n-1}.$$

Напряжение $U_{y_{\Omega}}$ выпрямляется фазовым детектором ФД и фиксируется нуль-органом НО. С учетом коэффициента преобразования фазового детектора $k_{\Phi Д}$ амплитудное значение напряжения на его выходе определяется выражением

$$U_{\Phi \Pi} = k_{A\Pi} \, k_{\Psi_{\Omega}} \, k_{\Phi \Pi} \, (U_{2m} - U_{1m})/2. \tag{4.8}$$

117

Процесс измерения неизвестной величины $P_x(t)$ осуществляется изменением подаваемой на вход преобразователя замещающей мощности $P_{\text{зам}}(t)$ до значения, обеспечивающего равенство амплитуд напряжений $U_1(t) = U_2(t)$.

Из (4.4) и (4.5) следует, что при выполнении условия $U_{1m} = U_{2m}$ коэффициент модуляции $m_a = 0$ и выходное напряжение АМП принимает вид

$$U_{\rm M}(t) = U_0 \sin(\omega t + \varphi). \tag{4.9}$$

При этом выходное напряжение усилителя \mathcal{Y}_{Ω} (4.7) и показания НО равны нулю. Эффекты воздействия на АМП преобразуемой величины $P_x(t)$ и замещающей $P_{3aM}(t)$ в этом случае одинаковы, и значение $P_x(t)$ можно оценить, включив в цепь подачи $P_{3aM}(t)$ измеритель мощности ИМ.

В одноканальной схеме периодического сравнения исключена необходимость подбора элементов с идентичными характеристиками и нестабильность коэффициентов преобразования отдельных звеньев мало влияет на погрешность преобразования. Это влияние тем меньше, чем меньше длительность периода T_{Ω} генератора Γ_{Ω} и чем медленнее изменяются параметры звеньев преобразовательного тракта. Инвариантность измерительной информации относительно изменения параметров отдельных звеньев преобразователя обеспечивается поочередным периодически повторяющимся прохождением входных сравниваемых сигналов через одни и те же звенья преобразователя, при котором влияние погрешностей, обусловленных нестабильностью параметров звеньев на указанные сигналы, одинаково. Это обстоятельство позволяет использовать менее стабильные, но зато более чувствительные элементы.

4.2. СТАТИЧЕСКИЕ ХАРАКТЕРИСТИКИ АВТОМАТИЧЕСКИХ МФП СЛЕДЯЩЕГО ДЕЙСТВИЯ С ПЕРИОДИЧЕСКИМ ЗАМЕЩЕНИЕМ

Аналоговые автоматические МФП следящего действия могут быть построены на основе метода периодического сравнения в сочетании с методами следящего уравновешивания и замещения. Наличие на выходе преобразователя с периодическим сравнением (рис. 4.1) сигнала, пропорционального разности преобразуемой и замещающей мощностей, позволяет осуществить автоматическое формирование замещающей мощности $P_{3am}(t)$ установкой в тракт преобразования интегрирующего устройства вместо HO. Введение дополнительной обратной связи для подачи на вход преобразовательного тракта $P_{3am}(t)$ в зависимости от значения $P_x(t)$. Такая система автоматического управления изменяет значение $P_{3am}(t)$ до тех пор, пока выходной сигнал ФД (4.8) не станет равным нулю, что соответствует равенству воздействия на ЧЭ преобразуемого и замещающего сигналов, т. е. $P_{3am}(t) = P_x(t)$.

Для построения МФП следящего действия, работающих в условиях одновременного воздействия на ЧЭ множества физических величин { $P_{x1}(t)$, $P_{x2}(t)$, ..., $P_{x_n}(t)$ }, необходимо в цепь подачи каждой из преобразуемых величин и замещающей мощности включить автоматически управляемые тактовым генератором Γ_{Ω} ключи (выключатели, клапаны, вентили и т. д.), т. е. элементы, позволяющие периодически кратковременно и поочередно прерывать подачу в тракт преобразования P_{x_i} и $P_{\text{зам}}(t)$.

Были предложены преобразователи, обобщенная схема построения которых приведена на рис. 4.2. Преобразуемая $P_{x_i}(t)$ и замещающая $P_{3am}(t)$, мощности в общем случае различные по значению, через выключатель B_i и ключ Кл, управляемые в противофазе генератором Γ_{Ω} , поочередно и периодически с частотой Ω подаются на ЧЭ автобалансного преобразователя, вызывая в соответствии с (4.5) амплитудную модуляцию его входного напряжения. При этом изменение амплитуды огибающей определяется разностью значений преобразуемой и замещающей мощностей.

После детектирования АД и усиления \mathcal{Y}_{Ω} сигнал, пропорциональный изменению амплитуды огибающей, подается на ФД, управляемый асинхронно с ключом Кл тем же генератором Γ_{Ω} . Импульсное выходное напряжение ФД частоты Ω и амплитуды, определяемой разностью воздействий преобразуемой и замещающей

Рис. 4.2. Обобщенная схема построения аналоговых автоматических МФП следящего действия с периодическим замещением преобразуемого сигнала

мощностей, подается на вход интегратора И, выходное напряжение которого по мере поступления импульсов будет возрастать. Напряжение с выхода И по цепи обратной связи подается на терморезистор АМП через ключ Кл, формируя замещающую мощность. При равенстве воздействий на терморезистор преобразуемой и замещающей мощностей модуляция выходного напряжения АМП прекращается, амплитуда импульсов на выходе ФД становится равной нулю, а выходное напряжение устанавливается на некотором постоянном уровне, определяющем значение замещающей, а следовательно, и преобразуемой мощности в соответствии с (4.10). Измерение замещающей мощности $P_{3am}(t)$ сводится к измерению напряжения постоянного тока, которое может быть произведено автоматически ОРУ, поэтому процесс преобразования можно автоматизировать в целом.

Для вывода функции преобразования рассмотрим процессы более подробно ло схеме рис. 4.3, используя временные диаграммы (рис. 4.4). Чувствительный элемент, в качестве которого применен терморезистор $R_{\rm T}$, включен в одно из плеч мостовой схемы, образованной резисторами $R_1 = R_2 = R_3 = R_0$. Усилитель У_{АМП}, охваченный нелинейной положительной обратной связью, образует низкочастотный генератор, выходное напряжение которого после трансформации используется для питания моста (обмотка II) и формирования выходного сигнала (обмотка III).

В начальный момент после включения напряжения питания схемы значение R_{τ} существенно отличается от R_0 и мост оказывается сильно разбалансированным. Следовательно, напряжение разбаланса моста $U_{ab}(t)$, поступающее на вход усилителя, дости-

Рис. 4.3. Функциональная схема аналогового автоматического МФП следящего действия с периодическим замещением преобразуемого сигнала

Рис. 4.4. Временные диаграммы работы преобразователя

гает больших значений. Усилитель $V_{AM\Pi}$ и мостовая схема образуют систему с положительной обратной связью по напряжению, и выходное напряжение усилителя $U_{\rm M}(t)$, подаваемое через трансформатор Тр на диагональ ва питания моста, приводит к интенсивному разогреву терморезистора и уменьшению его сопротивления. По мере разогрева терморезистора степень разбаланса моста уменьшается и сопротивление терморезистора приближается к значению R_0 , что обуславливает уменьшение напряжения $U_{a6}(t)$ и соответственно амплитуды выходного напряжения $U_{\rm M}(t)$. При установившемся значении напряжения $U_{\rm M}(t)$

$$U_{a6}(t) = U_{M}(t) \left[\frac{R_{T}}{R_{1} + R_{T}} - \frac{R_{3}}{R_{2} + R_{3}} \right] k_{Tp},$$
(4.10)

где $k_{\rm TP}$ — коэффициент передачи трансформатора из обмотки I в обмотку II. Тогда, учитывая равенство $R_1 = R_2 = R_3 = R_0$ и принимая $R_{\rm T} - R_0 = \Delta R_{\rm T}$, получим выражение для определения значения коэффициента усиления усилителя У_{АМП}:

$$k_{\mathbf{y}_{AM\Pi}} = \frac{U_{M}(t)}{U_{a6}(t)} = \frac{2(R_{0} + R_{T})}{k_{TP}(R_{T} - R_{0})} = \frac{2(R_{0} + R_{T})}{k_{TP}\Delta R_{T}}.$$
(4.11)

При полной сбалансированности мостовой схемы должно выполняться равенство $\Delta R_{\rm T} = 0$. Это возможно только при $k_{\rm YAM\Pi} = \infty$, а так как в реально возможных случаях $k_{\rm YAM\Pi} \neq \infty$, то всегда будет оставаться небольшая несбалансированность моста и значение сопротивления терморезистора $R_{\rm T}$ можно определить из (4.11)

$$R_{\mathbf{r}} = R_0 \frac{k_{\mathbf{y}} + 2}{k_{\mathbf{y}} - 1} = R_0 \left(1 + \frac{4}{k_{\mathbf{y}}} + \frac{8}{k_{\mathbf{y}}^2} + \dots \right) \approx R_0 \left(1 + \frac{4}{k_{\mathbf{y}}} \right), \quad (4.12)$$

где $k_{y} = k_{y_{AM\Pi}} k_{TP}$.

Это установившееся состояние процессов в автобалансном мостовом преобразователе. Амплитуды выходного напряжения $U_{\rm M}(t)$ усилителя, напряжения обратной связи $U_{\rm Br}(t)$ и входного напряжения $U_m(t)$ АД при сбалансированной мостовой схеме принимают установившееся значение. В этом состоянии (рис. 4.4) преобразователь находится до момента времени t_0 , соответствующего подаче на его вход преобразуемого сигнала $P_{x_i}(t)$. Благодаря наличию переключателя B_n , управляемого генератором Γ_{Ω} , преобразуемая величина $P_{x_i}(t)$ воздействует на $R_{\rm T}$ только в течение, например, нечетных полупериодов работы генератора Γ_{Ω} . В течение четных полупериодов на терморезистор $R_{\rm T}$ через открытый ключ, управляемый тем же генератором Γ_{Ω} , но противофазно с B_n , поступает возрастающая замещающая мощность $P_{\rm 3am}(t)$ с выхода И постоянного тока. Мощность, поступающая на терморезистор $R_{\rm T}$ соответственно через B_i и Кл, будет равна

$$P_{x_{t}}(t) \quad \text{при} \quad (n-1) T_{\Omega} < t < (nT_{\Omega} - \tau); P_{\text{BBM}}(t) \quad \text{при} \quad (nT_{\Omega} - \tau) < t < nT_{\Omega},$$

$$(4.13)$$

где n=1, 2, 3 — номер периода сигнала генератора Γ_{Ω} ; T_{Ω} , $\tau = -0.5T_{\Omega}$ — соответственно период повторения и длительность импульсов генератора Γ_{Ω} (рис. 4.4).

В течение времени переходного процесса $t_{\rm ycr}$, пока влияние преобразуемой величины больше влияния замещающей мощности, выходное напряжение усилителя У_{АМП} окажется промодулированным по амплитуде в соответствии с (4.5) с частотой Ω , определяемой генератором Γ_{Ω} (рис. 4.4). Глубина модуляции определяется текущим значением разности мощностей

$$\Delta P(t) = P_{x_1}(t) - P_{\text{sam}}(t). \tag{4.14}$$

Амплитудный детектор в соответствии с (4.6) выделяет это напряжение, которое после усиления \mathcal{Y}_{Ω} в соответствии с (4.7) поступает на ФД, управляемый генератором Γ_{Ω} противофазно с ключом. На выходе ФД получается импульсное напряжение $U_{\Phi Д}$ (рис. 4.4), описываемое (4.8), значение которого определяется $\Delta P(t)$. Полученное выходное напряжение ФД интегрируется и подается через ключ на терморезистор в четные полупериоды работы генератора Γ_{Ω} . По мере уменьшения текущей разности мощностей $\Delta P(t)$ уменьшаются глубина модуляции $U_{M}(t)$ и напряжение на входе интегратора $U_{\Phi\Pi}$. В установившемся состоянии

$$P_{x_{t}}(t) = P_{3aM}(t). \tag{4.15}$$

После достижения равенства (4.15) амплитуды напряжений $U_{\rm BF}$ обратной связи, подаваемые на терморезисторный мост в нечетные $U_{\rm o.c1}$ и четные $U_{\rm o.c2}$ полупериоды работы генератора Γ_{Ω} , становятся равными. Амплитуда $U_{\rm 1m}$ напряжения на входе АД (рис. 4.4) также становится постоянной, модуляция $U_{\rm AM\Pi}$ (t) прекращается. Выходное напряжение принимает постоянное значение $U_{\rm BMX,ycr}$ (рис. 4.4), которое и определяет значение замещающей, а вместе с ней и преобразуемой мощностей.

Характерная особенность АМП — сохранение баланса мощностей, действующих на терморезистор R_{T} во время подачи $P_{x_i}(t)$ и $P_{\text{зам}}$ (P_{T} =const).

Если выбранной рабочей точке на характеристике терморезистора $R_{\tau} = \varphi(P_{\tau})$ соответствует номинальная мощность P_{τ} , то для нечетных и четных полупериодов работы генератора Γ_{Ω} мощность P_{τ} соответственно будет определяться равенствами:

$$P_{T} = P_{0.c1}(t) - \sum_{j=1}^{m} P_{z_{j}}(t) + P_{x_{i}}(t) \quad \text{при} \quad (n-1) T_{\Omega} < t < (nT_{\Omega} - \tau);$$

$$P_{T} = P_{0.c2}(t) - \sum_{j=1}^{m} P_{z_{j}}(t) + P_{\text{зам}}(t) \quad \text{при} \quad (nT_{\Omega} - \tau) < t < nT, \quad (4.17)$$

где $\sum_{j=1}^{m} P_{z_j}(t)$ — эквивалентная мощность, соответствующая дейст-

вию на терморезистор дестабилизирующих факторов; $P_{o.c1}$, $P_{o.c2}$ — мощности, передаваемые терморезистору по цепи обратной связи от усилителя У_{АМП} при подаче преобразуемой и замещающей мощностей соответственно.

Принимая во внимание, что в установившемся режиме $U_{0.c1} = U_{0.c2}$ и $P_{0.c1} = P_{0.c2}$, а также учитывая ранее обоснованное допущение, позволяющее считать $\sum_{j=1}^{m} P_{z_j}(t)$ функцией кусочно-постоянной — неизменной на малом интервале времени, определяемом длительностью одного периода T_{Ω} , из (4.16) и (4.17) следует равенство (4.15).

В свою очередь, значение замещающей мощности определяется выражением

$$P_{3aM} = [U_{Bbix.ycT}/(R_1 + R_T)]^2 R_T.$$
(4.18)

Так как общий коэффициент усиления ky автобалансного мостового преобразователя достаточно велик, то в соответствии с (4.12) и при выполнении равенств $R_1 = R_2 = R_3 = R_0$ можно с достаточной точностью считать, что

$$R_r = R_0. \tag{4.19}$$

Тогда из (4.18), учитывая (4.15) и (4.19), получим зависимость

$$P_{\mathbf{x}} = P_{\mathbf{3}\mathbf{a}\mathbf{M}} = \left[\frac{U_{\mathbf{B}\mathbf{b}\mathbf{I}\mathbf{X}}, \mathbf{y}\mathbf{c}\mathbf{T}}{R_0 + R_{\mathbf{T}}}\right]^2 R_{\mathbf{T}} = k_0 U_{\mathbf{B}\mathbf{b}\mathbf{X}, \mathbf{y}\mathbf{c}\mathbf{T}}^2$$
(4.20)

Выходное напряжение И может служить мерой преобразуемой величины при соответствующей градуировке ОРУ в соответствии с функцией преобразования

$$U_{\text{BMX.yct}} = \sqrt{P(x)/k_0}. \tag{4.21}$$

Длительность установления выходного напряжения И равна нескольким периодам T_{Ω} , поэтому для уменьшения $t_{\rm ycr}$ частота Ω должна выбираться по возможности значительно больше частоты изменения уровня преобразуемого сигнала (10—100 раз), несущая частота автобалансного мостового преобразователя ω должна быть в 10—100 раз больше частоты Ω . Вместе с тем для уменьшения влияния переходных процессов АМП на результат преобразования значение частоты Ω должно выбираться исходя из того, что период T_{Ω} значительно больше постоянной времени АМП, т. е. выполняется соотношение $T_{\Omega} \ge (10-20)\tau_{\rm AMII}$. При разработке аналоговых автоматических многофункциональных преобразователей следящего действия с периодическим замещением следует обеспечивать как можно меньшее значение $\tau_{\rm AMII}$, так как при этом могут быть увеличены частоты ω , Ω , что повысит быстродействие преобразователя в целом.

Погрешность преобразования, как видно из (4.20), (4.21), определяется погрешностью формирования замещающей мощности постоянного тока, которая зависит от нестабильности параметров ключа Кл и И. Применение современных интегральных транзисторных ключей позволяет уменьшить погрешность, вносимую дрейфом ключевых транзисторов, до пренебрежимо малых значений. Следовательно, основная составляющая погрешности будет определяться значением напряжения приведенного дрейфа И, которое носит случайный характер.

Для уменьшения погрешности преобразования необходимо уменьшать значение мощности, подаваемой на ЧЭ по цепи обратной связи, применять И с минимальным значением приведенного дрейфа и повышать коэффициент передачи цепи. Исследования показали, что при $P_{\rm T}$ =17,5 мВт; H=0,25 мВт/°С; $R_{\rm T}$ =150 Ом; $e_{\rm Ap}$ = =1 мВ, t=10—60°С, (соответствует режиму применения терморезистора типа ТШ-2 в измерителях мощности СВЧ) $\Delta P_{\rm Ap}$ min= =0,23 мкВт и $\Delta P_{\rm Ap}$ max=0,6 мкВт. Применяя разогрев ЧЭ мощностью дополнительного генератора, можно не только повысить чувствительность, но и значительно снизить погрешность преобразования.

4.3. ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ АНАЛОГОВЫХ АВТОМАТИЧЕСКИХ МФП СЛЕДЯЩЕГО ДЕЙСТВИЯ С ПЕРИОДИЧЕСКИМ ЗАМЕЩЕНИЕМ

Наиболее эффективным средством анализа динамических характеристик аналоговых автоматических МФП следящего действия с периодическим замещением является применение метода математического моделирования на ЦВМ с использованием программой МАСС [16]. Она представляет собой специализированное математическое обеспечение, предназначенное для исследования непрерывных систем и процессов, описываемых обыкновенными дифференциальными уравнениями или задаваемых структурными схемами. Наиболее трудоемким и ответственным этапом моделирования при использовании МАСС является составление структурной схемы модели анализируемой системы. На этом этапе необходимо в соответствии с характером функционирования системы указать взаимосвязь отдельных ее звеньев, разбив их на типовые линейные динамические и нелинейные статические звенья.

Построение структурных схем автоматического МФП следяшего действия с периодическим замещением преобразуемого сигнала, составление схемы и программы описания модели в терминах МАСС, пользуясь которыми можно получить графики переходных процессов в преобразователе при различных значениях параметров его звеньев. Решение этой задачи позволит получить методику расчета динамических характеристик преобразователя зависимости от его параметра и значений входного сигнала. Амплитудный детектор, фазовый детектор и ключ служат для выделения огибающей модулированного сигнала и управления работой преобразователя. Коэффициент передачи этих звеньев может быть выбран равным единице, поскольку они не вносят амплитудных и фазовых искажений. Поэтому при составлении структурной схемы эти звенья модели для простоты могут быть опущены. Однако функционирование ключа, амплитудного и фазового детекторов определяет порядок включения в тракт преобразования аналоговых звеньев и взаимосвязь между ними при различных режимах синхронизации.

Принципиально возможны два режима синхронизации работы звеньев преобразователя (рис. 4.3). Составим структурные схемы модели преобразователя для каждого из этих режимов.

Первый режим синхронизации характеризуется синфазной работой ФД и соответствующего выключателя B_n . Сигнал с выхода ФД поступает на вход И в те нечетные полупериоды импульсов синхронизации, когда на вход автобалансного мостового преобразователя поступает преобразуемый сигнал $P_{xi}(t)$. Структурная схема преобразователя представлена на рис. 4.5 $(k_{\rm M}$ — коэффициент преобразования АМП; $U_{\rm R}$ — выходное напряжение интегратора; $k_{\rm o,c}$ — коэффициент передачи цепи обратной

Рис. 4.5. Структурная схема преобразователя в нечетные полупериоды синхронизации (первый режим синхронизации)

Рис. 4.6. Структурная схема преобразователя в четные полупериоды синхронизации (первый режим синхронизации)

связи). Автобалансный мостовой преобразователь идентифицирован последовательным соединением нелинейного звена, функция преобразования которого описывается уравнением баланса мощностей (4.16), и линейного апериодического звена, коэффициент передачи которого определяется как произведение коэффициентов передачи терморезистора, мостовой схемы, АД и усилителя. В четные полупериоды прекращается подача на терморезистор преобразуемого сигнала, на вход интегратора с ФД подается нулевой сигнал. Постоянный сигнал замещения с выхода интегратора по цепи обратной связи подается на терморезистор. Структурная схема преобразователя при этом имеет вид, представленный на рис. 4.6. Нелинейное звено, идентифицирующее АМП, имеет в данном случае (при $P_x=0$) функцию преобразования, определяемую уравнением баланса мощностей (4.17).

Второй режим синхронизации характеризуется противофазной работой ФД и выключателя В_n. Импульсный сигнал с выхода поступает на вход интегратора в те же четные полупериоды импульсов синхронизации, когда на вход АМП поступает замещающая мощность. В нечетные полупериоды выходное напряжение ФД, управляемого противофазно с выключателем В_n и синфазно с ключом, равно нулю. В эти полупериоды сигнала на выходе И практически постоянен, но не пропускается через ключ на вход АМП.

Структурная схема преобразователя для нечетных полупериодов приведена на рис. 4.7. В четные полупериоды выходной импульсный сигнал ФД подается на вход И. Выходное возрастающее напряжение И через открытый ключ по цепи обратной связи подается на вход АМП. Структурная схема преобразователя, представляющая собой в этом случае замкнутую систему, приведена на рис. 4.8.

В результате идентификации составлены структурные схемы преобразователя для всех возможных режимов работы. Используя 126

Рис. 4.7. Структурная схема преобразователя в нечетные полупериоды синхронизации (второй режим синхронизации)

Рис. 4.8. Структурная схема преобразователя в четные полупериоды синхронизации (второй режим синхронизации)

полученные результаты, составим схемы моделирования преобразователя в базисе элементов входного языка МАСС. Основу языка составляет набор обозначений функциональных блоков, с помощью которых можно моделировать линейные и нелинейные, статические и динамические элементы, арифметические операции, детерминированные и случайные сигналы. Перечень обозначений этих блоков приводится в [16].

Модель № 1 (рис. 4.9) отображает структурную схему, приведенную на рис. 4.5, состоит из последовательно соединенных блоков константы К, задающего величину входного сигнала P_{x} ; инерционного звена AN, моделирующего инерционную линейную часть АМП; сумматора «+», инвертирующего знак напряжения на выходе АМП; смещения 0; интегратора *I*; усиления *G*, моделирующего цепь обратной связи.

Последовательное соединение блоков «+» и «0» позволяет получить модель статической характеристики АМП. Помимо математической модели каждого из блоков, определяемой его наименованием, каждый блок задается определенным набором численных параметров P_i . Для блоков преобразователя эти параметры имеют следующий физический смысл, так параметр P_1 в блоке К является значением входного сигнала, A — коэффициентом передачи инерционного звена (P_2 — его постоянной времени); 0 — величиной смещения его выходного сигнала при нулевом входном; I начальным значением выходного сигнала И (постоянной интегрирования); G — коэффициентом передачи.

Для ввода исходных данных модели в ЭВМ блокам полученной схемы присваиваются номера, которые используются при составлении спецификаций структуры и параметров. Спецификация структуры — набор следующих друг за другом в произвольном порядке операторов структуры, служащих для ввода в ЭВМ функционального состава и конфигурации схемы моделироавния. Каждый оператор структуры описывает один блок и имеет следующий формат: Nтип_NYKL, где N — присвоенный данному блоку номер; тип_N — тип блока, мнемонически указывающий на выполняемый им вид функциональной зависимости; Y, K, L — номера блоков, выходные сигналы которых поступают на первый, второй и третий входы описываемого блока.

Спецификация параметров — массив произвольно следующих друг за другом операторов параметров, служащих для ввода в ЭВМ числовых значений параметров, начальных условий и констант исследуемой схемы моделирования. Каждый оператор относится к одному блоку и имеет вид: $NP_1P_2P_3$, где N — присвоенный данному блоку номер; P_1 , P_2 , P_3 — числовые значения соответственно первого, второго и третьего параметров описываемого блока.

Для решения системы дифференциальных уравнений, описывающих исходную схему моделирования, используются численные методы интегрирования (например, методы Эйлера или Рунге-Кутта). Входной информацией для расчета на ЭВМ являются: метод, величина шага и время интегрирования, число рассчитываемых точек характеристики. Для распечатывания таблицы значений характеристик переходного процесса задаются номера блоков, выходные сигналы которых интересуют исследователя. Система МАСС позволяет получить мащинописный график переходного процесса на выходе любого из блоков анализируемой модели.

Структура модели № 1 имеет вид:

Блок	Tun	Bxod 1	Bxo∂ 2	Вход 3
1	K	0	0	0
2	Α	1	0	0
3	+-	2	0	0
4	Ó	3	0	0
5	1	0	4	0
6	G	5	0	0

Модель № 2, отображающая структурную схему преобразователя для четных полупериодов (рис. 4.6), представлена на рис. 4.10. Модель состоит из блока константы К, задающего величину сигнала замещения, апериодического линейного блока AN, описывающего инерционность АМП, и блока смещения 0, моделирующего зависимость $P_{o.c} = P_T - P_{sam}$, определяемую уравнением баланса мощностей. В отличие от модели № 1 при описании АМП в модели № 2 отсутствует блок сумматора «+», инвертирующего знак выходного напряжения АМП. Это объясняется тем, что в модели

Рис. 4.10. Структурная схема модели № 2

№ 1 скачок входного сигнала был с отрицательным перепадом, а в модели № 2 — с положительным.

Параметры блоков модели № 2 имеют тот же физический смысл, что и в модели № 1, за исключением параметра P_1 блока К, который является разностью преобразуемой и замещающей мощностей, значение которой берется из результатов расчета с помощью МАСС выходной величины блока G в модели № 1. Это позволяет правильно определить значение скачка входного сигнала при анализе структурной схемы (рис. 4.6).

Структура модели № 2 имеет вид:

Блок	Tun	Вход 1	Вход 2	Вход З
1	K	0	0	0
2	А	I	0	0
3	0	2	0	0

Модель № 3 (рис. 4.11) описывает структурную схему преобразователя (рис. 4.7). Из сравнения рис. 4.9 и 4.11 видно, что модель № 3 является составной частью модели № 1. Функциональное назначение блоков модели № 3 и физический смысл их параметров идентичны соответствующим блокам и параметрам модели № 1.

Структура модели № 3 имеет вид:

5лок	Tun	Bx00 1	Вход 2	Вход З
1	K	0	0	0
2	А	1	0	0
3		-2	0	0
4	Õ	3	0	0

Модель № 4 (рис. 4.12) соответствующая структурной схеме преобразователя (рис. 4.8), представляет собой замкнутую систему. Особенностью модели является наличие двухвходового блока сумматора «+», который моделирует непрерывное в течение четных полупериодов вычитание значения линейно возрастающей $P_{\text{зам}}$ из значения преобразуемой P_x . Остальные блоки и их параметры идентичны блокам и параметрам модели № 1.

Рис. 4.11. Структурная схема модели № 3 Рис. 4.12. Структурная схема модели № 4:

5---133

Структура модели № 4 имеет вид:

Блок	Tun	Вход 1	Вход 2	Bxod 3
1	А	5	0	0
2	0	1	0	0
3	1	0	2	0
4	G	3	0	0
5	+	6	4	0
6	K	0	0	0

С помощью моделей для расчета переходных процессов в преобразователе в течение любого из полупериодов сигнала синхронизации, задавая параметры блоков, можно поэтапно от полупериода к полупериоду рассчитать графики изменения выходных сигналов каждого из блоков. Исходным значением входного сигнала каждой из моделей для каждого рассчитываемого периода является значение выходного сигнала замещения, полученное из расчетов для предыдущего полупериода. Например, для модели № 1, значение параметра P₁ блока К будет определяться в каждом периоде как разность значений преобразуемой P_x и замещающей Р зам мощности сигнала, рассчитанная в конце предыдущего периода. Полученные модели позволяют значительно сократить этап поиска оптимального соотношения параметров звеньев анализируемого преобразователя, обеспечивающего его максимальное быстродействие.

Исходные данные и результаты расчета переходных процессов в преобразователях, работающих соответственно в I и II режимах синхронизации.

Типичными для конкретного преобразователя параметрами являются: $P_x = 0,001$ Вт — преобразуемый входной сигнал; $P_T = 0,003$ Вт — мощность, рассеиваемая на терморезисторе типа ТШ-1; $k_{\rm M} = 12500$ В/Вт — коэффициент передачи цепи терморезистор — усилитель АМП; $\tau_{\rm AMH} = 0,01$ с; $U_{2m} = 37,5$ В — выходное напряжение усилителя при $P_x = 0$; $I_{\rm H} = 10$ с — постоянная интегрирования интегратора; $k_{\rm o.c} = 0,001$ Вт/В — коэффициент передачи цепи терморезистирания интегрирования интегратора; $k_{\rm o.c} = 0,001$ Вт/В — коэффициент передачи цепи обратной связи преобразователя; $T_{\Omega} = 0,2$ с — длительность периода импульсов синхронизации.

По результатам расчета с помощью МАСС построены графики переходных процессов в преобразователе, работающем в 1 и 2 режимах синхронизации (рис. 4.13). Графики изменения выходного напряжения АМП построены по значениям выходной величины блока смещения 0, а изменения замещающей мощности — по значениям выходной величины блока усиления G. С точки зрения быстродействия оба режима синхронизации практически равноценны. Время установления переходного процесса t_{ycr} , определяемое с момента подачи преобразуемой величины на вход преобразователя до момента равенства значений замещающей и преобразуемой величин, равно в первом случае 0,69, а во втором — 0,73 с.

1-й режим синкронизации

Рис. 4.13. Переходный процесс U_{rt}, В в моделях преобразователя при различных режимах синхронизации

Выбор режима синхронизации практически не быстродейвлияет на аналогового автоствие матического ΜΦΠ следействия ляшего пе-С риодическим замещенипреобразуемого ем СИГнала.

Методика и программы машинного анализа и синтеза позволяют вычислить значения параметров элементов схемы (коэффициентов усиления, постоянных времени), обеспечивающих получение заданных либо

оптимальных характеристик аналоговых автоматических МФП следящего действия с периодическим замещением преобразуемого сигнала.

ГЛАВА 5. АНАЛОГО-ЦИФРОВЫЕ АВТОМАТИЧЕСКИЕ МНОГОФУНКЦИОНАЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ

5.1. АНАЛОГО-ЦИФРОВЫЕ АВТОМАТИЧЕСКИЕ МФП С ПРОСТРАНСТВЕННЫМ РАЗДЕЛЕНИЕМ СИГНАЛОВ

В последнее время все более широкое применение в производстве и научных исследованиях находят автоматические системы контроля и управления, а также приборы, построенные на основе ЦВМ, регистраторов, индикаторов. Эта тенденция вызвала необходимость разработки и внедрения аналого-цифровых преобразователей (АЦП) физических величин [3, 8, 13], у которых непосредственно ЧЭ способен осуществить преобразование входного воздействия в частотную или цифровую форму. К преимуществам таких преобразователей относятся: высокая помехоустойчивость, простота осуществления последующих преобразова-5* 131

ний, возможность гибкого изменения алгоритма обработки сигналов и т. д. Технология изготовления ЧЭ, обеспечивающих непосредственное преобразование аналоговой физической величины в частотный или цифровой сигнал, достаточно сложна, а материалы ц конструкция не всегда устойчивы к воздействию внешних дестабилизирующих факторов.

Другим направлением в построении АЦП является применение метода прямого преобразования на основе аналоговых ЧЭ. Аналоговые сигналы с ЧЭ после первичного преобразования и усиления до нормированного значения подаются на АЦП, который преобразовывает нормированный аналоговый сигнал в цифровой код. Характерные недостатки преобразователей: несколько большая, чем в предыдущем случае, погрешность (за счет наличия аналоговых звеньев), более высокая стоимость, большие габаритные размеры и т. д. Эти недостатки еще больше усугубляются в многоканальных системах, когда для каждого канала необходим OTдельный АЦП. Выделение информационного сигнала в таких преобразователях и уменьшение погрешности от влияния дестабилизирующих факторов осуществляется введением сложных компенсационных цепей, требующих подбора элементов при настройке и регулировке и обычно не решающих задачу во всем требуемом диапазоне, или принятием конструктивных мер (введение термостатирования, экранировки и др.). Уменьшая влияние дестабилизирующих факторов, перечисленные мероприятия значительно ухудшают производственные и эксплуатационные характеристики аппаратуры.

Принцип многофункционального преобразования позволяет создать аналого-цифровые автоматические МФП, использование которых значительно улучшает технико-экономические характеристики аппаратуры. Эти преобразователи могут быть построены по схеме с пространственным или временным разделением сигналов.

Многофункциональные преобразователи с пространственным разделением сигналов строятся по обобщенной схеме (см. рис. 1.8) и могут быть реализованы с несимметричными и симметричными каналами. Рассмотрим схему с несимметричными каналами, представленную на рис. 5.1, (СД — следящий детектор; ЛЗ — линия задержки, Ф — фильтр, ФУ1 и ФУ2 — формирующие устройства). Рабочий канал преобразователя выполнен на основе автобалансного мостового частотно-импульсного преобразователя, входом которого является терморезистивный ЧЭ с сопротивлением $R_{\text{т.р.}}$, включенный в одно из плеч терморезистивного моста ТМ, а выходом — частотно-импульсный сигнал с частотой $F_{\text{р.}}$, формируемый генератором импульсов управляемой частоты ГИУЧ1. Компенсационный канал состоит из генератора ГИУЧ2 импульсного напряжения управляемой частоты $F_{\text{к.}}$, которая изменяется под действием сигнала с компенсационного ЧЭ с сопротивлением $R_{\text{т.к.}}$

Рис. 5.1. Схема аналого-цифрового автоматического МФП с пространственным разделением сигналов (с несимметричными каналами)

Состояние ЧЭ рабочего канала может быть описано уравнением баланса мощностей

$$P_{T.p} + \sum_{j=1}^{m} P_{z_{j_1}}(t) - P_x(t) = k_{q_{1j}}^p F_p(t),$$
(5.1)

где P_{т.р} — мощность, рассеиваемая на R_{т.р}; k^p _{чи} — коэффициент преобразования рабочего канала.

выражение (5.1) показывает, что изменение частоты $F_p(t)$ в зависимости от $P_{z_{I\!\!I}}(t)$ и $P_x(t)$ носит линейный характер. В исходном состоянии при $P_x(t) = 0$, регулируя параметры элементов рабочего и компенсационного каналов, следует добиться равенства $F_p = F_k$, тогда выходной сигнал ВУ, определяемый разностью $F_p - F_k = \Delta F$, будет равен нулю. При подаче на вход рабочего канала $P_x(t) \neq 0$ значение F_p изменится и на выходе ВУ появится разностный сигнал ΔF , определяющий P_x . Следовательно, для компенсации влияния дестабилизирующих факторов необходимо обеспечить идентичность характеристик рабочего и компенсационного каналов и равенство значений влияющих на них факторов. В условиях применимости принципа суперпозиции анализ уравнения баланса мощностей на ЧЭ компенсационного канала

$$P_{T.K} + \sum_{j=1}^{m} P_{z_{j_{K}}}(t) = k_{\mathrm{U}K}^{\kappa}, \qquad (5.2)$$

тде $P_{\text{т.к}}$ — мощность, рассеиваемая на $R_{\text{т.к}}$, показывает, что при изменении воздействия дестабилизирующих факторов, т. е. при изменении слагаемого $\sum_{j=1}^{m} P_{z_{jk}}(t)$, будет изменяться мощность $P_{\text{т.к}}$,

рассеиваемая на сопротивлении $R_{\text{т.к.}}$, которая, в свою очередь, в соответствии с зависимостью $R_{\text{т.к.}} = f(P_{\text{т.к.}})$ определяет значение $R_{\text{т.к.}}$ а вместе с тем изменение $F_{\text{к.}}$ генератора ГИУЧ2.

Очевидно, что в более общем случае функция преобразования компенсационного канала в отличие от функции преобразования рабочего канала носит сложный и нелинейный характер и в общем виде может быть представлена соотношением

$$\Phi_{j_{\mathrm{R}}}[P_{z_{1\mathrm{R}}}(t), \quad P_{z_{2\mathrm{R}}}(t), \dots P_{z_{m\mathrm{R}}}(t)] = k_{\mathrm{UK}}^{\mathrm{K}} F_{\mathrm{R}}(t).$$
(5.3)

Это приводит к появлению значительной методической погрешности при работе преобразователей в широком диапазоне изменения дестабилизирующих факторов и преобразуемых величин.

Значительно лучшие результаты могут быть получены при использовании в рабочем и компенсационном каналах А/МЧИП, выполненных на однотипных терморезисторах. Схема такого преобразователя предложена в [28] и изображена на рис. 5.2.

Преобразователь состоит из рабочего АМЧИПІ и компенсационного АМЧИП2 каналов. Чувствительные элементы рабочего $R_{\text{T.P}}$ и компенсационного $R_{\text{T.K}}$ каналов размещены конструктивно таким образом, что на $R_{\text{T.P}}$ воздействует входная преобразуемая величи-

на $P_x(t)$ и совокупность дестабилизирующих факторов

 $\sum_{j=1}^{m} P_{z_{j_1}}(t),$

Рис. 5.2. Схема аналого-цифрового автоматического МФП с пространственным разделением сигналов (с симметричными каналами)

а на $R_{\text{т.к.}}$ только совокупность дестабилизирующих факторов $\sum_{j=1}^{m} P_{z_{j_2}}(t)$. Учитывая, что состояние АМЧИП описывается уравнением баланса мощностей, и опираясь на систему уравнений (1.7), (1.8) многофункционального преобразования с пространственным разделением сигналов, можно записать систему уравнений для рабочего и компенсационного каналов в следующем виде:

$$P_{T,p} + \sum_{j=1}^{m} P_{z_{j_{1}}}(t) = P_{x}(t) + P_{o,c_{p}}(t);$$

$$P_{T,R} + \sum_{j=1}^{n} P_{z_{j_{2}}}(t) = P_{o,c_{R}}(t),$$
(5.5)

где $P_{\text{т.р}} = P_{\text{т.к}} = \text{const};$

$$P_{o.c_{p}}(t) = \frac{U_{mp}^{2} \tau_{p}}{4R_{T.p}} F_{p}(t); \quad P_{o.c_{R}}(t) = \frac{U_{mK}^{2} \tau_{R}}{4R_{T.R}} F_{R}(t).$$

Преобразователи в рабочем и компенсационном каналах настраиваются с помощью формирователей ФУ, и дополнительных генераторов Г1, Г2, так, чтобы $U_{mp} = U_{mk} = U_m$, $\tau_p = \tau_k = \tau$, $R_{\tau,p} = R_{\tau,k} = R_{\tau}$. При отсутствии $P_x(t)$ значения мощностей, подаваемых по цепи обратной связи на мостовые терморезистивные схемы в рабочем и компенсационном каналах, будут равны, т. е. $P_{o.c_p} = P_{o.c_k}$. Следовательно, частоты сигналов, подаваемых на вычитатель частот ВЧ, будут равны между собой ($F_p = F_k$), а их разность, фиксируемая ВЧ, равна нулю. При подаче $P_x(t)$ мощность сигнала обратной связи $P_{o.c_p}$ и частота импульсного сигнала обратной связи F_p в рабочем канале автоматически уменьшаются, обеспечивая сохранение баланса мощности на $R_{\tau,p}$. Следовательно, на выходе ВЧ появляется некоторое значение разностной частоты ΔF , для нахождения которого вычтем из (5.4) уравнение (5.5). Тогда с учетом (1.4)

$$P_{x}(t) = P_{o.c_{K}}(t) - P_{o.c_{p}}(t).$$
(5.6)

Преобразуя (5.6), получаем соотношение для функции преобразования

$$P_{x}(t) = \frac{U_{m}^{2}\tau}{4R_{T}} \left[F_{gt}(t) - F_{p}(t)\right] = k_{\text{UM}}\Delta F(t)$$
$$\Delta F(t) = S_{\text{UM}}P_{x}(t).$$
(5.7)

При использовании в каналах время-импульсных АМП функция. преобразования определяется выражением

 $\Delta \tau(t) = S_{\rm BH} P_x(t). \tag{5.8}$

Преимущества автоматических МФП, построенных по схеме с симметричными каналами на основе частотно- и время-импульсных АМП, заключаются прежде всего в линейной функции преобразования, определяемой выражениями (5.7) и (5.8), а также в более высоком быстродействии и возможности простыми мерами обеспечить идентичность характеристик рабочего и компенсационного каналов.

Если терморезисторы имеют разброс параметров, то при отсутствии входного воздействия $P_{\text{т.p}} \neq P_{\text{т.к}}$ и $F_{\text{p}} \neq F_{\text{к}}$. Разная чувствительность рабочего и компенсационного каналов может привести к появлению значительных погрешностей.

Реализация и практическое применение принципа построения аналого-цифровых автоматических МФП с пространственным разделением сигналов подтвердили возможность создания приборов с достаточно высокими эксплуатационными характеристиками. Разработанные на этой основе приборы для измерения расхода газов имели погрешность $\gamma_{случ} \leq 5\%$, время измерения $t \leq 2$ с при измерении расхода в диапазоне 0,5—300 л/ч. Приборы могут использоваться для измерения объемного и массового расходов, скорости потоков, концентрации, влажности и теплопроводности.

Недостатки преобразователей (см. рис. 5.1 и 5.2): наличие двух различных каналов, рабочего и компенсационного, коэффициенты преобразования которых не могут быть идеально идентичными; трудность конструктивного размещения терморезистивных ЧЭ рабочего и компенсационного каналов, обеспечивающего идентичность воздействия на них совокупности дестабилизирующих факторов $\sum_{n=1}^{m} P_{z_n}$, так как неоднородность потоков и полей уже

i=1 сама по себе определяет неидентичность их действия в различных точках пространства; некоторая, хотя и обоснованная в ряде случаев, аппаратурная избыточность. Эти недостатки в значительной мере могут быть устранены построением аналого-цифровых автоматических МФП с временным разделением сигналов.

5.2. АНАЛОГО-ЦИФРОВЫЕ АВТОМАТИЧЕСКИЕ МФП.

С ВРЕМЕННЫМ РАЗДЕЛЕНИЕМ СИГНАЛОВ И ДВУХТАКТНЫМ ИНТЕГРИРОВАНИЕМ

Принцип временного разделения сигналов (поочередное прохождение сигналами одного и того же преобразовательного тракта) [8, 11] может быть использован для построения аналого-цифровых автоматических МФП. Структура таких преобразователей значительно упрощается, если первичный преобразователь обеспечивает получение частотно- или время-импульсного сигнала, линейно связанного с преобразуемым воздействием. Поэтому в качестве первичного преобразователя в этом случае целесообразно применить частотно- или время-импульсные АМП. Результат преобразования тогда может быть получен после операции обработки двух смещенных во времени интегральных выборок импульсного сигнала.

Обобщенная схема аналого-цифрового автоматического МФП с временным разделением сигналов и двухтактным интегрированием [[29] приведена на рис. 5.3. Анализ основных характеристик преобразователя приведен в [29, 35], а временные диаграммы, поясняющие принцип действия, — на рис. 5.4. Преобразователь состоит из трех основных блоков: А!МЧИП — I, реверсивного счетчика РСч и отсчетно-регистрирующего устройства ОРУ — II, блока управления — III.

Основные элементы блока I: терморезистивный мост с терморезистором $R_{\rm T}$, используемым в качестве ЧЭ; усилитель разбаланса У; следящий пиковый детектор СД с фильтром нижних частот Ф; генератор импульсов управляемой частоты ГИУЧ, выходной импульсный сигнал которого при наличии и отсутствии $P_x(t)$ соответственно поступает через вентили В4 и В5 на суммирующий и вычитающий входы реверсивного счетчика и через формирующее устройство ФУ1, стабилизирующее амплитуду и длительность сигнала обратной связи, на диагональ питания терморезистивного моста, замыкая тем самым цепь обратной связи.

Рис. 5.3. Схема аналого-цифрового автоматического МФП с временным разделением сигналов и двухтактным интегрированием

Рис. 5.4. Временные диаграммы работы аналого-цифрового автоматического МФП с временным разделением сигналов и двухтактным интегрированием

Состояние АМЧИП описывается системой уравнений:

$$P_{T} = P_{0.c1}(t) - \sum_{j=1}^{l} P_{z_{j}}(t) \quad \text{при} \quad P_{x}(t) = 0;$$
(5.9)

$$P_{\mathrm{T}} = P_{\mathrm{o.c}\ 2}(t) - \sum_{j=1}^{m} P_{z_j}(t) + P_{x}(t)$$
 при $P_{x}(t) > 0.$ (5.10)

Подставляя в (5.9) и (5.10) выражения для $P_{o.c.1}(t)$ и $P_{o.c.2}(t)$ из (2.14), получаем

$$P_{\mathbf{T}} = \frac{U_m^2 \tau}{4R_{\mathbf{T}}} F_1(t) - \sum_{j=1}^m P_{z_j}(t) \quad \text{при} \quad P_x(t) = 0;$$
(5.11)

$$P_{\mathbf{T}} = \frac{U_m^2 \tau}{4R_{\mathbf{T}}} F_2(t) - \sum_{j=1}^m P_{z_j}(t) + P_x(t) \quad \text{при} \quad P_x(t) > 0.$$
(5.12)

Уравнения (5.11) и (5.12) показывают, что изменение входноко воздействия $P_x(t)$ приводит к изменению F(t) выходного импульсного сигнала АМЧИП, который одновременно является сиг-138 налом обратной связи, восстанавливающим баланс моста. Результат преобразования $P_x(t)$ может быть получен обработкой двух сдвинутых во времени интегральных выборок частотно-импульсного сигнала. Практически задача определения $P_x(t)$ сводится к измерению текущей разности средних значений частот, соответствующих балансу ТМ до подачи $P_x(t)$ и после подачи $P_x(t)$ на ЧЭ. Эта задача выполняется блоками II и III. В качестве блока II используется реверсивный счетчик РСч с раздельными входами «На суммирование» и «На вычитание» и цифровое ОРУ. Принцип работы преобразователя в целом и построение блока управления III лучше всего пояснить с помощью схемы и временных диаграмм, приведенных на рис. 5.3 и 5.4.

Цикл преобразования начинается после подачи на вход триггера Tr1 импульса запуска, формирование которого может быть осуществлено в режимах ручного запуска с помощью кнопки Кн, внешнего запуска — внешним синхрогенератором и автоматическом от внутреннего тактового генератора TГ. При автоматическом запуске частота получения результатов преобразования задается периодом следования импульсов $U_{\rm TF}$ тактового генератора.

В блок управления III входят выключатель входного воздействия В, триггеры Tr1—Tr4, управляемые ими импульсно-потенциальные вентили B1 — B5. Импульс запуска $U_{\rm Tr}$ устанавливает триггеры Tr1 — Tr4 в такое состояние, при котором вентили B1, B3, B4, B5 закрыты, а вентиль B2 открыт. Выключатель В при этом разомкнут и $P_x(t)$ на ЧЭ не попадает. При этом в РСч окажется зарегистрированным число, определяемое уравнением

$$N_{1} = \int_{0}^{T_{0}} F_{1}(t) dt = \int_{0}^{T_{0}} \frac{4R_{T}}{U_{m}^{2}\tau} \left[P_{T} + \sum_{j=1}^{m} P_{z_{j}}(t) \right] dt =$$

= $S_{\mathbf{q}_{\mathbf{H}}} T_{0} \left[P_{T} + \sum_{j=1}^{m} P_{z_{j}}(t) \right].$ (5.13)

После прохождения через вентиль B1 четырех импульсов генератора ΓT_0 триггер Tr4 возвращается в исходное состояние и срезом его импульсного сигнала переводятся в исходное состояние триггеры Tr1 и Tr3. Выключатель входного воздействия В замыкается. При этом $P_x(t)$ попадает на ЧЭ и выходной сигнал измерительной схемы определяется следующим выражением:

$$N_{2} = \int_{2T_{0}}^{3T_{0}} F_{2}(t) dt = \int_{2T_{0}}^{3T_{0}} \frac{4R_{T}}{U_{m}^{2}\tau} \left[P_{\tau} + \sum_{j=1}^{m} P_{z_{j}}(t) - P_{x}(t) \right] dt =$$

= $S_{\text{uy}} T_{\theta} \left[P_{\tau} + \sum_{j=1}^{m} P_{z_{j}}(t) - P_{x}(t) \right].$ (5.14)

На этом цикл измерения заканчивается. После окончания цикла в РСч (рис. $5.4 - U_{PC4}$) окажется зарегистрированным число $N = N_1 - N_2 = T_0 (F_1 - F_2) = S_{444} T_0 P_x.$ (5.15)

Временные диаграммы работы преобразователя, иллюстрирующие процесс получения числового значения выходного сигнала, приведены на рис. 5.5. Время измерения $t_{изм} = 4T_0$.

Следующий цикл измерения начинается после поступления очередного запускающего импульса U_{TF}, который сбрасывает предыдущие показания РСч и устанавливает триггеры блока управления в исходные состояния.

Выбор T_0 определяется требуемым быстродействием. С этой точки зрения желательно возможно меньшее значение T_0 . Однако минимально допустимое значение T_0 ограничивается двумя факторами:

1. Входное воздействие $P_x(t)$ подается на терморезистор скачком после второго импульса генератора базы времени. Схема об-

Рис. 5.6. Временные диаграммы преобразования с двухтактным интегрированием при *T*₀≫*t*_{уст} ладает некоторой постоянной времени, не равной нулю, поэтому частота выходного сигнала $F_2(t)$ блока I устанавливается после окончания переходного процесса. Следовательно, третий импульс ΓT_0 должен приходить на вход Tr4 через время, не меньшее, чем время установления частоты выходного сигнала АМЧИП $t_{ycr,}$ т. е. всегда должно соблюдаться неравенство $T_{0 \min} > t_{ycr}$.

2. Описываемое устройство является цифровым, точность отсчета результата с его помощью всегда ограничивается возможностью потери ± 1 импульса из-за дискретности представления преобразуемой величины. Следовательно, значение T_0 надо выбирать так, чтобы погрешность, определяемая дискретностью, не превышала допустимого значения.

В тех случаях, когда к преобразователю не предъявляются жесткие требования в отношении быстродействия, период повторения T_0 рационально выбирать несколько большего значения, чем этого требуют приведенные соображения, так как при больших T_0 производится усреднение $F_1(t)$ и $F_2(t)$ и влияние кратковременных флюктуационных помех на результат измерения автоматически устраняется.

В большинстве практических случаев $T_0 \gg t_{ycr}$ и преобразование может быть проведено в течение двух периодов сигнала ΓT_0 , (рис. 5.6), что позволяет значительно повысить быстродействие МФП.

Из-за влияния дестабилизирующих факторов интегрируемый сигнал на относительно малом временном интервале интегрирования представляет собой возрастающую или убывающую функцию времени. При обработке таких сигналов методом двухтактного интегрирования появляется составляющая погрешности, определяемая скоростью изменения интегрируемого сигнала и временем интегрирования. Для устранения этой составляющей погрешностия используется специальная схема построения аналого-цифровых автоматических МФП, основанная на реализации алгоритма трехтактного интегрирования.

5.3. АНАЛОГО-ЦИФРОВЫЕ АВТОМАТИЧЕСКИЕ. МФП С ВРЕМЕННЫМ РАЗДЕЛЕНИЕМ СИГНАЛОВ И ТРЕХТАКТНЫМ ИНТЕГРИРОВАНИЕМ

Интегрируемый в преобразователях сигнал, как правило, представляет собой сложную композицию, состоящую из результатов преобразования информационного сигнала и дестабилизирующих факторов. При оценке такого сигнала методом двухтактного интегрирования появляется погрешность, которая может существенно исказить результат преобразования. Подобная проблема возникает также при работе с тепловыми датчиками, на результат преобразования которых больное влияние оказывает

Рис. 5.7. Временные диаграммы, поясняющие наличие погрешности при двухтактном интегрировании

нестабильность температуры окружающей среды, влажности, давления и т. д.

Использование в качестве первичных преобразователей частотно- и время-импульсных терморезистивных автобалансных преобразователей позволяет рассматривать их выходной сигнал как суперпозицию результатов преобразования информационного сигнала и некоторого дрейфа. Скорость дрейфа относительно невелика, поэтому участок временной функции, описывающей выходной сигнал в интервале интегрирования, аппроксимировать можно пря-

мой линией. Тогда интегрируемый частотно-импульсный сигнал F(t) во время соответствующих тактов интегрирования можно представить в виде:

$$F_{1}(t) = F_{1} - k_{v} t;$$

$$F_{2}(t) = F_{2} - k_{v} t,$$
(5.16)
(5.17)

где
$$k_v$$
 — коэффициент, определяемый скоростью изменения часто-
ты под действием помехи, обусловленной, например, увеличени-
ем температуры окружающей среды. Временные диаграммы, по-
ясняющие процесс, приведены на рис. 5.7.

Подставляя (5.16) в (5.13), получаем число импульсов, зарегистрированных реверсивным счетчиком за время T₀ первого такта интегрирования:

$$N'_{1} = \int_{0}^{T_{0}} F_{1}(t) dt = \int_{0}^{T_{0}} (F_{1} - k_{v} t) dt = F_{1} T_{0} - \frac{k_{v} T_{0}^{2}}{2}.$$
 (5.18)

Аналогично, подставляя (5.17) в (5.14), находим число импульсов, зарегистрированное реверсивным счетчиком за время второго такта:

$$N_{2}^{\prime} = \int_{T_{0}}^{2T_{0}} F_{2}(t) dt = \int_{T_{0}}^{2T_{0}} (F_{2} - k_{v} t) dt = F_{2} T_{0} - 3k_{v} T_{0}^{2}/2.$$
(5.19)

По окончании второго такта интегрирования в соответствии с (5.15) в реверсивном счетчике окажется зарегистрированным числом импульсов

$$N' = N'_{1} - N'_{2} = F_{1}T_{0} - k_{v}T^{2}_{0}/2 - F_{2}T_{0} + 3k_{v}T^{2}_{0}/2 =$$

= $T_{0}(F_{1} - F_{2}) + k_{v}T^{2}_{0} = S_{\text{HH}}T_{0}P_{x} + k_{v}T^{2}_{0}.$ (5.20)

Сравнение (5.15) и (5.20) показывает, что возникающая при двухтактном интегрировании погрешность

 $\Delta N = N' - N = k_v T^2_0. \tag{5.21}$

Временные диаграммы (рис. 5.7) наглядно подтверждают изложенные соображения.

Для уменьшения этой составляющей погрешности необходимо стремиться к увеличению значений F_1 и F_2 и уменьшению интервала времени T_0 , что не всегда возможно в связи с необходимостью снижения влияния кратковременных флюктуационных помех и уменьшения погрешности, определяемой дискретностью представления результата. Если данные меры не приводят к желаемому результату и значение погрешности $k_v T^2_0$ недопустимо велико, необходимо использовать преобразователи и алгоритмы, обеспечивающие трехтактное интегрирование с последующей суммо-разностной обработкой результатов [31, 32, 38]. Схема построения такого преобразователя приведена на рис. 5.8, а временные диаграммы работы — на рис. 5.9. Особенность работы таких преобразователей состоит в том, что интервал интегрирования делится на три такта и результаты интегрирования обрабатываются по суммарноразностному алгоритму.

Во время первого такта интегрирования (интервал времени от $0-t_1$ на рис. 5.9,*a*) продолжительностью $T_0/2$ преобразуемый сигнал $P_x(t)$ на вход преобразователя не подается, значение частоты выходного сигнала АМЧИП определяется выражением (5.16) и подается на суммирующий вход РСч. Реверсивный счетчик РСч за время $T_0/2$ зафиксирует число импульсов

$$N_{1} = \int_{0}^{T_{0}/2} (F_{1} - k_{v}t) dt = \frac{1}{2} F_{1}T_{0} - \frac{k_{v}T_{0}^{2}}{8}.$$
 (5.22)

Во время второго такта интегрирования (интервал времени $t_1 - t_2$ на рис. 5.9,*a*) продолжительностью T_0 на вход преобразователя подается преобразуемый сигнал $P_x(t)$, значение частоты выходного сигнала АМЧИП определяется (5.17) и подается на вычитающий вход РСч. Реверсивный счетчик за время T_0 зафиксирует число импульсов

$$N_{2} = \int_{T_{0}/2}^{\frac{3}{2}T_{0}} = (F_{2} - k_{v} t) dt = F_{2}T_{0} - k_{v}T_{0}^{2}.$$
 (5.23)

Во время третьего такта интегрирования (интервал времени $t_2 - t_3$ на рис. 5.9,*a*) продолжительностью $T_0/2$ преобразуемый сигнал $P_x(t)$ на вход преобразователя не подается, значение частоты выходного сигнала АМЧИП определяется (5.16) и, как и во время первого такта, подается на суммирующий вход

Рис. 5.8. Схема аналого-цифрового автоматического МФП с временным разделением сигналов и трехтактным интегрированием

а — выходной сигнал; б — напряжения на устройствах преобразователя

РСч. Реверсивный счетчик за время T₀/2 зафиксирует число импульсов

$$N_{3} = \frac{\frac{4}{2}}{\int}_{T_{0}}^{T_{0}} (F_{1} - k_{v} t) dt = \frac{1}{2} F_{1} T_{0} - \frac{7}{8} k_{v} T_{0}^{2}.$$
(5.24)

В итоге реверсивный считчик зафиксирует число импульсов $N_{\Sigma} = N_1 + N_3 - N_2 = T_0 (F_1 - F_2) = T_0 \Delta F = S_{\text{чи}} T_0 P_x.$ (5.25)

Сравнение (5.20) и (5.25) показывает, что составляющая погрешности преобразования ($k_v T_0^2$) полностью исключается. Так при экспериментальной проверке микроваттметр СВЧ с термистором ТШ-2 в качестве ЧЭ, построенный на основе алгоритма трехтакт-
ного интегрирования с суммарно-разностной обработкой, имел чувствительность 1 Гц/мкВт, пределы измерения 1—10 000 мкВт и время измерения $T_{\rm HSM}$ =2 с. Испытания показали полную инвариантность показаний прибора к воздействию перепадов температуры внешней среды. Если подобный микроваттметр СВЧ был бы построен на основе принципов двухтактного интегрирования, то, приняв, например, скорость изменения температуры внешней среды, равной 0,1°С/мин, и мощность, эквивалентную нагреву термистора ТШ-2 на 0,1°С, равной 250 мкВт, получим погрешность нзмерения порядка 8 мкВт.

Приведенный пример наглядно показывает, что изложенный принцип построения МФП с трехтактным интегрированием эффективен и пригоден для широкого применения в приборах и устройствах интегрирующего типа.

5.4. АНАЛОГО-ЦИФРОВЫЕ МФП С АВТОМАТИЧЕСКИМ ПЕРЕКЛЮЧЕНИЕМ ДИАПАЗОНОВ НА ОСНОВЕ АДАПТАЦИИ ЧУВСТВИТЕЛЬНОСТИ К УРОВНЮ ВХОДНОГО СИГНАЛА

Автоматизация операции переключения диапазонов преобразования может быть осуществлена адаптивным изменением чувствительности преобразователя в зависимости от значения входного сигнала. При построении преобразователей следует учитывать, что если чувствительность выбирать из условия полного использования емкости выходного счетчика при преобразовании наибольшего значения $P_{x \max}(t)$, то тогда возрастает логрешность при преобразовании малых уровней $P_{x\min}(t)$, так как возрастает погрешность дискретности. Если же выбирать S из условия более точного преобразования малых значений $P_{x\min}(t)$, то это приведет к значительному увеличению емкости счетчика при преобразования малых значений $P_{x\min}(t)$, то это приведет нии больших значений $P_x(t)$, что также нельзя считать рациональным.

Практическое применение аналого-цифровых автоматических МФП связано с использованием их в качестве блоков сложных систем контроля и управления или в составе цифровых приборов. При этом несколько различных физических величин преобразовываются одним МФП, а результат подается на общий индикатор или ЭВМ. Для повышения точности преобразования и упрощения процесса обработки результатов желательно, чтобы преобразуемые величины, часто изменяющиеся в широких пределах, были представлены числами, содержащими постоянное число разрядов. Другими словами, преобразование малых значений физических величин должно производиться с малой дискретностью, больших велиной погрешности. Построение аналого-цифровых преобразователей с автоматическим переключением диапазонов рассмотрим на примере преобразователя с использованием АМЧИП, чувствительность которого

$$S = 4R_1 / U_m^2 \tau.$$
 (5.26)

Выражение (5.26) показывает, что чувствительность можно изменять, регулируя значения неинформативных параметров U_m и т импульсного сигнала обратной связи. Схема аналого-цифрового автоматического МФП с автоматическим переключением диапазонов приведена на рис. 5.10. Преобразователь отличается тем, что имеющиеся в составе ФУ1 формирователь амплитуды ФА и формирователь длительности ФД способны по сигналу управления дискретно изменять амплитуду и длительность импульсов сигнала обратной связи, формируя U_{m1} , U_{m2} ... и τ_1 , τ_2 ... При этом в соответствии с (5.26) изменяется чувствительность преобразователя, принимая значения S_1 , S_2 ... Значения U_{m1} и τ_1 выбираются таким образом, чтобы выполнялось соотношение $S_1/S_2 = n$ и т. д. Из уравнения баланса мощностей (5.4) следует, что при изменении чувствительности будет изменяться частота $F_p(t)$ рабочего канала, которая определяется выражениями:

$$F_{p}^{(1)} = S_{1} \left[P_{T} + \sum_{j=1}^{m} P_{z_{j}}(t) - P_{x} \right];$$
(5.27)

$$F_{\rm p}^{(2)} = S_2 \left[P_{\rm T} + \sum_{j=1}^{m} P_{z_j}(t) - P_{x} \right].$$
(5.28)

Рис. 5.10. Схема преобразователя с автоматическим переключением диапазонов, основанным на адаптивном изменении неинформативных параметров импульсного сигнала обратной связи

Выражения (5.27) и (5.28) позволяют получить соотношение $f^{(2)}_{p} = F^{(1)}_{p}/n$. Из принципа действия МФП с пространственным разделением сигналов следует, что при изменении F_{p} , обусловленном изменением S, должна одновременно и во столько же раз измениться частота сигнала в компенсационном канале, т. е. $F^{(2)}_{\kappa} = F^{(1)}_{\kappa}/n$. Поэтому в цепь подачи на ВУ сигнала компенсационного канала включен управляемый делитель частоты УД. Управление изменениями чувствительности АМЧИП и частоты F_{κ} осуществляется импульсным сигналом переполнения счетчика Сч, подаваемым с его выходов a и b на входы a и b ФА, ФД и УД.

Процесс преобразования начинается всегда при таком состоянии преобразователя, которое соответствует его наибольшей чувствительности S_1 . После подачи на ЧЭ преобразуемой величины $P_x(t)$ начинается процесс измерения разностной частоты ΔF , определяющей $P_x(t)$ в соответствии с (5.7).

Емкость счетчика N_m выбрана так, что полное заполнение его произойдет при подаче на преобразователь некоторого значения преобразуемой величины P_x , равного P_{m1} и определяемого из выражений (5.7) и (5.15), т. е. $P_{m1}=N_m/S_1T_0$. Если значение $P_{x1} < < P_{m1}$, то в течение одного интервала базы времени T_0 на счетчик поступает число импульсов $N_{x1} = \int_{0}^{T_0} \Delta F_1 dt = \Delta F_1 T_0 = S_1 T_0 P_{x1}$. При $N_{x1} < N_m$ переполнения счетчика не происходит и цикл преобразования заканчивается. Если же некоторое значение преобразуемой величины $P_{x2} > P_{m1}$, то в некоторый момент времени $t_1 < T_0$ проис-

ходит переполнение счетчика. Импульс переполнения вызывает изменение S, F_{κ} и разностной частоты ΔF в n раз. Наибольшей емкости счетчика теперь уже будет соответствовать значение преобразуемой величины, определяемой выражением $P_{m2} = N_{ml}/S_2T_0 =$ $= N_{mn}/S_1T_0 = nP_{m1}$.

Таким образом, произошел переход с одного диапазона преобразования на другой, после которого нецелесообразно начинать процесс преобразования с новой базы времени. Поэтому необходимо в момент переполнения счетчика установить в нем такое число импульсов, которое бы зарегистрировал счетчик при разностной частоте ΔF_2 и чувствительности преобразователя S_2 за время t_1 , т. е. $N_0 = \Delta F_2 t_1 = |\Delta F_1 t_1/n = N_m/n$.

Операция установки N₀ производится с помощью подачи импульса переполнения на установочные входы триггеров пересчетных декад. После этого операция преобразования продолжается.

За оставшийся интервал времени $T_0 - t_1$ счетчик зарегистрирует число импульсов $N_2 = \int_{t_2}^{T_0} \Delta F_2 dt = \Delta F_2 (T_0 - t_1) = \frac{\Delta F_1}{n} (T_0 - t_1)$. К моменту окончания интервала базы времени T_0 в счетчике окажется зафиксированным число импульсов

$$N_{x2} = N_0 + N_2 = \Delta F_1 t_1 / n + \Delta F_1 (T_0 - t_1) / n = S_2 T_0 P_{x2}.$$
(5.29)

Такой же результат мог бы быть получен, если бы преобразование происходило все время с чувствительностью S₂. Однако при измерении малых мощностей погрешность дискретности была бы в *n* раз больше.

Использование свойств частотно-импульсных сигналов, позволяющих простыми и надежными средствами осуществлять деление частоты, дает возможность решать задачу автоматического переключения диапазона преобразования более эффективно, применяя для формирования выходного сигнала последовательное включение адаптивно управляемых делителей частоты (рис. 5.11).

Преобразователь состоит из АМЧИП, вычитающего устройства ВУ, делителей частоты ДЧ1, ДЧ2, ДЧ3, вентилей (схем совпадения) В1—В4, схемы ИЛИ, управляемого вентиля В5, основного счетчика ОСч, дополнительного счетчика ДСч, диодной матрицы ДМ, тактового генератора ТГ, делителя частоты ДЧ4, блока индикации множителя БИМ. Разностная частота ΔF выходного сигнала ВУ делится последовательно включенными делителями частоты. Коэффициенты деления отдельных делителей выбираются в зависимости от отношения предельных значений шкал соседних диапазонов $n_i = P_{m_{i+1}}/P_{m_i}$, где i — номер делителя и диапазона; P_{m_i} и $P_{m_{i+1}}$ — предельные значения шкал соседних диапазонов.

Сигнал разностной частоты ΔF непосредственно подается только на схему совпадений B1, а на входы последующих схем B2, B3, B4 подаются соответственно частоты с выходов делителей ДЧ1, ДЧ2, ДЧ3. Блоки B1—B4 — импульсно-потенциальные схемы сов-

Рис. 5.11. Схема аналого-цифрового автоматического МФП с автоматическим переключением диапазонов преобразования с адаптивным делением частоты выходного сигнала

падений, управляемые по потенциальным входам перепадами напряжений от дополнительного счетчика ДСч через диодную матрицу ДМ. В исходном состоянии частота F_{κ} устанавливается равной выходной частоте F_{p} , чтобы при $P_{x}=0$ и ΔF принимала нулевое значение. Импульсы тактового генератора ТГ устанавливают основной ОСч и дополнительный ДСч счетчики в нулевые состояния, при этом напряжением с первого выхода ДМ открывается первая схема В1, остальные схемы В2, В3, В4 закрыты.

При подаче P_x разностная частота $\Delta F_1 = SP_x$ и через схемы В1 и ИЛИ поступает на импульсный вход управляемого вентиля В5, потенциальный вход которого управляется делителем частоты ДЧ4 совместно с ТГ, определяющим временную базу. Длительность временной базы T_0 и определяет время преобразования.

Чувствительность S и время T_0 выбираются такими, чтобы при преобразовании на первом диапазоне наибольшего значения $P_{x \max} = P_{m1}$ была полностью использована вся емкость счетчика, т. е. $N_m = ST_0P_{m1}$. Если же окажется, что $P_{x2} > P_{m1}$, то за некоторое время t_1 счетчик ОСч переполнится. Импульс переполнения ОСч подается на вход ДСч, при изменении состояния первого триггера этого счетчика появляется разрешающее напряжение на втором выходе ДМ. С этого момента закрывается схема B1 и открывается B2, через которую на B5 подается сигнал разностной частоты с выхода ДЧ1, определяемой выражением $\Delta F_2 = \Delta F_1/n$.

Переполнение ОСч при изменении ΔF_1 произойдет за время. $t_1 = N_m / \Delta F_1$.

Для того чтобы после переполнения ОСч и перехода на другой диапазон учесть результат отсчета за время t_1 и не начинать преобразование с новой временной базы, необходимо в ОСч установить. в момент времени t_1 число импульсов N_0 , соответствующее значению P_{m1} с учетом следующего диапазона множителя. Это число. N_0 определяется соотношением $N_0 = \Delta F_2 t_1 = \Delta F_1 t_1 / n = N_m / n$. За оставшийся до окончания временной базы T_0 интервал времени $T_0 - t_1$ счетчик ОСч зарегистрирует число импульсов $N_2 = \int_0^T \Delta F_2 dt =$

= $\Delta F_2(T_0-t_1) = \Delta F_1(T_0-t_1)/n$. За время T_0 в счетчике ОСч будет зафиксировано число импульсов N_{x2} , определяющее P_{x2} соотношением (5.29).

При $P_{x2} > P_{m2}$, $P_{x3} > P_{m3}$ и так далее преобразователь работает аналогичным образом. Следовательно, в преобразователе осуществляется автоматический выбор диапазона преобразования в зависимости от уровня входного преобразуемого сигнала. При этом суммарное время преобразования остается постоянным и равным T_0 .

Пример. Рассмотрим процесс преобразования конкретного значения P_x с.: помощью преобразователя, имеющего технические характеристики: пределы преобразования 0—500—1000—2000—4000 мкВт; наибольшая чувствительность преобразователя 2000 Ги/мВт; время преобразования 1 с.

Емкость счетчика в этом случае должна быть $N_m = SP_{m1}T_0 = 2000 \cdot 0.5 \cdot 1 = 1000$. Коэффициент деления делителей $n = P_{m_{l+1}}/P_m = 1000/500 = 2$. Множители на блоке индикации могут принимать значения $\times 0.5$, $\times 1$, $\times 2$, $\times 4$.

Пусть $P_x = 1350$ мкВт, тогда частота сигнала на выходе вычитающего устройства будет равна $\Delta F_1 = SP_x = 2000 \cdot 1350 \cdot 10^{-3} = 2700$ Гц. При измерении этой частоты переполнение ОСч произойдет через интервал времени, равный $t_1 = N_m / \Delta F_1 = 1000/2700 = 0,3704$ с. Одновременно в ОСч установится число $N_0 = \Delta F_2 t_1 = N_m / n = 1000/2 = 500$ ед. С этого числа продолжается процесс преобразования P_x . Для заполнения ОСч при новом значении входной частоты ΔF_2 требуется время, равное $t_2 = (N_m - N_0) / \Delta F_2 = (1000 - 500) / 1350 = 0,3704$ с.

Таким образом, из всей временной базы $T_0=1$ с уже использовано время $t_1+t_2=0,7408$ с. Второй импульс переполнения ОСч вновь устанавливает в нем число импульсов $N_0=500$, с которого и продолжается дальнейший счет, но уже при новом значении частоты. Время, которое осталось для пересчета этой частоты, $t_3=T_0-t_1-t_2=1-0,7408=0,2592$ с. За время t_3 в счетчик успеет поступить число импульсов $N_3=\Delta F_3 t_3=675\cdot 0,2592=175$. В счетчике окажется зарегистрированным число $N=N_0+N_3=675$, но при этом блок индикации множителя БИМ фиксирует множитель $\times 2$, следовательно, значение преобразуемой мощности $P_x=N\cdot 2=675\cdot 2=i1350$ мкВт.

На рис. 5.12 показана диаграмма, поясняющая процесс заполнения счетчика и автоматическое переключение диалазонов для рассмотренного примера.

Автоматизация процесса переключения диапазонов не единственное преимущество МФП. Существенным является также то, что

Рис. 5.12. График процесса заполнения счетчика преобразователя с автоматическим выбором предела измерения

время преобразования постоянно и не зависит от значения преобразуемой величины, тогда как у приборов с ручным переключением диапазона оно обычно существенно возрастает с увеличением значения P_x , так как при неизвестном порядке P_x оператор должен последовательно «пробежать» все предыдущие диапазоны.

5.5. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ АНАЛОГО-ЦИФРОВЫХ МФП

Принципы построения аналого-цифровых МФП, анализ их работы и схемы построения показали, что использование автобалансных мостовых частотно-импульсных преобразователей в качестве схем включения терморезистивных ЧЭ в сочетании с методами пространственного и временного разделения сигналов и специальными алгоритмами обработки выходной информации позволяет значительно улучшить характеристики преобразователей физических величин.

К таким характеристикам относятся: линейность функции преобразования; автоматическая коррекция дополнительной погрешности, обусловленной влиянием дестабилизирующих факторов; получение выходной информации в форме импульсного сигнала, значительно упрощающей дальнейшее преобразование в кодовый или цифровой сигнал; автоматическая избирательность по отношению к входному преобразуемому сигналу на фоне воздействия нескольких входных сигналов и дестабилизирующих факторов; отсутствие необходимости в термостатировании, подборе по параметрам ЧЭ и термокомпенсирующих цепей.

Основными характеристиками, определяющими метрологические качества аналого-цифровых МФП, являются погрешность преобразования и быстродействие.

Суммарная относительная погрешность аналого-цифровых автоматических МФП с терморезистивными ЧЭ определяется следующим выражением:

$$\gamma_{\Sigma} = \gamma_{P_{M}} + \gamma_{P_{d}} + \gamma_{P_{H}} + \gamma_{P_{dK}}, \qquad (5.30)$$

где $\gamma_{PM} = \Delta P_M / P_x$ — методическая относительная погрешность; $\gamma_{PA} = \Delta P_A / P_x$ — динамическая относительная погрешность; $\gamma_{PH} = = \Delta P_H / P_x$ — инструментальная относительная погрешность; $\gamma_{PAK} = = \Delta P_{K} / P_x$ — относительная погрешность дискретности.

Выведем выражение для методической составляющей погрешности применительно к аналого-цифровым автоматическим МФП с частотно-импульсным преобразованием и временным разделением сигналов. Если входные преобразуемые сигналы $P_{x1}(t)$, $P_{x2}(t)$, ..., $P_{x_n}(t)$ и дестабилизирующие факторы $P_{z1}(t)$, $P_{z2}(t)$, ..., $P_{z_m}(t)$ изменяются во времени, то будут изменяться во времени и результаты их преобразования. Тогда на выходе МФП за время

 t_{np} будем иметь ΔF_{x1} , $\Delta F_{x2}(t)$, ..., $\Delta F_{x_n}(t)$ и $\Delta F_{z1}(t)$, $\Delta F_{z2}(t)$, ..., $\Delta F_{z_n}(t)$ составляющих изменения частоты частотно-импульсного сигнала. В соответствии с (1.19) и (5.15) для абсолютной методической погрешности при преобразовании $P_{x1}(t)$ получим выражение

$$\Delta P_{\text{M-B1}} = \frac{U_m^2 \tau}{8R_r} t_{\text{np}} \sqrt{\sum_{i=2}^n \left\{ \frac{d \left[\Delta F_{x_i}(t) \right]}{dt} \right\}^2 + \sum_{j=1}^m \left\{ \frac{d \left[\Delta F_{z_j}(t) \right]}{dt} \right\}^2},$$
(5.31)

где $U_{m\tau}^2/4R_{\tau} = 1/S_{\eta u}$ — величина, обратная чувствительности; $\Delta F_{x_i}(t)$; $\Delta F_{z_j}(t)$ — изменения частоты на выходе МФП под действием изменяющихся во времени входных сигналов и дестабилизирующих факторов соответственно; $d[\Delta F_{x_i}(t)]/dt$ — скорость изменения во времени результата преобразования *i*-го преобразуемого сигнала; $d[\Delta F_{z_j}(t)]/dt$ — скорость изменения во времени результата преобразования *j*-го дестабилизирующего фактора.

Формула (5.31) справедлива для общего случая случайного и независимого изменения во времени преобразуемых сигналов и дестабилизирующих факторов в условиях применимости принципа суперпозиции.

Если в процессе оценки методической логрешности возможно определение эквивалентных изменений входных преобразуемых и дестабилизирующих воздействий в единицах основной преобразуемой величины, то формула (5.31) принимает вид

$$\Delta P_{\text{M.B1}} = \frac{t_{\text{np}}}{2} \sqrt{\sum_{i=2}^{n} \left[\frac{d P_{x_i}(t)}{dt} \right]^2 + \sum_{i=1}^{m} \left[\frac{d P_{z_j}(t)}{dt} \right]^2}, \qquad (5.32)$$

где $dP_{x_i}(t)/dt$ и $dP_{z_j}(t)/dt$ — скорости изменения мощностей, воздействующих на ЧЭ, эквивалентных соответственно *i*-му сигналу и *j*-му дестабилизирующему фактору.

Пример. Рассчитать погрешность измерения мощности СВЧ при условии, что суммарная скорость изменения не подлежащих преобразованию входных сигналов $P_{x2}(t)$, P_{x3} , ..., P_{xn} равна 1 мкВт/с в условиях воздействия температуры окружающей среды, изменяющейся со скоростью 60° С/ч. В качестве ЧЭ в приборе применен высокочастотный термистор типа ТШ-2. Время преобразования прибора $t_{np}=3$ с. Скорость изменения сигналов, не подлежащих преоб-

разованию, $\sum_{i=2}^{n} [dP_{x_i}(t)/dt] = 1$ мкВт/с.

Определим скорость изменения эквивалентной мощности, воздействующей на ЧЭ, обусловленную изменением температуры окружающей среды. Принимая во внимание, что для термистора ТШ-2 коэффициент рассеивания H=250 мкВт/°С, можно записать

 $dP_{z}(t)/dt = 250/60 \approx 4$ MKBT/c.

Следовательно, в соответствии с (5.32)

$$\Delta P_{\text{M,BI}} = \frac{3}{2} \sqrt{1^2 + 4^2} \approx 6.2 \text{ mkBr}.$$

Если измерение проводить стандартными приборами с ручным управлением (например, МЗ-1, МЗ-22), то квалифицированный оператор затрачивает около-30 с на получение отсчета, а погрешность превышает 100 мкВт.

Пример наглядно показывает, что автоматические МФП обеспечивают значительное уменьшение методической погрешности (в 20 раз) и времени получения результата преобразования (в 10 раз) по сравнению с известными существующими приборами.

Аналогично (5.31) и (5.32) можно получить выражения, позволяющие определить абсолютные методические погрешности для аналого-цифровых автоматических МФП с пространственным разделением сигналов, а также с использованием метода замещения.

При известной временной функции, описывающей преобразуемые сигналы или скорости их изменения, методика расчета динамических погрешностей является общей для всех типов МФП.

Инструментальная составляющая погрешности уР_и определяется погрешностями формирования импульсного сигнала обратной связи, качеством применяемых деталей и погрешностью приборов, используемых для регистрации результата преобразования.

Решая систему уравнений (5.11) и (5.12) относительно $P_x(t)$, получаем выражение

 $P_x = U^2_m \tau \Delta F / 4R_{\tau}$

(5.33)

Вычисляя полный дифференциал выражения (5.33) и переходя к конечным приращениям, находим

$$\gamma_{P_{u}} = \Delta P_{u}/P_{x} = 2\delta U_{m}/U_{m} + \delta\tau/\tau + \delta R_{\tau}/R_{\tau} + \delta\Delta F/\Delta F, \qquad (5.34)$$

где δU_m , $\delta \tau$, δR_τ , $\delta \Delta F$ — абсолютные отклонения амплитуды и длительности импульсного сигнала обратной связи, сопротивления плеч моста и измеренного значения частоты от их расчетных значений.

Относительная погрешность, обуславливаемая нестабильностью амплитуды импульсов сигнала обратной связи, определяется теми мерами стабилизации U_m , которые приняты в конкретной схеме. Применение интегральных транзисторных ключей для формирования амплитуды импульсов позволяет довести δU_m до значений, не превышающих 0,1% U_m .

Погрешность от нестабильности τ может быть сведена к приемлемо малым значениям, если применить, например, стабилизацию длительности импульсов с помощью мультивибратора с эмиттерной связью или генераторов с кварцевыми резонаторами. Это позволяет получить δ_{τ} не более $\pm 0,1\%$.

Погрешность δ_{R τ} определяется неточностью балансировки плеч терморезистивного моста. При большом значении коэффициента передачи в схеме АМЧИП можно считать, что погрешность δ_{R_r} полностью зависит от неточности сопротивлений плеч моста и обычно не превышает $\pm 0.2\%$.

Изменения амплитуды и длительности импульсов сигнала обратной связи, сопротивлений ТМ и погрешность измерения частоты носят случайный характер, поэтому наибольшее значение относительной инструментальной погрешности

$$\gamma_{\mu \max} = 2\gamma_{U_m} + \gamma_{\tau} + \gamma_{R_{\tau}} + \gamma_{\Delta F}, \qquad (5.35)$$

где $\gamma_{\mu \max}$, γ_{U_m} , γ_{τ} , γ_{R_t} , $\gamma_{\Delta F}$ — соответствующие относительные погрешности.

Погрешность дискретности, как и у всех цифровых приборов, носит аддитивный характер, больше проявляется при преобразовании малых значений входных сигналов. Из (5.15) следует, что значение абсолютной погрешности дискретности $\Delta P_{\rm gk}$ может быть определено из выражения

$$\Delta P_{\rm gk} = P_{\rm g}/N = 1/ST_0 = U^2_{m\tau}/4R_{\rm r}T_0.$$
(5.36)

Соответственно для относительной погрешности дискретности получим

$$\gamma_{P_{\mathrm{IIX}}} = \Delta P_{\mathrm{IIK}} / P_{\mathrm{II}} = 1 / N. \tag{5.37}$$

Соотношения (5.36) и (5.37) показывают, какое наименышее значение преобразуемой величины P_x приходится на одну единицу счета. Анализ (5.36) также показывает, что для уменьшения $\Delta P_{\rm дк}$ необходимо уменьшать U_m , т и увеличивать $R_{\rm T}$, T_0 . Рассмотрим кратко возможности, определяющие выбор указанных величин.

При уменьшении U_m уменьшается соотношение сигнал-шум на выходе ТМ, а также ухудшается помехозащищенность и снижается чувствительность по напряжению. Поэтому U_m необходимо выбирать исходя из условия рассеяния на ЧЭ максимально возможной мощности.

Варьирование значением R_{τ} в большинстве практических случаев невозможно, так как его значение определяется оптимальным выбором положения рабочей точки на характеристике $R_{\tau} = \varphi(P_{\tau})$. Например, для случая измерения СВЧ мощности R_{τ} должно быть равно волновому сопротивлению тракта.

Увеличение T_0 , обеспечивающее при том же значении преобразуемой величины $P_x(t)$ регистрацию в счетчике большего числа импульсов, приводит к увеличению времени преобразования. Это обстоятельство, помимо прямого ухудшения быстродействия, приводит к увеличению методической и динамической погрешностей преобразования. В [35] показано, что длительность импульсов сигнала обратной связи ограничена значением, определяемым из соотношения т_{ттіп} ≥ (10-20) R_TC_n, (5.38)

где C_n — паразитная емкость линии связи.

Выражение (5.38) дает возможность рассчитать минимально допустимое значение т. При $C_n = 100 - 1000$ пФ следует выбирать $\tau = 2 - 20$ мкс.

Погрешность дискретности МФП ($U_m = 10$ В; $\tau = 10$ мкс; $R_\tau = 150$ Ом; $T_0 = 1$ с) определим, подставив параметры в (5.36), получим 1,6 мкВт. Тогда относительная погрешность при преобразовании мощности СВЧ, равной 1,6 мВт, составит 0,1%. Погрешность дискретности $\Delta P_{\rm gk}$, таким образом, может быть значительно уменьшена рациональным выбором значений перечисленных параметров.

Аналого-цифровые автоматические МФП, построенные на основе частотно- или время-импульсных АМП являются устройствами циклического действия, быстродействие которых определяется динамическими характеристиками и алгоритмом работы преобразователей. Анализ показал, что время преобразования t_{np} всегда кратно T_0 — периоду импульсного сигнала генератора тактовых импульсов ГТ₀ являющемуся временной базой интегрирования.

Обеспечение требуемого времени преобразования сводится к рациональному выбору T_0 . Ограничений, лимитирующих увеличение значений T_0 , теоретически не существует. Вместе с тем неоправданное увеличение T_0 приведет к ухудшению быстродействия. Поэтому выбор T_0 следует ограничить значениями, лежащими вблизи минимально допустимых.

Первое ограничение — необходимость выбора таких значений T_0 , чтобы выполнялось соотношение $T_0 \gg t_{\rm ycr}$. Это необходимо для того, чтобы переходной процесс установления частоты выходного сигнала не вносил заметных погрешностей.

Второе ограничение следует из условия обеспечения максимально допустимой погрешности дискретности и может быть получено из (5.36) в следующем виде:

 $T_0 \ge 1/S \Delta P_{\mathrm{gK}\,\mathrm{max}} = U^2_m \tau / 4R_{\mathrm{tr}} \Delta P_{\mathrm{gK}\,\mathrm{max}}.$ (5.39)

Выведенные соотношения прошли апробацию в процессе проектирования, позволяют вычислять погрешности и время преобразования, а также выбирать параметры элементов аналого-цифровых автоматических МФП так, чтобы погрешности и время преобразования были минимальными.

. 5.6. АНАЛОГО-ЦИФРОВЫЕ АВТОМАТИЧЕСКИЕ МФП С МИКРОПРОЦЕССОРНЫМ УПРАВЛЕНИЕМ

Анализ структурных схем и алгоритмов работы аналого-цифровых автоматических МФП показал, что они могут быть реализованы с применением в качестве устройства управления и обработки информации стандартных микропроцессорных наборов БИС. При этом микропроцессор в зависимости от состояния преобразовательного канала выполняет следующие функции:

подключает (или отключает) к входу МФП каналы подачи входных преобразуемых сигналов $P_{x1}(t)$, $P_{x2}(t)$, ..., $P_{x_n}(t)$:

изменяет программу обработки выходного сигнала в зависимости от требований к виду выходной информации;

переключает диапазоны преобразования адаптивно к уровню входного сигнала;

управляет процессом уравновешивания импульсного АМП;

производит калибровку, устанавливает исходные состояния, воспринимает отклонения от исходных состояний и выдает управляющие сигналы;

управляет внешними ОРУ.

В процессе исследований по созданию аналого-цифровых автоматических МФП с микропроцессорным управлением предложены новые схемные решения [34—36]. Обобщенная схема аналого-цифрового автоматического МФП с микропроцессорным управлением (рис. 5.13: У — сигнал управления, ИС — инициирующие сигналы; ШД — шина данных) показывает взаимосвязь между основными элементами преобразователя, который состоит из преобразовательной и вычислительно-управляющей подсистем. Принцип действия МФП определяется функциональным составом его подсистем (рис. 5.14). Преобразовательная подсистема включает в себя АМЧИП, генератор опорной частоты ГОЧ, управляемый делитель частоты УДЧ, счетчик-регистр СчРг и выключатели входных преобразуемых сигналов В1, В2, ..., В_п. Вычислительно-управляющая подсистема состоит из микропроцессора МП, блока памяти БП, канала

Рис. 5.13. Обобщенная схема аналого-цифрового автоматического МФП с микропроцессорным управлением

Рис. 5.14. Функциональная схема аналого-цифрового автоматического МФП с микропроцессорным управлением

обмена информацией, магистрального приемопередатчика МПП, дешифратора адресов-векторов ДШ и пультового терминала ПТ. Обращение к импульсному АМП осуществляется при помощи адресов-векторов, присвоенных счетчику-регистру СчРг, выключателям В1, ..., В_n и управляемому делителю частоты УДЧ. При помощи этих адресов происходит формирование соответствующего состояния МФП и обмен информацией между преобразовательной и вычислительно-управляющей частями системы. Дешифратор адреса-вектора ДШ распознает адрес обращения и в зависимости от управляющих сигналов, вырабатываемых МП КВВОД или КВЫ-ВОД, формирует инициирующие сигналы: «Вб. СчРг» (Выбор счетчика-регистра) при чтении информации с регистра Рг, «Зп. УДЧ» (Запись управляемого делителя частоты) при записи информации из МП, сигналы формирования времени счета РС (Разрешение счета) и КС (Конец счета) в СчРг, а также сигналы У1, ..., У_n переключения выключателей В1, В2, ..., В_n МФП.

В МФП используется интерфейс «Общая шина», по которой могут последовательно передаваться адреса и данные в виде параллельных 16-разрядных кодов. При передаче адреса МП формирует сопровождающий сигнал КСИА, существующий в течение всего цикла обмена (активный уровень — «лог. 0» ТТЛ). Фронт этого сигнала 1/0 означает, что в канале в данный момент времени находится адрес, автоматически снимаемый с шин примерно через 400 нс, затем МП выполняет прием и выдачу данных, выставляя в канале соответствующие сигналы КВВОД или КВЫВОД. В ответ на эти сигналы дешифратор адресов формирует ответный сигнал КСАПР, сообщающий микропроцессору, что исходные данные установлены в автобалансном преобразователе (в первом случае) либо приняты (во втором случае). При получении сигнала КСАПР микропроцессор снимает сигнал КСИА, завершая цикл обмена информацией с преобразовательной частью системы.

В целом обмен информацией между преобразовательной и вычислительно-управляющей подсистемами заключается в чтениш информации микропроцессором системы из СчРг или записи в УДЧ. Обмен информацией осуществляется через МПП. При отсутствии обращения к преобразовательной подсистеме МПП обеспечивает гальваническую развязку преобразовательной подсистемы от канала обмена информаций. Передача информации обеспечивается управляющими сигналами ВВОД и ВЫВОД, формируемыми дешифратором.

Программные средства МП дают возможность реализовать работу системы по любому необходимому алгоритму, например двухили трехтактному, а также по алгоритму, основанному на вычислении результата по известной временной функции переходного процесса, что позволяет увеличивать быстродействие преобразователя. Принимая во внимание, что переходной процесс в следящей системе автобалансного импульсного преобразователя происходит по экспоненциальному закону с постоянной времени тамп отсчет установившегося значения N_{vcr} обычно производится через время tycr = (3-4) т_{АМП}. Повысить быстродействие преобразователя можно, если брать отсчеты текущего значения кода N через определенные интервалы времени меньше t_{vcr}, формируемые таймером, и по ним, используя специальную подпрограмму, рассчитать $N^{(p)}_{ycr}$, определяющее значение преобразуемой величины. Полученное значение N^(p)уст позволяет установить, в каком диапазоне находится значение преобразуемой величины, и оперативно, до окончачия переходного процесса, включит соответствующий диапазон.

Разработан аналого-цифровой автоматический преобразователь с временным разделением сигналов и микропроцессорным управлением, вычислительно-управляющая подсистема которого построена в основном на архитектурных принципах микроЭВМ «Электроника-60». Отличие этого преобразователя состоит в том, что вычислительно управляющая подсистема выполнена на базе микропроцессорного комплекта БИС серии К588, что позволяет уменьшить габаритные размеры и потребляемую мощность.

В состав микропроцессора входят два типа БИС серии Қ588, а именно: К588ИҚ2 (Қ588ВС1) — арифметическое устройство и Қ588ИҚ1 (Қ588ВУ1) — управляющая память, три кодировки которой (003, 004, 005) реализуют основное подмножество системы команд микроЭВМ «Электроника-60». Оперативная память реализована на БИС Қ565РУ2, а постоянная память — на электрически программируемых БИС ППЗУ Қ556РТ5. Магистральный приемопередатчик выполнен на ИС Қ589АП26. Организация канала обмена информацией МП на основе интерфейса «Общая шина» позволяет наращивать структуру процессора, вводя в него дополнительные внешние устройства без изменения структуры основного ядра МП. Қ таким устройствам могут относиться пультовый терминал и цифропечатающее устройство.

Архитектурные принципы микроЭВМ «Электроника-60» для построения вычислительно-управляющей подсистемы позволяют использовать ее программное обеспечение и сопрягаемые с ней ЭВМ. Вычислительно-управляющая подсистема имеет следующие характеристики: система счисления для чисел и команд — двоичная; разрядность — 16 двоичных разрядов; принцип работы — параллельный; система команд — безадресная, одно- и двухадресная; виды адресации — девять типов; число регистров общего назначения — 8; число каналов передачи информации — 1; число команд — 35; в том числе двухадресных 8; время выполнения команд 8—16 мкс. !

На рис. 5.15 приведен обобщенный алгоритм работы аналогоцифрового автоматического МФП с временным разделением сигналов, двухтактным интегрированием и микропроцессорным управлением.

Работа преобразователя начинается с определения режима, заданного с пульта управления. При установлении режима работы СИСТЕМНАЯ, что соответствует режиму работы преобразователя в составе АСУ и АСК, управление преобразовательной частью МФП осуществляется согласно стандарта линии коллективного пользования. В режиме АВТОМАТИЧЕСКАЯ преобразователь обеспечивает периодический контроль уровня входной мощности СВЧ с периодом $T_{изм}=3$ с. В режиме РУЧНАЯ преобразователь выполняет измерение по командам оператора УСТАНОВКА 0 (установка начальной рабочей точки автобалансного моста в автоматическом режиме — ВРТ) и ИЗМЕРЕНИЕ, по которой выполняется двухтактное интегрирование. Подпрограмма ПРОГРАМ-МНАЯ ЗАДЕРЖКА обеспечивает временную задержку перед преобразованием частоты АМП в код, равную времени установления выходного сигнала после окончания переходных процессов. Двух-

Рис. 5.15. Алгоритм работы аналого-цифрового автоматического МФП с микропроцессорным управлением

тактное интегрирование выполняется за счет двухкратного преобразования частоты выходного сигнала в код и считывания соответствующих значений N_1 и N_2 со счетчика-регистра. Вычислительноуправляющая подсистема МФП вырабатывает управляющие сигналы $J^1_{P_x}$ и $J^2_{P_x}$, которые обеспечивают отключение мощности СВЧ от ЧЭ в первом такте (определение N_1) и подачу мощности СВЧ на ЧЭ во втором такте (определение N_2) соответственно. По окончании измерения вычислительно-управляющая подсистема МФП осуществляет вычисление результата по формуле $P_x = = k_{CB4}$ ($N_1 - N_2$), где k_{CB4} — коэффициент пропорциональности. Он зависит от чувствительности по мощности преобразовательной подсистемы и коэффициента эффективности ЧЭ автобалансного мостового преобразователя и определяется погрешностями результата перевода двоичного кода (P_x) 2 в двоично-десятичный код (P_x) 2–10 и записи полученного эначения в цифровой индикатор МФП. Представленный алгоритм работы МФП повторяется циклически после проверки режима работы.

Разработанный преобразователь при измерении мощности СВЧ в условиях широкого диалазона изменения дестабилизирующих факторов обеспечивает следующие технические характеристики: динамический диапазон 1 мкВт — 10 мВт (поддиапазоны: 1 мкВт — 1 мВт; 1 мВт — 10 мВт); приведенную погрешность 0,5% (без учета погрешности СВЧ тракта); чувствительность 2,5 Гц/мкВт; разрешающую способность 0,1 мкВт; время преобразования 3 с; время счета 1 с; переключение диапазонов — автоматическое; режим работы — автоматический (автономный), автоматический с внешней синхронизацией (в составе АСУ и АСК), по командам оператора; частотный диапазон входного сигнала определяется типом приемного преобразователя.

Анализ показал, что по техническим характеристикам разработанный прибор превосходит лучшие зарубежные образцы аналогичного назначения, например, модели 6895 фирмы Marconi — Instrument (Великобритания) и модели 469А фирмы Hitachi Electrics (Япония).

Цифровые вольтметры и мультиметры с микропроцессорным управлением обеспечивают измерение постоянного и переменного тока, напряжения постоянного и переменного тока, сопротивления. Наиболее известные — модели 1061, 1071 фирмы Datron, 7055 фирмы Solartron. Они имеют повышенные метрологические характеристики (точность и чувствительность), а также лучшую помехоустойчивость благодаря автоматической коррекции погрешностей, статистической обработке результатов измерения и диагностики отказов. Автоматическая коррекция погрешностей позволяет минимизировать аддитивную и мультиплитивную составляющие погрешностей, снизить их уровень до тысячных и десятитысячных долей процента (табл. 5.1).

Структурная схема (рис. 5.16) и работа цифрового вольтметра-мультиметра модели 7115 фирмы Systorn-Donner: БРП — блок выбора режимов работы и пределов измерения; ПН — преобразователь переменных напряжений; Сх ИС — схема измерения сопротивления; ОД — образцовый делитель; ПУ — предварительный усилитель; ИОН — источник опорного напряжения; ҚП — клавишный пульт; ПУ_{пр} — пульт уп-6—133

Таблица 5.1

Технические характеристики цифровых мультиметров с микропроцессорным управлением

Модель (фирма, страна)	Измеряемый параметр	Погрешность измерения, %	Чувстви- тельность, мкВ	Время нз- мерения, мс	Модель МП	Объем ПЗУ, К байт	Наличие сервисных команд
7055 (7065) (Solartron)	$U_{\sim}, U_{=}, R$	0,002(0,001)	1	160	MC6800 Motorola (США)	_	Да
1061 (1071) (Datron) Великобри- тания	U, U, U, I, I, R	0,0005 (0 ,0004)	1 (0,1)	350	MC6800 Motorola (США)	4	Дa
7115 (Systron- Donner США)	U, U, U, I, I, I, R		1		4064 Intel (США)	2,5	Дa
8500A (Fluke США)	U, U=, I, I=, R	0,001	1	640	8080 Intel (США)	8	Дa

равления; СГ — генератор синхроимпульсов; СИ — синхроимпульс. Отличительная особенность прибора — блок управления (включающий МП типа 4004 фирмы Jntel, ПЗУ, ОЗУ и три регистра сдвига Pr1—Pr3), который обеспечивает выбор режима измерения параметра (напряжения, сопротивления или тока), измерение данного параметра, управление процессами аналого-цифрового преобразования и отображение информации.

Рис. 5.16. Структурная схема цифрового мультиметра с микропроцессором 162

Операция коррекции аддитивной и мультипликативной погрешностей в мультиметре осуществляется сразу после включения прибора и повторяется после каждого сотенного или тысячного измерения (по заданной программе или внешней команде). При этом погрешности корректируются с помощью двух вспомогательных измерений при U=0 (для корректировки смещения нуля прибора) и при $U=U_{3T}$ (для коррекции угла наклона характеристики). Эталонное напряжение U_{3T} определяется встроенной, образцовой мерой и совпадает с верхним пределом каждого диапазона. В результате таких стандартных операций калибровки вырабатываются поправочные значения, которые заносятся в ОЗУ блока управления.

Операция коррекции рассматриваемого 8-диапазонного мультиметра состоит из 16 вспомогательных измерений обеспечивающих контроль начального и конечного значений напряжений в каждом диапазоне во всех режимах работы. Полученные поправочные величины используются для коррекции результата измерений и для диагностики отказов мультиметра. Обнаружение отказов основано на том, что при нормальной работе прибора поправочные значения должны лежать в заданных пределах. Если они не укладываются в область допустимых значений, на дисплей индицируется сообщение о неисправности прибора.

Цифровой мультиметр (рис. 5.17) работает по следующему алгоритму. После включения питания прибора проводится процедура коррекции, в результате которой определяются и фиксируются в ОЗУ поправочные величины. Затем ввод в ОЗУ сведений о режимах измерений, диапазонах и др. После этого осуществляется измерение, необходимый измерительный тракт обеспечивается коммутацией соответствующих релейных контактов и ключей. Автоматический выбор диапазона выпольяется с помощью анализа переполнения регистра АЦП и последующего перехода к другому диапазону. После окончания измерения - коррекция полученных результатов. Последним этапом алгоритма при необходимости является обработка результатов измерения, затем полученные данные выводятся для индикации на устройство отображения информации. Результат измерения в цифровом мультиметре может выводиться и на шину приборного интерфейса (стандарт IEEE — 488). Алгоритм работы мультиметра занимает в ПЗУ объем 2,5 К байт, программа обработки данных — до 1,5 К байт. Программа обработки данных имеет несколько вариантов, которые поставляются потребителю по выбору.

Рассмотрим восемь программ обработки результатов измерения, которые могут быть инициированы к выполнению по команде оператора с помощью клавишного пульта на лицевой панели вольтметра.

Программа 1. «Умножение R = cX: Линейное преобразование этого вида используется для пересчета результатов измерения одной физической величины (X) в другую (R) или же для вос-

Рис. 5.17. Алгоритм работы устройства управления мультиметра

становления по выходному сигналу измерительного преобразователя значения искомой физической величины (рис. 5.18). Константа с вводится с клавиатуры и может быть больше или меньше единицы.

Программа 2. «Процентное отношение $R = 100 (X - X^{\circ}_R) / X_R^{\circ}$. Каждое измерение значения X сравнивается с номинальным значением X°_R , которое предварительно вводится в ПЗУ вольтметра с клавиатуры, а результат сравнения отображается на цифровом десятичном индикаторе прибора как отклонение от номинально-

t. MUH

t, MUN

0,°C

Рис. 5.18. Иллюстрация вычислительных возможностей цифровых мультиметров

го значения в процентах (рис. 5.18). Очень удобно использовать эту программу при допусковом контроле какого-либо физического параметра, например сопротивления резистора.

Программа З «Поправка R = X—с». Константа вычисляется автоматически из результата каждого измерения X при вводе положительного значения c, а при отрицательном значении c происходит суммирование результата измерения и поправки. Эту программу можно использовать непосредственно для калибровки прибора. «Уход» нуля прибора может быть измерен и затем исключен из результата измерения (рис. 5.18).

Программа 4 «Отношение». Результат каждого измерения делится на некоторую эталонную величину *r*, значение которой вводится в ПЗУ прибора как константа. Тип отношения выбирается по указанию оператора и индицируется на цифровом табло в одном из трех видов:

линейное отношение R = X/r, которое может быть использовано, например, для вычисления и индикации величины тока, протекающего через резистор, по непосредственному измерению падения напряжения на нем (рис. 5.18);

логарифмическое отношение $R = 20 \lg (x/r)$, которое может быть использовано в случаях, когда необходимо получить отсчет результата измерения в децибелах при измерении коэффициента усиления, вносимых потерь в фильтре, характеристик передающей линии, уровня шумов в цеховых помещениях и лабораториях;

квадратичное отношение $R = X^2/r$, которое может быть использовано, например, при вычислении уробня мощности в электрической цепи, в этом случае r — величина эквивалентного сопротивления цепи.

Программа 5 «Максимум-минимум». Накопление результатов измерения позволяет при проведении серий измерений получать результат либо в виде максимального X_{max} или минимального X_{min} значения из серии, либо в виде разности $X_{\text{max}} - X_{\text{min}}$ (рис. 5.18).

Программа 6 «Пределы». В цифровом вольтметре предусмотрен ввод с клавиатуры верхнего $X_{\rm B}$ и нижнего $X_{\rm H}$ пределов измеряемой величины, по которым в приборе происходит сравнение результатов каждого измерения с этими пределами. По окончании работы программы можно получить следующую информацию (рис. 5.18): число измерений, при которых $X > X_{\rm B}$; число измерений, при которых $X < X_{\rm H}$; число измерений, при которых $X_{\rm H} \leq X \leq X_{\rm B}$.

Программа 7 «Статистика». Этот вид программы позволяет произвести статистическую обработку результатов измерения при заданной выборке измерений. По окончании обработки результатов на цифровом индикаторе прибора можно получить следующую информацию (рис. 5.18): число измерений *n*; сред-

нее $\Delta X = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X};$ дисперсию $D = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2;$ стандарт-

ное среднеквадратическое отклонение $\sigma_X = \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2};$ вы-

борочное среднеквадратическое значение $X_{cp} = 1 / \frac{1}{n} \sum_{i=1}^{n} X_i^2$.

Программа 8. «Термопара». Цифровой вольтметр производит прецизионные измерения, при которых выполняется вычисление компенсационной величины, обусловленной изменением температуры окружающей среды (рис. 5.18). Для этого в приборе имеется четыре термопары различного типа, характеристики которых аппроксимируются кубической полиномиальной зависимостью (вида $R = a + bT + cT^2 + dT^3$), а константы хранятся в ПЗУ прибора. Холодные концы термопар при проведении таких измерений размещаются в термостате, постоянная температура внутри которого вводится в прибор как константа. По результатам измерения ЭДС термопары производится коррекция коэффициента преобразования измерительного канала.

Анализ структурной схемы цифрового мультиметра модели 7115 показывает, что для автоматических средств измерения с микропроцессорным управлением характерно использование измерительных преобразователей, имеющих однородные входные сигналы (все токовые или потенциальные) и один, обычно унифицированный диапазон. Для каждого из входных сигналов может быть образован собственный измерительный канал. С точки зрения программного обеспечения микропроцессорных средств целесообразно рассматривать каждый канал как отдельное устройство, имеющее индивидуальный адрес. Применяются два способа адресации каналов со стороны МП: при одном преобразователь рассматривается как устройство ввода-вывода, при втором --как часть памяти системы. Второй вариант обеспечивает возможность подключения значительно большего числа измерительных каналов, так как команд обращения к памяти в системе команд ввода-вывода больше.

Управление процессом аналого-цифрового преобразования в автоматических средствах измерения обычно осуществляется одним из следующих способов:

программа МП после выдачи сигнала «Разрешение» на начало преобразования непрерывно проверяет наличие или отсутствие сигнала «Конец преобразования» (рис. 5.19). Этот способ неэкономичен с точки зрения машинного времени, так как МП может заниматься только операцией проверки;

используется система прерывания МП, при этом во время собственно преобразования могут выполняться сегменты программы,

Рис. 5.19. Схема подключения АЦП к микропроцессору

не связанные с вводом данных. Это продолжается до тех пор, пока сигнал «конец преобразования» не сбеспечит образования запроса на прерывание. Этот способ нецелесообразно применять при использовании быстродействующего АЦП, так как время, требуемое на программную обработку сигнала прерывания, может превышать время аналого-цифрового преобразования. В результате производительность работы МП с АЦП может оказаться ниже, чем в случае организации сопряжения АЦП с МП в соответствии с первым вариантом;

после выдачи сигнала «Разрешение» МП определенное время, меньшее чем время преобразования, выполняет необходимые процедуры программы, направленные на реализацию других целей в измерительном приборе, а затем переходит в режим ожидания сигнала «Конец преобразования». Производительность МП при этом способе программного ввода повышается;

прямой доступ к памяти применяется в тех случаях, когда необходимо непрерывно опрашивать группу каналов (обычно в многоканальных измерительных системах). Способ более сложный с точки зрения аппаратурной реализации, но зато дает максимальную производительность и отличается простотой программного обеспечения.

Рассмотрим более подробно работу другого типа автоматического цифрового измерителя мощности СВЧ с микропроцессорным управлением и более широкими функциональными возможностями.

В существующих измерителях мощности СВЧ (ваттметры) применяются ручные операции: установка нуля прибора; калибровка; переключение диапазонов измерений. Для автоматизации процесса измерения, расширения динамического диапазона и повышения точности в рассматриваемый измеритель мощности вводится микропроцессорный контроллер.

Автоматический цифровой измеритель мощности СВЧ (рис. 5.20) содержит термисторный мост ТМ, микроконтроллер МК, измерительный усилитель ИУ, преобразователь напряжение — час-

Рис. 5.20. Структурная схема цифрового измерителя мощности СВЧ

тота ПНЧ, счетчик импульсов СчИ, формирователь импульсов ФИ с управляемым аттенюатором, программируемый источник тока ИТ, усилитель тока УТ, переключатель мощности СВЧ ПСВЧ, блок цифровой индикации БЦИ, блок ввода-вывода БВВ и блок режимов БР, задаваемых с пульта управления.

В автоматическом цифровом измерителе мощности СВЧ с микропроцессорным управлением реализован болометрический метод измерения на основе замещения мощности СВЧ, рассеиваемой на термисторе, мошностью последовательности импульсов прямоугольной формы. Прямоугольная форма обладает преимуществом — измеряемая мощность линейно связана с частотой следования импульсов замещающей мощности согласно уравнению

$$P_{\rm HMI} = U^2_{\ m} \tau F_{\rm V} / R_{\rm T} = kF. \tag{5.40}$$

В измерителе мощности должно выполняться условие баланса мощностей, т. е. постоянство суммарной мощности, воздействующей на термистор, которое с учетом $k_{3\phi}$ можно записать

$$P_{\mathrm{T}} + P_{\mathrm{cp}} = P_{\mathrm{BMR}} + k_{\mathrm{s}\phi} P_{\mathrm{CBY}} \tag{5.41}$$

где $k_{\mathfrak{s}\Phi}P_{\mathsf{CB}\mathsf{H}}$ — мощность, пропорциональная измеряемой мощности СВЧ; $k_{\mathfrak{s}\Phi}$ — коэффициент эффективности термисторного СВЧ преобразователя.

Для вывода термистора в рабочую точку (сопротивление термистора согласовано с волновым сопротивлением тракта СВЧ) при нормальных условиях внешней окружающей среды на него требуется подать мощность 10—40 мВт. Если эта мощность обеспечивается только последовательностью прямоугольных импульсов ($P_{имп}$), то реално можно достичь точности формирования мощности импульса порядка 0,1%, но при этом ограничивается разрешающая способность цифрового измерителя, которая составит 10—40 мкВт. Такое положение нельзя признать удовлетворительным, так как зачастую нижняя граница динамического диапазона измерительного прибора менее 10 мкВт. Поэтому для вывода термистора в рабочую точку целесообразно использовать мощность P_0 вспомогательного источника постоянного тока ($P_0 = U^2_0/R_T$). Для того чтобы избежать возникающей при этом зависимости коэффициента передачи ФИ от величины P_0 , необходимо подавать на термистор последовательность двуполярных прямоугольных импульсов (рис. 5.21). При этом получаем следующее выражение для мощности, рассеиваемой на термисторе;

$$P = U_0^2 / R_{\rm T} + 2U_m^2 \tau F / R_{\rm T} = P_0 + P_{\rm HMH}, \qquad (5.42)$$

где U₀ — постоянное напряжение на термисторе.

Суммарная мощность, рассеиваемая на термисторе, определяется мощностью подогрева постоянным током P_0 , независимой от параметров последовательности прямоугольных импульсов, и мощностью подогрева импульсами $P_{имп}$, независимой от значения постоянной составляющей U_0 .

Измерение мощности СВЧ осуществляется измерительной схемой (рис. 5.22) на основе статической следящей системы, в которой термистор включен в одно из плеч резистивного моста R1—R3. Измерительная схема образует частотно-импульсный автобалансный мост и обеспечивает поддержание баланса при постоянном сопротивлении термистора, соответствующем его значению в рабочей точке R_{To} :

$$P_{\rm T} + P_{\rm cp} = P_0 + P_{\rm BMR} + k_{\rm sop} P_{\rm CB4}. \tag{5.43}$$

Измерение мощности СВЧ выполняется в два такта. В начале при отсутствии измеряемого сигнала мошности СВЧ за счет программируемого источника постоянного тока измерительная схема настраивается так, чтобы значение выходной частоты ПНЧ равнялось $F_{\rm I}$ (I такт), которая определяется из условия баланса моста при $P_{\rm CBЧ} = 0$:

$$P_{\rm T} + P_{\rm cp} = P_0 + P_{\rm HMR1},$$

 $U = P_{\rm HMR1} = U^2_m \tau_{\rm HMR} F_1/R_{\rm T}.$

Рис. 5.21. Диаграмма напряжений на термисторе

(5.44) (5.45)

Рис. 5.22. Схема АМЧИП

При подаче на термистор мощности СВЧ (II такт) изменяются условия подогрева термистора, при этом меняется его сопротивление, возникает разбаланс моста, что приводит к снижению частоты F_1 до F_2 на выходе ПНЧ. Тогда (5.44) для II такта измерения принимает вид:

 $P_{\tau} + P_{\rm cp} = P_0 + P_{\mu M \pi 2} + k_{\rm sop} P_{\rm CB4}. \tag{5.46}$

Изменение мощности замещения $\Delta P_{имп} = P_{имп1} - P_{имп2}$ пропорционально P_{CBY} . В соответствии с (5.45) и (5.46) можно записать, что

$$P_{CBY} = U^2_m \tau_{HMII} (F_1 - F_2) / k_{s\phi} R_{\tau_0} .$$
 (5.47)

Измерение мощности СВЧ может быть обеспечено измерением разности двух частот (F_1 — F_2) по соответствующему алгоритму (рис. 5.23) работы прибора в три этапа:

1) мощность СВЧ отключена, за время счета T_{C4} счетчиком импульсов определяется число импульсов $N_1 = F_1 T_{C4}$, результат фиксируется в ОЗУ МК;

2) мощность СВЧ подается на термисторный преобразователь, за T_{C4} определяется $N_2 = F_2 T_{C4}$, результат также фиксируется в памяти МК;

3) обработка полученных данных — результат измерения P_{CB4} согласно (5.47) есть результат вычитания двух значений N_1 и N_2 с последующим умножением на постоянный коэффициент и индикация полученного результата измерения P_{CB4} в БЦИ.

Алгоритм измерителя мощности обеспечивается МК, который выполнен на базе микропрограммного микропроцессора К584ИК1 (аналог К584ВМ1) и имеет 16-разрядную двунаправленную информационную шину и 16-разрядную шину адреса. Для управления МК используются 16-разрядные команды, позволяющие полностью реализовать вычислительные возможности МП.

Основная программа, включающая алгоритм функционирования цифрового измерителя мощности СВЧ, хранится в ПЗУ МК, выполненном на электрически программируемых БИС ППЗУ К556РТ5 (шесть корпусов) объемом 1536×16-разрядных слов. Для оперативного хранения данных в состав МК включено ОЗУ, выполненное на 16 БИС К565РУ2А объемом 1024×16-разрядных слов.

Отличительной особенностью МК является команда, совмещенная с микрокомандой (рис. 5.24). При этом в системе команд МК реализованы прямой и регистровый способы адресаций. Способ адресации указан в неявном виде в коде операции. Поле *E* в команде (микрокоманде) — программируемый вход арифметически-логическое устройство (АЛУ) (входной перенос). Поле *D* определяет длительность такта (1 — короткая операция, 0 — длинная). Двухразрядное поле *П* представляет собой признак группы команд и указывает на одну из четырех групп команд: специаль-

Рис. 5.23. Алгоритм измерения мощности СВЧ (начало)

ные команды (Π =00); команды переходов (Π =01); команды ожидания (Π =10); циклическое выполнение микрокоманды МП (Π =11).

Трехразрядное поле X для первых трех групп команд указывает на конкретную команду в каждой из групп, а для четвертой группы определяет число повторений МК в системе команд МК (табл. 5.2).

Управление основными блоками измерителя МК осуществляет по синхронному принципу на основе анализа сигналов готовности, поступающих на вход стандартного мультиплексора МК, и генерирования управляющих сигналов на выходе дешифраторов МК (сигналов записи, чтения, пуска, сброса, останова и т. д.). Двусторонний обмен информацией между активным устройством (МК) и пассивными устройствами (функциональными узлами из-172

Рис. 5.23 (окончание)

мерителя) осуществляется по двунаправленной информационной шине МК и шине данных ШД через БВВ. Асинхронный обмен происходит в соответствии с протоколом обмена информацией, регламентирующим выдачу управляющих сигналов в шину управления ШУ в результате ана-

лиза условий, поступающих на ШУ С **УЗЛОВ** измерителя мощности. При рассматривается ЭТОМ БBВ как отдельное устройство, имеющее индивидуальный адрес (СМ.

15		ł	8 7	65	4	32		0
	МК		E	D	Π		Х	
L			-	L	L			

Рис. 5.24. Команда микроконтроллера

Таблица 5.2

Система команд МК

нды	Содержание команды по группам						
Код	1 (П=00)	2 (П=01)	3 (17=10)	(II=11)			
000	Регистровая	Безусловный пере-	Ожидание преры-	Микрокоманда вы-			
001	команда Программный ос- танов	ход по адресу Условный переход по адресу и значе-	вания Ожидание призна- ка МР	полняется 2 раза Микрокоманда вы- полняется 4 раза			
010	Цикл умножения	Условный переход	Ожидание призна-	Микрокоманда вы-			
011	(деления) Чтение следующе- го слова	по адресу Условный переход по адресу и совпа- дению старших	ка СР Ожидание совпа- дения старших разрядов А и В	полняется 6 раз Микрокоманда вы- полняется 8 раз			
100	Переход к под- программе	разрядов А и В Условный переход по адресу и значе-	Ожидание призна- ка <i>СА</i>	Микрокоманда вы- полняется 10 раз			
101	Выход из подпро- граммы	нию СА Условный переход по адресу и значе-	Ожидание призна- ка П	Микрокоманда вы- полняется 12 раз			
110	Запись по адресу РР/ДР	нию переноса Условный переход по адресу и готов-	Ожидание ВУ1	Микрокоманда вы- полняется 14 раз			
111	Чтение по адресу РР/ДР	Исловный переход по адресу и готов- ности ВУ2	Ожидание ВУ2	Микрокоманда вы- полняется 16 раз			

рис. 5.24). Аппаратные средства БВВ обеспечивают также асинхронный обмен зависимыми приборными сообщениями и дистанционными сообщениями в соответствии со стандартом приборного интерфейса IEEE-488 измерителя с линией коллективного пользования (ЛКП). Блок ввода-вывода выполнен на элементах серий K580, K589, K155.

Микропроцессор в составе измерителя мощности СВЧ выполняет пять основных функций управления и обработки информации:

 Φ ункция

Операция

Организация	последо-	Диагностика: проверка рабочих узлов прибо-
вательности	этапов ра-	ра при помощи тестовых программ и сообще-
боты		ние оператору об отклонениях от нормальной
		работы.
		Подготовка к расоте: размещение констант в
		USy приоора, хранящихся в ΠSy или выс-
		димых с регистра клавиатуры DP (каф).
		Предварительный прогрев термистора в тече-
		ние определенного времени.

Задание последовательности действий измерителя: работа прибора в составе автоматизированной измерительной системы (на ЛКП); СВЧ автоматический контроль мощности тракта (непрерывио); работа по командам оператора (род работы задается оператором с БПР)

Управление измерителем Задание программных временных задержек: установление переходных процессов в схемах измерителя.

установка нуля Задание режима работы: прибора; однократное измерение Р СВЧ; многократное измерение РСВЧ; измерение РСВЧ в относительных единицах (например, относительно уровня мощности в 1 мВт); измерение коэффициента передачи СВЧ устройств (режимы работы устанавливаются оператором или автоматически по ЛКП). Программное задание Тсч в СчИ.

Автоматический выбор диапазона измерения: в приборе предусмотрено два рабочих диапазона: 1-10 и 0-1 мВт.

Выбор шкалы индикации и положения запятой на индикаторе: индикаторное табло обеспечивает показания прибора в значениях: 1,00—9,99 мВт и 0,0—999,9 мкВт.

Расчет измеренного значения мощности СВЧ с помощью операций вычитания, деления и умножения с фиксированиой запятой: P_{СВU}=

$$=k\frac{1}{k_{off}}(N_2-N_1).$$

Определение среднего значения результата из-

мерения: $P_{CBY} = \frac{1}{n} \sum_{i=1}^{n} P_{iCBY}$, где P_{CBY} среднее зиачение мощности СВЧ; Р СВЧ --

результат измерения; n=10.

Определение результата в относительных единицах: L_{PCBU} = P_{CBU1} / P_{CBU2}, где L_{PCBU} -результат измерения в относительных единицах

Преобразование двоичного кода в двоично-десятичный: запись результата измерения в регистр цифрового десятичного индикатора.

Преобразование значения $k_{3\Phi}$ из десятичного в двоично-десятичный код

Инициирование управляющих сигналов: сигналы записи и чтения буферных регистров и БИС К580ИК55 в БВВ.

Анализ дистанционных сообщений: дистанционные сообщения по стандарту ІЕЕЕ-488

Программа измерения Р свч включает ряд подпрограмм. Например, установка нуля прибора осуществляется с помощью подпрограммы МК «Установка 0», которая основывается на подпрограмме преобразования частоты в код (ПП ПЧК) (рис. 5.25) и подпрограмме уравновешивания в цифровой системе (ПП «Урав-

Преобразование информации

Организация протокола обмена по ЛКП

Обработка измерения

результатов

Рис. 5.25. Алгоритм преобразования частоты в код (ПП ПЧК)

новешивание») (рис. 5.26). Результат ПП ПЧК — текущее значение кода на выходе счетчика $N = FT_{Cq}$, а ПП «Уравновешивание» — определение и запись во входной регистр ЦАП значения кода N_{CBq} , соответствующего мощности постоянного тока P_0 при реальных параметрах окружающей среды. Подпрограмма «Установка 0» обеспечивает адаптивное управление прибором.

Участок программы (рис. 5.27). обеспечивающий работу при-ЛКП. ŴΚ позволяет бора на информацией осуществить обмен ЛКП **IEEE-488** c по стандарту При этом аппаратные средства обеспечивают: прием с ЛКП БBВ команды, разрешающей дистанцион-

Рис. 5.26. Алгоритм уравновешивания (ПП «Уравновешивание»)

Рис. 5.27. Обобщенный алгоритм работы цифрового измерителя мощности СВЧ с микропроцессорным управлением

ное управление; прием с ЛКП команды, указывающей, что обслуживаться будет именно измеритель мощности (т. е. адресацию прибора); передачу на ЛКП от измерителя мощности сигнала готовности к измерению; прием с ЛКП команды на измерение и т. д.

Применение микропроцессора в измерителе мощности позволило полностью автоматизировать процесс измерений и получить следующие технические характеристики: динамический диапазон измерения 1 мкВт — 10 мВт; приведенная погрешность измерения (без учета погрешности СВЧ тракта) 0,5 %.

5.7. АНАЛИЗ ВЛИЯНИЯ ПОМЕХ НА ЧАСТОТНО-ИМПУЛЬСНЫЕ МФП

Устройства, благодаря одноканальному построению и возможности интегрирования частоты, позволяют исключить систематическую составляющую аддитивной погрешности, которая компенсируется не полностью и может быть весьма значительной. Поэтому необходимо: рассмотреть эффективность коррекции случайной аддитивной погрешности, обусловленной помехой на выходе частотно-импульсного преобразователя, получить соотношения, определяющие связь случайной погрешности с параметрами преобразователя и помехи; разработать рекомендации, позволяющие за счет вариации параметров преобразователя уменьшить влияние помехи; определить критерий для выбора шага квантования (погрешности дискретности) в зависимости от уровня помехи [40].

Вследствие инерционных свойств частотно-импульсного преобразователя помеху на входе счетчика можно рассматривать как низкочастотный квазигармонической сигнал, модулирующий частоту импульсов, поступающих на вход реверсивного счетчика. Модулирующую функцию частоты импульсов с ЧИМ можно записать в виде

$$F(t) = F_m(t)\cos\Psi(t), \qquad (5.47)$$

где $F_m(t)$ и $\Psi(t)$ — соответственно значения амплитуды и фазы процесса как функции времени. При этом случайную фазу процесса можно записать в виде $\Psi(t) = \omega_0 t + \varphi$, где ω_0 — среднее значение круговой частоты спектра процесса; φ — функция, характеризующая начальную фазу процесса.

Рассмотрим влияние помехи F(t) на точность измерения и установим закон распределения и доверительные интервалы случайной погрешности. На первом этапе работы преобразователя, охватывающем интервал времени $(0, T_0)$, измеряемый сигнал x на вход устройства не поступает и частота имплуьсов на выходе ЧИП

$$F_1(t) = F_1 + F_m \cos(\omega_0 t + \varphi),$$
 (5.48)

где F_1 — частота импульсов на выходе ЧИП, соответствующая x=0 при отсутствии помехи.

Количество импульсов, зарегистрированных на первом этапе измерения,

$$N_{1} = \int_{0}^{T_{0}} \{F_{1} + F_{m} \cos(\omega_{0} t + \varphi)\} dt =$$

= $F_{1}T_{0} + \frac{F_{m}}{\omega_{0}} [\sin(\omega_{0}T_{0} + \varphi) - \sin\varphi].$ (5.49)

Затем на интервале $(T_0, 2T_0)$ на вход преобразователя поступает сигнал x, но вход реверсивного счетчика заперт на время установления частоты следования импульсов с ЧИП, соответствующей измеряемой величине x.

На втором этапе $(2T_0, 3T_0)$ работы преобразователя частота с ЧИП поступает на вычитающий вход счетчика и определяется соотношением $F_2(t) = F_2 + F_m \cos(\omega_0 t + \varphi)$.

Результирующее количество импульсов, накопленное счетчиком N=N₁---N₂, где

$$N_{2} = \int_{2T_{0}}^{3T_{0}} \{F_{1} + F_{m} \cos(\omega_{0} t + \varphi)\} dt =$$

= $F_{1}T_{0} + \frac{F_{m}}{\omega_{0}} [\sin(3T_{0}\omega_{0} + \varphi) - \sin(2T_{0}\omega_{0} + \varphi)].$ (5.50)

С учетом того, что измеряемая величина определяется соотношением

$$x = kN = k(N_1 - N_2) = (N_1 - N_2)/ST_0, \qquad (5.51)$$

$$\int_{X}^{\Pi O J Y^{\text{4}\text{M}}} x = \frac{1}{S} \left(F_1 - F_2 \right) + \frac{8F_m \sin^2 \left(\omega_0 T_0 / 2 \right) \cos \left(\omega_0 T_0 / 2 \right)}{ST_0 \, \omega_0} \sin \left(\frac{3T_0}{2} \, \omega_0 + \varphi \right).$$
(5.52)

Второе слагаемое характеризует случайную погрешность измерения, обусловленную влиянием помехи

$$\Delta x = \frac{8F_m \sin^2(\omega_0 T_0/2) \cos(\omega_0 T_0/2)}{ST_0 \omega_0} \sin\left(\frac{3}{2} T_0 \omega_0 + \varphi\right).$$
(5.53)

Из данного равенства следует, что обеспечить $\Delta x = 0$ можно только при выполнении условия $\sin^2(\omega_0 T_0/2)\cos(\omega_0 T_0/2) = 0$, т. е. при фиксированном значении ω_0 можно подобрать такое значение T_0 , что случайная аддитивная погрешность будет полностью скорректирована. Однако в реальных условиях обеспечить подбором T_0 полную компенсацию случайной погрешности практически невозможно. Поэтому возникает задача вероятностной оценки случайной погрешности для конкретного преобразователя.

Из 5.53 следует, что максимальное значение случайной погрешности преобразования при известных значениях параметров схемы S, T_0 и характеристик помех F_m и ω_0 определяется соотношением

$$|\Delta x|_{\max} = \frac{8F_m |\sin^2(\omega_0 T_0/2) \cos(\omega_0 T_0/2)|}{ST_0 \omega_0} = A.$$
 (5.54)

Анализ выражения показывает, что уменьшение значения случайной погрешности можно обеспечить вариацией параметров *S* и T_0 преобразователя. Погрешность $|\Delta x|_{\text{max}}$ в равной степени определяется значениями чувствительности *S* ЧИП и временной базы T_0 счетчика. Однако увеличение *S* с целью уменьшения $|\Delta x|_{\text{max}}$ может не дать желаемого результата, поскольку в этом случае одновременно с увеличением *S* увеличивается и амплитуда пульсации F_m помехи, которая поступает на вход счетчика после прохождения через ЧИП и, следовательно, определяется его коэффициентом преобразования *S*. Поэтому для обеспечения допустимого значения $|\Delta x|_{\text{max}}$ при известных параметрах помехи предпочтительнее увеличивать временную базу T_0 реверсивного счетчика.

Для получения оценки вероятности ($|\Delta x| < \delta$) того, что абсолютное значение погрешности $|\Delta x|$ не будет выходить за пределы заданного интервала ($-\delta$, δ), предположим, что случайное значение начальной фазы φ помехи распределено равномерно в интервале ($-\pi$, π). Тогда плотность вероятности случайной величины φ определяется выражением

$$W_{1}(\varphi) = \begin{cases} \frac{1}{2\pi} & \text{для } |\varphi| < \delta; \\ 0 & \text{для } |\varphi| > \delta. \end{cases}$$
(5.55)

Найдем граничную оценку закона распределения случайной погрешности. С учетом (5.54) соотношение (5.53) можно записать в виде

$$\Delta x = A \sin\left(3/2T_0\omega_0 + \varphi\right). \tag{5.56}$$

Для плотности вероятности $W_2(\Delta x)$ имеем

$$W_{2}(\Delta x) = \begin{cases} \frac{1}{\pi \sqrt{A^{2} - \Delta x^{2}}} & \text{для} & |\Delta x| < A; \\ 0 & \text{для} & |\Delta x| > A. \end{cases}$$
(5.57)

Вычислим теперь вероятность того, что абсолютное значение $|\Delta x|$ не превысит 1/8 $|\Delta x|_{max} = A$, т. е. что $|\Delta x| < 8A$. Интегрируя (5.57) от —8A до +8A и учитывая четность подынтегральных функций, получаем

$$P(|\Delta x| < 8A) = \begin{cases} \frac{2}{\pi} \arcsin \theta & \text{для } 0 < \theta < 1 \\ 1 & \text{для } \theta > 1. \end{cases}$$

Предположим, что случайный процесс (5.47) обладает свойствами стационарности, нормальности и эргодичности, а также имеет двумерную нормальную функцию распределения. Из (5.52) можно записать выражение для случайной погрешности в виде

$$\Delta x = \frac{2\sin(\omega_0 T_0)}{ST_0\omega_0} [F_m \cos(T_0 \omega_0 + \varphi) - F_m \cos(2T_0 \omega_0 + \varphi)].$$
(5.58)

Введем обозначения $y = F_m \cos(\omega_0 T_0 + \varphi) = F(T_0)$; $z = F_m \cos(2\omega_0 T_0 + +\varphi) = F(2T_0)$. Анализ (5.58) и (5.48) показывает, что величины у и z являются сечениями случайного стационарного нормального процесса (5.47) в точках $t_1 = T_0$ и $t_2 = 2T_0$ и, следовательно, распределены по нормальному закону. Параметры этих распределений (математическое ожидание a и среднеквадратическое отклонение σ) одинаковы в точках t_1 и t_2 . Так как y и z могут быть взаимно коррелированы, то для нахождения закона распределения разности y-z справедливо предположить существование двумерной функции распределения

 $W_2(F'_1, F'_2, t_1, t_2) = W_2(F'_1, F'_2, t_2-t_1) = W(F'_1, F'_2, \tau),$ где F'_1 и F'_2 — случайные значения частоты F(t) соответственно в моменты $t=t_1$ и $t=t_2$. Полагая $t_1=T_0, F_1=y, t_2=2T_0$ и $F_2=z,$ получаем

$$W_2(y, z, T_0, 2T_0) = W_2(y, z, T_0).$$
 (5.59)

Двумерная функция распределения нормального станционарного процесса равна $-\frac{(y-a)^2 - 2R(\tau)(y-a)(z-a) + (z-a)^2}{2R(\tau)(y-a)(z-a) + (z-a)^2}$

$$2\sigma^{2} \left[1 - R^{2} (\tau)\right]$$
Тогда

$$W_2(y, z, \tau) = \frac{1}{2 \pi \sigma^2 \sqrt{1 - R^2 \tau}}$$
, (5.60)

где $R(\tau)$ — коэффициент корреляции, определяемый по формуле $R(\tau) = B_0(\tau)/\sigma^2$, (5.61)

а $B_0(\tau)$ — корреляционная функция переменной составляющей процесса (5.47).

В данном случае $\tau = t_2 - t_1 = 2T_0 - T_0 = T_0$ и одномерная функция распределения U = y - z для $\tau = T_0$ равна

$$W_{1}(U, T_{0}) = \int_{-\infty}^{\infty} W(y, y - U, T_{0}) dy =$$

$$= \frac{1}{2\sqrt{\pi\sigma}\sqrt{1 - R^{2}(T_{0})}} e^{-\frac{U^{2}}{1 + R^{2}(T_{0})]}}.$$
(5.62)

Тогда случайная величина Δx определяется соотношением

$$\Delta x = \frac{2\sin(\omega_0 T_0)}{S T_0 \omega_0} (y - z) = cU, \qquad (5.63)$$

где $c = 2\sin(\omega_0 T_0)/ST_0\omega_0$.

Для одномерной функции распределения Δx справедливо выражение

$$W_1(\Delta x) = \frac{1}{||c|} W_1\left(\frac{\Delta x}{c}, T_0\right).$$
(5.64)

Принимая во внимание (5.64), соотношение для плотности вероятности случайной величины Δx принимает вид

$$W_{1}(\Delta x) = \frac{1}{\sqrt{2\pi}\sqrt{2\sigma}|c|\sqrt{1-R^{2}(T_{0})}} e^{-\frac{|\Delta x^{2}|}{2\{\sqrt{2}|\sigma|c|\sqrt{1-R^{2}(T_{0})}\}^{2}}} (5.65)$$

Полагая в (5.65) $\sigma_1 = \sigma \sqrt{2} |c| \sqrt{1 - R^2(T_0)}$, получаем $W(\Delta x) = \frac{1}{\sqrt{2\pi} \sigma_1} e^{-\frac{i}{2}\Delta x^2/2\sigma_1^8}$. т. е. случайная составляющая аддитивной погрешности преобразования, обусловленная действием квазигармонической помехи, распределена по нормальному закону с нулевым математическим ожиданием и среднеквадратическим отклонением $\sigma_1 = \sigma \sqrt{2} |c| \sqrt{1 - R^2(T_0)}$. Зная плотность вероятности $W(\Delta x)$, можно найти вероятность того, что значения погрешности Δx не будут выходить за пределы интервала ($-\Delta x_x \Delta x$):

$$P(|\Delta x| < \Delta x) = \frac{2}{\sqrt{2\pi}\sigma_1} \int_0^{\Delta x} e^{\Delta x^2/2\sigma_1^2} a(\Delta x) dx = 2F(\Delta x/\sigma_1) - 1,$$

где *F* ($\Delta x/\sigma_1$) — табулированная функция.

Из свойств нормального закона следует, что с вероятностью 0,997 значения Δx заключены в интервале (—3 σ_1 , 3 σ_1). Следовательно, с вероятностью 0,997 $|\Delta x|_{max}=3\sigma_1=3\sqrt{2\sigma}|c|\sqrt{1-R^2(T_0)}$.

При использовании цифрового преобразователя в составе систем контроля достоверность контроля сигнала x определяется одним замером, возможность усреднения результата по многократным отсчетам отсутствует. В этом случае шаг квантования $h_{\rm k}$ (погрешность дискретности) цифрового преобразователя по уровню измеряемой величины следует выбирать так, чтобы он превышал максимальное значение случайной погрешности $|\Delta x|_{\rm max}$, обусловленной воздействием помехи. С вероятностью 0,997 имеем

$$h_{\kappa} \ge 3\sqrt{2\sigma}|c|\sqrt{1-R^2(T_0)}. \tag{5.66}$$

Следовательно, для вычисления допустимого значения h_{κ} необходимо знать среднеквадратическое отклонение о для случайного процесса (в силу его эртодичности) и коэффициент корреляции $R(T_0)$ между произвольными сечениями данной реализации, отстоящими на интервал $\tau = T_0$. Кроме того, необходимо знать коэффициент преобразования ЧИП $S = \Delta F/x$, значение временной базы счетчика и среднее значение спектра частот помехи. Поскольку

$$R(T_0) = B_0(T_0)/\sigma^2 = [B(T_0) - a^2]/\sigma^2, \qquad (5.67)$$

для вычисления коэффициента корреляции в момент $\tau = T_0$ необходимо вычислить $B(T_0)$, a, σ . На практике для вычисления значений корреляционной функции $B(\tau)$ пользуются формулой

$$B(\tau) = \frac{1}{\eta} \sum_{n=1}^{N} \xi^{(r)}(n, \Delta t)^{\xi^{(r)}}(n, \Delta t + \tau), \qquad (5.68)$$

где r — номер произвольной реализации; Δt — элементарный интервал отсчета моментов времени для вычисления значений реализации; $\xi^{(r)}(n, \Delta t)$, $\xi^{(r)}(n, \Delta t + \tau)$ — значения реализации, измеренные через n шагов, отсчитанных от начального и смещенного от него τ моментов отсчета времени; η — максимальное число проведенных измерений значений реализации.

Под $\xi^{(r)}(t)$ следует понимать любую *r*-ую реализацию $F^{(r)}(t)$ случайного процесса (5.47). Полагая поочередно $\tau = T_0$ и $\tau = 0$, по (5.68) подсчитаем $B(T_0)$ и $B(_0)$.

Поскольку $B(0) = a^2 + \sigma^2$, то для вычисления о достаточно знать значение *a* начального момента первого порядка реализации $F^{(r)}(t)$, которое можно определить по формуле $a = m_1\{F\} =$ $= \frac{1}{n} \sum_{n=1}^{n} F^{(r)}(n, \Delta t)$. Подставляя полученные значения $B(T_0)$, a^{2} , σ^{2} в (5.67), определим коэффициент корреляции $R(T_{0})$. При известной $R(T_{0})$ расчетное соотношение (5.66) позволяет выбрать шаг квантования $h_{\rm K}$, при котором обеспечивается требуемое значение случайной аддитивной погрешности, обусловленной низкочастотной квазигармонической помехой. Если при конкретных параметрах помехи погрешность квантования $h_{\rm K}$, определяемая (5.66), превосходит заданное значение, т. е. необходимый уровень помехозащищенности устройства, то тогда задача решается соответствующим увеличением временной базы T_{0} реверсивного счетчика.

Рассмотренная методика расчета погрешностей и выбора параметров преобразователя была использована при построении измерителя мощности СВЧ [31] с цифровым выходом. Результаты эксперимента показали достаточно хорошее совпадение расчетных и реальных характеристик устройства.

ГЛАВА 6. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ И РАСЧЕТА ФУНКЦИИ ПРЕОБРАЗОВАНИЯ АВТОМАТИЧЕСКИХ МФП

6.1. ОПТИМАЛЬНЫЙ ВЫБОР СХЕМЫ ПОСТРОЕНИЯ ПО ФУНКЦИИ КАЧЕСТВА

Внедрение САПР значительно сокращает сроки создания и повышает качество разрабатываемых элементов, приборов, устройств и радиоэлектронной аппаратуры в целом. В настоящее время методика построения САПР достаточно хорошо отработана и широко представлена в отечественной и зарубежной печати. Основными взаимосвязанными этапами САПР являются: структурный синтез разрабатываемых устройств; обобщение теоретических исследований и вывод аналитических выражений для расчета параметров разрабатываемых устройств и создание на этой основе формализованной методики проектирования; разработка прикладного математического обеспечения (структура и состав программного обеспечения, формирование технологических маршрутов проектирования, разработка языков программирования, организация работы САПР); выбор структуры и состава технических средств и общесистемного математического обеспечения.

Все это относится к проблеме создания САПР автоматических МФП. Учитывая возможность применения стандартных программ прикладного, общесистемного математического обеспечения и существующих технических средств, следует рассмотреть два первых этапа, которые в полной мере характеризуют особенности проектирования и расчета автоматических МФП.

Структурный синтез автоматических МФП в общем случае заключается в выборе из множества возможных вариантов построения МФП такой структурной схемы, которая обеспечивает построение МФП, в наибольшей степени удовлетворяющего требования технического задания (ТЗ). При этом необходимо решить следующие задачи: разработать требования к МФП, исходя из условий эксплуатации, возможности реального выполнения на основе имеющихся элементной базы, метрологического обеспечения и т. д.; определить и ограничить множество возможных вариантов построения МФП; сформулировать и формализовать критерии в виде цели выбора требуемого варианта; разработать способ определения качества каждого объекта относительно критерия выбора требуемого варианта.

Начальным этапом проектирования и расчета автоматических МФП является рзработка требований ТЗ в виде множества чисел, характеризующих параметры разрабатываемого автоматического МФП, а именно:

$$\{Q_{1 T3}, Q_{2T3}, ..., Q_{i T3}, ..., Q_{r T3}\} \forall_i, \quad i = \overline{1, r},$$
 (6.1)

где $Q_{i T3}$ — численное значение задаваемого по ТЗ параметра l;r — число задаваемых параметров.

Номенклатура и численные значения параметров Q_{i та} автоматических МФП, обеспечивающие выполнение ими тактико-технической задачи, качественную разработку и общепромышленное применение, устанавливаются в соответствии с действующими государственными и отраслевыми стандартами, нормами, распространяющимися на средства автоматизации и измерений, системы управления, информационно-измерительные системы. Например, в соответствии с ГОСТ 23222-78 «Средства измерений и автоматизации ГСП. Нормируемые метрологические и точностные характеристики» основными нормируемыми параметрами автоматических МФП являются: диапазон преобразуемых значений физических величин, погрешность преобразования, частота отказов, время преобразования, потребляемая мощность, масса, габаритные размеры, объем. Для последующего анализа параметры следует выбирать и устанавливать их численные значения так, чтобы, например, увеличение каждого из них ухудшало бы качество преобразователя, а уменьшение — улучшало.

Определение, как правило, ограниченного множества возможных вариантов построения автоматических МФП производится на основе обобщения результатов исследований и расчета для каждого из вариантов предельно достижимых значений основных параметров. В результате каждому из возможных вариантов построения автоматических МФП можно поставить в соответствие ряд чисел в виде одного из множеств:

 $\begin{cases} Q_{11}, & Q_{21}, \dots & Q_{i1}, \dots & Q_{r1} \\ Q_{12}, & Q_{22}, \dots & Q_{i2}, \dots & Q_{r2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ Q_{1l}, & Q_{2l}, \dots & Q_{il}, \dots & Q_{rl} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ Q_{1h}, & Q_{2h}, \dots & Q_{ih}, \dots & Q_{rh} \end{cases} \quad \forall l \in \overline{1},$

 $\forall i \in \overline{1, r}, \\ \forall l \in \overline{1, h},$ (6.2)

где Q_{il} — численное значение параметра l, обеспечиваемое вариантом выполнения объекта l; h — число возможных вариантов построения; r — число параметров МФП.

Необходимо определить критерий, с помощью которого можно выбрать вариант построения МФП, обладающий наиболее оптимальной с точки зрения ТЗ совокупностью параметров. Обычно цель выбора задается в виде некоторого эталонного объекта с требуемыми по ТЗ численными значениями параметров, которые могут быть приняты в виде максимально или минимально достижимого значения ($Q_{i_{T3}} \ge \max Q_i$ или $Q_{i_{T3}} \le \min Q_i$). Этот способ формирования численных значений параметров разрабатываемого преобразователя применяют, когда один из его параметров имеет преобладающее значение и требуется спроектировать изделие с наилучшим таким параметром. Такой подход обычно приводит к необходимости значительных уступок по ряду других параметров и применяется редко.

Значительно чаще в ТЗ оговариваются некоторые граничные значения каждого из параметров $Q_{i\,rp}$, которые ограничивают ухудшение параметров реального МФП. Наилучшим способом задания значений параметров является такой, когда в ТЗ задан некоторый интервал, ограниченный нижней $Q_{i\,min}$ и верхней $Q_{i\,max}$ границами возможных значений параметров реального преобразователя, т. е.

 $Q_{i \min} < Q_{i T3} < Q_{i \max}$

Выбор варианта построения автоматических МФП одним из рассмотренных способов прямого сравнения численных значений параметров, заданных в ТЗ (6.1) и установленных соотношением (6.2), является наиболее простым. Для количественной оценки степени приближения значения того или иного параметра Q_{i1} преобразователя к численному значению Q_{iT3} , указанному в ТЗ, существует множество методов [18]. Рассмотрим один из наиболее простых методов, основанный на вычислении значения дифференциального коэффициента качества, определяемого соотношением

 $\mu_{il} = Q_{il} / Q_{i_{T3}}, \tag{6.4}$

где µ_{ii} — дифференциальный коэффициент качества объекта *l* по[,] параметру *i*.

185

(6.3)

Если уменьшение Q_{il} повышает качество преобразователя, то значение $\mu_{il} \leqslant 1$ показывает, что по данному параметру преобразователь удовлетворяет требованиям ТЗ, значение ии>1 показывает, что по данному параметру преобразователь требованиям ТЗ не удовлетворяет. Такой анализ не позволяет выбрать вариант построения МФП, при котором все параметры ТЗ гарантированно выполнялись бы, так как обычно каждый из вариантов построения МФП имеет преимущества по одним параметрам и уступает по другим. Поэтому оценку соответствия автоматического МФП требованиям ТЗ следует проводить одновременно по всем его параметрам, решая задачи многокритериальной оптимизации. Решение этой задачи в общем случае, не оптимальное ни по одному из частных параметров, является компромиссным по всем параметрам в совокупности и должно проводиться на основании некоторого обобщенного (интегрального) критерия. Процесс образования скалярной функции (обобщенный критерий для решения задачи многокритериальной оптимизации) является объединением векторного критерия оптимальности. Обобщенный критерий должен учитывать все дифференциальные коэффициенты качества и целевую направленность сравнения. Переход к обобщенному критерию связан с необходимостью учета важности («веса») каждого параметра по сравнению с другими параметрами. Учет весовых коэффициентов позволяет получить обобщенный скалярный критерий с помощью образования суммы произведений дифференциальных коэффициентов качества на весовые коэффициенты соответствующих параметров. Такой обобщенный критерий называется функцией качества [24]:

$$\Psi_{\rm H}(l) = \sum_{i=1}^{r} \mu_{il} C_{il}, \tag{6.5}$$

где $\Psi_{\kappa}(l)$ — функция качества МФП, выполненного по варианту $l; C_{il} = c_{il} / \sum_{l=1}^{r} c_{il}$ — нормированный коэффициент важности параметра *i* для МФП, выполненного по варианту *l*; c_{il} — весовой коэффициент параметра *i*.

Вычисление функции качества $\Psi_{\kappa}(l)$ для каждого возможного варианта построения МФП позволяет выбрать вариант, наиболее полно удовлетворяющий требованиям ТЗ. Например, для рассмотренного ранее случая это будет МФП, имеющий минимальное значение функции качества $\Psi_{\kappa}(l)$.

Важность каждого из параметров задается в виде некоторого числа, определяемого методом экспертных оценок (априорно на основе требований ТЗ) или апостериорно (учитывая опыт эксплуатации аналогичных преобразователей).

Для повышения достоверности решения задачи выбора варианта построения МФП можно вычислять функции качества для 186 нескольких вариантов задания весовых коэффициентов параметров. Существуют и другие способы определения дифференциальных коэффициентов качества и функции качества. Например, когда наиболее важные параметры имеют преобладающее влияние на функцию качества, ее можно определить следующим образом:

$$\Psi_{\rm H}(l) = \sqrt{\sum_{i=1}^{\prime} \mu_{il} C_{il}}.$$
(6.6)

Одним из способов упорядочения параметров по важности является введение приоритетов частных критериев. Например, соотношение частных критериев 10/1 означает подавляющую важность параметра *i* по сравнению с параметром *r*, 5/1 — значительно большую важность, 2/1 — большую важность, 1/1 — равную важность. Эти соотношения записываются в матрицу, в каждую строку которой заносится оценка приоритетов a_{ir} , характеризующая важность параметра Q_{il} по отношению к остальным параметрам. Например, если параметр Q_{3l} имеет значительно большую важность, чем параметр Q_{2l} , т. е. a_{32} =5/1, то на пересечении третьей строки и второго столбца ставится цифра 5, а на пересечении второй строки и третьего столбца — цифра 1 и т. д. Определив сумму оценок по строке β_i , можно определить относительную важность каждого параметра из следующей системы уравнений:

$$\frac{C_{il}}{C_{rl}} = \frac{\beta_i}{\beta_r}; \\
\sum_{i=1}^r c_{il} = 1, \quad \forall_i \in \overline{i, r}, \quad (6.7)$$

где β_i — сумма оценок по строке *i*; β_r — сумма оценок по строке *r*; C_{il} — коэффициент важности параметра *i* варианта *l*; C_{rl} — коэффициент важности параметра *r* варианта *l*.

Пример. Пусть параметр Q_{3l} имеет подавляющую важность по сравнению с параметром Q_{1l} ; Q_{2l} — подавляющую важность по сравнению с Q_{1l} ; Q_{3l} — значительно большую важность по сравнению с Q_{2l} . Оценки приоритетов в этом случае будут равны α_{31} =10/1; α_{21} =10/1; α_{32} =5/1 и представлены в табл. 6.1.

Для определения весовых коэффициентов в соответствии с (6.7) составим систему уравнений:

$$\begin{cases} c_{2l}/c_{1l} = 11/2, \\ c_{3l}/c_{1l} = 15/2, \\ c_{1l} + c_{2l} + c_{3l} = 1, \end{cases}$$

откуда $c_{1l}=0,072$; $c_{2l}=0,394$; $c_{3l}=0,534$. Тогда в соответствии с (6.5) функция качества МФП, построенного по варианту *l*, запишется в следующем виде:

 $\Psi_{\rm R}(l) = 0.072 \mu_{1l} + 0.394 \mu_{2l} + 0.534 \mu_{3l},$

где μ_{1l} , μ_{2l} , μ_{3l} — дифференциальные коэффициенты качества варианта l соответственно по параметрам Q_{1l} , Q_{2l} , Q_{3l} .

Таблица 6.1 Матрица приоритетов

Параметр	Q ₁₁	Q ₂₁	Q_{3l}	β
Q_{11}	0	1	1	2
Q21	10	0	1	11
Q31	10	5	0	15

Физические величины (параметры), характеризующие МФП, могут быть выбраны так, что наиболее благоприятным случаем для предпочтительного выбора является выполнение соотношения $\mu_{4l} < 1$. В ряде случаев проектировщику для выбора оптимального варианта удобней оперировать с максимальным значением функции качества $\Psi_{\rm K\ max}(l)$ и функцию качества вычислять по формуле

$$\Psi_{\rm R}(l) = \sum_{i=1}^{r} \frac{1}{\mu_{il}} C_{il}.$$
 (6.8)

Допустим в ТЗ заданы следующие числовые значения параметров: мннимальное значение преобразуемой мощности СВЧ $P_{x\min} \ll 0.06$ мВт; значение

Таблица 6.2

Варианты исполнения МФП

Номер варианта	Наименование варнанта исполнения	P _x min, MBT	Ya . %	A.10-5, 1/4	t _{np} , c	Prorp. Br
1	Аналоговый автоматический с замещени-	0,6	1	1,5	2,5	1,5
2	ем и однократным компарированием Аналоговый автоматический с замещени-	0,0 6	1,5	2,5	8	1,5
3	ем и двойным компарированием Аналоговый автоматический с замещени- ем, двойным компарированием и адап- тацией начальных условий интегрирова-	0,06	1,5	2,5	4	2,5
4	ния Аналого-цифровой автоматический с вре- менным разделением сигналов и двух-	0,05	1	5	1	5
5	тактным интегрированием Аналоговый автоматический с периоди- ческим замещением	0,0 6	2	4	1	3,5

случайной погрешности γ_σ<2%; интенсивность отказов λ<5·10-6 1/ч; время преобразования t_{пр}<8 с; потребляемая мощность Р_{потр}<5,0 Вт.

Обобщая результаты проведенных исследований и разработок автоматических МФП для измерения мощности СВЧ, можно в качестве одного из возможных примеров составить табл. 6.2.

Первый вариант построения МФП исключается из рассмотрения, так как он явно не удовлетворяет требованиям ТЗ. Для вычисления функций качества необходимо определить весовые коэффициенты и вычислить дифференциальные коэффициенты качества по каждому из параметров для каждого возможного варианта исполнения. Определение весовых коэффициентов произведем, вводя приоритеты частных критериев. Опыт эксплуатации аналогичных устройств позволяет утверждать, что параметры γ_{σ} , $P_{x\min}$ и λ имеют подавляющую важность по отношению к P_{norp} ; параметр λ имеет значительно большую важность, ию отношению к P_{norp} ; параметр λ имеет значительно большую важность, чем t_{np} ; параметр t_{np} — эначительно большую важность, чем γ_{σ} и t_{np} , а γ_{σ} большую важность, чем t_{np} . Оценки приоритетов представлены в табл. 6.3.

Для определения весовых коэффициентов составим систему уравнений:

$$\begin{cases} c_1/c_5 = 20/4; \\ c_2/c_5 = 16/4; \\ c_3/c_5 = 12/4; \\ c_4/c_5 = 8/4; \\ c_1 + c_2 + c_3 + c_4 + c_5 = 1, \end{cases}$$

откуда $c_1 = 0.333$; $c_2 = 0.267$; $c_3 = 0.2$; $c_4 = 0.133$; $c_5 = 0.067$.

На основании полученных данных в соответствии с (6.8) можно записать соотношение для функции качества:

$$\Psi_{\rm H}(l) = 0,333 \frac{1}{\mu_{1l}} + 0,267 \frac{1}{\mu_{2l}} + 0,2 \frac{1}{\mu_{3l}} + 0,133 \frac{1}{\mu_{4l}} + 0,067 \frac{1}{\mu_{5l}}.$$
(6.9)

Вычислив н подставив в выражение (6.9) значения дифференциальных коэффициентов качества параметров для вариантов 2, 3, 4 и 5, получим следущие значения функции качества: $\Psi_{\kappa}(2) = 1,466$; $\Psi_{\kappa}(3) = 1,599$; $\Psi_{\kappa}(4) = 2,18$; $\Psi_{\kappa}(5) = 2,043$.

Таблица 6.3 Матрица приоритетов

Параметр	λ	P _{x mīn}	Ŷσ	t _{np}	Рпотр	β_{Σ}
Ω,	0	2	3	5	10	20
$P_{x \min}$	1	0	2	3	10	16
γ _σ	1	1	0	2	10	12
t _{up}	1	1	1	0	5	8
P_{morp}	1	1	1	1	0	4
				1	1	1

На этом задачу структурного синтеза можно считать выполненной, так как по максимальному значению $\Psi_{\kappa\,max}(4) = 2,18$ для построения преобразователя мощности СВЧ в соответствии с заданными требованиями должна быть принята структурная схема аналого-цифрового автоматического МФП с временным разделением сигналов и двухтактным интегрированием.

Следующим этапом проектирования автоматических МФП является расчет элементов принципиальной электрической схемы и основных параметров для выбранного варианта построения МФП.

6.2. РАСЧЕТ ФУНКЦИЙ ПРЕОБРАЗОВАНИЯ РАЗЛИЧНЫХ ФИЗИЧЕСКИХ ВЕЛИЧИН

Теория автоматических МФП базируется на основном реально существующем процессе, который позволяет представить влияние любого внешнего воздействия на терморезистивный ЧЭ в виде изменения мощности, рассеиваемой нагретым терморезистором в окружающую среду. В качестве схем включения ЧЭ наиболее целесообразно применять АМП. Такой подход позволяет характеризовать состояние ЧЭ как в аналоговых, так и в аналого-цифровых МФП обобщенным уравнением баланса мощностей, а параметры автоматических МФП определять для случая преобразования мощности P_x(t). На этом общем случае и основывается решение второй задачи САПР — создания формализованной методики расчета и проектирования автоматических МФП. Решение задачи окажется неполным, если не будут известны уравнения для определения функций преобразования других физических величин (скорости, концентрации, влажности, температуры, давления), влияние которых на ЧЭ способно изменить условия теплового рассеяния и, следовательно, выходной сигнал ÂΜΠ.

Из уравнения баланса мощностей на терморезистивном ЧЭ, включенном в АМП, следует, что электрическая мощность, подаваемая на терморезистор по цепи обратной связи, расходуется на изменение теплосодержания $R_{\rm T}$ и рассеивается в окружающую среду. С учетом описанных алгоритмов работы МФП при $P_{\rm T}$ = =const и $P_{\rm X}$ =0 можно записать

$$\Delta P_{o,c} = H(T - \theta) = \alpha_{T} S_{T}(T - \theta), \qquad (6.10)$$

где α_т — коэффициент теплопередачи; S_т — площадь поверхности терморезистора.

Ранее было показано, что *P*_{о.с} определяется следующими выражениями:

для аналоговых автоматических МФП

$$P_{\rm o.c} = U^2 / 4R_{\rm T} = k_0 U^2, \tag{6.11}$$

для аналого-цифровых автоматических МФП с частотно-импульсным преобразованием

$$P_{o,c} = U_m^2 \tau_{\rm H} F_{\rm H} / 4R_{\rm T} = k_{\rm UH} F_{\rm H}, \qquad (6.12)$$

для аналого-цифровых автоматических МФП с время-импульсным преобразованием

$$P_{\rm o,c} = U^2 F_{\rm H} \tau_{\rm H} / 4 R_{\rm T} = k_{\rm BH} \tau_{\rm H}.$$
(6.13)

Из теории теплового подобия для реальных газов одинаковой атомности известна следующая зависимость между критериями Нуссельта Nu и Рейнольдса Re [17]:

$$Nu = m_{\rm B} Re^{n_{\rm B}}, \tag{6.14}$$

где *m*_в, *n*_в — коэффициенты, характеризующие среду, в которой происходит теплопередача вынужденной конвекцией.

Учитывая, что $\dot{N}u = \alpha_T{}^{B}d/\lambda_c$, где $\alpha_T{}^{B}$ — коэффициент теплоотдачи для вынужденной конвекции; d— диаметр трубопровода; λ_c коэффициент теплопроводности среды; $Re = \omega_n d/\nu$, где ω_n — скорость потока; ν — коэффициент кинематической вязкости, причем $\nu = \mu/\rho$, где μ , ρ — динамическая вязкость и плотность вещества потока. Для случая вынужденной конвекции выражение (6.14) будет иметь вид

$$\alpha_{\gamma}{}^{\scriptscriptstyle B} d/\lambda_{\rm c} = m_{\scriptscriptstyle B} \left(\omega_{\scriptscriptstyle \Pi} d/\nu \right) {}^{\scriptscriptstyle T}{}_{\scriptscriptstyle B}. \tag{6.15}$$

Выражая преобразуемые физические величины через параметры, входящие в (6.15), решая полученные уравнения относительно α_{τ}^{B} , подставляя результат в (6.10) и используя (6.11), (6.12) и (6.13), получаем уравнения для выходного сигнала АМП в зависимости от соответствующей преобразуемой физической величины. Например, объемный расход определяется по следующей формуле: $Q_x = \omega_n S_0$, где $S_0 = \pi d^2/4$ — площадь сечения трубопровода. Отсюда

$$\omega_{\rm n}d = 4Q_x/\pi d. \tag{6.16}$$

Подставляя (6.16) в (6.15) и решая полученное уравнение относительно α^{B}_{τ} , находим $\alpha^{B}_{\tau} = m_{B}\lambda_{c}(1/d)^{n}{}_{B}^{+1}$) $(4/\pi\nu)^{n}{}_{B}Q_{x}^{n}{}_{B}$. Тогда с учетом (6.10)—(6.13) получаем следующие уравнения для выходного сигнала автоматических МФП в зависимости от объемного расхода:

$$\begin{split} U_{Q} &= \frac{1}{\sqrt{k_{0}}} \left\{ m_{\rm B} \left(\frac{4}{\pi v} \right)^{n_{\rm B}} \left(\frac{1}{d} \right)^{n_{\rm B}+1} \lambda_{\rm c} S_{\rm T} \left(T-\theta \right) Q_{x}^{n_{\rm B}} \right\}^{1/2}; \\ F_{Q} &= \frac{1}{k_{\rm III}} \left\{ m_{\rm B} \left(\frac{4}{\pi v} \right)^{n_{\rm B}} \left(\frac{1}{d} \right)^{n_{\rm B}+1} \lambda_{\rm c} S_{\rm T} \left(T-\theta \right) Q_{x}^{n_{\rm B}} \right\}; \\ \tau_{Q} &= \frac{1}{k_{\rm BH}} \left\{ m_{\rm B} \left(\frac{4}{\pi v} \right)^{n_{\rm B}} \left(\frac{1}{d} \right)^{n_{\rm B}+1} \lambda_{\rm c} S_{\rm T} \left(T-\theta \right) Q_{x}^{n_{\rm B}} \right\}. \end{split}$$

Массовый расход определяем по формуле $M_x = \rho Q_x$.

191

Аналогично получаем уравнения для выходного сигнала автоматических МФП в зависимости от массового M_x:

$$U_{\rm M} = \frac{1}{\sqrt{k_0}} \left\{ m_{\rm B} \left(\frac{4}{\pi \mu} \right)^{n_{\rm B}} \left(\frac{1}{d} \right)^{n_{\rm B}+1} \lambda_{\rm c} S_{\rm T} (T-\theta) M_x^{n_{\rm B}} \right\}^{1/2} \\ F_{\rm M} = \frac{1}{k_{\rm HH}} \left\{ m_{\rm B} \left(\frac{4}{\pi \mu} \right)^{n_{\rm B}} \left(\frac{1}{d} \right)^{n_{\rm B}+1} \lambda_{\rm c} S_{\rm T} (T-\theta) M_x^{n_{\rm B}} \right\}; \\ \tau_{\rm M} = \frac{1}{k_{\rm BH}} \left\{ m_{\rm B} \left(\frac{4}{\pi \mu} \right)^{n_{\rm B}} \left(\frac{1}{d} \right)^{n_{\rm B}+1} \lambda_{\rm c} S_{\rm T} (T-\theta) M_x^{n_{\rm B}} \right\}.$$

Уравнения для выходного сигнала в зависимости от скорости потока ω_n :

$$U_{\omega_{\Pi}} = \frac{1}{\sqrt{k_0}} \left\{ m_{\mathrm{B}} v^{-n_{\mathrm{B}}} d^{n_{\mathrm{B}}-1} \lambda_{\mathrm{c}} S_{\mathrm{T}} (T-\theta) \omega_{\mathrm{II}}^{n_{\mathrm{B}}} \right\}^{1/2};$$

$$F_{\omega_{\Pi}} = \frac{1}{k_{\mathrm{UH}}} \left\{ m_{\mathrm{B}} v^{-n_{\mathrm{B}}} d^{n_{\mathrm{B}}-1} \lambda_{\mathrm{c}} S_{\mathrm{T}} (T-\theta) \omega_{\mathrm{II}}^{n_{\mathrm{B}}} \right\};$$

$$\tau_{\omega_{\Pi}} = \frac{1}{k_{\mathrm{BH}}} \left\{ m_{\mathrm{B}} v^{-n_{\mathrm{B}}} d^{n_{\mathrm{B}}-1} \lambda_{\mathrm{c}} S_{\mathrm{T}} (T-\theta) \omega_{\mathrm{II}}^{n_{\mathrm{B}}} \right\},$$

а в зависимости от коэффициента теплопроводности λ_c они имеют вид:

$$U_{\lambda} = \frac{1}{\sqrt{k_0}} \left\{ m_{\rm B} \left(\frac{\omega_{\rm II}}{\nu} \right)^{n_{\rm B}} d^{n_{\rm B}-1} S_{\rm T} (T-\theta) \lambda_{\rm c} \right\}^{1/2};$$

$$F_{\lambda} = \frac{1}{k_{\rm UH}} \left\{ m_{\rm B} \left(\frac{\omega_{\rm II}}{\nu} \right)^{n_{\rm B}} d^{n_{\rm B}-1} S_{\rm T} (T-\theta) \lambda_{\rm c} \right\};$$

$$\tau_{\lambda} = \frac{1}{k_{\rm BH}} \left\{ m_{\rm B} \left(-\frac{\omega_{\rm II}}{\nu} \right)^{n_{\rm B}} d^{n_{\rm B}-1} S_{\rm T} (T-\theta) \lambda_{\rm c} \right\}.$$

Найденные из уравнения λ_с позволяют рассчитать концентрацию бинарных газовых смесей и влажность чистых газов по формуле Васильевой:

$$\lambda_{\rm c} = \frac{\lambda_1}{1 + A_{12} M_2/M_1} + \frac{\lambda_2}{1 + A_{21} M_1/M_2},$$

где $A_{ij} = \frac{1}{\sqrt{2}} ((d_i + d_j)/2d_i)^2 \sqrt{(\varepsilon_i + \varepsilon_j)/\varepsilon_i}; M_1$ и M_2 — мольная доля компонентов, $(M_1 = \gamma_1/(\gamma_1 + \gamma_2); M_2 = \gamma_2/(\gamma_1 + \gamma_2)); \gamma_1, \gamma_2$ — число грамм-молей компонентов; d_i, d_j — диаметры молекул компонентов $\varepsilon_i, \varepsilon_j$ — массы молекул компонентов.

При преобразовании температуры и давления в средах с естественным конвективным теплообменом критериальное уравнение имеет следующий вид [17]:

$$Nu = m_{e} (Gr Pr)^{n_{e}}, \qquad (6.17)$$

где $m_{\rm e}$, $n_{\rm e}$ — коэффициенты, характеризующие среду, в которой происходит теплопередача естественной конвекцией; Gr — критерий Грасгофа; Pr — критерий Прандтля.

Тогда с учетом того, что Gr = $g\beta (T-\theta_x) d^3/v^2$, где g — ускорение свободного падения; β — температурный коэффициент объемного расширения; Pr = v/a (a — коэффициент температуропроводности), уравнение (6.17) принимает вид

$$\alpha_{\rm r}^{\rm (e)} d/\lambda_{\rm c} = m_1 \left[g\beta \left(T - Q_{\rm x} \right) d^3 / va \right]^{h_{\rm e}}.$$
(6.18)

Следует отметить, что λ_c и v, в свою очередь, зависят от температуры следующим образом [17]: $\lambda_c = \lambda_0 [1 + b_1(\theta_1 - \theta_0)];$ v = = $v_0 [1 + b_2(\theta_1 - \theta_0)]$, где λ_0 и v_0 — коэффициенты теплопроводности и кинематической вязкости при температуре $\theta_0; \lambda_c$ и v — коэффициенты теплопроводности и кинематической вязкости при температуре $\theta_1; b_1$ и b_2 — постоянные коэффициенты.

Для газов одинаковой атомности Pr == const, поэтому из (6.18) получим формулу для коэффициента теплоотдачи в условиях естественной конвекции:

$$\alpha_{\rm r}^{\rm (e)} = \frac{m_{\rm e}}{d} \left(g \beta d^3 \operatorname{Pr}\right)^{n_{\rm e}} \frac{\lambda_{\rm c}}{\left[v^{2n_{\rm e}}\right]} \left(T - \theta_{\rm x}\right)^{n_{\rm e}}.$$
(6.19)

После подстановки в (6.10) выражений (6.19), (6.11), (6.12) и (6.13) получим уравнения для выходного сигнала АМП в зависимости от температуры:

$$U_{\theta} = \frac{1}{\sqrt{k_{0}}} \left\{ \frac{m_{e}}{d} \left(g \beta d^{3} \operatorname{Pr} \right)^{n_{e}} S_{T} \frac{\lambda_{c}}{\sqrt{2^{n_{e}}}} \left(T - \theta_{x} \right)^{n_{e}+1} \right\}^{1/2};$$

$$F_{\theta} = \frac{1}{k_{qq}} \left\{ \frac{m_{e}}{d} \left(g \beta d^{3} \operatorname{Pr} \right)^{n_{e}} S_{T} \frac{\lambda_{c}}{\sqrt{2^{n_{e}}}} \left(T - \theta_{x} \right)^{n_{e}+1} \right\};$$

$$\tau_{\theta} = \frac{1}{k_{BH}} \left\{ \frac{m_{e}}{d} \left(g \beta d^{3} \operatorname{Pr} \right)^{n_{e}} S_{T} \frac{\lambda_{c}}{\sqrt{2^{n_{e}}}} \left(T - \theta_{x} \right)^{n_{e}+1} \right\}.$$

Давление газа p_x определяем по формуле $p_x = \rho \omega^2 e/2$, где ω_e — средняя скорость потока при естественной конвекции, и формула (6.19) принимает вид

$$\alpha_{\rm T}^{\rm (e)} = \frac{m_{\rm e}}{d} \left(g \beta d^3 \, {\rm Pr} \right)^{n_{\rm e}} \left(\frac{2}{\mu \omega_{\rm e}^2} \right)^{2n_{\rm e}} \lambda_{\rm c} \left(T - \theta \right)^{n_{\rm e}} p_x^{2n_{\rm e}} \right). \tag{6.20}$$

Тогда уравнения для выходного сигнала АМП в зависимости от давления газа имеют вид

$$U_{p} = \frac{1}{\sqrt{k_{0}}} \left\{ \frac{m_{e}}{d} \left(g \beta d^{3} \operatorname{Pr} \right)^{n_{e}} \left(\frac{2}{\mu \omega_{e}^{2}} \right)^{2n_{e}} \lambda_{c} S_{T} \left(T - \theta \right)^{n_{e}+1} p_{x}^{2n_{e}} \right\}^{1/2};$$

$$F_{p} = \frac{1}{k_{\text{и}}} \left\{ \frac{m_{e}}{d} \left(g \beta d^{3} \operatorname{Pr} \right)^{n_{e}} \left(\frac{2}{\mu \omega_{e}^{2}} \right)^{2n_{e}} \lambda_{c} S_{T} \left(T - \theta \right)^{n_{e}+1} p_{x}^{2n_{e}} \right\};$$

$$\tau_{p} = \frac{1}{k_{\text{BH}}} \left\{ \frac{m_{e}}{d} \left(g \beta d^{3} \operatorname{Pr} \right)^{n_{e}} \left(\frac{2}{\mu \omega_{e}^{2}} \right)^{2n_{e}} \lambda_{c} S_{T} \left(T - \theta \right)^{n_{e}+1} p_{x}^{2n_{e}} \right\};$$

193

7-13

Эти уравнения можно использовать для получения выражения погрешностей автоматических МФП с учетом конкретного алгоритма работы. Теплообменные процессы, на которых основано применение терморезисторов для преобразования различных физических величин, носят сложный характер. Для особо точных расчетов функций преобразования автоматических МФП необходимо учитывать большое количество дополнительных факторов и ограничений [17]. Вместе с тем, практика показала, что полученные уравнения дают вполне удовлетворительный результат и тем самым позволяют решить вторую задачу САПР, посвященную выводу аналитических выражений для расчета значений параметров и созданию формализованной методики.

Анализ этих уравнений показывает, что машинная реализация расчетов вполне укладывается в рамки прикладного и общесистемного математического обеспечения, разработанного для машинного проектирования радиоэлектронных устройств.

6.3. РАСЧЕТ И АВТОМАТИЧЕСКАЯ КОМПЕНСАЦИЯ АДДИТИВНОЙ И МУЛЬТИПЛИКАТИВНОЙ СОСТАВЛЯЮЩИХ ПОГРЕШНОСТЕЙ

В технической документации на измерительные приборы погрешность наиболее часто нормируется в виде двучлена, одна составляющая которого является аддитивной, независящей от измеряемой величины, а вторая — мультипликативной, зависящей от измеряемой величины. Применим это правило представления погрешностей для терморезистивных МФП. В общем виде, опуская ввиду малости P_{τ} == const, уравнение теплового баланса терморезистора в установившемся режиме при совместном действии естественной и вынужденной конвекции имеет вид:

$$I^{2}R_{T} = H(T_{T_{0}} - \theta) + H \operatorname{Re}^{n_{B}}(T_{T_{1}} - \theta), \qquad (6.21)$$

где I — ток через терморезистор; T_{τ_0} — абсолютная температура тела терморезистора при естественной конвекции; R_{τ} , T_{τ_1} — соответственно сопротивление и абсолютная температура тела терморезистора при совместном действии естественной и вынужденной конвекции.

Информация о массовой скорости рол измеряемого потока газа содержится в числе Рейнольдса, а выходным параметром является электрическая мощность, выделяемая на терморезисторе $R_{\rm r}$. При нулевой скорости потока газа (6.21) примет вид

$$I^{2}R_{\tau_{0}} = H_{0}(T_{\tau_{0}} - \theta). \tag{6.22}$$

Если принять коэффициент усиления усилителя (см. рис. 2.1) к≥1000, то в уравнениях (6.21 и 6.22) можно принять:

$$R_{\tau} \approx R_{\tau_0} \text{ is } T_{\tau_0} \approx T_{\tau}; \tag{6.23}$$

Тогда уравнение (6.21) преобразуется к виду

$$I^{2} R_{T_{0}} = H (T_{T_{0}} - \theta) + H \operatorname{Re}^{n_{B}} (T_{T_{0}} - \theta).$$
(6.24)

Первый член правой части уравнения (6.21) характеризует аддитивную погрешность преобразования, а второй член — мультипликативную.

Для автоматической компенсации аддитивной составляющей погрешности преобразования в технике применяются двухканальные структуры: с пространственным и временным разделением каналов. При измерении расхода газа временное разделение каналов можно реализовать с помощью коммутации измеряемого потока; измеряемый поток направляется то в трубопровод, в котором находится ЧЭ, то через другой параллельно включенный трубопровод, и ЧЭ оказывается в аэродинамической тени. При этом в первом такте работа ЧЭ описывается (6.24), а во втором такте — (6.22). Для реализации пространственного разделения каналов при измерении расхода газа применяют две идентичные схемы (рис. 2.1), только во втором канале ЧЭ помещают в аэродинамической тени. Работа двухканальной измерительной схемы описывается системой уравнений

$$I_{1}^{2}R_{\tau 10} = H_{10}(T_{\tau 10} - 0) + H_{10}\operatorname{Re}^{n_{B}}(T_{\tau 10} - \theta);$$

$$I_{2}^{2}R_{\tau 20} = H_{20}(T_{\tau 20} - \theta),$$
(6.25)

где индексом 1 обозначен измерительный канал (ЧЭ в потоке газа), а индексом 2—компенсационный канал (ЧЭ в аэродинамической тени). При нулевой скорости потока газа (6.25) примет вид:

$$I_{20}^{2} R_{\mathbf{T}10} = H_{10} \left(T_{\mathbf{T}10} - \theta \right);$$

$$I_{20}^{2} R_{\mathbf{T}20} = H_{20} \left(T_{\mathbf{T}20} - \theta \right).$$

$$(6.26)$$

Значения $R_{\tau 10}$, $R_{\tau 20}$, $T_{\tau 10}$, $T_{\tau 20}$ устанавливаются при настройке и в измерительной схеме с обратной связью (см. рис. 2.1) поддерживаются постоянными достаточно точно, поэтому

$$I^{2}{}_{10}R_{T10} = \varkappa I^{2}{}_{20}R_{T20}, \tag{6.27}$$

где $\varkappa = H_{10} (T_{\tau 10} - \theta) / H_{20} (T_{\tau 20} - \theta) = I_{10}^2 R_{\tau 10} / I_{20}^2 R_{\tau 20}.$

Для автоматической компенсации аддитивной составляющей погрешности преобразования структура преобразователя должна обеспечить выполнение условия (6.27) и вычитание выходной электрической мощности компенсационного канала из выходной электрической мощности измерительного канала. В результате этого вычитания с учетом (6.25) получим

$$I^{2}{}_{1}R_{T10} - \varkappa I^{2}{}_{20}R_{T20} = H_{10} \operatorname{Re}^{n_{B}}(T_{T10} - \theta).$$
(6.28)

195

7*

Для автоматической компенсации мультипликативной составляющей погрешности преобразования структура преобразователя должна обеспечить деление результата вычитания (6.28) на выходную электрическую мощность компенсационного канала с учетом (6.27), которая пропорциональна выходной электрической мощности измерительного канала при скорости измеряемого потока газа, равной нулю. В результате деления (6.28) и (6.27) получим

$$(I^{2}{}_{1}R_{\tau 10} - \varkappa I^{2}{}_{20}R_{\tau 20}) / \varkappa I^{2}{}_{20}R_{\tau 20} = = H_{10} \operatorname{Re}^{n_{B}} (T_{\tau 10} - \theta) / H_{10} (T_{\tau 10} - \theta) = \operatorname{Re}^{n_{B}}.$$
(6.29)

— зависимость массовой скорости потока газа от электрической мощности. Для оценки остаточной погрешности компенсации мультипликативной составляющей погрешности преобразования, преобразуем (6.28) с учетом (6.27) и без учета допущений (6.23):

$$I_{1}^{2}R_{1}-I_{10}^{2}R_{T10}=H_{10}\operatorname{Re}^{n}[T_{\tau10}-(T_{\tau10}-T_{\tau1})-\theta]; \qquad (6.30)$$

$$H_{10}R_{1}-H_{10}R_{T10}=H_{10}Re^{n_{B}}(T_{T10}-\theta)-H_{10}Re^{n_{B}}(T_{T10}-T_{T1}).$$
(6.31)

Если почленно разделить обе части уравнения (6.31) на I^{2}_{10} , $R_{\tau 10}$, то с учетом (6.26) и (6.27) получим

$$(I_{1}^{2}R_{1}-I_{10}^{2}R_{\tau 10})/I_{10}^{2}R_{\tau 10}=\operatorname{Re}^{n_{B}}[1-(T_{\tau 10}-T_{\tau 1})/(T_{\tau 10}-\theta)]. \quad (6.32)$$

Тогда абсолютная мультипликативная погрешность преобразования Δ_{M} определяется из выражения

$$\Delta_{\rm M} = {\rm Re}^{n_{\rm B}} (T_{\rm T10} - T_{\rm T1}) / (T_{\rm T10} - \theta).$$
(6.33)

Относительная погрешность преобразования с учетом (6.33)

$$\delta' = \Delta_{M} / \operatorname{Re}^{n_{B}} = (T_{\tau 10} - T_{\tau 1}) \, 100 / \, (T_{\tau 10} - \theta) \,. \tag{6.34}$$

Если принять в схеме, представленной на рис. 2.1, K=1000, то для терморезистора СТЗ-14В-2,2 кОм его сопротивление в рабочей точке $T_{\tau 10}$ =343 К равно $R_{\tau 1}$ =401 Ом, R_{τ_0} =400 Ом. Разность температур можно рассчитать из равенства

$$T_{\tau_{10}} - T_{\tau_{1}} = (R_{\tau_{1}} - R_{\tau_{10}}) / \alpha R_{\tau_{1}} = 0,09 \text{ K},$$
 (6.35)

где а температурный коэффициент сопротивления терморезистора, который в рабочей точке ($T_{\rm T}$ =343 K) равен $\alpha \approx 0,0278^{\circ}$ С⁻¹. Пусть диапазон изменения температуры газа θ =283—303 K, тогда значение относительной погрешности преобразователя можно вычислить по формуле $\delta' = (T_{\rm T10} - T_{\rm T1})/(T_{\rm T10} - \theta) = 0,09/(60-40) = = 0,0015-0,00225.$

Постоянную составляющую относительной погрешности 0,0015 можно учесть при градуировке, при этом максимальная нескомпенсированная мультипликативная составляющая погрешности преобразования $\delta = 7,25 \cdot 10^{-4}$.

Автоматическая компенсация мультипликативной составляющей погрешности преобразования в двухканальной измеритель-196 ной системе с пространственным разделением каналов, реализующей (6.29), выполняется достаточно точно. Эти же выводы можно получить, если рассмотреть работу измерительной системы. с временным разделением каналов. Динамические характеристики этой системы (из-за очень большого времени переходных процессов при коммутации потока измеряемого газа) на несколько порядков хуже, чем в системе с пространственным разделением каналов, что и накладывает определенные ограничения на ее применение для измерения расхода газа в быстропротекающих технологических процессах.

глава 7. *Приборы, устройства и системы на основе автоматических Мфп*

7.1. КЛАССИФИКАЦИЯ АВТОМАТИЧЕСКИХ МФП

Применение МФП позволяет значительно сократить сроки разработки и внедрения в производство приборов, устройств и систем. Они эффективно используются в народном хозяйстве для измерения параметров газовых потоков, мощности СВЧ, напряжения и контроля параметров микросхем, обладают высокими точностью, чувствительностью, быстродействием, широким диапазоном и позволяют значительно снизить нижний уровень значений преобразуемых величин, автоматизировать процесс преобразования и т. п.

Экспериментальное исследование и поверку приборов и систем следует проводить по методике, обеспечивающей оценку параметров на основе прямых измерений основных физических величин системы СИ (силы электрического тока, длины, времени, температуры и т. д.), а обработку результатов осуществлять вероятностно-статистическими методами, например методом многофакторного дисперсионного анализа.

Классификацию МФП целесообразно проводить на основе сопоставления принципов, методов и алгоритмов, положенных в основу их построения, с признаками, характерными для того или иного класса преобразователей, [1—8, 10—15, 47—54]. К настоящему времени реализованы и прошли промышленную или экспериментальную проверку практически все описываемые в книге схемные решения. Это результат постоянного стремления разработчиков улучшать характеристики ранее разработанных устройств постановкой новых задач, обусловленных применением автоматических МФП в различных отраслях и производствах, на различных объектах и для различных целей. Классификация автоматических МФП приведена на рис. 7.1 и 7.2 Рассматривая принцип

Рис. 7.1. Классификация аналоговых автоматических МФП

Рис. 7.2. Классификация аналого-цифровых автоматических МФП

действия МФП, можно отметить, что в процессе преобразования все операции (включение, алгоритм преобразования, коррекция погрешностей, уравновешивание, сравнение, формирование выходного сигнала) осуществляются автоматически. Следовательно, описанные преобразователи с полным основанием можно отнести к классу автоматических.

По виду входных и выходных сигналов МФП можно разделить на аналоговые и аналого-цифровые. К аналоговым (рис. 7.1) (выходной сигнал — аналоговая величина: напряжение постоянного или переменного тока) относятся преобразователи с пространственным и временным разделением сигналов [23—26], построенные на основе автобалансных мостовых преобразователей постоянного и переменного тока. Разработаны автоматические МФП на основе временного разделения сигналов с однократным компарированием [26], с двойным компарированием [23, 24], следящие с периодическим замещением.

Для уменьшения погрешностей и повышения быстродействия в аналоговых автоматических МФП применяются периодическое введение начала отсчета, метод замещения [23—25, 27] и сравнения, двухтактное замещение с параметрической коррекцией [25], адаптация параметров и режимов к значению входных преобразуемых сигналов [23, 27]. По временному режиму работы они разделяются на МФП циклического и следящего действия. Разработаны схемы автоматического переключения диапазонов преобразования.

Аналого-цифровые автоматические МФП (рис. 7.2) целесообразно строить на основе автобалансных мостовых преобразователей с частотно- [30] или время-импульсным [45] преобразованием. Разработаны аналого-цифровые автоматические МФП с пространственным и временным разделением сигналов [28—31, 34, 36].

Для уменьшения потрешностей и повышения быстродействия в них также применяются периодическое введение начала отсчета, интегрирование выходного импульсного сигнала и адаптация параметров и режимов к значению входных преобразуемых сигналов и параметрам внешних дестабилизирующих факторов. При этом в зависимости от способа обработки интегральных выборок выходного сигнала разработаны МФП с двухтактным [29] и трехтактным [31, 38] интегрированием. Режим работы аналого-цифровых МФП циклический. Разработаны схемы МФП с автоматическим переключением диапазонов преобразования.

Классификация, приведенная на рис. 7.1 и рис. 7.2, не исчерпывает возможные варианты построения автоматических МФП. Например, весьма перспективной представляется реализация аналого-цифровых автоматических МФП на основе двойного компарирования и автобалансных мостовых преобразователей постоянного тока с замещением воздействия преобразуемой величины биполярным частотно- или время-импульсным сигналом. Не исключено, что такая реализация в сочетании с трехтактным интегрированием могла бы привести к дальнейшему повышению точности.

Рассмотренные схемные решения могут быть распространены на многофункциональные, функциональные и измерительные преобразователи, построенные с применением различных ЧЭ (тензорезисторов, термоэлектрических преобразователей и др.).

Принцип многофункционального преобразования может быть эффективно применен для уменьшения влияния дестабилизирующих факторов на результат преобразования. Это свойство основано на специальном алгоритме работы, позволяющем осуществить формирование системы уравнений, при решении которой составляющие результата преобразования, обусловленные влиянием дестабилизирующих факторов, взаимно уничтожаются. Возникающие при этом динамическая и методическая погрешности в общем случае определяются скоростью изменения преобразуемых сигналов и дестабилизирующих факторов и временем преобразования.

Пример. Для простоты анализа примем во внимание, что при разработке источников преобразуемых сигналов (тенераторов электрического тока, напряжения, СВЧ мощности, системы подачи газов и т. д.), как правило, принимаются меры по стабилизации уровней выходных сигналов и их изменения за небольшой промежуток времени, определяемый временем преобразования, незначительно. Следовательно, динамическую погрешность из рассмотрения можно исключить. Скорость изменения дестабилизирующих факторов определяется условиями эксплуатации аппаратуры и может достигать больших значений. Процесс преобразования мощности СВЧ в условиях изменения температуры окружающей среды со скоростью $\frac{d \theta}{dt} = \pm 1^{\circ} \text{ C/мин}$ примерно соответствует действующим стандартам и реальным условиям эксплуатации в экстремальных условиях. Допустим, что в качестве ЧЭ применен терморезистор типа ТШ-2, у которого H=0,25-0,5 мВт/° С, значение преобразуемой мощности P_x=500 мкВт. (например, МЗ-1, МЗ-22) с ручным При измерении стандартными приборами управлением и не термостатированным термисторным приемным преобразователем оператор затрачивает на получение одного отсчета около 0,5 мин. Скорость изменения мощности Pz, эквивалентной по воздействию на ЧЭ изменению температуры окружающей среды, будет равна $\frac{dP_z}{dt} = \pm H \frac{d\,\theta}{dt} = \pm (0.25 \rightarrow$ -0,5) мВт/мин. Тогда погрешность преобразования мощности СВЧ от воздействия температуры окружающей среды $\Delta P_x = \pm \frac{dP_z}{dt} t_{\rm Hp} = \pm (0,25-0,5) \cdot 0,5 =$ =±(0,125-0,25) мВт, т. е. будет составлять ±(25-50) % значения измеряемой величины Р = 500 мкВт.

При преобразовании того же значения мощности СВЧ (P_x =500 мк/Вт) автоматическим прибором, построенным на основе аналого-цифрового автоматического М ФП с временным разделением сигналов и двухтактным интегрированием с t_{np} =1 с, погрешность преобразования мощности от воздействия темпера-

туры окружающей среды, изменяющейся с той же скоростью, $\Delta P_x = \pm \frac{dP_z}{dt} t_{np} =$

 $=\pm H \frac{d\theta}{dt} \frac{t_{np}}{2} = \pm (0,25-0,5) \frac{1}{60} \cdot \frac{1}{2} = \pm (2,07-4,15)$ мкВт, т. е. составляет $\pm (0,41-0,83)$ % преобразуемой величины. Таким образом, погрешность уменьшается в 60 раз. Эффект уменьшения погрешности еще более возрастет, если принять во внимание, что в случае применения автоматических МФП отпадает необходимость в операциях установки нуля, калибровки, проведение которых также вносит довольно значительную дополнительную погрешность, часто субъективного характера.

Анализ выражений, определяющих функции преобразования автоматических МФП различных типов, показывает, что они могут использоваться для формирования математических зависимостей вида Y = kX, $Y = kX^2$, $Y = k\sqrt{X}$. Следовательно, появляется возможность осуществления функциональных преобразований таких труднодоступных для преобразования параметров как мощность электромагнитных колебаний СВЧ и излучения квантовых генераторов, напряжение (ток) высокой частоты и др.

7.2. МЕТОДИКА ПРОВЕДЕНИЯ ИСПЫТАНИЙ И ОБРАБОТКИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Цель экспериментальных исследований — наблюдение переходного процесса, временных диаграмм, соответствующих реализации алгоритма, и подтверждение расчетных значений характеристик преобразователей, а именно систематической и случайной погрешностей, времени преобразования и др.

Результат преобразования МФП — случайная величина, зависит от многих факторов. Следовательно, для достоверной оценки характеристики и степени влияния различных факторов необходимо производить многократное измерение выходного сигнала при фиксированном значении входной преобразуемой величины в условиях нормированного воздействия дестабилизирующих факторов с последующей статистической обработкой методом многофакторного дисперсионного анализа.

Общность методики испытаний состоит в том, что для нахождения систематической и случайной погрешностей следует: на вход МФП подавать фиксированное значение преобразуемой величины $P_x(t)$ и на выходе многократно регистрировать значения выходного сигнала при различных нормированных значениях дестабилизирующих факторов; наблюдать временные диаграммы работы, подтверждающие реализацию предложенных алгоритмов. Время преобразования может быть определено по осциллограммам временных диаграмм как интервал между моментом подачи $P_x(t)$ и получением результата преобразования или с помощью электрического секундомера. Измерение этих параметров может быть про-

Рис. 7.3. Обобщенная схема испытательного стенда

изведено на испытательном стенде, обобщенная схема которого приведена на рис. 7.3. Входной преобразуемый сигнал $P_x(t)$ подается на вход исследуемого МФП и одновременно фиксируется образцовым прибором V1. Результат преобразования регистрируется отсчетно-регистрирующим прибором ОРУ. Для наблюдения временных диаграмм работы МФП и измерения времени преобразования в схеме стенда предусмотрены электрический секундомер ЭС и электронный двухлучевой осциллограф ЭДО.

Естественно, что при исследовании МФП применительно к преобразованию различных физических величин (например, электрических и неэлектрических) и в зависимости от вида выходного сигнала (аналоговый или цифровой) в схемах испытательных стендов могут быть использованы различные типы источников воздействия и приборов. На рис. 7.4 и 7.5 изображены схемы стендов для испытаний автоматических МФП мощности и расходов газов.

При испытании преобразователей мощности (рис. 7.4) сигнал с выхода регулируемого источника напряжения РИН подается на термисторный приемный преобразователь МФП через выключатель В и одновременно измеряется образцовым вольтметром V1, с помощью которого происходит установка необходимого значе-

Рис. 7.5. Схема стенда для испытаний преобразователей расхода газов

ния преобразуемой мощности. Выходной сигнал МФП регистрируется ОРУ. В качестве V1 и ОРУ при испытании аналоговых МФП удобно использовать цифровые вольтметры с погрешностью не хуже 0,01—0,05% и входным сопротивлением более 100 кОм. Временные диаграммы напряжений и переходная характеристика наблюдаются с помощью двухлучевого осциллографа ЭДО и регистрируются фотоприставкой. Время преобразования определяется с помощью ЭС, пуск которого осуществляется одновременно с подачей преобразуемой мощности на вход МФП, а остановка управляющим сигналом, формируемым МФП для запуска ОРУ.

Отличительной особенностью стенда для испытаний аналогоцифровых автоматических МФП является применение в качестве ОРУ частотомера с пределами измерения не менее 0—50 кГц.

При испытании преобразователей расхода газов (рис. 7.5) последовательно с преобразователем включается образцовый расходомер с погрешностью не менее 1%. С помощью натекателя расход газа изменяется равномерно по всей шкале образцового прибора, показания которого и испытуемого МФП записываются в таблицу и обрабатываются. В состав стенда входят следующие устройства: 1 — источник газа; 2 — манометр высокого давления; 3, 6 — тройники; 4 — редуктор давления; 5 — регулятор давления; 7 — манометр низкого давления; 8 — натекатель; 9 — разветвитель; 10, 11, 12 — электромагнитный клапан; 13 — газовый счетчик барабанный; 14 — ротаметры; 15 — пузырьковый расходомер; 16 испытываемый преобразователь. При испытании преобразователь подвергается воздействию различных дестабилизирующих факторов в соответствии с техническими требованиями стандартов.

Выходной сигнал преобразователя Y_{вых} — величина случайная, поэтому задача статистической обработки заключается в получении статистических характеристик ее распределения и последующей оценке вероятностных характеристик процесса, определяющих систематическую и случайную погрешности преобразования. Методика соответствующих аналитических расчетов хорошо разработана [9] и носит общий характер для любой формы представления выходного сигнала.

Полагая, что формирование выходного сигнала преобразователя осуществляется в условиях применимости теоремы Ляпунова, следует проверить гипотезу о нормальности закона распределения. Объем каждой выборки измеренных значений случайной величины $Y_{\rm вых}$ при каждом фиксированном значении P_x ограничен. Число выборок, полученных при различных значениях дестабилизирующих факторов (например, температуры окружающей среды t° С и напряжения питания $U_{\rm пнт}$), мало. Поэтому наиболее удобно проверить гипотезу о нормальном распределении $Y_{\rm вых}$ при любых значениях P_x по совокупности *n* малых выборок [9]. Рассмотрим уклонение

$$\tau_{e} = (Y_{Bbix}^{e} i - \overline{Y}_{Bbix}^{e}) / \overline{S}_{Y}^{e}_{Bbix}$$
(7.1)

какого-либо значения *i*-го измерения Y^{e}_{Bbx} , из *i*-й выборки объема *m* (объем всех выборок принимается одинаковым и равным *m*) от среднего арифметического значения Y^{e}_{Bbx} той же выборки, нормированного оценкой $S^{e}_{Y \ Bbx}$ — среднеквадратическим отклонением, подсчитанным для той же выборки по формуле

$$\bar{S}_{Y_{\text{Bblx}}}^{\text{e}} = \sqrt{\frac{1}{m-1} \sum_{i=1}^{m} (Y_{\text{Bblx}\,i}^{\text{e}} - \bar{Y}_{\text{Bblx}}^{\text{e}})^2} .$$
(7.2)

Закон распределения вероятностей случайной величины τ_e не зависит от параметров $M[Y^e_{\text{вых}}]$ и $\sigma^e_{Y \text{ вых}}$ выборок, каждая из которых предполагается взятой из нормальной совокупности, а зависит только от объема выборки *m*. Плотность вероятности величины τ_e при равенстве объемов всех выборок вычисляется:

где $\Gamma\left(\frac{m-1}{2}\right)$, $\Gamma\left(\frac{m-2}{2}\right)$ — значения Γ -функции в соответствующих точках [9].

Полученные значения τ_e располагаются в вариационный ряд. При этом порядок следования τ_e возможно изменится. Поэтому любой член полученного вариационного ряда обозначим τ_j , для которого вычисляются эмпирическая W_j , и теоретическая $P(\tau_j)$ функции распределения. Функция

$$W_j = (2j-1)/2m_{\kappa},$$
 (7.4)

где m_{κ} — число рассматриваемых выборок (число членов вариационного ряда). При числе наблюдений в выборке m=4 плотность вероятности распределена равномерно [9]:

$$p(\tau_j) = \begin{cases} 1/2\sqrt{3} & \text{при } \tau_j < \sqrt{3}, \\ 0 & \text{при } \tau_j > \sqrt{3}. \end{cases}$$
(7.5)

Интегральная функция распределения в этом случае определяется выражением

$$P(\tau_{j}) = \frac{1}{2\sqrt{3}} (\tau_{j} + \sqrt{3}).$$
(7.6)

Если $m \neq 4$, для определения теоретической функции распределения используются таблицы закона Стьюдента с (m-2) сте-204 пенями свободы. Воспользуемся критерием ω² и вычислим произведение *m*_кω² по формуле

$$m_{\rm K}\omega^2 = \frac{1}{12\,m_{\rm K}} + \sum_{j=1}^{m_{\rm K}} |P(\tau_j) - W_j|^2.$$
(7.7)

Задавая уровень значимости q%, определяем по табл. 7.3.4 в [9] критическую точку Z_q . Если вычисленное по (7.7) значение $n\omega^2$ превышает Z_q , то гипотеза о нормальности распределения рассматриваемых совокупностей отбрасывается с уровнем значимости q(%), как не соответствующая результатам эксперимента. В противном случае считается, что гипотеза не противоречит наблюдениям и по их результатам могут быть вычислены погрешности.

Экспериментальное значение относительной систематической погрешности преобразования мощности

$$\gamma_{P \text{ chct,s}} = 2\gamma = 2(\overline{Y}_{B \text{blx}} - Y_{\mu \mu})/Y_{\mu \mu}, \qquad (7.8)$$

где $\vec{Y}_{\text{вых}}^{(e)} = \sum_{i=1}^{m} \vec{Y}_{\text{вых},i}^{(e)} / m$ — среднее арифметическое значение вы-

ходного сигнала $Y_{\text{вых}}$ для данной выборки измерений при фиксированном значении P_x ; $Y_{\text{нд}}$ — значение выходного сигнала идеального преобразователя при фиксированном значении P_x .

По данным выборки определяем эмпирическое значение среднеквадратического отклонения

$$\overline{S}_{Y \text{ Bblx}}^{(e)} = \sqrt{\frac{1}{\underline{m}}} \sum_{i=1}^{m} (Y_{\text{ Bblx}}^{(e)} - \overline{Y}_{\text{ Bblx}}^{(e)})^2 .$$
(7.9)

Зная $\bar{Y}^{(e)}_{BHX}$ и $\bar{S}^{(e)}_{Y BHX}$, можно построить доверительный интервал для центра распределения $M[Y_{BHX}]$. Задаваясь доверительной вероятностью 1—q/100 и пользуясь табл. V приложения к [9], найдем такие q(%) пределы $\pm t_{q,h}$, при которых с доверительной вероятностью 1—q/100 все значения, попадающие в интервал

$$\left(\overline{Y}_{\text{Bbix}}^{(e)} - t_{q\xi} \frac{S_{Y\text{Bbix}}^{(e)}}{\sqrt{m-1}}\right) < M \left[Y_{\text{Bbix}}\right] < \left(\overline{Y}_{\text{Bbix}}^{(e)} + t_{q\xi} \frac{S_{Y\text{Bbix}}^{(e)}}{\sqrt{m-1}}\right), \quad (7.10)$$

где $\xi = m - 1$ число степеней свободы критерия Стьюдента, могут считаться значениями центра распределения $M[Y_{\text{вых}}]$. Отсюда экспериментальное значение относительной систематической погрешности преобразования заключено в интервале

$$\frac{2\left(\overline{Y}_{\text{Bbix}}^{(e)} - t_{q\xi}\frac{S_{\text{YBbix}}^{(e)}}{\sqrt{m-1}} - Y_{\text{ид}}\right)}{Y_{\text{ид}}} < \gamma_{P \text{ сист. 9}} < \frac{2\left(\overline{Y}_{\text{Bbix}}^{(e)} + t_{q\xi}\frac{S_{\text{YBbix}}^{(e)}}{\sqrt{m-1}} - Y_{\text{ид}}\right)}{Y_{\text{ид}}},$$
(7.11)

205

Экспериментальное значение относительной предельной случайной погрешности преобразования определяется выражением

$$\gamma$$
случ.пред = ($\Delta Y_{\text{вых}}$) случ.пред/ $Y_{\text{вых}}$, (7.12)

где ($\Delta Y_{\text{вых}}$)_{случ.пред} — случайное предельное отклонение выходного сигнала преобразователя.

Если гипотеза нормальности распределения случайной величины $Y_{\rm Bbix}$ при каждом фиксированном значении P_x справедлива, то с вероятностью 99,73% все значения $Y_{\rm Bbix}$ лежат в интервале

$$(\overline{Y}^{(e)}_{Bbix} - 3\sigma_{Y Bbix}) < Y^{(e)}_{Bbix} < (Y^{(e)}_{Bbix} + 3\sigma_{Y Bbix}),$$
(7.13)

где $\sigma_{\mathbf{Y} \text{ вых}}$ — оценка среднеквадратического отклонения случайной величины при данном значении P_x .

Таким образом, предельное случайное отклонение

$$(\Delta Y_{\text{Bbix}})_{\text{случ.пред}} = \pm 3\sigma_{\text{Y Bbix}}.$$
(7.14)

В качестве оценки оу вых может быть взято эмпирическое среднеквадратическое отклонение случайной величины

$$S_{Y_{\text{Bblx}}}^{(e)} = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (Y_{\text{Bblx}\,i}^{(e)} - \overline{Y}_{\text{Bblx}}^{(e)})^2} .$$
(7.15)

С учетом (7.14) и (7.15) можно записать

$$\gamma_{\text{СЛУЧ.ПРЕЦ.8}} = \frac{3\sqrt{\frac{1}{m}\sum_{i=1}^{m}(Y_{\text{вых }i}^{\text{e}} - \overline{Y}_{\text{вых}}^{\text{e}})^{2}}}{\overline{Y_{\text{вых}}^{\text{e}}}}.$$
(7.16)

При определении доверительного интервала для $\sigma_{\mathbf{Y} \text{ вых}}$ воспользуемся тем, что величина $mS^2_{\mathbf{Y} \text{ вых}}/\sigma^2_{\mathbf{Y} \text{ вых}}$ распределена по закону \varkappa^2 с m—1 степенями свободы [9]. Задаваясь уровнем доверительной вероятности 1—q/100, пользуясь табл. IV приложения к [9], находим значения \varkappa^2_1 и \varkappa^2_2 , удовлетворяющие условиям

$$P(\kappa^2 > \kappa^2_1) = 1 - q/2 \cdot 100; \tag{7.17}$$

$$P(\kappa^2 > \kappa^2_2) = q/2 \cdot 100. \tag{7.18}$$

Доверительный интервал для оценки о_{увых} с вероятностью 1-q/100 имеет вид

$$\frac{\sqrt{m} S_{Y_{\text{Bblx}}}^{e}}{\chi_{2}} < \sigma_{Y_{\text{Bblx}}} < \frac{\sqrt{m} S_{Y_{\text{Bblx}}}^{e}}{\chi_{1}}.$$
(7.19)

Следовательно, предельное значение относительной случайной погрешности преобразования с вероятностью 1—q/100 лежит в пределах

$$\frac{3\sqrt{m}S_{Y_{\text{Bblx}}}^{e}}{\chi_{2}\overline{Y}_{B^{\text{blx}}}} < \gamma_{\text{случ.пред}} < \frac{3\sqrt{m}S_{Y_{\text{Bblx}}}^{e}}{\chi_{1}\overline{Y}_{B^{\text{blx}}}}.$$
(7.20)

206

При измерении, например, мощности Р_{СВЧ} с использованием МФП суммарная погрешность будет определяться также погрешностью термисторного приемного преобразователя ут.п, которая известна и может быть учтена соотношением у = всегда

 $\gamma^2_{PCJYq} + \gamma^2_{T,\Pi}$. =V

При экспериментальной оценке точности преобразования следует учитывать погрешности, вносимые используемыми образцовыми измерительными приборами и отсчетно-регистрирующим устройством. Исследование влияния дестабилизирующих факторов, например изменения напряжения питания U_{пит} и температуры окружающей среды t°C, на параметры распределения случайной величины Увых целесообразно проводить, используя методику многофакторного дисперсионного анализа [9].

Задача дисперсионного анализа применительно к исследуемым преобразователям состоит в разложении Q — суммы квадратов отклонений случайной величины Увых ј1ј2 от общего среднего значения

$$Q = \sum_{j_1=1}^{r} \sum_{j_2=2}^{v} [Y_{\text{Bbix } j1 \, j_2} - \overline{Y}_{\text{Bbix}}]^2$$
(7.21)

на компоненты, соответствующие факторам изменчивости, т. е. напряжению питания и температуре окружающей среды. В (7.21) приняты следующие обозначения: Увых ј1 ј2 — значение выходного напряжения при заданном P_x, соответствующее *j*₁-му значению напряжения питания U_{пит j1} и j2-му значению температуры окружающей среды t^oj2; Увых — среднее арифметическое значение случайной величины в данной выборке; г — число различных значений напряжения питания; и — число различных значений температуры окружающей среды, при которых производилось измерение Увых.

Цель анализа — проверка нулевой гипотезы о равенстве центров распределений $M[Y_{вых j1j2}]$ всех значений случайной величины Увых лііг.

Дальнейшие расчеты основаны на двух предположениях: нормальности распределения случайной величины Увых ј1ј2 и тождественности среднеквадратических отклонений оу вых j1j2 = const. Компонентой величины Q, характеризующей разброс средних значений Увых 11/2 вследствие изменения Uпит, является

$$Q_{1} = \frac{\sum_{j_{1}=1}^{r} \left(\sum_{j_{2}=1}^{v} Y_{\text{Bblx} j_{1} j_{2}}\right)^{2}}{v} - \frac{\left(\sum_{j_{1}=1}^{r} \sum_{j_{2}=1}^{v} Y_{\text{Bblx} j_{1} j_{2}}\right)^{2}}{vr}.$$
 (7.22)

Компонентой величины Q, характеризующей разброс средних значений Y_{вых j1j2} вследствие изменения t^oC, является

$$Q_{2} = \frac{\sum_{j_{1}=1}^{v} \left(\sum_{j_{2}=1}^{r} Y_{\text{BMX}} j_{1} j_{2}\right)^{2}}{r} - \frac{\left(\sum_{j_{1}=1}^{r} \sum_{j_{2}=1}^{v} Y_{\text{BMX}} j_{1} j_{2}\right)^{2}}{v}.$$
 (7.23)

Компонентой, характеризующей «остаточное рассеивание», обусловленное влиянием прочих факторов, является величина

$$Q_{3} = \sum_{j_{1}=1}^{r} \sum_{j_{2}=1}^{v} Y_{\text{BMX } j1 \ j2} - \frac{\sum_{j_{1}=1}^{r} \left(\sum_{j_{2}=1}^{v} Y_{\text{BMX } j1 \ j2}\right)^{2}}{c} - \frac{\sum_{j_{1}=1}^{v} \left(\sum_{j_{2}=1}^{r} Y_{\text{BMX } j1 \ j2}\right)^{2}}{c} + \frac{\left(\sum_{j_{1}=1}^{r} \sum_{j_{2}=1}^{v} Y_{\text{BMX } j1 \ j2}\right)^{2}}{rv}.$$
(7.24)

Известно [9], что величины $Q/\sigma^2_{\mathbf{Y} \text{ вых}}, Q_1/\sigma^2_{\mathbf{Y} \text{ вых}}, Q_2/\sigma^2_{\mathbf{Y} \text{ вых}}, Q_3/\sigma^2_{\mathbf{Y} \text{ вых}}$ распределены по закону \varkappa^2 соответственно с (rv-1); (r-1); (v-1); (r-1) (v-1) степенями свободы. Для проверки степени значимости рассеяния значений случайной величины $Y_{\text{вых} j1j2}$ по факторам t° С и $U_{\text{пит}}$ вычисляются критерии

$$F_{U_{\text{THT}}} = \frac{Q_1/(r-1)}{Q_3/(r-1)(v-1)};$$
(7.25)

$$F_t = \frac{Q_2(v-1)}{Q_3/(r-1)(v-1)} .$$
(7.26)

Величины $F_{U_{\Pi BT}}$ и F_t распределены по закону Фишера (*F*-распределение) и табулированы для критических значений F_q при различных уровнях значимости. Нулевая гипотеза с данным уровнем значимости q^{0} принимается, если вычисленные на основе экспериментальных данных значения $F_{U_{\Pi BT}}$ и F_t не превосходят критических значений $\mathcal{F}_{q(U_{\Pi BT})}$ и $F_{q(t)}$, определяемых по табл. VI приложения к [9] при выбранном уровне значимости q^{0} . В противном случае нулевая гипотеза отвергается и нельзя утверждать, что $U_{\Pi BT}$ и t° С не влияют на результат преобразования. Время преобразования следует определять по наибольшему интервалу времени, полученному по окончанию переходных процессов.

7.3. ПРИМЕНЕНИЕ АВТОМАТИЧЕСКИХ МФП

Единый, не зависящий от характера физической величины подход к расчету и проектированию автоматических МФП позволяет: значительно ускорить создание измерительных устройств на их основе; снизить затраты на макетирование; сконцентрировать разработку приборов и систем, предназначенных для из-208 мерения совершенно различных физических величин, в одном коллективе разработчиков, следовательно, повысить эффективность влияния организационно-экономических факторов на всех этапах разработки и производства.

Применение МФП в составе информационно-измерительных систем позволяет, кроме того, значительно повысить коэффициенты унификации, технологичности и взаимозаменяемости, улучшить ремонтопригодность аппаратуры.

Наиболее простыми и экономичными с точки зрения аппаратурной реализации являются измерительные устройства на основе автоматических МФП с однократным компарированием. В качестве примера реализации такого прибора рассмотрим устройство, предназначенное для измерения мощности СВЧ и напряжения постоянного тока (см. рис. 3.1). Диапазон измеряемых мощностей 0,6—3 мВт, напряжений 0,3—30 В при сопротивлении чувствительного элемента $R_{\rm T}$ =150 Ом=const. После ОРУ включен масштабный усилитель с $K_{\rm M}$ =10.

В этом случае и в дальнейшем будем приводить результаты испытаний и обработки экспериментальных данных по методике, изложенной в § 7.2. Производятся измерения выходного напряжения $U_{вых}$ прибора при различных фиксированных значениях мощности СВЧ, поданной на его вход при $U_{пит 1} = 27$ В-10% и $U_{пит 2} = 27$ В-10%, а также при температуре окружающей среды $t_1 = 10$ °С и t = 60 °С. Результаты сводятся в таблицу и рассчитываются величины τ_e , $P(\tau_e)$, W_i и т. д.

Проверяется гипотеза о нормальности распределения случайной величины $U_{\rm вых}$. По (7.7) вычисляется $m_{\rm x}$ $\omega^2 = 0,2753$. По табл. 7.3.4 [9], принимая q = 5%, определяется критическое значение $Z_q = 0,4614$. Условие $m_{\rm x}\omega^2 < Z_q$ выполняется, следовательно, можно принять гипотезу о нормальном распределении случайной величины $U_{\rm выx}$.

Систематическая и случайная погрешности преобразования и доверительные интервалы для них, полученные в результате эксперимента при значении преобразуемой мощности $P_x = 0.6 \text{ мВт}$ и $U_{\text{пит}} = -27 \text{ B}$, $t = 20^{\circ} \text{ C}$, $k_0 = 975 \cdot 10^{-6} \text{ Om}^{-1}$. Выходное напряжение идеального преобразователя $U_{\text{нд}} = K_{\text{M}} \bigvee P_{\text{нзм}}/k_0 = 10 \bigvee 600 \times 10^{-6}/975 \cdot 10^{-6} = 7,8445 \text{ B}$ и среднее значение для выборки при $P_{\text{изм}} = 0.6 \text{ мВт}$ $U_{\text{вых}} = \sum_{i=1}^{10} U_{\text{вых}\,ij}/10 = 8,1363 \text{ B}.$

Эмпирическое значение среднеквадратического отклонения по (7.9), *S*_{UBых}=0,0663 В. Относительная систематическая экспериментальная погрешность преобразования мощности по (7.8) ур сист. = 2(8,1363-7,8445) · 100/7,8445=7,65%.

Задавая доверительную вероятность 1-q/100=0,99 и пользуясь табл. V приложения к [9], найдем однопроцентные пределы (при $K=m_{\kappa}-1=9$) $t_{1,9}=3,25$. Строим интервал возможных значе-14-133 209 ний $M[U_{\text{вых}}]$ с доверительной вероятностью 99%. В соответствии с (7.10) после подстановки $U_{\text{вых}}$, $S_{U\text{вых}}$, $t_{q,k}$ m_{κ} —1, m_{κ} получим 8,0645 $< M[U_{\text{вых}} < 8,2081]$.

Относительная систематическая погрешность преобразования заключена в интервале, полученном после подстановки ранее вычисленных величин в (7.11): 5,62 < урснет < 9,17 с доверительной вероятностью 99%.

Для сравнения по (3.77) рассчитаем значение относительной систематической погрешности при исходных данных, соответствующих параметрам испытуемого образца ($\tau_0 = 590$ с; $P_{\rm T} = 12 \times 10^{-3}$ Вт; $\tau_{\rm r} = 3.9$ с; $U_{\rm ryn} = 37.5$ В; $k_0 = 975 \cdot 10^{-8}$ Ом⁻¹; $P_{\rm H3M} = 0.6$ мВт): $\gamma_{\rm PCHCT} = 7.1\%$. Это значение удовлетворительно совпадает с экспериментальным значением относительной систематической погрешности $\gamma_{\rm PCHCT,3} = 7,65\%$. Оба значения попадают в интервал возможных значений, найденный с доверительной вероятностью 99%.

Подобным образом были определены экспериментальные расчетные значения относительных систематических погрешностей при

Рис. 7.6. Зависимость погрешностей от преобразуемой мощности для автоматнческого преобразователя с однократным компарированием: а — случайной; б — систематической

различных *Р*_{изм}. По результатам построены графики, приведенные на рис. 7.6, сопоставление которых указывает на удовлетворительное совпадение результатов теоретического анализа и эксперимента.

Экспериментальное значение относительной случайной предельной погрешности по (7.16) $\gamma_{P c \pi y q, n p e q, s} = 6.0,0663 \cdot 100/8,1363 = =4,9\%$. Задавая значение доверительной вероятности 1-q/100 = =0,99 и пользуясь табл. IV приложения к [9], находим X^2_2 и X^2_1 , удовлетворяющие условиям $P(X^2 > X^2_1) = 1-0,5/100 = 0,995$, $P(X^2 > X^2_2) = 0,5/100 = 0,005$; $X^2_2 = 23,6$; $X^2_1 = 2,09$.

Подставив в (7.19) значения $m_{\kappa} = 10$, $S_{UBBLX} = 0,0663$ В, X₁ и X₂, получим интервал возможных значений $0,033 < \sigma_{UBBLX} < 0,1447$ с доверительной вероятностью 99%.

Доверительный интервал для относительной случайной предельной погрешности получим из (7.20): 2,44% <үрслуч.пред < <10,6% с доверительной вероятностью 99%.

Для сравнения по (3.76) рассчитаем значение относительной случайной предельной погрешности $\gamma_{PCЛУЧ.пред}$ при ранее приведенных исходных данных и $\sigma_{UBMX} = 0.0524$ В: $\gamma_{PCЛУЧ.пред} = 6.0,524/8,1363 = 3.864\%$.

Расчетное значение относительной случайной предельной погрешности удовлетворительно совпадает с ее экспериментальным значением. Оба значения попадают в интервал возможных значений, найденных с доверительной вероятностью 99%.

Подобным образом были определены экспериментальные и расчетные значения относительных случайных погрешностей, приведенных на рис. 7.6. Сопоставление данных указывает на удовлетворительное совпадение результатов теоретического анализа и эксперимента.

На рис. 7.7 для сравнения приведены экспериментальная и расчетная зависимости времени преобразования от преобразуемой мощности (3.28), которые удовлетворительно совпадают. Для мощности P_{изм}=0,6 мВт; t_{пр}=0,955 с, t_{пр.э}=0,8 с.

На рис. 7.8 приведены осциллограммы напряжений на входах компаратора и замещающего напряжения ГПН, которые и являются выходным напряжением преобразователя. Фотографии осциллограмм подтверждают правильность положений, принятых при анализе процесса преобразования.

Рис. 7.7. Зависимость времени преобразования от значений преобразуемой мощности для автоматического преобразователя с однократным компарированием

Рис. 7.8. Временные диаграммы работы автоматического преобразователя:

а, б — напряжение на входах компаратора; в — замешающее напряжение ГПН

Приборы, построенные на основе автоматических МФП с двойным компарированием, сложнее, требуют больших аппаратурных затрат, однако они обеспечивают большую точность. Рассмотрим результаты экспериментального исследования устройства, в котором используется МФП с двойным компарированием и которое также предназначено для измерения мощности СВЧ и напряжения постоянного тока. Диапазон измеряемых значений $P_{\rm изм}$ =0,05—3 мВт, $U_{\rm изм}$ =0,1—30 В, а условия эксплуатации такие же, как и в предыдущем случае ($U_{\rm пит i}$ =27 В±10%; t_{j} = =10—60° С).

Исходные положения анализа — необходимость доказательства того, что случайная величина $U_{\text{вых }ij}$ распределена по нормальному закону и ее среднеквадратические отклонения тождественны и постоянны, т. е. $\sigma_{U \text{ вых }ij} = \text{const.}$

Гипотеза о нормальном распределении случайной величины доказывается так же, как и в предыдушем случае. Для проверки гипотезы (однородности) тождественности ряда среднеквадратических отклонений воспользуемся критерием Бартлета [9], который в нашем случае можно записать в виде

$$G_{\max} = (S_{UBMX \ i \ j})_{\max}^2 \qquad \left/ \sum_{i=1}^r \sum_{j=1}^v \overline{S}_{UBMX \ i \ j}^2 \right.$$
(7.27)

где r — число различных значений напряжения питания; v — число различных значений температуры окружающей среды;

$$\overline{S}_{U\text{вых}ij}^2 = \frac{1}{n-1} \sum_{i=1}^n (U_{\text{вых}ij} - \overline{U}_{\text{вых}ij})^2$$
 — несмещенная оценка

дисперсии σ²_{Uвых ij} по данным выборки значений случайной величины U_{вых ij}.

Закон распределения случайной величины $G_{\max k}$ табулирован и позволяет при имсющемся числе и объеме выборок определить ее значение, отвечающее различным уровням значимости. Если расчетное значение $G_{\max} < G_{\max k}$, гипотеза тождественности среднеквадратических отклонений принимается и наоборот.

Данные о значениях случайной величины $U_{\text{вых}\,ij}$, например, при $P_{\text{изм}} = 100$ мкВт и различных значениях $U_{\text{пит}\,i}$ и t_j приведены в табл. 7.1.

Из табл. 7.1 видно, что *i* может принимать значения 1, 2, 3 и, следовательно, r=3, а *j* может принимать значения 1, 2 и, слеследовательно, u=2. Значения $\bar{S}^2_{UBWX\,ij}$, вычисленные по данным испытаний, равны:

 $\bar{S}^2_{U \text{ BMX11}} = 0,0009 \text{ B}^2; \ \bar{S}^2_{U \text{ BMX22}} = 0,0006 \text{ B}^2;$

 $\bar{S}^2_{U \text{ BMX12}} = 0,0010 \text{ B}^2; \ \bar{S}_{U \text{ BMX31}} = 0,0005 \text{ B}^2;$

 $\bar{S}_{U \text{ BM} \times 21} = 0,0002 \text{ B}^2; \ \bar{S}_{U \text{ BM} \times 32} = 0,0011 \text{ B}^2.$

Сопоставление значений $\tilde{S}^{2}_{U \text{ вых } ij}$ показывает, что $(\bar{S}_{U \text{ вых } ij})_{\max} = = 0,0011 \text{ B}^{2}.$

Критерий Бартлета, вычисленный по (7.27) равен $G_{\max} = 0,2558$. По табл. VIII приложения к [9] при уровне значимости q=5%, n-1=9 и $K=rv=2\cdot3=6$ находим табличное значение $G_{\max}=0,3682$. Расчетное значение G_{\max} оказалось меньше табличного, что позволяет принять гипотезу тождественности среднеквадратических отклонений случайной величины $U_{\text{вых}ij}$ при $P_{\text{изм}}=100$ мкВт.

Двухфакторный дисперсионный анализ проведем, разместив в таблицу произвольно взятые из экспериментальных данных значения $U_{\text{вых}\,ij}$ при $P_{\text{изм}} = 100$ мкВт. Результаты вычислений приведены в табл. 7.2.

Критерий по фактору напряжения питания, вычисленный по формуле (7.25), $F_{U\Pi\mu\tau}=1,366$; критерий по фактору температуры в соответствии с (7.26) $F_t=1,348$. По табл. VI приложения к [9] находим для уровней значимости q=1% $F_{U\Pi\mu\tau}=99,01$, $F_t=4999$ и для q=5% $F_{U\Pi\mu\tau}=19$; $F_t=200$.

Таблица 7.1

Выходные сигналы МФП

	Напряжение питания Uпит и В			
Температура, С	-27	24		
20 60	$U_{\scriptscriptstyle m Bblx}$ 11 $U_{\scriptscriptstyle m Bblx}$ 12	$U_{\scriptscriptstyle m Bbix\ 21}\ U_{\scriptscriptstyle m Bbix\ 22}$	$U_{\scriptscriptstyle m Bbix31} \ U_{\scriptscriptstyle m Bbix32}$	

Таблица 7.2

Величины, определяющие F-критерий

Компонеита дисперсии	Сумма квадратов	Число степе- ней сьободы	Средний квадрат
Uпит t Остаточное рассеяние Общая сумма квадратов отклоне- ний	$\begin{array}{c} Q_1 = 0,001216 \\ Q_2 = 0,000033 \\ Q_3 = 0,000089 \\ Q = 0,001338 \end{array}$	2 1 2 5	0,000608 0,000033 0,0000445 0,0002676

Расчетные значения *F*-критерия не превосходят табличные, что позволяет принять гипотезу о равенстве центров распределения $M[U_{\text{вых}\,ij}]$, т. е. влиянием изменений температуры окружающей среды и напряжения питания на результат преобразования можно пренебречь.

Определим относительные значения систематической и случайной погрешностей, при значении преобразуемой мощности $P_{\rm изм} =$ =100 мкВт и $K_0 = 625 \cdot 10^{-6}$ Ом⁻¹. В качестве дисперсии нормально распределенной случайной величины $U_{\rm вых}$ можно взять общий средний квадрат из табл. 7.2, т. е. принять $\sigma_{U_{\rm BMX}} = 0,0123$ В. Подставляя $\overline{U}_{\rm вых} i_j = 4,0396$ В. В (7.16) определяем экспериментальное значение относительной случайной предельной погрешности $\gamma_{P \, случ.пред.9} = \frac{6 \cdot 0,0123}{4,0396}$ 100=1,8%.

Задаваясь значением доверительной вероятности 1-q/100 = 0,99 и пользуясь табл. IV приложения к [9], находим X^{2}_{1} и X^{2}_{2} , удовлетворяющие условиям $P(X^{2}>X^{2}_{1})=0,995$; $P(X^{2}>X^{2}_{2})=0,005$: $X^{2}_{1}=2,09$; $X^{2}_{2}=23,6$.

Подставляя в (7.20) n=10; $S_{U \text{ вых}} = \sigma_{U \text{ вых}} = 0,0123\text{ B}$, $X_1 = 0,09$ $M X_2 = 23,6$, интервал возможных значений случайной предельной относительной погрешности $0,32\% < \gamma_{F \text{ случ.пред}} < 3,64\%$ с доверительной вероятностью 99%. Для сравнения по (3.120) рассчитаем значение случайной предельной относительной погрешности при следующих исходных данных: $K_0 = 625 \cdot 10^{-6} \text{ Om}^{-1}$; $U_{rm} = 30 \text{ B}$; $t_{c.\kappa} = 0,011 \text{ c}$; $\tau_r = 4 \text{ c}$; $\sigma_U = 1 \text{ B}$; $\sigma_t = 0,003 \text{ c}$; $P_{u_{3M}} = 100 \text{ MkBT}$; $K_M =$ = 10. Получим $\gamma_{P \text{ случ.пред}} = \frac{6 \cdot 0,019 \cdot 100}{4,0756} = 2,8\%$. Это значение удовлетворительно совпадает с экспериментальным значением $\gamma_{P \text{ случ.пред}} = 2,4\%$. Оба значения попадают в интервал возможных значений, найденный с доверительной вероятностью 99%. Аналогично были определены экспериментальные и расчетные значения «относительных случайных предельных погрешностей при различных значениях величины $P_{\text{изм}}$.

Экспериментальное значение относительной систематической погрешности по (7.8) $\gamma_{P \text{ сист.}3} = 2(4,0396-3,9957) \cdot 100/3,9957 = 2,2\%$.

Задавая доверительную вероятность 1-q/100=0.99 и используя табл. V приложения к [9], найдем однопроцентные пределы (при k=n-1=9), получим $t_{1,9}=3.25$. Тогда интервал возможных значений $\gamma_{P \, сист}$ при подстановке ранее вычисленных значений в (7.11) будет $0.8\% < \gamma_{P \, сист} < 3.4\%$ с доверительной вероятностью 99%. Для сравнения по (3.134) рассчитаем значение относительной систематической погрешности при ранее приведенных исходных данных, соответствующих параметрам испытуемого образца, получим $\gamma_{P \, сист} = 3.1\%$. Это значение удовлетворительно совпадает с экспериментальным значением $\gamma_{P \, сист.9} = 2.2\%$. Оба значения погрешности попадают в интервал возможных значений, найденный с доверительной вероятностью 99%. Подобно были определены экспериментальные и расчетные значения относительных систематических погрешностей при различных значениях $P_{изм}$ и построены графики (рис. 7.9).

Рис. 7.10. Зависимость времени преобразования от значений преобразуемой мощности для автоматического преобразователя с двойным компарированием

Время преобразования измерялось по методике (см. § 7.2) при разных уровнях преобразуемой мощности. На рис. 7.10 приведены экспериментальная и расчетная зависимости времени преобразования от преобразуемой мощности (3.96), которые удовлетворительно совпадают. Значения составляющих времени преобразования $t_{\rm np}$, $t_{\rm s}$, подсчитывались по (3.86), (3.94), (3.96) при указанных исходных данных, а также при $t_{\rm 3.c}$ =0,5 с; $U_{\rm s}$ =1 В; U_0 =21,5; и τ_y =2,2 с; $K_{\rm s}$ =8,33; $R_{\rm r}$ =150 Ом. Расчетное значение времени преобразования при $P_{\rm изм}$ =2,5 мВт составляет 7,9 с. Экспериментально полученное время преобразования при $P_{\rm изм}$ =2,5 мВт — 7,5 с.

На рис. 7.11 приведены осциллограммы напряжений на входах компаратора и замещающего напряжения ГПН, которое и является выходным напряжением преобразователя. Фотографии осциллограмм подтверждают правильность положений, принятых при анализе процессов преобразования. Рассмотрение их показывает, что формирование замещающего напряжения ГПН начинается одновременно с моментом прекращения подачи измеряемой мощности. Прекращение процесса формирования замещающего напряжения ГПН происходит при точном равенстве выходных напряжений автобалансного моста, соответствующих подаче $P_{изм}$ и $P_{зам}$. При этом погрешность, обусловленная точностью сравнения указанных напряжений, компенсируется, т. е. $\Delta U_{K1} = \Delta U_{K2}$. Исследование выполнения равенства $\Delta U_{K1} = \Delta U_{K2}$ производится путем фоторегистрации осциллограмм, воспроьзводящих моменты пер-

Рис. 7.11. Временные днаграммы работы преобразователя:

а, б — напряжение на входах компаратора; в — замещающее напряжение ГПН

Рис. 7.12. Временные диаграммы напряжений на входах компаратора в моменты сравнений при разных режимах его работы;

lpha -- первом $U_{\text{B1}} > U_{y}(t_{3});$ б, e - втором $U_{\text{B1}} < U_{y}(t_{3})$

вого (ΔU_{KI}) и второго (ΔU_{K2}) сравнений при большой чувствительности осциллографа. Рассмотрение осциллограмм, приведенных на рис. 7.12 для разных режимов работы компаратора, подтверждает равенство $\Delta U_{\text{K1}} = \Delta U_{\text{K2}}$.

Экспериментальное исследование и результаты расчета показали, что применение двойного компарирования позволило значительно уменьшить погрешности преобразования.

Использование принципа адаптации начальных условий интегратора [24] позволяет практически исключить влияние скорости интегрирования на быстродействие преобразователя и повысить быстродействие и точность измерения за счет выбора малогозначения. В табл. 7.3 приводятся экспериментальные данные.

На основе материалов, изложенных в гл. 1 и 2, разработаны автоматические аналоговые малогабаритные переносные измерители расхода газов. В технологическом процессе изготовления интегральных микросхем (ИМС) большоє значение имеет точное дозирование газовых реагентов. Для этого на промышленном технологическом оборудовании установлены измерители расхода технологических газов — расходомеры. В процессе эксплуатации под воздействием различных дестабилизирующих факторов и временного старения показания расходомеров существенно изменя-

Таблица 7.3

Зависимость времени преобразования от скорости интегрирования

Скорость инте-	Время преобразования, с, при Р _{СВЧ} , мкВт						
грирования, В/с	37	150	600	1350	2400		
0,6 0,3 0,1	1,8 2 3,5	2 2,3 3,7	2,5 2,8 4,2	3 3,3 4,7	3,5 3,8 5,2		

зотся, хотя значения измеряемой величины остаются одни и те же. Например, поплавковые стеклянные ротаметры типа РМ, все еще широко применяемые в диффузионном, плазмохимическом й эпитаксиальном оборудовании, за один год эксплуатации изменяют свои показания иногда на 20—40%. Этот недостаток, присущий в той или иной мере всем измерительным приборам, в производстве ИМС приводит к значительному снижению процента выхода годных изделий, колебанию этого процента от партии к партии и от смены к смене, существенному удлинению сроков освоения новых изделий и ухудшению других технологических показателей производства.

Высокое качество продукции и стабильность показателей технологического процесса во многом определяются единством и правильностью измерения параметров газовых реагентов, что поддерживается периодическими поверками средств измерения.

Периодическая метрологическая поверка средств измерения расхода газа представляет собой весьма трудную задачу для большинства предприятий, так как серийных приборов, небольших по размерам, надежных и простых в эксплуатации, отечественная промышленность для этих целей пока не выпускает.

Применение МФП позволило создать переносные малогабаритные приборы: измеритель расхода газа ИРГ и измеритель малых расходов газа ИМРГ, предназначенные для измерения расхода технологических газов в производственных условиях. Приборы могут использоваться при калибровке, поверке, наладке средств

Рис. 7.13. Малогабаритный переносной автоматизированный измеритель расхода газов типа ИРГ

Рис. 7.14. Малогабаритный переносной автоматизированный измеритель малых расходов газа типа ИМРГ

Рис. 7.15. Схема построения приборов ИРГ и ИМРГ

измерения расхода газа. Общий вид приборов приведен на рис. 7.13 и 7.14, параметры — в табл. 7.4, а структурная схема — на рис. 7.15. В схеме ВПП — выносной первичный преобразователь; ТМК, ТМИ — компенсационный и измерительный терморезистивные мосты; ОС — цепь обратной связи; У1 и У2 — усилители; В вычитатель; И — индикатор.

В металлическом корпусе выносного датчика имеется байпасный и основной газовый каналы с калиброванной втулкой. В углублениях корпуса установлены основной и компенсационный терморезисторы, выводы которых через проходные изоляторы подсоединяются к соединительному разъему. При измерениях расхода газа корпус датчика подключается к газовой магистрали с помощью входного и выходного штуцерог, имеющих внутри сетчатые фильтры.

Для доступа к втулке байпасного канала предусмотрена заглушка. В нее вмонтировано устройство, имеющее положения ОТКРЫТО — ЗАКРЫТО. Поворотом стержня фиксируются закрытие и открытие втулки, что позволяет без смены втулки производить быстрое переключение диапазонов прибора.

Таблица 7.4

Основные характеристики измерителей расхода газов

Характеристика	При	бор
	ирг /	ИМРГ
Диапазон измерения, л/ч Время измерения, с Приведенная погрешность, % Напряжение питающей сети, В Потребляемая мощность, Вт	0,5-3000 1-2 5 220 1	0,3-1 1-2 5 220 1

В качестве ЧЭ использованы полупроводниковые терморезисторы типа СТЗ-19. Один из терморезисторов установлен в контролируемом потоке газа и включен в плечо измерительного моста, другой — в аэродинамической тени и включен в компенсационный мост, уравновешивающий действие дестабилизирующих факторов. Сигналы разбаланса мостовых преобразователей после предварительного усиления подаются на выход усилителя-вычитателя и далее на индикатор. Усилители разбаланса мостовых преобразователей и вычитатель питаются от источника постоянного напряжения. Собраны они на операционных усилителях типа 153УД2. Питание мостовых схем осуществляется за счет подачи напряжения с выхода соответствующего усилителя, что существенно повышает их быстродействие [20].

Измерительные схемы основного и компенсационного каналов прибора, представляющие собой автобалансные мосты, обеспечивают изотермический режим работы терморезисторов при воздействии на них внешних возмущающих факторов.

Конструктивно приборы выполнены в однотипном пластмассовом корпусе 280×160×155 мм, снабженном для транспортировки ручкой. Включение в газовую магистраль производится с помощью кабеля и выносного датчика, присоединительные штуцера которого унифицированы с устанавливаемыми на отечественном оборудовании. Размеры выносного датчика 140×90×25 мм. При транспортировании он вместе с кабелем укладывается в нишу корпуса. Масса выносного датчика с кабелем 0,6 кг при общей массе прибора 3 кг.

По механическим и климатическим требованиям приборы соответствуют II группе ГОСТ 22221—72. Высокая чувствительность позволяет использовать их также для поиска незначительных утечек газа в магистралях.

Разработан аналоговый автоматический МФП следящего действия с периодическим замещением (см. рис. 4.3). Диапазоны измеряемых мощностей 0,05—3 мВт, напряжений 0,1—30 В. На рис. 7.16 показана экспериментальная переходная характеристика прибора, снятая при испытаниях. Время установления, определяющее

Рис. 7.16. Реальный переходный процесс преобразователя

быстродействие преобразователя, не превышает 0,8 с.

Для определения значений систематической и случайной погрешностей прибор испытывают по методике § 7.2. После статистичевероятобработки находят СКОЙ ностные значения систематической и случайной погрешностей преобразования, зависимости которых от преобразуемой мощности VDOBHЯ изображены на рис. 7.17.

Рис. 7.17. Зависимость экспериментальных значений систематической и случайной погрешностей от значений преобразуемой мощности

Дисперсионный анализ, проведенный по факторам изменения температуры окружающей среды и напряжения питания, подтвердил их незначительное влияние на результат преобразования, так как смещение центров распределения в выборках, полученных при различных температуре и напряжении питания, пренебрежимо мало при уровне значимости 1%.

В автоматическом аналого-цифровом измерителе мощности СВЧ с вычитающим устройством, собранном по схеме рис. 5.1, коэффициент усиления импульсного усилителя может принимать значения K = 50 - 100 - 200 - 500 - 1000, фильтр амплитудного детектора имеет параметры $K_{\phi} = 1$ и $T_{\phi} = 0,01$ с, коэффициент преобразования генератора импульсов управляемой частоты $k_{\Gamma ИУЧ} = 10^4$ Гц/В. В качестве ЧЭ использован термистор типа ТШ-2 с чувствительностью в рабочей точке $k_{\rm T} = 2 \cdot 10^4$ Ом/Вт и постоянной времени $T_{\rm T} = 0,5$ с.

Параметры напряжения питания моста могут изменяться в пределах $U_m = 7 - 12$ В; $\tau = 6 - 20$ мкс. В частности, один из вариантов преобразователя имеет следующие данные: k = 500; $k_{\Gamma HYY} = -10^3 \Gamma_{II}/B$; $k_{\Phi} = 1$; $T_{\Phi} = 0,01$ с; $K_{T} = 20 \cdot 10^3 \text{ Om/BT}$; $T_{T} = 0,5$ с; $U_m = -10$ В и $\tau = 6$ мкс; $R_{T} = 150$ Ом. При этих параметрах напряжения питания моста коэффициент преобразования $k_{IH} = U^2_m \tau/4R_T = -100 \cdot 6 \cdot 10^{-6}/4 \cdot 150 = 10^{-6}$ Вт/Гц.

Согласно формулам из гл. 2 передаточная функция термистора $W(p) = K_{\rm T}/(T_{\rm T}p+1) = 2 \cdot 10^4/(0.5p+1)$ и фильтра амплитудного детектора W(p) 1/(0.01p+1). Зная параметры всех звеньев структур-

ной схемы преобразователя, можно определить передаточную функцию замкнутой системы

$$\Phi(p) = k / [kk_4 + (T_{\oplus}p+1)(T_Tp+1)],$$

где $k = k_1 k_2 k_3 k_{\Phi} k_{\tau} = \frac{1}{60} 500 \cdot 10^3 \cdot 2 \cdot 10^4 = 1,66 \cdot 10^8; \ k k_4 = 1,66 \cdot 10^8 \cdot 10^{-6} = 166.$

Характеристическое уравнение имеет вид:

$$T_{\rm T}T_{\rm \Phi}p^2 + (T_{\rm T}+T_{\rm \Phi})p + 1 + kk_4 = 0;$$

$$5 \cdot 10^{-3}p^2 + 0.51p + 166 = 0.$$

Определим корни уравнения $p^2 + 102p + 33, 2 \cdot 10^3 = 0$: $P_{1,2} = \alpha + j\beta$; $P_{1,2} = -51 \pm \sqrt{2601 - 31 \cdot 10^2} = -51 \pm j50, 7$.

Согласно критерию Гурвица, система устойчива. Статическая ошибка преобразователя $\delta_p = \frac{R_x \max}{1 + kk_4} = \frac{3 \cdot 10^{-3}}{166} \simeq 1,8 \cdot 10^{-5} \text{ вт или}$ в относительных единицах $\beta_p = \delta_p / P_x \max = 1/(1 + kk_4) \approx 1/kk_4 = 0,006$.

Время переходного процесса (время установления частоты) при скачкообразном изменении мощности на входе может быть определено из соотношения $t_{ycr} \leqslant \frac{1}{\alpha} \ln \beta_p$. Для рассматриваемого преобразователя $t_{ycr} \leqslant \frac{1}{51} \ln \frac{1}{0.006} \leqslant 0,02 \ln 166 = 0,2022$ с.

Определим остальные параметры преобразователя: чувствительность $S = 4R_{\tau} \cdot 10^{-3}/U^2_{m\tau} = 600 \cdot 10^{-3}/100 \cdot 6 \cdot 10^{-6} = 10^{-3}$ Гц/мВт;

начальная частота питания, определяемая для термистора ТШ-2 при $P_{\tau} = 15 \text{ мВт}$ и $t = 20^{\circ} \text{ C}$, равна $F_1 = 4R_{\tau}P_{\tau}/U^2_m \tau = SP_{\tau} =$ $= 10^3 \cdot 15 = 15\ 000$ Гц. Значение перерегулирования $\sigma = e^{-\frac{\alpha}{\beta}\pi} =$ $= e^{-\frac{51}{64}\pi} = 8,2\%$.

Испытания прибора с указанными параметрами напряжения питания моста дали следующие результаты: реальная чувствительность изменяется в пределах 500—1000—2000 Гц/мВт; разброс выходной характеристики — не более 4%; минимальная измеряемая мощность — 50 мкВт.

Испытания прибора при других параметрах импульсного напряжения питания моста ($U_m = 10$ В; $\tau = 12$ мкс) показали, что чувствительность прибора несколько превышает расчетную. Если расчетное значение S = 500 Гц/мВт, то экспериментально получено $S_3 = 550$ Гц/мВт.

Статические характеристики (функции преобразования) прибора приведены на рис. 7.18: $1 - U_m = 10$ В; $\tau = 6$ мкс; $2 - U_m = 10$ В; $\tau = 12$ мкс; $3 - U_m = 7$ В; $\tau = 12$ мкс.

При рассмотрении Принципов 4F, Га построения автоматических аналого-цифровых частотно-импульспреобразователей с временных ным разделением (см. сигналов 5.3)рис. уже указывалось на очевидных ряд преимуществ, KOторые удается получить при использовании реверсивного счетчидля отсчета разности ка частот, соответствующих отсутствию и подаче на ЧЭ преобразуемого сигнала. Характеристики прибора показаны на рис. 7.19 и 7.20; отдельные узлы имеют следующие параметры: коэффициент усиления импульсного усилителя К=500; амплитуда импульсов питания моста $U_m =$ =7 В; длительность импульсов питания $\tau = 12$ мкс.

В процессе эксперимента температура среды изменялась от +10 до +50°С. Зависимости выходной частоты преобразователя

Рис. 7.19. Характеристика автоматического частотно-импульсного преобразователя с реверсивным счетчиком, двухтактным интегрированием и временным разделением сигналов

от температуры, действующей на ЧЭ при постоянных значениях измеряемой мощности, приведены на рис. 7.20. При мощностях $P_{изм}$, равных 1,2 и З мВт, эти зависимости проходят строго эквидистантно при изменении температуры среды от 10 до 50°С. Это подтверждает правильность принятой методики измерения, ибо разность частот $\Delta F = F(t)_{P_{ИЗМ}=0} - F(t)_{P_{ИЗМ}=P_{CBY}} = \text{const.}$

Можно сделать вывод, что такое построение измерителя позволяет практически полностью исключить температурную составляющую общей погрешности измерения. Расчеты, проведенные в соответствии с (5.33), показывают, что инструментальная погрешность $\gamma_{\rm H}=2\gamma_{Um}+\gamma_{\rm T}+\gamma_{\rm F}=0,8\%$. Тогда значение суммарной предельной случайной погрешности $\gamma_{\Sigma}\approx 1\%$ при $P_{\rm H3M}=1$ мВт, где $\Delta P_{\rm M}$ — абсолютное значение методической погрешности, вычисленное по формуле (5.31). Для случая, рассмотренного в § 5.5 $\Delta P_{\rm M}=1$ мкВт. В табл. 7.5 приведены значения погрешности в диапазоне измеряемых мощностей.

Для уменьшения инструментальной погрешности СВЧ элементов при эксперименте установка измеряемого уровня мощности СВЧ проводилась с помощью поляризационного аттенюатора Д5-34А, который обеспечивал погрешность установки мощности относительно начального уровня не более (0,01+0,005 A) дБ.

Для проверки степени влияния нестабильности температуры окружающей среды на точность измерения испытания проводили при различных фиксированных значениях температуры окружающей среды, а также при температуре изменяющейся со скоростью $U_t \approx 3^{\circ}$ С/мин. При этом, несмотря на то, что в приборе использовался принцип двухтактного интегрирования, не обеспечивающий коррекцию погрешности, обусловленную однонаправленным дрейфом из-за изменяющейся температуры, результаты подтвердили высокие метрологические характеристики прибора.

По схеме рис. 5.2 построен автоматический многофункциональный цифровой прибор типа ЦИРН, предназначенный для измерения расхода газа и электрического напряжения. Особенность прибора — применение в основном и компенсационном каналах автобалансных частотно-импульсных мостовых схем, которые обеспечивают простоту преобразования аналогового входного сигнала в цифровую форму, возможность передачи информации от ЧЭ к

Т	a	б	л	и	Ц	а	7.5
---	---	---	---	---	---	---	-----

Р, мкВт	5	10	20	40	100	200	500	1000	1500	2000	2500
γ., %	20,8	10,8	5,8	3,3	1,8	1,3	1	0,9	0,87	0,85	0,84

Погрешность в диапазоне мощностей

блоку обработки информации в виде последовательности импульсов. Такое построение схемы позволяет значительно повысить помехоустойчивость, более рационально решить вопросы линеаризации и обработки сигналов. Общий вид прибора приведен на рис. 7.21. Он состоит из двух блоков: выносного датчика, включаемого при измерении расхода в газовую магистраль, и блока обработки информации.

По устойчивости к механическим и климатическим воздействиям прибор (исполнение по ГОСТ 12997-76) предназначен для работы: при температуре 10-35° С, относительной влажности до 80%, атмосферном давлении 0,08-0,11 МПа. Градуировка и нормирование метрологических характеристик производятся по азоту, кислороду и фреону-14 в помещениях категории 2 согласно ОСТ 11.ПО.050.001-74. При этом температура окружающей среды должна быть в пределах 20±2° С, относительная влажность 50±5%, атмосферное давление 0,08-0,11 МПа, напряжение литания 220 B±2%, температура рабочего газа не должна отличаться от температуры окружающей среды более чем на ±0,5° С. Общий диапазон измерения расхода каждого из рабочих газов 0,3-300 л/ч разбит на три поддиапазона: 0,3-3; 3-30; 30-300 л/ч. Приведенная погрешность измерения расхода газа не более ±5%. Дополнительная приведенная погрешность измерения расхода газа при изменении напряжения питающей сети на ±10% не превышает ±0,2%. Дополнительная погрешность измерения расхода газа на каждые 10° С изменения температуры окружающей среды не превышает ±2% от верхнего предела в диапазоне рабочих температур. Прибор измеряет электрическое напряжение постоянного и переменного тока в диапазоне 0-300 В с погрешностью ±0,05 U и ±1 В соответственно. Габаритные размеры: блока обработки информации 390×260×115 мм; выносного датчика 134×30× ×79 мм. Масса прибора 6,5 кг. Прибор может быть использован для измерения концентрации и других параметров газовых потоков, а также для поиска малых утечек в газовых магистралях.

Рис. 7.21. Общий вид автоматического многофункционального цифрового прибора типа ЦИРН

Разработка и внедрение в серийное производство интегральных ЦАП с точностью преобразования, приближающейся к 0,01-0,005%, потребовала создания принципиально новых автоматических средств измерения повышенной точности. При высокоточных измерениях существенное влияние на результат и достоверность контроля параметров оказывает временная нестабильность преобразовательного тракта, обусловленная воздействием различных дестабилизирующих факторов и в первую очередь температуры окружающей среды. Степень указанного влияния тем больше, чем выше требуемая разрешающая способность и точность измерения. При контроле параметров интегральных 12-ти разрядных ЦАП серии 572ПА2 необходимо производить автоматическое измерение значений электрического напряжения постоянного тока 10 В с приведенной погрешностью не более 0,002%. Это объясняется следующими обстоятельствами. При контроле абсолютной и дифференциальной нелинейностей характеристики ЦАП погрешность отклонения идеальной шкалы преобразователей от реальной характеристики не должны превышать половины единицы младшего разряда (0,5 Δ , где Δ — значение единицы младшего разряда). Для 12-ти разрядных ЦАП напряжение полной шкалы $U_{n,m} = (2^{12} - ...)$ $-1)\Delta = 10,24$ В, следовательно погрешность $\delta_{11AII} = 0.5\Delta = 10,24 \cdot 0.5/$ $(2^{12}-1) = 1.25$ MB.

Воспользовавшись метрологическим критерием допустимых погрешностей $\delta_{c.n} < 0,306 \ \delta_{\text{ЦАП}}$, где $\delta_{c.n}$ — погрешность средства измерения параметров ЦАП; $\delta_{\text{ЦАП}}$ — погрешность ЦАП, для обеспечения требуемых метрологических запасов выберем в критериальном неравенстве коэффициент при $\delta_{\text{ЦАП}}$, равный 0,2, т. е. $\delta_{c.n} = = 0,2 \ \delta_{\text{ЦАП}}$.

Вполне очевидно, что с учетом изложенного логрешность средств автоматического измерения выходного постоянного напряжения ЦАП должна быть не более 0,25 мВ. Принимая во внимание наличие изменения выходного постоянного напряжения ЦАП под действием, как правило, однонаправленного дрейфа нуля усилителя преобразователя выходного тока, а также изменения параметров измерительного тракта под действием дестабилизирующих факторов, можно отметить, что обеспечение автоматических измерений с указанной точностью с помощью известных методов и средств становится весьма трудной задачей.

Для решения этой задачи были предложены автоматические преобразователи с трехтактным интегрированием. Результаты теоретического исследования и разработка основ инженерного расчета таких преобразователей были использованы при создании автоматической системы контроля, предназначенной для измерения параметров выпускаемых серийно интегральных ЦАП серии 572ПА2.

Реализация операции трехтактного интегрирования в указанной аппаратуре осуществляется многофункциональным вольтмет-226 ром с программируемым алгоритмом и временем интегрирования. Это обеспечило погрешность измерения параметров ИМС ЦАП серии 572ПА2 не более 0,002% в диапазоне изменения температуры 25±10°С. Аттестация автоматического преобразователя с трехтактным интегрированием осуществлялась с помощью потенциометра P-379, обладающего разрешающей способностью 0,0001% и погрешностью измерения не более 0,0005%.

На основе схем рис. 5.13 и 5.14 разработан автоматический цифровой измеритель мощности СВЧ с микропроцессорным управлением, работающий в соответствии с алгоритмом, представленным на рис. 5.15. Прибор предназначен для измерения абсолютных и относительных уровней мощности СВЧ передающих и приемных устройств радиотехнической аппаратуры различного назначения и коэффициента передачи СВЧ четырехполюсников. Прибор состоит из измерительного блока, выносного термисторного преобразователя и СВЧ-коммутатора. Общий вид прибора приведен на рис. 7.22. Характеристики прибора:

Динамический диапазон измеряемых мощностей СВЧ	1 мкВт— 10 мВт
Динамический диалазон коэффициентов передачи СВЧ четы- рехполюсников, дБ	
Приведенная погрешность измерения (без учета погрешности СВЧ тракта), %	1 4

В приборе реализованы: полностью автоматический режим работы; возможность автономной работы в циклическом режиме и режиме непрерывного слежения, а также в составе автоматизированного контрольно-измерительного комплекса с каналом общего пользования. Прибор способен работать в широком интервале изменения температуры окружающей среды.

Рис. 7.22. Автоматический измеритель мощности СВЧ с микропроцессорным управлением Сравнение измерительных приборов является, как правило, сложной задачей, решение которой зависит не только от значений эксплуатационных параметров, но и от назначения, области использования, условий эксплуатации, требований к массогабаритным характеристикам, энергопотреблению и т. д.

Практика использования критериальных коэффициентов, применяемых для сравнительной оценки качества автоматических преобразователей информации, показала, что получаемые при этом результаты весьма эффективны на начальном этапе выбора направления разработки. В случае же, когда устройства уже разработаны, а их параметры и характеристики исследованы теоретически и экспериментально, сравнительную оценку удобнее производить сопоставлением полученных при этом числовых значений параметров, характерных для каждого устройства, или по методике решения многокритериальной задачи оптимального выбора.

На основе схемы рис. 5.3 разработан автоматический цифровой измеритель температуры, обеспечивающий высокие чувствительность, разрешающую способность и линейность характеристики. С учетом (1.31), (1.32), (5.11) и (5.12) можно записать, что при различных температурах окружающей среды (θ_1 и θ_2) состояние АМЧИП описывается системой уравнений

$$P_{\mathrm{T}} = \frac{U_m^2 \tau}{4R_{\mathrm{T}}} F_1 - H (T - \theta_1),$$

$$P_{\mathrm{T}} = \frac{U_m^2 \tau}{4R_{\mathrm{T}}} F_2 - H (T - \theta_2).$$

Выходная информация — разность частот F₁—F₂, поэтому систему уравнений можно представить в виде

$$F_{1} = \frac{4R_{T}}{U_{m}^{2}\tau} \left[P_{T} + H\left(T - \theta_{1}\right)\right],$$

$$F_{2} = \frac{4R_{T}}{U_{m}^{2}\tau} \left[P_{T} + H\left(T - \theta_{2}\right)\right].$$

После вычитания получаем $\Delta F = S_{\rm ЧИ} H \Delta \theta$. Принимая во внимание, что $S_{\rm ЧИ} = {\rm const}$ и $H = {\rm const}$, можно сделать вывод о линейной зависимости между температурой окружающей терморезистор среды θ и выходной частотой АМЧИП, т. е. $F(t) = k_{\theta} \theta(t)$, где $k_{\theta} = S_{\rm ЧИ} H$ — коэффициент преобразования температуры в частоту.

В качестве ЧЭ в приборе использованы термисторы типа CTЗ-14, имеющие значительный разброс коэффициентов рассеяния *H*.

Приведенные выражения выведены с допущениями, вполне приемлемыми для инженерных расчетов. Для более точных расчетов применяют соотношения, полученные в гл. 6.

Так как термистор находится в изотермическом режиме, т. е. работает в одной точке своей характеристики, то функция преобразования АМЧИП по мощности и по температуре теоретически абсолютно линейна при любых нелинейностях характеристики термистора. Коэффициент преобразования АМЧИП может принимать различные значения при замене одного термистора другим, что обусловлено разбросом значений коэффициента рассеяния Н. Для обеспечения постоянства коэффициента преобразования k. в цепь обратной связи АМЧИП введен аттенюатор, который за счет изменения амплитуды Um импульсного сигнала обеспечивает изменение чувствительности А/МЧИП по мощности S им, компенсируя разброс значений параметра Н и обеспечивая требуемое k_{θ} для всех термисторов. С регулируемого источника напряжения постоянного тока РИН на термистор подается дополнительная мощность его разогрева, которая компенсирует разброс значений мощности, рассеиваемой термистором в выбранной рабочей точке, и обеспечивает вполне конкретную выходную частоту АМЧИП при фиксированной температуре для всех термисторов, устанавливаемых в приборе. Разогрев термистора осуществляется постоянным и импульсным напряжением, поэтому для исключения взаимного влияния этих мощностей импульсный сигнал должен иметь биполярную форму с нулевой постоянной составляющей.

Для получения цифрового отсчета в начале каждого измерительного цикла в реверсивный счетчик РСч заносится число N₀, эквивалентное максимальному значению измеряемой температуры θ_{max} . Затем в момент времени T_0 частота F_{Bbx} поступает на вычитающий вход РСч. Результат измерения определяется как разность N, поступающая на цифровое OPУ: $N = N_0 - N_i = \hat{N}_0 -$ $-F_{\text{вых}}T_0 = N_0 - T_0 H S_{\text{ЧИ}} (\theta_{\text{max}} - \theta_i) = N_0 - T_0 R_T H (\theta_{\text{max}} - \theta_i) / 2U_m^2 \tau$, где θ_i — текущее значение измеряемой температуры. При $\theta_i = \theta_{max}$ частота импульсного сигнала питания моста уменьшается до нуля, N_i=0 и N=N₀, а частота F_{вых} достигает максимального значения и $N_{i\max} = T_0 H S_{\text{ЧИ}} (\theta_{\max} - \theta_{\min}) = F_{\text{вых max}} T_0$. Диапазон измеряемых температур $\Delta \theta$ при конкретных значениях параметров прибора ра-Beh $\Delta \theta = \hat{\theta}_{max} - \hat{\theta}_{min} = F_{Bbix max} T_0 / HS_{TH} = F_{Bbix max} T_0 \cdot \hat{4} U_m^2 \tau / HR_\tau$. скольку максимальному значению измеряемых температур θ_{max} соответствует число $N = F_{\text{вых max}} T_0$, то разрешающая способность устройства определяется как $\Delta_{\theta} = \Theta_{\max} / \dot{N}_{\max} = 4 U^2_m \tau / (HR_{\tau})$. Повышение разрешающей способности (уменьшение Δ_{θ}) возможно за счет уменьшения амплитуды или длительности импульсного сигнала обратной связи.

Анализ выражения, определяющего результат измерения, $N = = \varphi(T_0, U_m, \tau)$ показывает, что погрешность измерения определяется нестабильностью трех параметров: T_0, U_m, τ .

Определив частные производные и осуществив переход к конечным приращениям, можно получить составляющие погрешности, обусловленные вариациями этих аргументов:

$$\begin{split} \varphi'(T_0) &= \frac{\partial \varphi}{\partial T_0} = -\frac{R_{\rm T} R \Delta \theta}{2U_m^2 \tau_{\rm H}}; \quad \delta \tau_0 = \frac{\varphi'(T_0)}{\varphi} \Delta T_0; \quad \varphi'(U_m) = \frac{\partial \varphi}{\partial U_m} = \\ &= \frac{\tau R_{\rm T} H \Delta \theta}{\tau_{\rm H} U_m^2}; \quad \delta U_m = \frac{\varphi'(U_m)}{\varphi} \Delta U_m; \quad \varphi'(\tau) = \frac{\partial \varphi}{\partial \tau} = \frac{\tau R_{\rm T} H \Delta \theta}{2U_m^2 \tau_{\rm H}^2}; \\ \delta_{\tau} &= \frac{\varphi'(\tau)}{\varphi} \Delta \tau. \end{split}$$

Считая составляющие погрешности δ_{τ} , δ_{Um} , δ_{T_0} независимыми и распределенными по нормальному закону, можно записать для результирующей погрешности измерения: $\delta_{\Sigma} = \sqrt{\delta_{\tau}^2 + \delta_{Um}^2 - \delta_{T_0}^2}$. Используя при формировании временных отрезков T_0 и τ кварцевые генераторы, можно свести погрешности от нестабильности этих величин к пренебрежимо малым значениям. Обеспечение достаточно малого значения δ_{Um} возможно при использовании стабилизированного источника питания для формирования стабильной амплитуды U_m импульсного сигнала.

Конструктивно прибор выполнен в виде выносного датчика и блока обработки информации. По устойчивости к механическим и климатическим воздействиям прибор относится к исполнению обыкновенному по ГОСТ 12997—84 и категории УХЛ.4.2 по ГОСТ 15150—69. Основные технические характеристики прибора:

Диапазон измеряемых температур, °С	0-40
Основная погрешность, °С, не более	0,2
Чувствительность, °С	0,01
Разрешающая способность, °С	0,01
Периодичность обновления показаний индикатора, с	3
Время установления показаний, с	180
Напряжение питающей сети частотой 50±1 Гц	220±15 B
Потребляемая мощность, Вт	20
Габаритные размеры, мм	$200 \times 130 \times 240$
Масса, кг не более	4
Динамическая погрешность отсутствует при скорости	
изменения измеряемой температуры, ° С/ч, не более . 🛸	4

Погрешности измерения и другие параметры прибора определялись с помощью сличения его показаний с показаниями образцового измерителя температуры типа ТЛ4-Б, который имеет погрешность, не превышающую 0,05° С.

По схеме рис. 5.2. реализован цифровой измеритель малых скоростей воздушных потоков. Для детального рассмотрения принципа действия более удобна схема, приведенная на рис. 7.23. Конструктивно прибор выполнен в виде датчика и блока обработки информации и индикации.

Рис. 7.23. Схема цифрового измерителя малых скоростей воздушных потоков

Датчик (первичный преобразователь — 1) представляет собой корпус с открытым воздуховодом, в котором размещены терморезисторы R1 и R2 (типа CT2-13) соответственно измерительного и компенсационного каналов. Измеряемый поток воздуха, проходя через первичный преобразователь, обдувает термочувствительный элемент R1, который является рабочим. В зоне установки компенсационного термочувствительного элемента R2 аэродинамическая тень и измеряемый поток неподвижен. Таким образом, коэффициент теплопередачи термочувствительного элемента R1 зависит от скорости потока воздуха и его теплофизических параметров, а термочувствительного элемента R2 — только от теплофизических параметров воздуха. При обработке сигналов первичного преобразователя выделяется информация о скорости потока воздуха и производится компенсация влияния отклонений его теплофизических параметров.

Термочувствительные элементы R1 и R2 включены в мостовые резисторные схемы 3 и 6. Схемы 3 и 6 питаются от источника постоянного тока 4. Сигналы рассогласования мостовых схем усиливаются дифференциальными усилителями 2, 5 и подаются на входы соответствующих генераторов импульсов управляемой частоты ГИУЧ 8, 11. Частоты выходных импульсных сигналов этих

генераторов пропорциональны выходным напряжениям дифференциальных усилителей. Под действием этих импульсных сигналов в формирователях ФДИ 7 и 10 вырабатываются двуполярные импульсы, частоты следования которых равны частотам выходных сигналов управляемых генераторов 8 и 11. Двуполярные импульсы имеют постоянную энергию (площадь). С выхода формирователей 7 и10 они поступают на диагонали питания мостовых резисторных схем 3 и 6, вызывая нагрев рабочего и компенсационного термочувствительных элементов R1 и R2, по мере разогрева которых сигналы рассогласования мостовых резисторных схем 3 и 6 уменьшаются, вызывая уменьшение частот управляемых генераторов 8 и 11. Энергия нагрева рабочего термочувствительного элемента R1 отдается в измеряемый поток за счет естественной конвекции, а также за счет обдува, связанного с движением потока воздуха. Энергия нагрева компенсационного термочувствительного элемента R2 отдается в окружающее пространство только за счет естественной конвекции. Изменение частот генераторов 8 и 11 происходит до тех пор, пока не установятся температуры рабочего и компенсационного термочувствительных элементов R1 и R2.

Постоянные токи через рабочий и компенсационный термочувствительные элементы R1 и R2 устанавливаются с помощью регулирования выходных токов источника постоянного тока 4. Выходные сигналы управляемых генераторов 8 и 11 поступают на первый и второй входы вычитателя импульсов 13, объединенного с элементом И 16. Выходные сигналы вычитателя поступают на входы счетчика импульсов 22. Сигнал, поступающий с выхода источника постоянного напряжения 21, складывается в сумматоре 15 с выходным напряжением дифференциального усилителя 5. Выходной сигнал сумматора 15 через ключ 20 поступает на вход интегратора 19. Ключ открывается управляющим сигналом, поступающим с выхода триггера 24. Данное состояние триггера соответствует первому временному такту T₁ работы прибора. Под действием выходного сигнала сумматора 15 начинает изменяться (возрастать) выходной сигнал интегратора 19. В момент, когда сигнал интегратора становится равным напряжению срабатывания порогового элемента 18, на выходе последнего вырабатывается импульс, который переводит триггер 24 в противоположное состояние. При этом ключ 20 закрывается, а ключ 26 открывается и через него на вход интегратора 19 поступает напряжение с выхода источника постоянного напряжения ИПН 27. Данное состояние триггера соответствует второму временному такту Т2 измерительного цикла. Под действием напряжения источника 27 выходной сигнал интегратора изменяется (уменьшается). В момент, когда он становится равным нулю, срабатывает пороговый элемент 25 и на его выходе выделяется импульс, переводящий триггер 24 в состояние, соответствующее первому временному такту Т₁. На этом цикл измерения заканчивается.

Рассмотренный алгоритм работы прибора повторяется периодически. Длительность первого временного интервала обратно пропорциональна сумме выходных сигналов дифференциального усилителя 5 и ИПН 21. При установившейся температуре термочувствительного элемента R2 выходное напряжение дифференциального усилителя 5 связано линейной зависимостью с мощностью, подводимой к термочувствительному элементу R2. В свою очередь мощность, подводимая к термочувствительному элементу R2, равна мощности теплового потока, отдаваемого данным элементом измеряемому потоку воздуха. Поэтому выходное напряжение дифференциального усилителя 5 несет информацию о температуре и теплофизических свойствах измеряемого потока воздуха. В течение временного интервала Т₁ импульсы с выходов вычитателя 13 поступают на входы счетчика 22. Введя некоторые упрощения в соотношения (см. гл. 6) и используя параметры конкретных элементов схемы, выведем выражение для функции преобразования. К концу первого временного интервала Т₁ в счетчике 22 накапливается число, равное $N = (F_8 - F_{11})T_1 = (F_8 - F_{11})U_{\mu}T_{\mu\nu}/(k_c U_5 - F_{11})U_{\mu}$ $-U_{21}$), где $U_{21} = P/(k_{4M}A)$ — выходное напряжение источника 21; F₈ — частота управляемого генератора 8; F₁₁ — частота управляемого генератора 11; U_и, T_и — напряжение и время интегрирования интегратора 19; U₅ — выходное напряжение дифференциального усилителя 5; k_c — коэффициент передачи сумматора 15 по входу подключенного к выходу дифференциального усилителя 5; Р -мощность, выделяемая на термочувствительном элементе; k чи -коэффициент преобразования управляемых генераторов 8 и 11; А — энергия двуполярных импульсов, вырабатываемых формирователями 7 и 10.

Разность частот управляемых генераторов 8 и 11 определяется уравнением $F_8 - F_{11} = Hk_{пp}v^{n_B} (T_1 - \theta_0)/A$, где H - коэффициент преобразования мощности терморезистора; $k_{пp}$ — коэффициент преобразования, определяемый конструкцией первичного преобразователя скорости воздушного потока; v — скорость измеряемого потока воздуха; n_B — показатель степени, зависящий от скорости потока измеряемого газового потока и конструкции первичного преобразователя; T_1 — температура термочувствительного элемента R1; θ_0 — температура измеряемого потока воздуха.

Выходное напряжение дифференциального усилителя 5 определяется уравнением $U_5 = F_{11}/k_{\rm ЧИ} = H(T_2 - \theta_0) P/(k_{\rm ЧИ}A)$, где T_2 температура термочувствительного элемента R2.

Подставив в уравнение для N значение разности частот $F_8 - F_{11}$ и напряжения U_5 , получим $N = v^{n_B} k_{np} U_{\nu} T_{\nu} k_{\mu}$.

Параметры k_{np} , U_{μ} , T_{μ} , k_{4M} с допустимой степенью точности можно принять постоянными. Следовательно, влияние дестабилизирующих факторов (давления, температуры и т. д.) компенсируется и не отражается на результате измерения. После окончания временного интервала T_1 на выходе триггера 24 вырабатывается импульс, разрешающий перезапись числа N из счетчика 22 в регистр 28. В регистре 28 число N хранится до момента окончания следующего временного интервала T_1 . С выхода регистра 28 двоичный код, соответствующий числу N, поступает в блок индикации 33. В состав блока индикации входит постоянное запоминающее устройство ПЗУ 29, устройство формирования и вывода информации УФ и ВИ 30, цифровой индикатор 31, формирователь сигнала «Перегрузка» ФСП 32.

Код числа N поступает на адресный вход ПЗУ, вызывая появление на его информационных выходах кода числа N*, связанного с числом N функциональной зависимостью, обеспечивающей линеаризацию градуировочной характеристики прибора. При этом N* пропорционально значению скорости контролируемого потока. С помощью устройства вывода информации данное число выводится на цифровой индикатор 31. Сигнал переполнения счетчика записывается в регистр 28 и поступает на вход формирователя сигнала «Перегрузка» 32, выходной сигнал которого, поступая на цифровой индикатор, высвечивает символ П. Формирователь импульсной последовательности 14 вырабатывает стробирующие импульсы, подаваемые на управляемые генераторы 8 и 11 и вычитатель 13 для повышения устойчивости работы вычитателя. Формирователь 14 питается тактовой частотой 100 Гц от делителя 17, на вход которого подается сигнал частотой 1 МГц с выхода кварцевого генератора 23. Делитель 17 вырабатывает сигнал с частотой 1 кГц для управления устройством вывода информации 30 и сигнал частотой 0,625 Гц, подаваемый на входы формирователей задержки включения 9 и 12, которые обеспечивают задержку включения управляемых генераторов 8 и 11.

По устойчивости к механическим и климатическим факторам прибор выполнен, как и измеритель температуры, в соответствии с ГОСТ 12997—84. Основные технические характеристики:

Диапазон измеряемых скоростей воздушных потоков, м/с Приведенная шогрешность измерения скорости при $t=$	0,1—1
=20° С, %, не более	10
Дополнительная погрешность при изменении температу-	
ры в диапазоне 20-10°С, %	10
Чувствительность, м/с	0,05
Потребляемая мощность, Вт	70
Габаритные размеры, мм:	
датчика	100×100×160
блока индикации	420×265×165
Масса, кг:	0.5
датчика	0,5
олока индикации	0 000 P + 100/
папряжение питающеи сети частотой 50±1 1 ц	220 D±10%

Испытания и градуировку прибора можно производить двумя методами. Один из них — метод, использующий принцип обратимости движения, согласно которому движение воздушного потока относительно датчика можно заменить движением датчика относительно воздушной среды. Показания прибора в этом случае сличаются с образцовым анемометром (ГОСТ 6376—74). Второй метод заключается в измерении объемного расхода воздуха, проходящего через воздуховод датчика, с последующим вычислением скорости по известным соотношениям (см. гл. 6).

7.4. ЭЛЕМЕНТНАЯ БАЗА МФП

Качество и надежность, срок службы и удобство эксплуатации, степень унификации и технологичность автоматических МФП в значительной степени определяются применяемой для их проектирования и конструирования элементной базой.

Входные измеряемые физические величины воспринимает ЧЭ — терморезистор. В настоящее время отечественная промышленность серийно выпускает сотни типов терморезисторов, отличающихся электрическими параметрами, конструктивным исполнением, размерами, массой и др. Основными параметрами, определяющими функциональное назначение терморезистора, являются коэффициент энергетической чувствительности и температурный коэффициент сопротивления.

Коэффициент энергетической чувствительности К_{э.ч} определяется значением изменения мощности, рассеиваемой на терморезисторе, при котором его сопротивление изменяется на 1% номинального значения (0,005—0,15 мВт и более).

Температурный коэффициент сопротивления (ТКС) характеризуется изменением значения сопротивления при изменении температуры терморезистора на 1°С. Для разных типов терморезисторов ТКС от 2 до 8 Ом/°С или 2,4—10%/°С.

Постоянная времени $\tau_{\rm T}$ — интервал времени, необходимый для изменения сопротивления терморезистора на 83% относительно установившегося значения, соответствующего скачкообразному изменению температуры или мощности, рассеиваемой в том же терморезисторе. Для различных типов терморезисторов она находится в пределах 0,5—200 с.

Пределы номинальных значений сопротивлений терморезисторов различных типов ($T = 20^{\circ}$ C) 30 Ом — 1 МОм. Допустимое отклонение соответственно ± 10 ; $\pm 20\%$.

Максимальная допустимая мощность, рассеиваемая на терморезисторе, 0,03 мВт — 1 Вт и более.

Рабочее напряжение до 250 В. Сопротивление изоляции до 1 ГОм и более.

Условия эксплуатации для различных типов терморезисторов регламентируются в широких пределах: от герметизированных невскрываемых или вскрываемых в помещениях с искусственно регулируемым климатом до умеренного и холодного климата группы УХЛ2.1 по ГОСТ 15150—69 и даже до более жестких условий (изменение температуры от —60 до 180° С и влажности до 98%, пониженное до $13 \cdot 10^{-5}$ Па и повышенное до 990660 Па атмосферные давления).

Масса терморезисторов равна 0,003-20 г и более.

Классификацию терморезисторов можно провести по целому ряду признаков. В зависимости от материала, терморезисторы делятся на полупроводниковые и металлические и в зависимости от вида (угла наклона) статической характеристики на терморезисторы с положительным и отрицательным ТКС.

В соответствии с ОСТ 11.074.009—78 различают две группы терморезисторов. Группа A характеризуется экспоненциальной зависимостью сопротивлений терморезистора и термочувствительного элемента от температуры: $R_1 = R_2 e^{B(T_2 - T_1)/(T_1 - T_2)}$, где R_1 , R_2 —значения сопротивления соответственно при T_1 и T_2 ; B физическая константа, определяемая свойствами материала.

Группа *Б*, у которой эта зависимость отличается от экспоненциальной.

По принципу действия терморезисторы могут быть прямого подогрева, в ЧЭ которых электрический ток протекает непосредственно по телу и косвенного подогрева, в которых электрический ток, определяющий рассеиваемую мощность и, следовательно, температуру терморезистора, протекает по цепи специального подогревателя, а тело ЧЭ, изменяющее свое сопротивление, включенно в другую (измерительную) электрическую цепь.

По конструктивному исполнению и степени защиты от внешних факторов ОСТ 13110024—84 предусматривает классификацию тер-

Таблица 7.6

Параметры терморезисторов

Параметры	KMT-14	CT1-18		
Номинальное значение сояротивления при 20°С (допустимое отклонение ±10; ±20%) Абсолютное значение ТКС при 20°С, %/°С	510; 680; 910 Ом 160; 200; 330 кОм	1,5; 2,2; 22; 33 кОм 1,5; 2,2 МОм		
Постоянная В, Қ Коэффициент энергетической чуватви- тельности, мВт Максимальная мощность рассельна Постоянная времени, с	3690—4510 6120—7480 6300—7700 0,1 100 мВт В режиме нагрева не более 10, в ре- жиме охлаждени:	4050—4950 5750—7030 7380—9000 0,08 45 MBT 1		
Масса, не более, г	4	0,003		

морезисторов на герметизированные, негерметизированные, остеклованные монолитные, защищенные, незащищенные, изолированные, неизолированные, низкочастотные, высокочастотные и др. Смысл этих определений в основном ясен, приведем лишь некоторые.

Защищенным называется терморезистор, имеющий влагозащитную оболочку. Незащищенный терморезистор влагозащитный оболочки не имеет и предназначен для эксплуатации только в герметизированных объемах, невскрываемых или вскрываемых в помещениях с искусственно регулируемыми климатическими условиями. Остеклованным монолитным называется терморезистор, ЧЭ которого заплавлен в сплошной стеклянный корпус, не имеющий внутренних полостей.

По технологическому исполнению терморезисторы бывают пленочные и объемные, по геометрической форме — плоские, цилиндрические (стержневые), шарообразные (бусинковые), проволочные витые (катушка с обмоткой). Параметры некоторых серийно выпускаемых типов терморезисторов приведены в табл. 7.6.

При рассмотрении коммутирующих элементов МФП следует выделить выключатели воздействий на ЧЭ входных измеряемых физических величин. В зависимости от природы измеряемой (коммутируемой) физической величины конструкция и принцип действия выключателей в корне отличаются. Все существующие конструкции и типы этих выключателей, которые к настоящему времени прошли проверку в составе МФП, можно разбить по меньшей мере на три группы:

 CT3-18	CT1-17	CT3-17	KMT-8
 680 Ом 21; 1,5; 2,2; 3,3 кОм	33022 кОм	33—330 Ом	100 Ом—10 кОм
-2,63,2 -3,253,95	4,2—7	3-4 3,1-4,2	8,4
3,354,1 22502750 28003400	3600—6000	3,8—4,5 2580—3420 2660—3600	3600—7200
2880—3520 0,05	0,5	3250—3860 0,8	3
15 мВт 1	0,3 Вт 30	0, 3 Вт 30	0,6 Вт Не более 15
0,003	0,2	0,2	20

1. Выключатели электрических измеряемых сигналов (напряжения, токи). Их функции в МФП выполняют серийно выпускаемые интегральные полупроводниковые ключи, ключевые транзисторы, тиристоры, электромагнитные реле. Основными требованиями к ним являются малый уровень вносимой случайной погрешности и способность коммутировать входные сигналы во всем заданном диапазоне (особенно в области малых уровней).

2. Выключатели потоков жидких и газообразных веществ. Это, как правило, специально разрабатываемые механические клапаны с электромагнитным управлением, к которым предъявляются требования абсолютной герметичности, исключающей утечку вещества, и высокого быстродействия.

3. Выключатели потока излучения, которые можно разделить на выключатели потока электромагнитной энергии СВЧ диапазона (электромеханические или на pin-диодах) и выключатели потока излучений оптического диапазона (затворы, диафрагмы, модуляторы, дефлекторы). Они должны обладать стабильностью характеристик, вносить малое затухание в открытом состоянии и как можно большее в закрытом.

Общими требованиями к коммутационным элементам являются: большое число срабатываний и срок службы; высокая надежность; простота схемы управления; малый «дребезг» контактов.

Особую группу устройств, применяемых в МФП, составляют интегральные микросхемы, которые можно разделить на две большие группы: аналоговые интегральные микросхемы (АИС) и цифровые интегральные микросхемы (ЦИС). К АИС относятся операционные усилители, компараторы, аналоговые перемножители, аналого-цифровые и цифро-аналоговые преобразователи, коммутаторы и ключи.

Операционные усилители (ОУ) — основа для построения дифференциальных усилителей сигналов разбаланса мостовых схем включения терморезисторов. Так как приходится усиливать сигналы малого уровня, то необходимо применять прецизионные ОУ, имеющие большой (10⁶ и более) коэффициент усиления, большое входное сопротивление, малый уровень собственных шумов и дрейфа. Такие усилители иногда называют инструментальными. Параметры рекомендуемых к применению в МФП прецизионных ОУ приведены в табл. 7.7.

На основе ОУ в МФП строятся дифференциальные усилители постоянного тока, пороговые схемы, интегрирующие и дифференцирующие цепи, усилители переменного тока, аналоговые запоминающие устройства, мультивибраторы, линеанизаторы функции преобразования.

Компараторы применяются в аналоговых МФП (см. гл. 3) для сравнения сигнала, несущего информацию о входной измеряемой величине, с сигналом, несущим информацию о значении замещающего сигнала. Если разность сравниваемых сигналов

Таблица 7.7

Параметры операционных усилителей

Параметр	К140УД6	К140УД14	К140УД13	К140УД17	К553УД5
Коэффициент усиления K_U , В/мВ Напряжение смещения $U_{\rm cm}$, мВ Входные токи $I_{\rm EX}$, мА Разность входных токов $\Delta I_{\rm EX}$, мА Дрейф разности входиых токов $\Delta (\Delta I_{\rm EX})/\Delta T$,	70 5 30 10 0,1	50 2 2 0,2	10 0,05 0,5 0,2	200 0,07 4 3,8	10 ³ 1 100 20 1
нА/°С Коэффициент ослабления синфазного сигнала Кос.сф, дБ	80	85	90		100
Максимальный выходной ток I _{вых max} , мА (при минимальном сопротивлении нагрузки) Максимальное выходное напряжение U _{вых max} ,	25 11	20 13	1	10	2 10
В Максимальное входное напряжение $U_{\text{вх max}}$, В Максимальное входное синфазное напряжение U	15 11	10 13,5	1	15 15	13,5
Свя. сор. пах, Б Ток потребления Ілот, мА Коэффициент влияния источников питания Квл, мкВ/В	2,8	0,6	10	4	3,5 2 0

Таблица 7.8

Параметры аналоговых перемножителей

	7/1403/04.1	K525	ПСІ	Қ525ПС2		
параметр	1(140MA1	A	Б	A	Б	
Погрешность перемножения є, %		<u>+</u> 2	_	±1	± 2	
пелинеиность перемножения по координатам X и Y , % N_x N_y Остаточное напряжение по вхо-				土0,8 土0,5	土1,5 土1	
ду, мВ $X (V_{oct x})$ $Y (V_{oct y})$ Входные токи $I_{Bx}(X, Y)$, мкА Полоса преобразования	5 1,5 40	50 100 1 1,5	80 140 1 1	80 60 4 0,7	150 100 6 0,7	
Δf _x (Δf _y), МГц Амплитуда выходного напря-	3	±12	$\pm 10,5$	10,5	10,5	
жения V _{вых max} , В Ток потребления I _{пот} , мА	7,4	4,6	5	6	7	

Таблица 7.9 Параметры ЦАП

	Параметр							
Тип ИС	Число разрядов	fyer. MKC	ô*, %	б _{л ш} "б	$v_{\mathrm{H}\pi}$, B	U _{ou} , B	/ _{пот} , мА	Тсхно- логия
К572ПА1 (А—Г)	10	5	A+0,1 6+0,2 B+0,4	<u>+</u> 3**	5—17	—1 717	2	кмоп
КР572ПА2 (А—В)	12	15	$A \pm 0,025$ $B \pm 0,05$ $B \pm 0,1$	\pm 0,5	15 5		2 (2)	қмоп
Қ594ПА1	12	3,5	$\pm 0,024$		5	9—11	25 (35)	ттл
Қ1108ПА1 (АБ)	12	А—0,4 Б—0,7	<u>+</u> 0,024	<u>+</u> 0,3	5	2,2— 10,5	15	ттл
Қ1118ПА1	8	0,02	<u>+</u> 0,19		15 5,2		(46) 130	эсл

* От полной шкалы. ** В единицах младшего значащего разряда (МЗР).

Таблица 7.10

Параметры АЦП

Tun HC	Число разрядов	δ _{.1} , % (M3P)	δ _{л.циф} , % (M3P)	δ _{п.ш} , % (M3P)	t _{ирб} , мкс	U _{ип} . В
Қ572ПВ1 А Б В	12	0,00976 0,0976 0,3506	0,0488 0,0976 0,1953	(<u>+</u> 3)	170	5±5 % 15±1 %
Қ572ПВ2 А Б В	10			(± 1) (± 3) (± 5)		$5\pm5 \%$ -5±5 %
К1113ПВ1 А	10	(1)	(1)	(± 0.5)	20	5+5%
К1107ПВ1	16	$(\frac{2}{\pm 1/2})$	(2) (0,781)	(± 1) $\pm 0,1$	0,1	-13+3% 5+5%
К1107ПВ2	8	(<u>+</u> 1/2)	(<u>+</u> 1/2)		0,2	-0+3% 5+5%
K1108ITB1	10	(<u>+</u> 0,75)	(1)	(8)	1	-0+3% 5+5%
Қ1107ПВЗ	6	(<u>+</u> 1/4)			0,02	$-5,2\pm3\%$ $5\pm5\%$ $-5,2\pm5\%$

больше напряжения срабатывания компаратора, то на его выходе появляется сигнал большего уровня, соответствующий логической «1». Если разность сравниваемых сигналов меньше напряжения срабатывания компаратора, то на его выходе появляется сигнал меньшего уровня, соответствующий логическому «0».

Основными параметрами компараторов являются чувствительность, т. е. минимальная разность напряжений, с которой компаратор способен сравнивать сигналы, поданные на его вход, и быстродействие, определяемое задержкой срабатывания и временем нарастания входного сигнала, которое, в свою очередь, определяется допустимой скоростью формирования и уровнями сравниваемых напряжений, с учетом получения минимальной погрешности при сравнении. Параметры рекомендуемых компараторов приведены в табл. 7.11.

Аналоговые перемножители (АП) применяются совместно с ОУ для выполнения операций деления, умножения, извлечения квадратного корня, а также для построения фазовых детекторов. Параметры АП приведены в таб. 7.8.

Назначение в составе или в сочетании с МФП ЦАП, аналогоцифровых преобразователей (АЦП), коммутаторов и ключей вполне понятно из рассмотрения принципа действия МФП, поэтому ограничимся сведениями о них, приведенными соответственно в табл. 7.9, 7.10 и 7.12.

К ЦИС, применяемым в МФП, относятся микропроцессорные комплекты больших интегральных схем (МПК БИС) и большие

U _{οπ} , Β	U _{BX} , B	U _{0 вых} , В	<i>U'</i> вых, В	I _{пот} , мА
<u>+</u> 15		0,3	2,4	3 5
<u>+</u> 1,5	2	И _{вых} =5 мА	И _{вых.ст.разр} =10 мА	1,8
<u>±10</u>		0,4	2,4	10
(2,20,2)	60,2	0,4	2,4	30 150
-(2,1-0,1)	02	0,4	2,4	35 450
2,4-2,6	0—3	0,4	2,4	50
2,4—2,6		-21,5	1,10,6	60 80

интегральные схемы памяти (БИС ЗУ, ОЗУ, ПЗУ, ППЗУ, РППЗУ, РПЗУ).

Микропроцессор (МП), применяемый в МФП, как правило, используется для управления средством измерения и контроля или информационно управляющей системой, если МФП является составной частью этой системы. Поэтому процесс выбора МПК рассмотрим с более общих позиций.

В случае использования МП в средствах измерения и контроля важное значение имеет его соответствие требованиям разрабатываемой системы. Выбрать МП бывает довольно сложно, так как следует учесть множество факторов. Если, например, в распоряжении разработчика имеется только один тип МП, то необходимо установить возможность построения цифровых устройств обработки данных с требуемыми характеристиками на основе этого МП и наличие программного обеспечения. Если есть возможность выбора типа МП, необходимо более тщательно проанализировать все факторы (конъюнктурные и технические).

Под конъюнктурными факторами понимают степень развития производства на заводе-изготовителе МП (объем выпуска продукции, возможность поставки потребителю кросс-средств, облегчающих процесс разработки программного обеспечения цифровых устройств обработки данных), а также наличие комплекса программно-аппаратных средств проектирования у разработчика автоматических средств измерения и контроля. Решающее условие выбора типа МП-наличие у изготовителя МП полного комплекта технической документации на комплекс программно-аппаратных средств, предназначенных для реализации алгоритма работы цифровых устройств обработки данных с применением данного МП. Такой аппаратно-программный комплекс (автоматизированное рабочее место проектирования) предназначен для трансляции, редактирования и отладки прикладной программы пользователя (разработчика средств измерения и контроля). Только проанализировав все эти факторы, разработчик может сделать вывод о влиянии основных технических параметров МП на разрабатываемые средства измерения и контроля. Современные МП характеризуются следующими параметрами:

Разрядность информацио	нно	ro	сло	ва,	бит		•	2-16
Число шин						,		. 1—3
Формат команд, байт				14.			-	13
Число команд					•			. 8 и более
Число регистров общего	на	зна	чен	ИЯ				 2 и боле е
Число счетчиков команд				*	*			. До З
Способ управления								Схемный, микро-
								программный
Емкость стека								. До 16 на кристал-
								ле или в ОЗУ
Число аккумуляторов								. 1 и более
Число уровней прерывани	R							До 64
Число источников питани	IЯ							. 13

Так при разработке компактных измерительных приборов с микропроцессорным управлением важнейшими техническими параметрами МП являются потребление ими электроэнергии и число необходимых источников электропитания (табл. 7.13).

Особое значение при разработке средств измерений с микропроцессорным управлением имеет внутренняя структура шин МП. так как от нее зависит способ организации обмена информацией между МП и УВВ. Различают МП с общей шиной адреса и данных (табл. 7.11) и с разделенными шинами адреса и данных (табл. 7.12). Для организации обмена информацией в МП с общей шиной необходимо использовать специальный управляющий сигнал «Адрес — данные». При разделенных шинах адреса и данных такой управляющий сигнал не нужен. В МП с общей шиной адрес хранится на шине только короткий промежуток времени, поэтому требуется внешний регистр адреса, в то время как в МП с разделенными ША и ШД необходимость в нем отпадает, так как регистр адреса может быть размещен непосредственно на кристалле БИС МП. Анализ системы команд МП позволяет определить возможность выполнения им определенной совокупности операций и их число. Анализируя способы адресации, выбирают такой, при котором ЗУ программ имеет минимальный объем.

Быстродействие МП является определяющим фактором в тех случаях, когда предполагается их использование в системах реального времени (например, для управления быстропротекающими физическими процессами в ядерной технике). Оценивать быстродействие МП целесообразнее всего для конкретного применения с помощью определения времени выполнения МП типовых алгоритмов обработки данных и управления УВВ. Наиболее простую и удовлетворительную оценку быстродействия МП получают в первом приближении по времени выполнения операции сложения операндов требуемого формата (8-й, 16-й или большей разрядности). В этом случае необходимо учитывать, какую структуру имеет МП: однокристальный с фиксированной разрядностью и фиксированной системой команд (например, К580ИК80); повышенной разрядности на основе одной БИС арифметического устройства и одной (нескольких) БИС управляющих устройств (например К588В2 с БИС управляющей памяти К588ВУ2) произвольной разрядности, состоящей из нескольких однотипных БИС центральных процессорных элементов (ЦПЭ), или микропроцессорных секций (например, К584ВМ1, К582ЙК1) и т. д.

В цифровых системах обработки данных и автоматизации измерений и контроля, построенных на основе МП или микро-ЭВМ — микропроцессорных системах (МПС), оперирующих словами большей разрядности, чем разрядность машинного слова МП, добиться высокой производительности затруднительно даже при высоком быстродействии используемого МП. Выбирая тип МП, нужно внимательно изучить и другие схемы МПК. Основные 🍄 Таблица 7.11

Параметры коммутаторов

			· · · · · · · · · · · · · · · · · · ·											
Тип ИС	Техноло- гия	Число каналов	<i>U</i> _{п.п} . В	U _{Kom} B	I _{KOM} , MA	R _{OTh} , OM	t _{BK1} , MKC	I _{yT.BX} , HA	I _{YT,BBIX} , HA	I ⁰ IIOT' MKA	II HOT' MICA	$U^{\mathfrak{h}}_{\mathrm{DY}}$ B	${U'}_{\mathrm{EX}}$ B	Примечание
K590KH1,	кмоп	8	5-15	-55	10	500	1	50	50	3500	3500	0-0,8	3,6-5,5	_
KP590KH11 K590KH3,	кмоп	4×2	<u>+</u> 15	—15 15	20	300	0,3	50	70			00,8	4—16,5	_
KP590KH3 K590KH6, KP590KH6	кмоп	8	<u>+</u> 15	— 15 15	20	300	0,3	50	70	3500	3500	0-0,8	4—16,5	С управле- инем деши-
K590KT1,	кмоп	4	9		5	100	0,03	50	50			0-0,8	7,7—12	Со схемой
KP590KT1 K591KH2	кмоп	8×2	± 15	—15 15	20	300	0,3	50	70	20100	20	00,8	4	управления Сдвоенный, с управле-
K591KH3	кмоп	16	<u>+</u> 16	—15 15	20	270	0,3	50	70	20—100	20	0-0,8	4	нием С дешифра-
K591KH1	қмоп	16	15	55	5	450	2,5	50	50			0—0,8	3,6—5,6	С последо- вательной выборкой
K543KH1	р-МОП	16	—15, 5, 12	—7 10	10	200	1	20	50	1,2		0,4	2,47,7	канала С последо- вательным
K 543 KH2	р-МОП	16	—15, 5, 12	—7 <u></u> 10	10	350	1,2	20	50	2z 1,7 0,5 2,8		0.4	2.4-7,7	Двухгруп- повой с уп- равлением нараллель-
KIGOKTI	D-MOLT	5		1	10	300		200	50		4000	6		ным кодом
K190KT1II K190KT2	р-МОП	2×2		1	50	50		150	50		4000	6	_	
K190KT2H KP190KT3	р-МОП	6			10	300		200	500		4000	-6	_	

характеристики отечественных МПК БИС представлены в табл. 7.13. Символ «n» в таблице показывает возможность кратного наращивания разрядности для микропрограммных МП (n=1, 2, 3...). В том случае, когда выбранный тип МП не имеет специальных схем системного обмена (модулей ввода-вывода), необходимо рассмотреть возможность применения таких модулей из другого комплекта, что обычно порождает дополнительные проблемы (разница в напряжении питания, скорости обмена и т. д.). Наличие схем системного обмена в составе МПК играет важную роль, так как работа средств измерения и контроля с микропроцессорным управлением сопровождается интенсивным обменом информацией между МП, ЗУ и УВВ в процессе выполнения программы, причем эффективность алгоритма их работы в значительной степени определяется организацией этого обмена и структурой связи между МП, ЗУ программ и данных, УВВ.

Интерфейсные схемы системного обмена — это различные регистры, буферные каскады, схемы, облегчающие сопряжение с устройствами памяти и ввода-вывода, системные контроллеры и некоторые другие функциональные устройства. По способу передачи информации в схемах системного обмена различают:

вентильные схемы, когда между источником информации и приемником имеется заранее заданный управляемый информационный канал, по которому данные пересылаются при наличии сигнала разрешения;

магистральные, или схемы с накоплением информации, когда передаваемые данные накапливаются в промежуточных регистрах памяти или адаптерах. Такие устройства временного хранения позволяют МП и внешним устройствам работать с различными скоростями, т. е. асинхронно, с управлением посредством протоколов обмена;

непрограммируемые интерфейсные схемы, когда функции, выполняемые каждым из указанных компонентов в системе электрического и функционального сопряжения между МП, ЗУ и УВВ не изменяются в процессе работы МП;

программируемые интерфейсные схемы, когда данные компоненты могут под программным управлением МП перестраиваться с выполнения одной функции на другую, что обеспечивает более гибкую организацию МП.

Рассмотрим организацию, функциональные возможности и применение схем системного обмена, входящих в состав отечественных МПК серий К580, К584, КР1802. Применяемые АИС и ЦИС представляют собой сложные устройства, выполненные в многовыводных корпусах. Каждый тип такой интегральной схемы для обеспечения надежной длительной эксплуатации должен быть правильно выбран с соблюдением всех требуемых электрических режимов и параметров. Для разработки электрических принципи-

Таблица 7.12

Многопроцессорные комплекты БИС

TRD MIIK	Обозначение БИС или число БИС в МПК	Функциональное назначение схемы	Технология	Разрядность. бнт
K536 KP580	14БИС КР580ИК80А КР580ВВ51	Различное назначение Микропроцессор Программируемый по- следовательный ин-	р-МОП п-МОП п-МОП	8n 8 8
	KP580BB55	терфейс (адаптер) Программируемый па- раллельный интер-	п-МОП	8
	КР580ВИ53	фейс (адаптер) Программируемый	п-МОП	16
	KP580BT57	таймер Программируемый контроллер прямого	п-МОП	8; 16
	KP580BH59	доступа к памяти Программируемое устройство управле-	п-МОП	8
	КР580ВГ 75	ния прерываниями Программируемый контроллер электрон-	п-МОП	8; 16
KP581	KP581BE1	но-лучевой трубки Однокрнстальный ми- кроирочессор	п-МОП	16
	KP581BA1	Асинхронный приемо-	п-моп	8
KP582 KP583	ҚР582ИҚ1 ҚР582ИҚ 2 13БИС	передатчик Микропроцессор Микропроцессор Различиое	И2Л И2Л И2Л	4n 4n 4n
			ттлш	5,8n 4n

_						
	Тактовая ча- стота, МГц	Чнсло команд (микрокоманд)	Число регист- ров общего на- значення (ариф- метических/нн- дексных)	Напряжение питания, В	Потребляе- мая мощность (статическая/ динамиче- ская), Вт	Тни корпуса
	0,1 2,5 2	149 78	1/0/6	24; 1,5 5; 12;5 5	1 1,5 0,4	143.48-1 2123.40-2 2121.28-3
	2		-	5	0,35	2123.40-2
	2			5	0,75	2120.24-3
	2		—	5	0,7	2123.40-2
	2			5	0,525	2121.28-5
	3	_	-	5		2123.40-2
	2,5—	72	0(0/26)	5; 12; —5	0,9	413.48-5
	3,3 0,4			—12; +5		413.48-5
	0,6 0,6 1		0(1/10) 	1,5 1,5 35	0,2 0,2 0,18—0,5	413.48-5 413.48-5 24.48
	1	(512)	0(1/10)	1,2	0,25	244.48-8

	1	1		
K5 8 4	K584BM1	Центральный процес-И	[2Л	
		сорный элемент		
	K584BY1	Микропрограммное И	2Л	16
		управление		
	К584ВГ1	Контроллер состояння И	12.TT	16
	K584BA1	Магистральный прие-И	2 <u>π</u>	8
	- (00	моперелатчик		•
K586	9 5ИC	Различное	MOT	16
K587	K587HK9	AJIV	MOTI	4.0
1,001	K587UK3		MOH	716 Qaa
	1/00/11/0	пипитель	MOI	on
	K587UK1	Обмен ниформациой И	MOT	8.
	K507DF1	VIDAPHICIOWAG HANGE	MOIT	CA a
	NJ07PIH	(5 запирок)	MOII	(04 <i>n</i>)
V D599	VDC00DC0		NOT	10
KP000	KP000DC2	N-approx	MOII	10
	KP588B8Z	управляющая памяты К	MON	(150)
	UDGOOD D1	(э зашивок)		
	KP588BI I	Системный контрол-К	MOII	
		лер		<u>.</u>
	КР588ИРІ	Многорежимный бу-К	моп	8
		ферный регистр		~
	KP588BA1	Магнстральный прие-К	моп	8
		мопередатчик	1	
	ҚР588ВГ2	Контроллер ЗУ К	моп	4
	KP588BP2	Арифметический ум-К	моп	16×16
		ножитель		
K589	К589ИК01	Микропрограммное Т	тлш	
- • •		УП Давление	-	
	К589ИК02	Пентральный процес. Т	тлш і	2n
		сорный элемент		
	K589UK03	Ускоренный перенос Т	тлш	8
	K5801/P12	Многорежимный бу Т	TIII	Ř
	100311112	фериций порист	101111	0
	VESOLAK1A	Пополитетистр	тли	
	1/20311/14	приоритетное преры-	191111	
	VEODATILC	Вание		4
	1/99941110	шинный формирова-Т	INTEL	4
	WEODA TIOC	Тель		
24	K589A1126	шииный формирова-Т	1JHU	4
7	ł	тель с инверсией		

i	4 <i>n</i>					
	2	-	-	1.2	0,15	244.48-8
:	2 10	_		1,2 5	0,15 1,3	244.48-8 244.48-8
	2 0,5 0,2	 168 (23)	1(1/8)	9 9	0,05 0,05	429.24-1 429.24-1
	0,66 0,5	(56)	_	9 9	0,01 0,05	4 29. 2 4-1 429.24-1
	1,2 1,2	(594)	1(0/16) —	5 5	0,001/0,03 0,0005/0,02	1406.42-2 2206. 42- 2
	5		_	5	0,0005/0,015	2206.42-2
	-	-	— ·	5	0,0003/0,01	2121.28-4
	10			5	0,0005/0,025	2121.28.4
	5 0,5			5 5	0,0003/0,15 0,005/0,035	2107.18-1 4118.24-2
	10	—		5	1,2	2123.40-1
	6,5	(40)	1(0/11)	5	0,95	2121.28-1
	30 30		_	5 5	0,5 0,45	2121.28-1 239.24-1
	12		-	5	0,65	239. 24- 1
	40	-		5	0,45	238.16-2
	40	-	-	5	0,45	238.16 -2

24 Окон	нание табл. 7.12		
Тып МПК	Обозначение БИС или число БИС в МПК	Функциональное назначение схемы	Технология
	Қ589ХЛ4	Многофункциональ- ное синхронизирую- щее устройство	ттлш
K1800	K1800BC1	Микропроцессорная секция	эсл
	K1800BE2	Блок синхронизации	эсл
	K1800BT3	Управление оператив- ной памятью	эсл
	К1800ВУ1	Микропрограммное управление	эсл
K1801	K1801BM1	Однокристальный ми- кропроцессор	п-МОП
	К1801ВП1	Матричная БИС	n-MO∏
KP180	2 KP1802BC1	Микропроцессорная секция параллельной обработки ииформа- ции	ттлш
	КР1802ИР1	Регистры общего на- значения	ттлш
	KP1802BP1	Арифметический рас- ширитель	ТТЛШ

Разрядность, бнт	Тактовая ча- стота, МГц	Число команд (микрокоманд)	Число регист- ров общего на- значения (ариф- метическня/ин- деконых)	Напряжение питация, В	Потребляе- мая мощность (статическая, динамиче- ская), Вт	Тил корлуса
4	40			5	0,475	239.16-2
4	30			5,2;2	1,65	2207.48-I
4	36	—	-	5,2; 2	0,733	2120.24-1
4n	36			5,2;2	1,61	2120.24-1
4 <i>n</i>	36	—		5,2;2	1,58	2207.48-1
16	5	69	8	5	1,1	429.42-5
8n	8		 1(0/0)	5 5	 1,4	429.42-5 2206.42-1
(16×4)n	20		0(0/16)	5	0,8	2120. 2 4-2
16n	10	-	_	5	1,4	2206.42-1
			1			

	KP1802BP2	Последовательный умножитель	ттлш	(8×8)n		
	KP1802BB1	О б мен информацией	ттлш	(4×4)n		
	KP1802BB2	Интерфейсный адап- тер	ттлш	_		
KP1804	KP1804BC1	Микропроцессорная секция параллельной обработки информа- цин	ТТЛШ	4n		
	КР1804ВУ1 КР1804ВУ2	Управление адресом микрокоманд	ТТЛШ ТТЛШ	4 4		
	KP1804BP2	Ускоренный перенос	ттлш	4		
1	КР1804ИР1	Параллельный регистр	ттлш	4		
}	КР18 04 ВУЗ	Управление выбором следующего адреса	ттлш	5×32		
H1806	H1806BM2	Однокристальный про- цессор	қмоп	16		
	H1806XM1	Базовый матричный кристалл	қмоп			
KP1810	KP1810BM86	Однокристальный ми- кропроцессор	п- МОП	16		
		1				
	8		 	5	1,5	2206.42-1
---	----------	-----	--------	--------	--------------	------------------------
	16		_	5	1,4	2206.42-1
	10	—	—	5	1,25	2206.42-1
	10		16	5	1,4	230.40-1
	50 50			5 5	0,65 0,65	2121.28-1 2121.28-1
	50		-	5	0,55	210.16-16
l	50			5	0,65	210.16-16
	25			5	0,575	210.16-16
	5	76	8	5	0,025/0,4	H 1864-2B
	8			5	0,006	H14.42-1B
	2	130	4(4/4)	5	—	2123.40-2

Таблица 7.13

Основные параметры ИС ЗУ

Характеристика	KP556PT4A	KP556PT5	KP556PT16
Функциональное назначение	กกรง	ททวง	ппзу
Емкость (органи- зация), бит	1024 (256×4)	4096(512×8)	65K (8192×8)
Время цикла, мкс	$t_{\rm B.a} \leq 0,07$ $t_{\rm B.p} \leq 0,025$	$t_{\rm B.p} \le 0.08$ $t_{\rm B.p} \le 0.030$	t _{в.0} ≪0,085
Потребляемая мощность, мВт, не более	690	1000	1000
Условное обозна- чение корпуса	238.16—2	239.24—2	239.242
Напряжение пита- ния	5B±5%	5B±5%	5 B±5%
Выход	Открытый кол- лектор	От кр ытый кол- лектор	Три состояния
Совместимость по входу и выходу	С ТТЛ схемами	С ТТЛ схемами	С ТТЛ схемами

Қ573РФ1	Қ573РФ2	Қ573РФ3
рПЗУ	рпзу	рпзу
8K(1K×8)	16K(2K ×8)	64K(4096×16)
t _{в.a} ≪0,45	l _{b.a} ≪0,45	t _{в.a} ≪0,450
1100	580	
2106.24—5	210Б.24—5	210E.24—5
5 B±5% 12 B±5% 5 B±5%	5B±5%	5B±5%
Три состояния	Три состояния	Три состояния
С ТТЛ схемами	Вход с ТТЛ ОВ выход с ТТЛ	С ТТЛ схемами

Функциональное назначение	Динамическое ОЗУ	Статич ес кое ОЗУ	Статическое ОЗУ	Статическое ОЗУ	ОЗУ со схема- ми управления	ОЗУ со схемами уп- равления (динамиче- ского типа)
Емкость (органи- зация), бит	64K(64K×1)	4096 (409 6×1)	40 9 6(1024×4)	4096(40 9 6×1)	1024(1024×1)	16K (16384×1)
Время цикла, мкс	$t_{\text{B.8}} < 0.090$ $t_{\text{q}} < 0.280$ $t_{\text{per}} < 2000$	t _{в.a} ≪0,07	5 B±5%	t _{B.a} < 0,4	$t_{{ m B.a}}{<}0,45$ $t_{{ m B.a}}{<}0,45$	$t_{\text{B,a}} \leq 0,51$ $t_{\text{B,a}} \leq 0,51$
Условное обозна- чение корпуса	2103.16-5	427.18-1	2107.18-1	2107.18-4	201.16-11	201.16-17
Напряжение пита- ния	5 B±5%	5B±5%	t _{n.a} ≪0,09	$5\mathrm{B}\!\pm\!10\%$	5B±5%	+12 B±5% +5 B±10% -5 B±5%
Выход	Три состояния	Три состояния	Три состояния	Три состояния	Три состояния	Три состояния
Совместимость по входу и выходу	С ТТЛ схемами '	С ТТЛ схемами	По входу: с ТТЛ ОК и КМОП схема- ми, по выходу: с ТТЛ и КМОП	С ТТЛ схемами	С ТТЛ схемами	Кроме RAS, CAS WR/RD С ТТЛ схемами RAS, CAS, WR/RD С ТТЛ с ОК

Примечания: RAS — строб адреса строки; CAS — строб адреса столбца; WR/RD — сигнал запись-считывания; $t_{n,a}$ — время выборки адреса; t_n — время цикла; $t_{n,an}$ — время цикла адреса в режиме запися; $t_{n,en}$ — время цикла адреса в режиме считывания; t_{per} — время регенерация; t_{sp} — время выборки разрешения. альных схем МФП с применением АИС и ЦИС необходимо пользоваться справочной технической документацией на них, в которой указываются схема включения, алгоритмы управления, уровни управляющих сигналов, особенности включения дополнительных навесных внешних элементов, графическое исполнение, обозначение в конструкторских документах.

Из других элементов широко применяемых в МФП следует отметить: транзисторы КТЗ15, КТЗ61; диоды КД514А, Д818Е (опорный стабилизатор напряжения); конденсаторы К53, К73, КМ5, К76П; резисторы ОМЛТ, СП5-2, СП5-16, С2-29. Прецизионные резисторы типа С2-29 с допуском на номинальное значение $\pm 0,05$ и 0,1% устанавливаются в мостовых схемах, цепях обратной связи, масштабных делителях напряжения, цепях заряда и разряда формирователей замещающего напряжения. При выборе этих элементов следует помнить, что для надежной работы фактические значения рассеиваемой мощности, тока в цепи их включения, приложенного к элементу напряжения, должны быть значительно меньше предельно допустимых значений, указанных в справочной документации.

СПИСОК ЛИТЕРАТУРЫ

- 1. Проблемы современной радиотехники и электроники: Сб. статей/Под ред. В. А. Котельникова. — М.: Наука, 1980. — 479 с.
- Многорежимные и нестационарные системы автоматического управления/ Б. Н. Петров, В. А. Викторов, Б. В. Лункин и др. — М.: Наука, 1978. — 243 с.
- 3. Левшина Е. С., Новицкий П. В. Электрические преобразователи. Л.: Энергоатомиздат, 1983. 320 с.
- 4. Пресиухин Л. Н., Воробьев Н. В., Шишкевич А. А. Расчет элементов цифровых устройств. М.: Высшая школа, 1982. 384 с.
- Сретенский В. Н. Метрологическое обеспечение электронной техники//Состояние и тенденции развития/Мос. ин-т электронного машиностроения. — М.: МИЭМ, 1986. — С. 35—37.
- 6. Электрические измерения/В. Н. Малиновский, Р. М. Димидова-Панферова, Ю. Н. Евланов и др. М.: Энергоиздат, 1985. 416 с.
- 7. Нечаев Г. К. Электрические измерения и автоматический контроль. Киев: Вища школа, 1983. 136 с.
- 8. Орнатский П. П. Автоматические измерения и приборы. Киев: Вища школа. 1986. 503 с.
- 9. Смирнов Н. В., Дуиин-Барковский И. В. Курс теории вероятностей и математической статистики для технических приложений. — М.: Наука, 1965. — 511 с.
- Солодовников В. В., Плотников В. Н., Яковлев А. В. Основы теории и элементы систем автоматического регулирования. — М.: Машиностроение, 1985. — 536 с.
- 11. Темников Ф. Е., Афонин В. А., Дмитриев В. И. Теоретические основы информационной техники. — М.: Энергия, 1979. — 519 с.
- 12. Удалов Н. П. Электронные устройства автоматики. М.: Машиностроение, 1982. 288 с.
- Шляндин В. М. Цифровые измерительные устройства. М.: Высшая школа, 1981. — 335 с.
- 14. Орнатский П. П. Теоретические основы информациоино-измерительной техиики. — Киев: Вища школа, 1983. — 455 с.

- 15. Скрипник Ю. А., Григорьян Р. Л., Шалдыкин О. К. Анализаторы характеристик радиоэлектронных устройств. Киев: Техніка, 1981. 248 с.
- 16. Чхартишвили Г. С., Чхартишвили Л. П. Цифровое моделирование динамических систем: Методические указания//Тр. МЭИ. — М.: МЭИ, 1978. — 41 с.
- 17. Михеев М. А., Михеева И. М. Основы теплопередачи. М.: Энергия, 1977. — 319 с.
- 18. Батищев Д. И. Методы оптимального проектирования. М.: Радио и связь, 1984. 247 с.
- 19. Дубовой Н. Д., Чиняков В. Н. О расширении функциональных возможностей ваттметров СВЧ//Радиотехнические измерения в диапазонах высоких частот (ВЧ) и сверхвысоких частот (СВЧ)/Тез. докл. II Всес, научно-техн. конф. — Новосибирск. 1980. — С. 272.
- Гостик А. Л., Дубовой Н. Д. Термоанемометрические датчики физико-химических свойств и состава технологических потоков//Измерения и контроль при производстве интегральных схем: Сб. науч. тр. по проблемам микроэлектроники. — М., 1984. — С. 41—48.
- Погрешиость замещения при измерении мощности СВЧ болометрическим методом/С. В. Груздев, Н. Д., Дубовой, Р. Г. Карпов и др.//Радиоизмерения. — 1973. — Вып. 9. — С. 29—51.
- 22. Дубовой Н. Д. Структурные методы повышения чувствительности автобалансных мостов с термосопротивлениями//Преобразовательная и электроизмерительная техника. Киев: Наукова думка, 1975. С. 52—58.
- 23. А. с. 268519 СССР. Автоматический измеритель СВЧ мощности/В. И. Осокин, Н. Д. Дубовой, Р. Г. Карпов, С. В. Груздев, С. И. Чибриков. — Опубл. 1970, Бюл. № 14.
- 24. А. с. 270886 СССР. Измеритель мощности СВЧ/С. В. Груздев, Н. Д. Дубовой, Р. Г. Карпов, В. И. Осокин, С. И. Чибриков. — Опубл. 1970, Бюл. № 17.
- 25. А. с. 478260 СССР. Устройство для измерения СВЧ мощности/В. И. Сииица, Ю. М. Туз, Н. Д. Дубовой. Опубл. 1975, Бюл. № 27.
- 26. Дубовой Н. Д. Автоматический прибор для измерения мощности в диапазоне СВЧ//Обмен опытом в радиопромышленности. 1970. Вып. 1. С. 41—43.
- 27. А. с. 384073 СССР. Автоматический измеритель СВЧ мощности/Н. Д. Дубовой, В. И. Осокин. Опубл. 1973, Бюл. № 24.
- 28. А. с. 270888 СССР. Измеритель мощности СВЧ/С. В. Груздев, Н. Д. Дубовой, Р. Г. Карпов, В. И. Осокин, С. И. Чибриков. — Опубл. 1970, Бюл. № 17.
- 29. А. с. 291158 СССР. Цифровой измеритель мощности СВЧ/Н. Д. Дубовой, В. И. Осокин, С. И. Чибриков, С. В. Груздев, Р. Г. Карпов. — Опубл. 1971, Бюл. № 3.
- А. с. 270887 СССР. Частотно-импульсный измеритель СВЧ мощности/С. В. Груздев, Н. Д. Дубовой. Р. Г. Карпов, В. И. Осокин, С. И. Чибриков. — Опубл. 1970, Бюл. № 17.
- А. с. 369506 СССР. Цифровой измеритель мощности СВЧ/В. И. Осокин, Н. Д. Дубовой, Р. Г. Карпов, С. В. Груздев. — Опубл. 1973, Бюл. № 10.
- 32. Дубовой Н. Д. Многофункциональный автоматический цифровой преобразователь с компеисацией влияния помех//Автоматические приборы и оборудование в микроэлектронике: Сб. науч. тр. по пробл. микроэлектроники. М.: МИЭТ, 1981. С. 68—76.
- 33. Дубовой Н. Д. Автоматический универсальный измерительный преобразователь//Автоматические приборы и оборудование в микроэлектронике: Сб. науч. тр. по пробл. микроэлектроники. — М.: МИЭТ, 1981. — С. 63—76.
- 34. А. с. 873143 СССР. Цифровой измеритель малых уровней мощности сверхвысоких частот/Н. Д. Дубовой, В. И. Осокин, В. Н. Поротов, А. А. Сазонов, А. Д. Толчинский. — Опубл. 1981, Бюл. № 38.

- 35. Поротов В. Н., Сазонов А. А., Дубовой Н. Д. Цифровой измеритель мощности СВЧ с микропроцессорным управлением//Измерения и контроль при производстве интегральных схем: Сб. науч. тр. М.: МИЭТ, 1984. С. 49—61.
- 36. А. с. 1101752 СССР. Цифровой измеритель мощности СВЧ/В. Н. Горин, Н. Д. Дубовой, Т. А. Малашихин, Ю. Л. Нуров, В. И. Осокин. В. Н. Поротов. — Опубл. 1984, Бюл. № 25.
- 37. Дубовой Н. Д., Лебедев А. И., Сазонов А. А. Анализ чувствительности автобалансных термисторных ваттметров СВЧ//Известия вузов. Приборостроение. — 1982. — Т. XXV. — № 4. — С. 10—15.
- 38. А. с. 1020988 СССР. Измеритель погрешности линейности цифро-аналоговых преобразователей./В. И. Осокин, А. С. Очков, Н. Д. Дубовой. Опубл. 1983, Бюл. № 20.
- 39. Осокин В. И., Дубовой Н. Д., Сазонов А. А. Анализ влияния помех иа аналоговые терморезистивные преобразователи//Элементы автоматических систем управления технологическими процессами производства ИС: Сб. науч. тр. по пробл. микроэлектроники. М.: МИЭТ, 1982. С. 18—34.
- 40. Осокин В. И., Дубовой Н. Д., Сазонов А. А. Анализ влияния помех на частотно-импульсные терморезистивные преобразователи//Элемеиты автоматических систем управления технологическими процессами производства ИС: Сб. науч. тр. по пробл. микроэлектроники. — М.: МИЭТ. 1982. — С. 35—46.
- Сб. науч. тр. по пробл. микроэлектроники. М.: МИЭТ, 1982. С. 35—46. 41. Клугман Б. И., Дубовой Н. Д., Осокин В. И. К расчету характеристик автоматического измерителя мощности с однократным компарированием//Сб. реферативной информации по радиоэлектронике. — 1971. — № 7. — Реф. 232. — С. 12.
- 42. Клугман Б. И., Дубовой Н. Д., Осокин В. И. Оценка погрешности преобразователя мощности СВЧ с однократным компарированием//Сб. реферативной информации по радиоэлектронике. — 1971. — № 7. — Реф. 234. С. 16.
- 43. Клугман Б. И., Осокин В. И., Дубовой Н. Д. К расчету характеристик автоматического измерителя мощности СВЧ с двойным компарированием//Сб. реферативной информации по радиоэлектронике. — 1971. — № 7. — Реф. 235. — С. 15.
- 44. Клугман Б. И., Дубовой Н. Д., Осокин В. И. Оценка случайных погрешностей преобразователя мощности СВЧ с двойным компарированием//Сб. реферативной информации по радиоэлектронике. — 1971. — № 7. — Реф. 233. — С. 12.
- 45. А. с. 275184 СССР. Измеритель СВЧ мощности/С. В. Груздев, Н. Д. Дубовой, Р. Г. Карпов, В. И. Осокин. — Опубл. 1970, Бюл. № 22.
- 46. Система автоматического управления расходом газа с быстродействующим датчиком/А. Ю. Войтенко, Н. Д. Дубовой, А. В. Мурылев и др.//Автоматизация измерений электрических и неэлектрических величин. Управление производством: Сб. науч. тр. по пробл. микроэлектроники. — М.: МИЭТ, 1986. — С. 44—50.
- Nimmo R. Transducer to Processor Interface devices//Electronic Engineering. 1983. — Vol. 55, N 683. — P. 171—173.
- 48. Dermott J. Sensors and Transducers//EDN. 1983. N 16. P. 69-126.
- 49 Landuzinsky A. J. Sensors Match Pace of Microprocessors in Versatility and Accuracy//Control Engineering. — 1983. — N 8. — P. 65—68.
- 50. Laduzinsky A. J. Sensors employs Micros for Added Functionality//Contorl Engineering. 1983. N 6. P. 70-72.
- 51. Sensors on Silicon gate NMOS multi-project chips//Microelectronic Journal. 1984. Vol. 6. N 2. P. 10—12.
- Precision Pressure Sensor, Using Quartz SAW Resonators//Sensors and Actuators. — 1984 — Vol. 15. — N 5. — P. 20—34.
- Jordan G. R. Sensor technologies of the Future//Scientific Instruments 1985. – Vol. 18, N 9. – P. 729–735.
- 54 Triethey H. L. All about Thermistors//Radio Electronics. 1985. Vol. 56. N 2 P. 73—76.

ОГЛАВЛЕНИЕ

Предисловие	3 5
ГЛАВА 1. ПРИНЦИПЫ ПОСТРОЕНИЯ МНОГОФУНКЦИОНАЛЬ- НЫХ ПРЕОБРАЗОВАТЕЛЕЙ	9
 1.1. Классификация методов преобразования физических величин. Обобщенная структурная схема преобразователей и их применение 1.2. Виды МФП 1.3. Анализ погрешностей и быстродействия МФП 1.4. Основные предпосылки выбора чувствительного элемента МФП 1.5. Анализ погрешности замещения 1.6. Анализ схем включения ЧЭ 1.7. Перспективные параметры МФП 	9 15 23 31 34 42 43
ГЛАВА 2. АВТОБАЛАНСНЫЕ МОСТОВЫЕ ПРЕОБРАЗОВАТЕЛИ	45
2.1. Аналоговые АМП	45
ватели	49
иости 2.3. Динамические характеристики импульсных АМП	56 60
ГЛАВА З. АНАЛОГОВЫЕ АВТОМАТИЧЕСКИЕ МФП ЦИКЛИЧЕС- КОГО ДЕЙСТВИЯ С ЗАМЕЩЕНИЕМ	63
3.1. Общие замечания 3.2. Аналогорые автоматические МФП никлического лейстрия с однократ.	63
ным компарированием	64
компарированием . 3.4. Погрешности преобразователей с однократным компарированием . 5. Аналоговые автоматические МФП инклического лействия с лвойным	67 71
компарированием.	81
компарированием . 3.7. Погрешности преобразователей с двойным компарированием . 3.8. Применение принципа адаптации в аналоговых МФП с компариро-	84 88
ванием 39 Коррекция погрешностей аналоговых МФП леухтактным замешением	92
преобразуемой величины. 3.10. Анализ влияния помех на аналоговые МФП	101 104
ГЛАВА4. АНАЛОГОВЫЕ АВТОМАТИЧЕСКИЕ МФП СЛЕДЯЩЕГО ДЕЙСТВИЯ С ПЕРИОДИЧЕСКИМ ЗАМЕЩЕНИЕМ	115
4.1. Основные положения метода периодического сравнения	115
	255

 4.2. Статические характеристики автоматических МФП следяшего действия с периодическим замещением 4.3. Динамические характеристики аналоговых автоматических МФП следящего действия с периодическим замещением. 	118 125
ГЛАВА 5. АНАЛОГО-ЦИФРОВЫЕ АВТОМАТИЧЕСКИЕ МНОГО- ФУНКЦИОНАЛЬНЫЕ ПРЕОБРАЗОВАТЕЛИ	131
5.1. Аналого-цифровые автоматические МФП с пространственным разде- лением сигналов	131
5.2. Аналого-цифровые автоматические МФП с временным разделением сигналов и двухтактным интегрированием	136
5.3. Аналого-цифровые автоматические МФП с временным разделением сигналов и трехтактным интегрированием.	141
на основе здаптации чувствительности к уровню входного сигнала 5.5. Основные характеристики аналого-цифровых МФП	145 151
 5.6. Аналого-цифровые автоматические мфп1 с микропроцессорным управ- лением 5.7. Анализ влияния помех на частотно-импульсные МФП 	155 - 177
ГЛАВА 6. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ И РАСЧЕТА АВТО-	
МАТИЧЕСКИХ МФП	183
6.1. Оптимальный выбор схемы построения по функции качества 6.2. Расчет функций преобразования различных физических величин	183 190
ной составляющих погрешностей.	194
ГЛАВА 7. ПРИБОРЫ, УСТРОЙСТВА И СИСТЕМЫ НА ОСНОВЕ АВ-	
ТОМАТИЧЕСКИХ МФП	197
7.1. Классификация автоматических МФП	197
7.2. Методика проведения испытании и обработки экспериментальных	201
7.3. Приборы и системы на основе МФП	208
7.4. Элементная база МФП	235
Список литературы	252