ОГЛАВЛЕНИЕ

OT WINDWELLING.	_
	Стр.
Введение	4
Глава первая. Включение вольтметра в электрическую	
цепь	7
Влияние подключения вольтметра на режим цепи	7
О введении расчетных поправок	8
Получение правильного результата	13
Глава вторая. Электромеханические вольтметры	16
Общие положения	16
Измерители тока и добавочные сопротивления	19
Электростатические вольтметры	26
Глава третья. Электронные вольтметры на лампах	33
Общие положения	33
Усилители	34
Пределы измерения. Расчет входных делителей	41
Влияние сеточного тока	46
Входные сопротивление и емкость	55
Глава четвертая. Электронные вольтметры и усилители	
с высокими входными сопротивлениями на лампах	60
Простые катодные повторители	60
Сложные катодные повторители	63
Сложные катодные повторители с усилением в цепи	
обратиой связи	7 5
Схемы с операционными усилителями	78
Вольтметры с лампами в обращенном режиме	80
Глава пятая. Электронные вольтметры и усилители	
с высокими входными сопротивлениями на транзисторах	87
Вольтметры с усилителями тока на транзисторах	87
Транзисторные усилители напряжения	99
Усилители с полевыми транзисторами	106
Глава шестая. Измерение напряжений компенсацион-	
ными методами	109

Схемы с ручным уравновещиванием . .

Литература .

Схемы с автоматическим уравновещиванием Глава седьмая. Примеры использования высокоомных вольтметров для измерения различных электрических 109

121

123 126

МАССОВАЯ РАДИОБИБЛИОТЕКА

Выпуск 624

Ю. И. ГРИБАНОВ

ИЗМЕРЕНИЯ В ВЫСОКООМНЫХ ЦЕПЯХ

Издание второе, исправленное и дополненное

РЕДАКЦИОННАЯ КОЛЛЕГИЯ:

Берг А. И., Бурдейный Ф. И., Бурлянд В. А., Ванеев В. Й., Геништа Е. Н., Жеребцов И. П., Канаева А. М., Корольков В. Г., Кренкель Э. Т., Куликовский А. А., Смирнов А. Д., Тарасов Ф. И., Шамшур В. И.

УДК 621.317 Г 82

Рассматриваются вопросы измерения напряжений с малым потреблением мощности в измерительной цепи. Приводятся практические схемы вольтметров и усилителей с высокими входными сопротивлениями и широким динамическим диапазоном.

Рассчитана на подготовленных радиолюбителей и инженерно-технических работников.

ВВЕДЕНИЕ

Творческая работа радиолюбителя требует иаличия хотя бы минимального количества измерительных приборов. Пожалуй, чаще всего радиолюбителю приходится сталкиваться с измерением напряжений, поэтому вольтметр является одним из основных приборов его измерительной лаборатории.

Важной характеристикой вольтметра является его входное сопротивление. Оно во многом определяет возможности прибора. В

самом деле:

1. При измерении падения напряжения на некотором сопротивлении R входное сопротивление вольтметра оказывается подключенным параллельно этому сопротивлению. Для получения достаточно точного результата входное сопротивление вольтметра должно быть равно 100 R или больше.

2. При измерении э. д. с. источника тока происходит деление напряжения между внутренним сопротивлением источника $R_{
m BH}$ и вход ным сопротивлением вольтметра. Во избежание погрешности по-

следнее должно быть равно $100\,R_{
m BH}$ или больше.

3. При измерениях в радиоцепях входное сопротивление должно быть достаточно велико, чтобы не нарущать работы устройства в процессе измерения. Например, попытка измерения низкоомным вольтметром напряжений в цепях маломощного генератора приве-

дет к срыву колебаний.

Идеальный вольтметр должен был бы иметь бесконечно большое входное сопротивление. Но в реальных условиях всякий измерительный прибор отбирает от цепи, к которой он присоединен, некоторую электрическую энергню, которая преобразуется в нем в механическую, необходимую для перемещения указателя, и зависит в основном от системы прибора, его конструкции и от рода измеряемой величины. Среди вольтметров электромеханической группы на электростатической системы, наибольшим — тепловой и электродинамической системы.

В соответствии с величинами собственного потребления энергии входные сопротивления наиболее распространенных магнитоэлектрических вольтметров лежат в пределах от нескольких сотен омов

до десятков килоомов на вольт шкалы.

Для измерения напряжений в цепях с радиолампами такие значения сопротивлений часто оказываются недостаточными. Поэтому широкое распрестранение получили электронные (ламповые и транзисторные) вольтметры — измерительные устройства с предварительным усилением мощности сигнала электронным усилителем.

Электронные (ламповые) вольтметры на постоянном токе имеют входное сопротивление 11—25 Мом и позволяют проводить почти все измерения, которые наиболее часто встречаются в практике.

Однако с развитием электроники все чаще встречаются случаи, когда даже подобный электронный вольтметр не может быть использован для измерений. Многие эксперименты в области физики, химии, биологии и других наук также связаны с измерением напряжений от источников, внутреннее сопротивление которых очень велико. Можно указать на цепи с различными полупроводниками и приборами газового наполнения, на измерения электрохимических потенциалов, биоэлектрических эффектов, электрических зарядов, удельных сопротивлений диэлектриков и многое другое.

При измерениях в таких цепях входное сопротивление вольтметра должно быть порядка $10^8 - 10^{14}$ ом. И если для измерения напряжений, не превышающих 1 в, изготовить измерительное устройство с таким высоким входным сопротивлением не составляет особого труда на базе электрометрической лампы (такие устройства широко описаны), то с измерением напряжением в десятки и сотни вольт дело обстоит сложнее. Нужно применять либо специальные

схемные решения, либо специальные методы измерений.

Особенности электрических процессов часто делают желательным наблюдение этих процессов на экране осциллографа или запись их самопишущим прибором. В этих случаях необходим согласующий усилитель с высокоомным входом — «трансформатор сопротивлений» — для повышения входного сопротивления усилителя вертикального отклонения осциллографа или самописца. Подобный усилитель применяют и в высокоомных вольтметрах.

Частотные характеристики высокоомных цепей редко выходят за пределы звукового диапазона. Однако некоторые электрические явления в этих цепях сопровождаются быстрым нарастанием напряжения — до сотен вольт в микросекунду. Следовательно, к усилителям вольтметров должны быть предъявлены требования достаточ-

но широкой полосы пропускания.

Суммарная погрешность измерения напряжения вольтметром складывается из двух составляющих. Первая из них — погрешность показаний вольтметра — носит случайный характер и дается наибольшим возможным своим значением, указанным в паспорте прибора в виде основной и дополнительной погрешностей. Она определяется системой и конструкцией прибора, точностью его градуировки и т. д.

Вторая составляющая представляет собой систематическую погрешность, которая возникает в результате изменения режима исследуемой цепи при подключении вольтметра. Она определяется соотношением входного сопротивления вольтметра и выходного сопротивления цепи относительно точек подключения вольтметра.

В принципе систематическую погрешность можно учесть расчетом, если только подключение вольтметра не приводит к качественным изменениям в исследуемой цепи. Существуют и другие методы

устранения этой погрешности.

Следует указать, что погрешность показания современного электронного вольтметра в значительной мере определяется погрешностями входного делителя и индикаторного прибора. Имеется множество схем, которые позволяют исключить входной делитель. По ряду же причин выходные индикаторные приборы в электронных вольтметрах имеют классы точности 1,5—2,5, чем и ограничивается точ-

ность электронного вольтметра. Выходной прибор как источник погрешностей исключен в цифровых вольтметрах, в которых измеряемое напряжение преобразуется в серию импульсов. Число импульсов в серии пропорционально напряжению, и отсчет этого числа производится, например, с помощью декатронов. Обычно величина приведенной погрешности цифровых вольтметров составляет 0,1%.

В брошюре рассматриваются принципы построения и даются практические советы по изготовлению измерительных приборов с очень высоким входным сопротивлением (108—1015 ом) и верхними пределами измерения до сотен вольт. Частотный диапазон некоторых из них достигает нескольких мегагерц. Описываются также способы и устройства, позволяющие повысить сопротивления имеющихся вольтметров. Приводятся примеры использования вольтметров с высоким входным сопротивлением для измерения различных электрических величин.

В настоящем, втором издании в соответствии с пожеланиями читателей более широко рассмотрены вопросы введения поправок к показаниям вольтметров, подробнее рассказано о ламповых вольт-

метрах, об обращенном режиме, о применении транзисторов.

Глава первая

ВКЛЮЧЕНИЕ ВОЛЬТМЕТРА В ЭЛЕКТРИЧЕСКУЮ ЦЕПЬ

Влияние подключения вольтметра на режим цепи

Сопротивление реального вольтметра всегда конечно и в общем случае комплексно. Оно может быть представлено в виде параллельного соединения активного и реактивного (обычно емкостного) со-

противлений.

Подключение вольтметра к испытуемой электрической цепи может вызывать как количественные, так и качественные изменения ее режима. При количественных изменениях мы имеем дело с систематической ошибкой измерения — вольтметр показывает напряжение, которое меньше действующего на данном участке цепи в отсутствие вольтметра. Качественные изменения, например возникновение паразитной генерации, недопустимы, они исключают возможность измерения при таких условиях. Поэтому можно говорить только об оценке погрешностей, вызванных чисто количественными изменениями.

При измерении напряжений вольтметрами методом непосредственной оценки правильное значение напряжения на заданном участке цепи можно получить несколькими способами:

1. Подключить вольтметр к участку на все время работы конт-

ролируемого устройства.

2. Подключить к участку резистор с сопротивлением, равным сопротивлению вольтметра, и отключать его только на время измерения, когда присоединяется вольтметр.

3. Производить измерения вольтметром с настолько большим входным сопротивлением, чтобы его подключение никак не сказы-

валось на режиме испытуемой цепи.

 Измерить напряжение вольтметром с относительно невысоким сопротивлением, а затем найти расчетным путем поправки к показаниям.

5. Измерить напряжение вольтметром дважды, меняя его сопротивление, и по двум полученным показаниям рассчитать пра-

вильное значение напряжения.

Первые два способа очевидны, хотя второй из них не всем знаком. Вольтметры с большим входным сопротивлением рассматриваются в последующих главах, а в данной главе будут рассмотрены два последних способа. Для простоты сопротивление вольтметра считаем чисто активным.

О введении расчетных поправок

Пусть производится измерение э. д. с. источника тока, имеющего внутреннее сопротивление $R_{\rm BH}$, вольтметром с входным сопротивлением $R_{\rm BX}$ (рис. 1). Вольтметр покажет напряжение

$$U = U_x \frac{R_{\text{BX}}}{R_{\text{BH}} + R_{\text{BX}}},\tag{1}$$

которое меньше э. д. с. источника на величину ΔU :

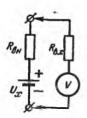


Рис. 1. Измерение напряжения методом непосредственной оценки.

$$\Delta U = U - U_x = -U_x \frac{1}{1 + \frac{R_{EX}}{R_{BH}}}.$$
 (2)

Это есть абсолютная ошибка измерения, вызванная конечной величиной сопротивления вольтметра. Относительная ошибка

$$\delta_U = \frac{\Delta U}{U_x} \ 100 \ \% = -\frac{100}{1 + \frac{R_{\rm BX}}{R_{\rm BH}}}.$$
 (3)

Тот факт, что погрешность δ_U носит систематический характер и зависит вполне определенным образом от соотношения сопротивлений вольтметра и испытуемого источника тока, дает возможность устранить эту погрешность введе-

нием поправки, если только известны сопротивления $R_{\mathtt{BH}}$ и $R_{\mathtt{BX}}$:

$$U_x = U\left(1 + \frac{R_{\rm BH}}{R_{\rm BX}}\right). \tag{4}$$

Поправка составляет $UR_{\rm BH}/R_{\rm BX}$. Вообще поправка есть взятая с обратным знаком абсолютная погрешность измерения; это та величина, которую нужно прибавить к показанию, чтобы получить действительное значение напряжения.

По отношению к вольтметру любая линейная электрическая цепь является двухполюсником и для расчетных целей может быть заменена эквивалентным генератором, э. д. с. которого равна напряжению холостого хода между точками подключения вольтметра, а внутреннее сопротивление - входному сопротивлению двухполюсника. Это преобразование известно под названием метода холостого хода и короткого замыкания, метода эквивалентного генератора, метода активного двухполюсника. Оно приводит к только что рассмотренной схеме измерения э. д. с. источника тока, сколь бы ни была сложна исходная электрическая цепь. Следовательно, формула (4) приобретает универсальный характер, если под э. д. с. U_x понимать э. д. с эквивалентного генератора $U_{\text{экв}}$, а под сопротивлением источника $R_{\rm BH}$ — внутреннее сопротивление эквивалентного генератора. Электродвижущая сила эквивалентного генератора $U_{\text{экв}}$ — это именно то напряжение, которое мы хотим возможно точнее измерить. Оно действует на испытуемом участке цепи, когда вольтметр не подключен. Внутреннее сопротивление эквивалентного генератора $R_{\rm BH}$ находится как сопротивление испытуемой цепи относительно точек подключения вольтметра, причем радиолампы и транзисторы представляются их схемами замещения, а э.д.с. всех источников, в том числе входящих в схемы замещения активных элементов. по-

лагаются равными нулю.

Исправление результата путем введения расчетных поправок на практике применяют не часто. Это объясняется, во-первых, громоздкостью расчетных формул, выражающих параметры эквивалентного генератора через параметры исходной электрической цепи. Во-вторых, при арифметических действиях с приближенными числами (а значения параметров цепей известны всегда только приближенно) результат вычислений получается с ошибкой, которая определяется не только погрешностями параметров (классами точности радиодеталей, например), но и видом формул. Из-за их сложности ошибку часто не только невозможно оценить, но и теряется всякая уверенность, что она не больше той, которую мы допустили бы, приняв показываемое вольтметром напряжение прямо равным напряжению, действующему в его отсутствие. В-третьих, не всегда известны параметры цепи. Поэтому везде, где возможно, предпочитают при бегать не к расчетным, а к экспериментальным методам определения правильного результата. Поэже мы еще вернемся к этому вопросу.

Пользуясь вольтметром с относительно невысоким входным сопротивлением, следует очень внимательно подходить к оценке погрешности измерения, а также и к выбору типа прибора. Разберем такой пример. Прибором Ц-52 производится измерение падения напряжения на резисторе сопротивлением $100~\kappa o m$. На шкале $0-30~\epsilon$ прибор показывает $25~\epsilon$, а на следующей шкале $(0-150~\epsilon)$ показывает $28~\epsilon$. Какие показания более правильны? На первый взгляд хочется отдать предпочтение показанию $25~\epsilon$: ведь отсчет расположен в конечной части шкалы. Но обратимся к цифрам. Прибор Ц-52 на постоянном токе имеет класс точности 1,5; его сопротивление на шкале $30~\epsilon-600~\kappa o m$, на шкале $150~\epsilon-3~\epsilon$ Мом. Погрешность первого показания $(25~\epsilon)$, обусловленная погрешностью прибора, будет $\pm (30/25)1,5=\pm 1,8\%$, второго $\pm (150/28)1,5=\pm 8\%$. Но сам результат измерения преуменьшен относительно действительного паде-

ния напряжения в первом случае на $\frac{100}{1+\frac{600}{100}}$ =14,3%, а во втором

всего лишь на $\frac{100}{1+\frac{3\,000}{100}}$ = 3,2 %. Если принимать показанное напря-

жение за действительное, то в первом случае, внешне благоприятном, предельное значение ошибки составило бы 16,1%, а во втором---

11,2%, т. е. гораздо меньше.

При работе с многопредельными приборами магнитоэлектрической, выпрямительной и ряда других систем (когда сопротивление прибора зависит от предела измерения) можно убедиться в отсутствии заметного влияния сопротивления вольтметра на результат, сравнивая показания на соседних пределах измерения. Если различие не превосходит абсолютного значения основной погрешности прибора на большем пределе, то влиянием сопротивления вольтметра можно пренебречь. В примере различие составляло 3 в, что больше основной погрешности на пределе измерения 150 в,

равной $1.5 \cdot 0.01 \cdot 150 = 2.25$ в. Для упрощения предполагалось, что подключение вольтметра к испытуемому резистору не привело к изменению распределения потенциалов в остальной части схемы, которая в связи с этим не упоминалась.

Проиллюстрируем еще несколькими примерами влияние выбора метода измерения и прибора на точность получаемого резуль-

тата и расходуемую в цепи измерения мощность.

Допустим, что прибор Ц-52 показывает 40 s на шкале 150 s. Отвлекансь пока от реакции испытуемой цепи на подключение вольтметра и считая окружающие условия нормальными, мы можем утверждать, что показания отличаются от действительного напряжения не более чем на $\pm 1,5 \cdot 0,01 \cdot 150 = \pm 2,25$ s или $\pm 5,6\%$.

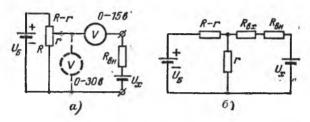


Рис. 2. Измерение напряжения дифференциальным методом.

a — принципнальная схема: δ — эквивалентная схема.

Сопротивление прибора на пределе измерения 150 в составляет 3 *Мом.*

Измерим теперь это напряжение не методом непосредственной оценки, а дифференциальным методом, пользуясь тем же прибором II-52. Возымем какую-либо батарею с э. д. с. порядка 40-50 в. Подключим параллельно ей потенциометр (рис. 2) и, пользуясь пределом измерения 30 в, установим напряжение 30 в на движке потенциометра. Погрешность установки будет равна $\pm 1,5 \cdot 0,01 \cdot 30 = \pm 0,46$ в. Переключим прибор на предел измерения 15 в и измерим разность между искомым напряжением и напряжением на движке (опорным). Пусть она окажется равной 10,5 в. Погрешность ее измерения составляет $\pm 1,5 \cdot 0,01 \cdot 15 = 0,22$ в. Отсюда искомое напряжение равно 30+10,5=40,5 в, а погрешность его измерения в худшем случае, так называемая предельная погрешность, равна арифеметической сумме частных погрешностей установки опорного напряжения и измерения разности: $\pm (0,45+0,22) = \pm 0,67$ в, что в относительных единицах составляет $\pm 1,65\%$.

Как видим, переход к дифференциальному методу измерения позволил в данном случае уменьшить погрешность измерения более чем втрое. А что стало с эффективным входным сопротивлением прибора? Он подключается к испытуемой цепи в момент измерения разности напряжений и потребляет от нее ток 50·10,5/15=35 мка, так как ток полного отклонения 50 мка, а показания прибора в это время 10,5 в. Если для простоты пренебречь сопротивлением потенциометра, то эффективное сопротивление прибора равно 40,5/35=1,16 Мом, т.е. значительно меньше, чем при измерении мерении мерени мерени мерении мерен

тодом непосредственной оценки.

Это уменьшение объясняется тем, что выбранный прибор на всех пределах измерения постоянного напряжения имеет один и тот же ток полного отклонения, что присуще подавляющему большинству электромеханических и части электронных вольтметров. Если бы мы взяли вольтметр с неизменным сопротивлением на всех пределах измерения (электростатический, электронный на лампах), то его эффективное сопротивление возросло бы во столько раз, во сколько измеряемое напряжение превышает разность измеряемого и опорного напряжений.

Изложенный выше дифференциальный метод очень эффективен при измерениях в высокоомных цепях, когда входное сопротивление обычного электронного вольтметра оказывается недостаточным. Одновременно резко уменьшается погрешность измерения, которая у электронных вольтметров (исключая цифровые) относительно велика. Выигрыш в точности примерно ра-

вен кратности шкал вольтметра.

Us - " Res

Рис. 3. Потенциометр с подключенным вольтметром.

Наибольшей частной погрешностью является погрешность установки опорного напряжения. Поэтому при одновременной

необходимости и в высокой точности, и в высоком сопротивлении нужны два прибора: — высококлассный любой системы для установки опорного напряжения и электронный, от которого не требуется большой точности, для измерения разности. Устанавливая опорное напряжение на движке потенциометра, мы, по сути дела, сами изготавливаем меру э. д. с. с наивысшей доступной в данных условиях точностью.

Когда используется один прибор, мы должны быть уверены, что после его переключения на измерение разности, напряжение на движке погенциометра не изменилось. Для этого, с одной стороны, сопротивление потенциометра должно быть достаточно мало, чтобы подключение вольтметра не вызывало изменения падения напряжения на нем, а с другой стороны, достаточно велико, чтобы источник опорного напряжения (батарея или что-либо иное) не разряжался и не менял напряжения в процессе измерения. Обычно эти условия хорошо совмещаются, но при точных измерениях могут потребоваться поправки. В связи с этим решим такую любопытную задачу: какое напряжение U' нужно установить на движке потенциометра по вольтметру, чтобы после отключения вольтметра это напряжение приняло заданное значение U? Сопротивление потенциометра равно R.

Обозначим сопротивление той части потенциометра, с которой снимается напряжение, через r, а оставшейся — через R—r (рис. 3). Будучи подключен, вольтметр с сопротивлением $R_{\rm BX}$ показывает

напряжение U':

$$U' = \frac{U_{\rm E}}{R\left(\frac{1}{R_{\rm BX}} + \frac{1}{r}\right) - \frac{r}{R_{\rm BX}}}.$$
 (5)

Плечо r мы устанавливаем таким, чтобы после отключения вольтметра падение напряжения на нем равнялось U:

$$U = U_{\rm B} \frac{r}{P}. \tag{6}$$

Подставляя значение r=R $\frac{U}{U_{\rm F}}$ в выражение (5), получим:

$$U' = \frac{U}{1 + \frac{U}{U_{\rm E}} \frac{R}{R_{\rm EX}} \left(1 - \frac{U}{U_{\rm E}} \right)}.$$
 (7)

Если, например, $U_{\rm E}=45~e,~R=100~{\rm ком},~R_{\rm BX}=600~{\rm ком},~{\rm то},~{\rm чтобы}$ опорное напряжение равнялось 30 e, нужно установить по прибо-

ру Ц-52 напряжение 28,9 в.

Для получения правильного результата измерения по рассматриваемому дифференциальному методу нужно ввести еще поправку на падение напряжения иа входном сопротивлении двухполюсника, а также на изменение опорного напряжения в результате подключения к нему при измерении разностного напряжения суммю сопротивления прибора и входного сопротивления двухполюсника. Со стороны вольтметра источник опорного напряжения представляет собой генератор с напряжением U и эквивалентным сопротивлением, равным параллельному соединению плеч потенциометра: $R_{\rm BH}^* = r \left(1 - \frac{r}{R}\right)$. Используя формулу (4) и имея в виду, что поправки арифметически складываются, напишем сразу выражение

$$U_x = U + U_p \left(1 + \frac{R_{BH}}{R_{PY}} + \frac{R_{BH}}{R_{PY}} \right),$$
 (8)

где $U_{\rm D}$ — разностное напряжение, показываемое вольтметром. Это выражение легко проверить по схеме замещения (рис. 2, δ).

для правильного значения интересующего нас напряжения U_x :

Входящее в $R_{\rm BH}$ значение r получено выше:

$$r = R \frac{U}{U_{\rm B}}$$

Пусть $R_{\mathtt{bH}}\!=\!60$ ком. При принятых или найденных ранее числовых значениях других параметров

$$U_x = 30 + 10.5 \left(1 + \frac{2 \cdot 10^5}{9 \cdot 3 \cdot 10^5} + \frac{6 \cdot 10^4}{3 \cdot 10^5} \right) = 43.3 \text{ s}.$$

Мы не будем вдаваться в анализ погрешностей результата, причинами которых являются погрешности параметров цепей — испытуемой и опорного напряжения. Нашей задачей является не детальное исследование данного метода измерения, а стремление показать на примере важность предварительного продумывания эксперимента (всякое измерение есть физический эксперимент), необходимость и способы введения расчетных поправок в результат для его исправления, когда сопротивление прибора не слишком велико.

В примере проявились и слабые стороны расчетного метода необходимость знания параметров цепей и громоздкость вычисле-

ний, заметная уже даже в таком простом случае.

Получение правильного результата

Перейдем к экспериментальному способу получения правильного результата при измерении напряжений вольтметрами с недостаточно высокими входными сопротивлениями. Он не требует зна-

ния параметров цепи, а расчеты сводятся к минимуму.

Обратимся вновь к активному двухполюснику, который был изображен на рис. І. Мы имеем две неизвестные величины — интересующее нас напряжение холостого хода U_x и входное сопротивление двухполюсников $R_{\rm BH}$. Чтобы их найти, нужно располагать двумя уравнениями. Их мы получим, измеряя напряжение поочередно двумя вольтметрами с различными входными сопротивлениями.

Пусть входное сопротивление первого вольтметра $R_{\mathtt{Bxl}}$, второ-

го $R_{\rm Bx2}$, а их показания равны соответственно U_1 и U_2 . Тогда

$$U_1 = U_x \frac{R_{\text{BX1}}}{R_{\text{BH}} + R_{\text{BXI}}}; \quad U_2 = U_x \frac{R_{\text{BX2}}}{R_{\text{BH}} + R_{\text{BX2}}}.$$
 (9)

Из совместного решения этих уравнений получим:

$$U_x = \frac{(R_{\text{BX}1} - R_{\text{BX}2}) U_1 U_2}{R_{\text{BX}1} U_2 - R_{\text{BX}2} U_1}.$$
 (10)

Предполагается, что $R_{\rm BX1}{>}R_{\rm EX2}$; реальный порядок подключения вольтметров не играет роли, поскольку индексация величин — дело условное и мы индекс 1 будем приписывать большему из сопротивнений и большему из показаний (хотя в принципе ничего не изменится от обратного, ибо одновременно сменятся знаки в числителе и знаменателе).

Обозначим отношение $R_{\rm EXI}/R_{\rm BX2}$ через Q(Q>1) и перепишем предыдущее выражение в более удобном для дальнейшего исполь-

зования виде:

$$U_x = \frac{(Q-1)U_1U_2}{QU_2 - U_1}.$$
 (11)

На практике нет нужды в двух вольтметрах, достаточно одного. Он может быть многопредельным или же однопредельным. Очевидно, что многопредельный вольтметр прямо заменяет в данном эксперименте два вольтметра, если только его входное сопротивленне различно на разных пределах измерения. Это имеет место у большинства электромеханических приборов (и части транзисторных и ламповых), у которых ток полного отклонения на всех пределах измерения один и тот же. В этом случае величина Q представляет собой не что иное, как кратность шкал, используемых для измерения. Это сразу все упрошает.

Пусть, например, ампервольтметр Ц-315 на пределе измерения $100 \ \theta$ показывает $28 \ \theta$, а на пределе $28 \ \theta$ его показания $20 \ \theta$. Чему равно напряжение в отсутствие вольтметра? Найдем кратность Q: Q=100/25=4. Подставляя в формулу (11) числовые значения,

получим:

$$U_x = 3.28.20/(4.20 - 28) = 32,3 \text{ s.}$$

На рис. 4 приведена номограмма, вычерченная для формулы (11). Слева расположена ось напряжений с двумя шкалами (поль-

зуются той, которая в данный момент удобнее), справа шкала Q, между ними — две наклонные вспомогательные шкалы I и II. Порядок действий таков. На шкале напряжений берем точку, соответствующую большему напряжению U_1 , и соединяем ее прямой с нужным значением Q на правой шкале. Точку пересечения этой

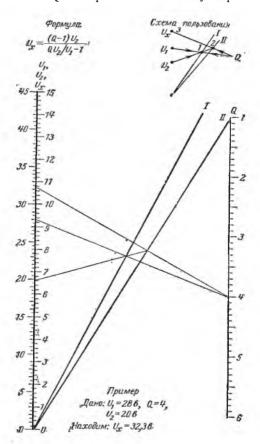


Рис. 4 Номограмма для расчета действительного напряжения по результатам двух измерений.

прямой с немой шкалой I соединяем с точкой на шкале напряжений, соответствующей меньшему напряжению U_2 , и, продолжая эту линию, отмечаем точку ее пересечения с немой шкалой II. Теперь остается провести прямую линию, которая соединит значение Q с найденной на шкале II точкой, и прочитать ответ на пересечении этой линии со шкалой напряжений.

На номограмме изображена для примера схема решения пре-

лыдущей задачи (U_1 =28 ϵ , U_2 =20 ϵ , Q=4, ответ 32,3 ϵ).

Изложенный метод получения действительного напряжения прост и удобен. Вы подключаете свой многопредельный прибор (тестер, авометр), замечаете показания на одном пределе, затем на другом. Берете номограмму, три движения линейки — и ответ готов. Величина Q — это отношение пределов измерения. Сами пределы по возможности выбираются так, чтобы меньшее показание U_2 располагалось во второй половине шкалы.

Напряжение U_x мы получаем с погрешностью, которая в основном определяется погрешностью измерения большего напряжения U_1 (ее доля в общей погрешности примерно в Q^2 раз превышает

долю погрешности измерения U_2):

$$\delta U_x \approx \frac{\delta U_1}{1 - \frac{U_1}{U_2} \cdot \frac{1}{Q}},\tag{12}$$

где δU_x и δU_1 — относительные погрешности измерения напряжений U_x и U_1 .

Если вольтметр однопредельный, то для получения второго по-казания U_2 параллельно, вольтметру подключают резистор известного сопротивления R_1 , в результате чего сопротивление вольтметра уменьшается и становится равным $R_{\rm Bx1}\,R_1/(R_{\rm Bx1}+R_1)$. Оно соответствует сопротивлению $R_{\rm Bx2}$ предыдущего случая, так что теперь

 $Q=1+rac{ec{R}_{ ext{BX1}}}{R_{1}}$. Порядок расчета при помощи формулы или номо-

граммы не меняется.

При относительно высоком сопротивлении вольтметра, когда параллельное подключение резистора с таким же сопротивлением, что у вольтметра (Q=2), вызывает лишь небольшие изменения показаний, в 5-10% от начального U_1 , поправка к показанию U_1 довольно точно равна самому изменению показаний вольтметра Δ $U=U_1-U_2$, так что

$$U_x \approx U_1 + \Delta U. \tag{13}$$

И действительно, при уменьшении входного сопротивления вольтметра вдвое (Q=2) ток через него увеличивается также примерно вдвое и вдвое увеличивается падение напряжения па внутреннем сопротивлении испытуемой цепи. Следовательно, уменьшение показываемого напряжения $\Delta U=U_1-U_2$, если его удвоить и приплюсовать к U_2 , даст действительное напряжение источника $U_x{\approx}2\Delta\,U+U_2{=}U_1+\Delta\,U$. Но это частный случай. Точное значение поправки при любом соотношении между сопротивлением вольтметра и внутренним сопротивлением испытуемой цепи выражается через уменьшение ΔU показаний вольтметра при параллельном присоединении к нему любого сопротивления (любое Q) следующим образом:

$$\Delta U_{\Pi} = \frac{\Delta U}{Q\left(1 - \frac{\Delta U}{U}\right) - 1} \tag{14}$$

И

$$U_x = U_1 + \Delta U_n. \tag{15}$$

Нетрудно видеть, что случай однопредельного вольтметра автоматически распространяется на те электронные вольтметры, у которых входное сопротивление на всех пределах одно и то же. Для введения поправок при однопредельном вольтметре достаточно знать его сопротивление. Обычно на вольтметрах указывается ток полного отклонения, причем у вольтметров классов 0,05; 0,1; 0,2 и 0,5 ток полного отклонения при нормальной температуре может отличаться от указанного не более чем на величину допускаемой основной погрешности. Поделив предел измерения в вольтах на ток полного отклонения в миллиамперах, получим сопротивление прибора в килоомах. Если собственное потребление прибора не обозначено, ток полного отклонения нужно измерить.

Измерение входного сопротивления электронных вольтметров

рассмотрено дальше.

Глава вторая

ЭЛЕКТРОМЕХАНИЧЕСКИЕ ВОЛЬТМЕТРЫ

Общие положения

Показывающие вольтметры непосредственной оценки состоят из измерительного механизма, измерительной цепи и устройства. Измерительный механизм есть основа прибора, в нем электрическая величина преобразуется в механическое (обычно угловое) перемещение указателя, что требует затраты некоторого количества электромагнитной энергии. Приборы, в которых необходимая для отклонения подвижной части измерительного механизма мощность отбирается непосредственно от испытуемой схемы, составляют электромеханическую группу. Если же на отклонение подвижной части расходуется электрическая мощность вспомогательного источника энергии, а отбираемая от испытуемой схемы мощность лишь управляет ею при помощи электронного усилителя (т. е. происходит усиление мощности), то такие приборы относят к электронной группе. В зависимости от вида усилителя электронные вольтметры делят на ламповые и транзисторные. Эта глава посвящена электромеханическим вольтметрам.

По способу преобразования электромагнитной энергии в измерительном механизме в отклонение его подвижной части и по конструктивным особенностям различают следующие системы вольтметров: магнитоэлектрическую, электромагнитную, электродинамическую, ферродинамическую, электростатическую. Некоторые системы получают наименование по виду преобразователя в измерительной цепи магнитоэлектрического механизма — например, выпрямительная (де-

текторная), термоэлектрическая.

Измерительная цепь служит для преобразования измеряемой величины в другую, уже непосредственно воздействующую на из-

мерительный механизм.

Во всех упомянутых выше системах, кроме электростатической, электрической величиной, которая преобразуется в измерительном механизме в отклонение указателя, является сила тока. Поэтому у вольтметров измерительная цепь представляет собой рамку или ка-

тушку измерительного механизма, последовательно с которой включен добавочный резистор. Сопротивление этого резистора совместно с сопротивлением рамки (катушки) и обеспечивает преобразование измеряемого напряжения в ток, необходимый для отклонения подвижной части измерительного механизма.

Таким образом, вольтметр представляет собой измеритель тока

с последовательно включенным резистором.

Предел измерения вольтметра зависит от тока полного отклонения подвижной части $I_{\rm H}$, сопротивления рамки r и сопротивления добавочного резистора $R_{\rm H}$:

 $U_{\rm H} = I_{\rm H} (r + R_{\rm H}).$ (16)

Отсюда добавочное сопротивление, необходимое для получения заданного предела измерения:

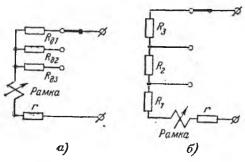


Рис. 5. Многопредельные вольтметры.

 $a-{
m c}$ раздельным включением добавочных резисторов; $b-{
m co}$ ступенчатым включением добавочных резисторов.

$$R_{\rm H} = \frac{U_{\rm H}}{I_{\rm B}} - r. \tag{17}$$

Изменение предела измерения достигается изменением сопротивления добавочного резистора. Снабжая измерительный механизм набором добавочных резисторов и переключателем (рис. 5), получают многопредельный вольтметр. Часто используют не раздельное, а ступенчатое включение добавочных резисторов (рис. 5, б). В этом случае сопротивления резисторов рассчитывают по формулам:

$$R_{1} = \frac{U_{H1} - I_{H} r}{I_{H}};$$

$$R_{2} = \frac{U_{H2} - U_{H1}}{I_{H}};$$

$$R_{3} = \frac{U_{H3} - U_{H2}}{I_{H}},$$

$$R_{4} = \frac{U_{H3} - U_{H2}}{I_{H}};$$

$$R_{5} = \frac{U_{H3} - U_{H2}}{I_{H}};$$
(18)

где $U_{\rm H1}$, $U_{\rm H2}$, ..., $U_{\rm H}n$ — желаемые пределы измерения.

Общий измерительный механизм и простота цепей вольтметров и амперметров приводят к тому, что часто эти приборы объединяют и выпускают под названием вольтамперметров. В лабораторной и производственной практике, а также среди радиолюбителей широко распространены комбинированные приборы — ампервольтомметры (авометры, тестеры), например ТТ-1, Ц-20, Ц-52, Ц-315 и т. д. Аналогичные приборы конструируются радиолюбителями и самостоятельно.

Ценными качествами электромеханических вольтметров являются их надежность, простота и независимость от электрической (осветительной) сети. Вместе с тем собственное потребление энергии у них довольно велико. В табл. 1 даны предельные параметры вольтметров различных систем.

Таблица 1

Система прибора	Наиболь- шая чув- ствитель- ность, делів	Наименьший предел изме- рения, <i>в</i>	Наивыс- ший класс точности	Наименьшая потребляемая мощность при максималь- ном откло- нении, <i>вт</i>
Магнитоэлектрическая	3·10 ⁵ 7 10 ² 0,5 0,5	0,3·10 ⁻⁵ 0,75 4,5·10 ⁻² 15 10	0,01 0,2 0,05 0,5 0,05	10 ⁻⁹ 10 ⁻³ 10 ⁻² 1,5

Из таблицы видно, что паилучшими являются приборы магнитоэлектрической системы. Они принадлежат к числу наиболее точных приборов постоянного тока и по сравнению с приборами других систем потребляют наименьшую мощность. К этому нужно добавить еще линейность их шкалы. Эта сумма их положительных катеств объясняет тот факт, что подавляющее число переносных вольтметров постоянного тока и все индикаторные приборы радиоизмерительной аппаратуры являются магнитоэлектрическими.

В дальнейшем мы будем иметь в виду только эту систему.

Полная мощность, потребляемая вольтметром, включает в себя мощность, необходимую для поворота и удержания рамки измерительного механизма, и мощность, рассеиваемую на добавочном сопротивлении. Если первая для распространенных магнитоэлектрических приборов составляет $10^{-9}-10^{-4}$ θt , то вторая значительно больше и зависит от предела измерения.

Более наглядно и удобно характеризовать вольтметр не потребляемой мощностью, а его сопротивлением. Эти величины связаны

соотношением

$$R_{\rm ux} = \frac{U_{\rm H}^2}{N},\tag{19a}$$

где $R_{ ext{bx}}$ — сопротивление вольтметра, ом; $U_{ ext{H}}$ — номинальное напряжение вольтметра, $ext{$ heta$};$

N- величина собственного потребления мощности, $\epsilon \tau$.

Можно указывать также ток, потребляемый вольтметром на данном пределе измерения. Именно в такой форме указывается собственное потребление электромеханических вольтметров на их

циферблатах.

Сопротивление вольтметра складывается из сопротивления рамки r и добавочного сопротивления $R_{\rm L}$. Если $I_{\rm H}$ — ток полного отклонения подвижной части измерительного механизма вольтметра, а $U_{\rm H}$ — предел измерения вольтметра, то сопротивление вольтметра на данном пределе измерения будет:

$$R_{\rm BX} = R_{\rm A} + r = \frac{U_{\rm H}}{I_{\rm H}}$$
 (196)

Обычно $R_{\pi}\gg r$ и, следовательно $R_{\pi x}\approx R_{\pi}$.

Сопротивление вольтметра на разных пределах измерения различно. Поэтому, чтобы характеризовать сопротивление многопредельного вольтметра одним числом, указывают сопротивление, которое имел бы этот вольтметр на пределе измерения, равном 1 в. Тогда, чтобы получить сопротивление на каком-либо пределе измерения, нужно только это условное сопротивление умножить на величину предела измерения. Такое условное сопротивление имеет размерность ом/в и, как видно из (19, 6), численно равно обратной величине тока полного отклонения указателя.

Поясним это примером. Пусть имеется микроамперметр типа M-24 с током полного отклонения 50 $m\kappa a$. На базе этого микроамперметра можно изготовить вольтметр постоянного тока, который будет иметь сопротивление $1/50 \cdot 10^6 = 2 \cdot 10^4$ om/s = 20 $\kappa om/s$. Предположим, что пределы измерения выбраны 1, 10 и 100 s. Тогда входные сопротивления вольтметра на этих пределах будут соответственно: 20 $\kappa om/s \cdot 1$ s = 20 $\kappa om/s$ 20 $\kappa om/s \cdot 10$ s = 200 $\kappa om/s$

20 $\kappa_{OM/B} \cdot 100 \ B=2 \ Mom$.

Казалось бы, что для изготовления вольтметра с очень большим сопротивлением достаточно лишь использовать измеритель тока высокой чувствительности. Однако при конструировании высокомных неэлектронных вольтметров встречаются две группы трудностей. Первая из них связана с противоречивостью требований предъявляемых к измерителю тока, а вторая — с трудностью изготовления стабильных высокоомных добавочных сопротивлений. Остановимся на этих вопросах подробнее.

Измерители тока и добавочные сопротивления

Измеритель тока, используемый для изготовления вольтметра, должен не только иметь нужную чувствительность, но и давать малую погрешность, быть прочным и надежным. Все эти качества теснейшим образом связаны с системой крепления подвижной части измерителя.

До недавнего времени подвижные части микро- и миллиамперметров укреплялись исключительно на кернах с подпятниками из твердых материалов, например агата или корунда. При такой системе крепления изготовление высокочувствительных и одновременно высокоточных приборов является весьма сложным делом.

Действительно, противодействующий момент в таких приборах создается пружиной. Для более чувствительного прибора нужиа и более слабая пружина. Однако чем она слабее, тем больше сказываются силы трения в опорах, что и является основной причиной

возрастания погрешности показаний.

Для уменьшения сил трения нужно было бы облегчить рамку и уменьшить площадь опоры, т. е. толщину керна. Но это приведет к большой хрупкости измерительного механизма. Он будет чувствительным к перегрузкам и внешним воздействиям. Поэтому лабораторные вольтметры высоких классов точности имеют довольно большое собственное потребление и сопротивления порядка 10²—10³ ом/в.

Для изготовления авометров используют, как правило, так называемые щитовые малогабаритные приборы, например хорошо известный радиолюбителям измеритель тестера типа ИТ, микроамперметры типов М-24, М-494 и др. У этих приборов компромиссные характеристики: при достаточной для технических измерений точности (классы 1—4) они имеют относительно малые токи полного отклонения — порядка 50—500 мка. Приборы эти прочны и рассчитаны на работу практически в любых условиях.

В соответствии с собственным потреблением этих измерителей авометры промышленного изготовления при измерении постоянных напряжений имеют сопротивления от 5 ком/в (у тестера типа TT-1)

до 20 ком/в (у тестера типа Ц-52).

В последние годы приборостроительная промышленность освоила выпуск как лабораторных, так и щитовых малогабаритных приборов, подвижная часть которых укрепляется на растяжках (двух тонких нитях) из материала с большой упругостью, например из фосфористой бронзы, платиносеребряного сплава и т. п. Такая система крепления исключает влияние сил трения и позволяет повысить чувствительность прибора без снижения его точности.

Можно указать, например, на микроамперметры типа М900, которые выпускаются классов точности 1,0 и 1,5 с током полного отклонения 10 мка (сопротивление рамки 5000 ом, длина дуги шкалы 88 мм, рабочее положение прибора вертикальное или горизонтальное). Очевидно, что сопротивление вольтметра при таком измериное).

теле может быть доведено до 100 ком/в.

Отечественной промышленностью серийно выпускаются вольтметры и с еще более высокими сопротивлениями. Например, однопредельные щитовые плоскопрофильные вольтметры со световым указателем типа М135 имеют класс точности 1,0, пределы измерения — от 1 до 500 в и ток полного отклонения 1,2 или 10 мка, что соответствует сопротивлениям 1 Мом/в, 500 ком/в и 100 ком/в. Прекрасным прибором является микроампервольтметр типа М1201. Этот девятнадцатипредельный прибор со световым указателем имеет класс точности 0,5 и предназначен для измерения тока и напряжения в цепях постоянного тока. Его пределы измерения по напряжению 3—7,5—15—30—75—150—300—750 в. Сопротивление на сопротивление и равно 10 Мом. По пределам измерения и сопротивлению этот прибор соответствует стандартному электронному вольтметру, а по классу точности превосходит последний в несколько раз.

Однако использование измерителей тока большой чувствительности — это не единственный путь для создания высокоомных

вольтметров.

Очень высокоомный вольтметр можно изготовить и на базе относительно чувствительного микро- или даже миллиамперметра. Для этого измеритель соединяют с добавочным сопротивлением через стабильный и линейный усилитель тока. Если его коэффициент усиления по току K, то измеритель тока вместе с усилителем можно рассматривать как некоторый эквивалентный измеритель, в K раз более чувствительный. Пусть, например, нспользуется миллиамперметр с током полного отклонения I ма и усилитель с коэффициентом усиления по току 40. При совместном их включении устройство эквивалентно микроамперметру с током полного отклонения 25 мка и вольтметр может иметь сопротивление 40 ком/в. Соответствующие усилители будут описаны ниже.

Из сказанного можно сделать вывод, что в настоящее время пувствительность измерителей тока вполне достаточна (или может быть сделана таковой) для изготовления вольтметров постоянного тока, сопротивление которых уже сравнимо с входным сопротивлением стандартного электронного вольтметра на лампах. а на высоких пределах измерения даже превосходит

€ГО.

Желаемая точность показывающего вольтметра достигается выбором соответствующего измерителя тока и изготовлением достаточно стабильных добавочных резисторов. При сопротивлениях добавочных резисторов в десятки и сотни мегомов самостоятельно изготовить их из манганина или константана нельзя. В этом случае имеются две возможности: собрать добавочные сопротивления из стандартных проволочных сопротивлений или использовать непро-

волочные, обеспечив их стабильность.

Наиболее подходящими являются резисторы микропроволочные манганиновые в стеклянной изоляции, МВС и МВСГ, выпускаемые по РТУ МССР 642-62 для работы в цепях постоянного тока. Негерметизированные резисторы с эмалевым покрытием МВС, внешне похожие на резисторы ВС, рассчитаны на работу в интервале температур 10—100° С при относительной влажности воздуха не выше 80%. Герметизированные резисторы в керамических корпусах МВСГ рассчитаны на работу в интервале температур от -4 до +100° С при относительной влажности воздуха до 98%. По допускаемому отклонению омического сопротивления от номинального значення при пренебрежимо малой нагрузке (не более 0,01 вт) и при температуре окружающего воздуха $+20\pm2^{\circ}$ С резисторы делятся на три группы: I группа — точность подгонки ±0,03%; II групла — $\pm 0,05\%$; III группа — $\pm 0,10\%$. Резисторы с номинальной мощностью рассеяния 0,25 вт выпускаются на номинальные значения сопротивлений от 10 ком до 2 Мом 0,5 вт — от 10 ком до 10 Мом, 1 вт — от 50 ком до 10 Мом. По температурному коэффициенту резисторы разделяются на три класса: у резисторов класса А ТКС не более $\pm 1,5 \cdot 10^{-5}$, класса B — не более $\pm 3,0 \cdot 10^{-5}$. класса B — не более ±6.0 · 10-5 на 1° С.

Самопроизвольное изменение действительной величины сопротивления в течение года при температуре окружающего воздуха от

10 до 35° С не превышает 0,025%.

В качестве добавочных сопротивлений можно воспользоваться н высокоомными магазинами сопротивлений МСШ-70. Они также изготовляются из манганинового микропровода и выпускаются в виде декад 10×0 ,1 и 10×10 Мом. Магазин МСШ-72 выпускается в виде декад 10×100 Мом.

Однако микропроволочные резисторы достать трудно и они дороги. Магазины сопротивлений, кроме того, громоздки н тяжелы. Поэтому, как правило, добавочные резисторы являются непроволочными. По тем же причинам из непроволочных резисторов состоят

и входные делителн электронных вольтметров на лампах.

Непроволочные резисторы независимо от их типа не обладают такой неизменностью величины во времени, как проволочные. С течением времени они «стареют». Особенно сильное старение резисторов происходит в первые месяцы или год после выпуска, и оно является в какой-то мере неизбежным следствием технологии изготовления. Например, при лакнровке резисторов растворители частнчно проникают в проводящий слой и в дальнейшем, постепенно испаряясь, меняют его проводимость.

Государственные стандарты на резисторы ВС (высокостабильные) и МЛТ (металлизнрованные, лакированные, термостойкие), например, допускают относительное изменение сопротивления за 6 мес. заводского хранения (после изготовления) в пределах ±3%. Старение продолжается и в дальнейшем, причем работа резистора под нагрузкой ускоряет этот процесс. Отчасти это происходит из-за повышения его температур, но главным образом потому, что в отдельных местах соприкосновення зерен проводящего слоя могут возникать сильные местные перегревы, которые либо нарушают контакт этих зерен, либо, наоборот, приводят к их спеканию.

По ГОСТ для резисторов МЛТ после 2000 и работы под нагрузкой считается допустимым необратимое изменение активного сопротивления до $\pm 6\%$ сверх отклонения, установленного для данного класса точности. Следовательно, резисторы класса 1 с допускаемым отклонением от номинала $\pm 5\%$ после 2000-часовой работы под нагрузкой могут иметь отклонение $\pm 11\%$. Реальные цифры обычно ниже, но приходится считаться и с возможностью предельных отклонений. Эффект старения у высокометомных резисторов проявляется гораздо заметнее. У резисторов КЛМ (композиционные лакированные мегомные) за 6 мес. хранения относительные изменения величины могут достигнуть $\pm 8\%$.

На сопротивление непроволочных резисторов сильно влияют климатические условия — температура, влажность, атмосферное дав-

ленне

Практически наиболее заметно воздействие температуры. Для резисторов МЛТ в области температур 20—100° С температурный коэффициент может иметь значение в пределах $\pm 0.7 \cdot 10^{-8}$ град—1 для сопротивлений до 1 Мом и $\pm 1 \cdot 10^{-8}$ град—1 для сопротивлений более 1 Мом. Это значит, что при изменении температуры на 10° С (что возможно в течение дня или даже за более короткий срок) изменение сопротивления резистора может составлять $\pm 1\%$.

Температурный коэффициент резисторов КЛМ равен примерно

 $\pm 2 \cdot 10^{-3} \, rpa \dot{\partial}^{-1}$.

Температура резистора под нагрузкой определяется мощностью, выделяемой током нагрузки, и условнями теплоотдачи. Для вычисления этой температуры имеются специальные формулы и графики,

которые можно найти в литературе.

Воздействие влаги на резисторы связано с тем, что покрывающая их лаковая пленка разбухает и механически разобщает частицы проводящего слоя, а проникающая сквозь покрытие влага меняет проводимость слоя. Высокоомные резисторы, имеющие более тонкий проводящий слой, претерпевают при этом большие измене-

ния. Поэтому вместо резисторов типа КЛМ желательно использовать сопротивления типа КВМ (композиционные вакуумные мегомные). Они не имеют лакового покрытия, а заключены в стеклянные баллоны, из которых выкачан воздух.

Все резисторы для повышення временной стабильности нужно подвергать электрической тренировке (выдержке в течение нескольких часов под нагрузкой, чуть большей номинальной) и нс-

кусственному старенню.

Резисторы типа КВМ с этой целью выдерживают 100 ч при температуре 100° C, а затем 2-3 недели в нормальных условиях. При этом их сопротивление уменьшается на несколько процентов вследствие выделения из проводящей пленки газообразных продуктов.

Резисторы типа КЛМ тренируют несколькими температурными миклами от -40 до +60° С или выдержкой в течение нескольких

недель при температуре 50-70° С.

Треннрованные и состаренные резисторы желательно заключать в герметическую коробку с выводами через проходные изоляторы. В эту же коробку следует поместить осущитель, например силика-

Такими мерами погрешности, определяемые временной нестабильностью добавочных сопротивлений, можно свести к весьма ма-

лым величинам.

Заметим, что потребности измерительной н счетно-решающей техникн в стабильных непроволочных резисторах удовлетворяются все лучше. Например, освоен серийный выпуск прецизнонных резисторов С2 в нескольких исполнениях. Резисторы С2-13 помещены в керамический корпус н герметизированы, С2-14 имеют эмалевое покрытие, C2-15— изолированного типа. Все они выпускаются на номинальные сопротивления 10 ком—1 Мом. Резисторы C2-13 имеют допустимые отклонения сопротивлення от номинала 0,1; 0,2; 0,5; 1 и 2%. Остальные —0,5; 1,0 и 2%. Рабочая температура — $60 \div + 125^{\circ}$ С. ТКС от $\pm 0.25 \times 10^{-4}$ (для группы A) до $\pm 2.0 \cdot 10^{-4}$ (для группы Γ).

Измерение высокоомных сопротивлений с достаточной точностью очень затруднительно, а в любительских условнях просто невозможно. Однако нужную величину сопротивления можно подобрать, и не прибегая к измеренням. Для этого к вольтметру прикладывается номинальное для данного предела напряжение и из нескольких резисторов отбирается тот, при котором указатель измерителя тока устанавливается на конечную отметку шкалы (или возможно ближе к ней). В этом случае сопротивление будет подобрано с погрешностью, равной приведенной погрешности измерителя тока, если пренебречь погрешностью установки номинального напряжения, которое должно контролироваться лабораторным вольтметром.

Тогда предельная погрешность δ показания вольтметра с подо-

бранным таким образом добавочным сопротивлением будет:

$$\delta = \pm \left(\delta_{\rm n} + \delta_{\rm R} + \frac{1}{U} \, \delta_{\rm n} U_{\rm n} \right), \tag{20}$$

где оп — приведениая погрешность измерителя тока, %;

 δ_R — относительное изменение величины добавочного сопротивления вследствие старения и воздействия климатических условий, происшедшее после градуировки, %;

 $U_{
m H}$ — номинальное напряжение вольтметра, $m{e}$; U — показываемое вольтметром напряжение, $m{e}$.

Средн имеющихся резисторов может не оказаться достаточно близкого по сопротивлению к необходимой величине. Тогда берется ближайшее меньшее сопротивленне и последовательно с ним включается такое небольшое постоянное или переменное сопротивление, чтобы их общая величина была равна нужному значению. Стабильность этих регулирующих резисторов почти не оказывает влияния на общее сопротивление, поэтому они могут быть любых типов и тренировать их или заключать в герметическую коробку не нужно. Действительно, относительное изменение всего добавочного сопротивления, вызванное изменением регулирующего сопротивления на $\delta_{\text{пер}}$ %, будет

$$\frac{\Delta R}{R} = \frac{\delta_{\text{nep}}}{\frac{R_{\text{noct}}}{R_{\text{nep}}} + 1},\tag{21}$$

где $R_{\text{пост}}$ и $R_{\text{пер}}$ — соответственно постоянная и переменная состав-

ляющие добавочного сопротивления.

Можно поступить иначе. После того как будет подобрано ближайшее меньшее сопротивление, чувствительность измерителя тока уменьшают настолько, чтобы с данным добавочным сопротивлением при подаче номинального напряжения стрелка измерителя устанавливалась точно на конец шкалы. Это осуществляется с помощью переменного сопротивлення, включаемого параллельно измерителю тока. Очевидно, что изменение параллельного сопротивления в этом случае будет влиять на градуировку вольтметра в $R_{\text{пер}}+r$ раз меньше, чем такие же относительные изменения до-

бавочного сопротивления (r — сопротивление рамки измерителя). Кроме того, рамка имеет сравнительно небольшое сопротивление — сотни или тысячи омов. Величина включаемого параллельно рамке сопротивления будет $R_{\rm nep}=(10\div20)r$. Поэтому параллельное сопротивление может быть проволочным и, следовательно, стабильным. Тем самым полностью устраняется его влияние на стабильность градуировки. Но при этом сопротивления вольтметров на разных пределах будут несколько различаться.

Микроимперметры при массовом производстве собирают из стандартных деталей. Эти детали — магниты, рамки, пружины и т.п. — не могут быть строго одинаковыми. Поэтому приборы выпускают с некоторым запасом по чувствительности, а для установки ее номинального значения в приборах предусмотрен элемент регули-

ровки, обычно магнитный шунт.

У некоторых типов приборов регулировать положение шунта можно без вскрытия прибора. У микроамперметров М-24, например, шпилька, на которой укреплен магнитный шунт, выведена через гнездо в задней стенке корпуса. После заводской регулировки гнездо заливается смолой и клеймится. При вывертывании шпильки чувствительность прибора уменьшается, при вывертыванни — уве-

личивается. Практически увеличение чувствительности, достигаемое при полном удалении шунта, составляет 2,5—3%. У отдельных экземпляров приборов конец шпильки проглядывает из-под клейма, т. е. находится примерно вровень с корпусом. Резерва повышения

уувствительности у таких приборов нет.

Во многих типах приборов магнитных шунтов нет. Их чувствительность регулируют изменением магнитной индукции в зазоре на специальных установках, содержащих электромагнит с раздвижными полюсами. В любительских условиях это сделать очень трудио, и можно лишь уменьшать чувствительность наружными шунтами.

Чувствительность приборов на растяжках регулируют, меняя натяжение растяжек. Это натяжение создается пластинчатымн пружинамн, к которым припаяны концы растяжек. Деформируя слегка пружину, можно изменить натяжение, а тем самым чувствительность. Такую регулировку надо проводить осторожно, чтобы не

повредить растяжку.

Таким образом, если воспользоваться этой возможностью изменения чувствительности измерителя, то для однопредельных вольтметров можно обойтись без регулирующих сопротивлений и в качестве добавочных использовать сопротивления, несколько большие номинального значения. В многопредельных вольтметрах чувствительность регулируют на верхнем пределе измерения. На более ннзких пределах добавочные сопротивления невелики, их легче измернть и, таким образом, обойтись без переменных сопротивлений.

До сих пор мы нмели в виду изготовление возможно более точных вольтметров, погрешиость которых определялась бы в основном классом точности используемого измерителя тока. Если же допустимая погрешность устанавливается 5—10% илн нет в распоряжении лабораторного вольтметра для градуировки, то пределы измерений просто принимаются равными произведениям тока полного отклонения стрелки прибора на номинальное сопротивление подключенного

добавочного резистора.

В ряде случаев может помочь то обстоятельство, что относительная погрешность сопротнвлення уменьшается, если сопротивление
образуется последовательным соединением нескольких сопротнвлений
меньшей величины. В самом деле, точное значение сопротивления
есть величина случайная, которая в пределах допуска с равной вероятностью может быть и больше номинального значения и меньше его.
При последовательном соединении сопротнвлений те отклонения,
которые имеют разные знаки, в какой-то мере взаимно погашаются.

В соответствии с теорией вероятностей при последовательном соединении n сопротивлений одного номинала R с допуском \pm δ % в 997 случаях из 1 000, т. е. практически всегда, предельная абсолютная погрешность их суммы nR не превысит величины \pm 0,01 δRV n, а относительная погрешность — величины \pm δ/V n%. Это значит, что, например, сумма четырех сопротивлений, каждое из которых имеет номинал R и допуск \pm 10%, эквивалентна одному сопротивлению номинала 4R с допуском \pm 5%.

Эти рассуждения справедливы, если резисторы вибираются наугад, но нз большого количества При этом нужно помнить, что на заводах сортировка и разбраковка производятся таким образом, что в одну коробку могут попасть сопротивления только с одним знаком отклонения от номинала.

Прн измерении напряжений переменного тока измеритель тока включают через выпрямитель, чаше всего мостового типа, на германиевых или меднозакисных выпрямителях. Для уменьшения влияния характеристик выпрямителей на линейность шкалы н ее неизменность ток через выпрямители должен быть достаточно большим. Поэтому авометры прн измеренин напряженгй переменного тока имеют невысокие сопротивления, порядка 2—7 ком/в. Изменения параметров выпрямителей во времени и под действием температуры приводят к возрастанию погрешностей показаний. Так, если класс точности ампервольтметра Ц-52 по постоянному току 1,5, то по переменному току он равен 2,5, для ампервольтметра TT-2— соответственно 2,5 и 4.

Электростатические вольтметры

Действне измерительного механизма электростатической системы основано на взаимодействии электрически заряженных проводников. По сути дела, это — конденсатор с системой подвижных и неподвижных электродов. Когда к прибору приложено напряжение, то на электродах возникают заряды разного знака, как у всякого конденсатора. Но поскольку один электрод подвижен, он перемещается в направлении неподвижного, увеличивая емкость системы, н увлекает за собой соединенную с ним стрелку или зеркальце светового указателя.

В низковольтных приборах (вольтметрах) используется угловое перемещение подвижной части, и емкость прибора меняется за счет изменения активной площади электродов. В киловольтметрах меня-

ется расстояние между электродами.

В отличне от всех остальных электромеханических намерительных механизмов, действие которых основано на взаимодействии магнитных полей и которые являются измерителями тока, в электростатическом приборе усилие создается непосредственно приложенным напряжением.

Угол отклонения подвижной части а связан с приложенным на-

пряжением следующей зависимостью:

$$\alpha = \frac{1}{2w} U^2 \frac{\Delta C}{\Delta \alpha},\tag{22}$$

где w — удельный противодействующий момент растяжек; $\Delta C/\Delta \alpha$ — множитель, показывающий скорость нзменения емкости системы в зависимости от угла поворота подвижной части.

Так как отклонение подвижной части зависит от квадрата напряжения, то перемена его полярности не меняет знака отклонения и вольтметр оказывается пригодным для измерения не только постоянных, но и переменных напряжений. При этом из-за изменениямия часть, начиная с 10—20 ги, не успевает следовать за изменениями напряжения и реагирует на среднее значение квадрата напряжения. Но среднее значение квадрата напряжения равно квадрату его действующего (эффективного) значения, ввиду чего на переменном токе электростатические вольтметры показывают действующее значение напряжения. От формы кривой показания не зависят.

Шкала электростатического вольтметра нелинейна из-за квадратичной зависимости угла от напряжения и нелинейного множителя

ΔС/Δα. Выбирая определенную форму электродов, можно получить практически линейную шкалу, начиная с некоторого угла, определяемого минимальной начальной емкостью системы. Так и поступают при конструированни промышленных вольтметров, шкала которых в рабочей своей части (30—100%) приближенно линейна.

Вращающий момент в электростатических приборах мал. Поэтому подвижную снетему укрепляют на растяжках и применяют световой указатель с однократным и многократным отражением луча, чтобы уменьшить угол отклонения. Для повышения вращающего момента уменьшают также, насколько возможно (примерно до 0,3 мм), расстоиние между электродами и увеличивают их число (число камер). Интересный путь повышения точности вольтметра при малом вращающем моменте предложен недавно А. Н. Гуторовой. Он заключается в сравнении вращающего момента не с противодействующим моментом растяжек, которые имеют упругое последствие в 0,5%, а с моментом инерции подвижной части. Основная погрешность такого автоколебательного вольтметра с цифровым отсчетом (регистрируется частота автоколебаний) может быть снижена до 0,03%.

Кроме трудностей, связанных с малой величиной вращающего момента, перед конструкторами низковольтных электростатических вольтметров встает проблема снижения контактной разности потенциалов между подвижными и неподвижными электродами. Даже для электродов из одного материала контактная разность потенциалов может достигать величнны 0,5 в. Погрешность от нее проявляется в различии показаний при изменении полярности электродов или при переходе от измерения постоянного напряжения к измерения потеременного. Для уменьшения контактной разности потенциалов электроды золотят (например, методом катодного распыления в ва-

кууме), обезжирнвают и осущают.

В опытных экземплярах вольтметров С-70, которые имеют самый низкий предел измерения 10 в, контактная разность потенциалов бы-

ла снижена до 0,03-0,05 в

Для получения повышенной точности путем исключения контактной разности потенциалов измерения проделывают дважды, меняя каждый раз полярность электродов; измеряемое напряжение принимают равным полусумме обоих показаний. Действительно, контактную разность потенциалов можно представить себе как последовательно включенную с прибором батарею. Ее поляриость относительно электродов неизменна и не зависит от полярности измеряемого напряжения. Поэтому при суммировании показаний э. д. с. батареи в одном случае сложнтся с измеряемым напряжением и войдет в сумму со знаком плюс, а в другом вычтется, т. е. войдет в сумму со знаком минус, и сумма показаний будет равна удвоенному значению измеряемого напряжения.

Собственное потребление электростатических вольтметров на постоянном токе очень мало. Теоретически измерительный механизм представляет собой чистую емкость, и потребление активной мощности должно было бы полностью отсутствовать. В реальных условиях это не так. При подключении вольтметра к источнику постоянного напряжения вначале через него прогекает ток заряда емкости прибора, который можно считать чисто реактивным током смещения, а после установления положения равновесия — ток проводимости, определяемый несовершенством изоляции (ток утечки). Ток, протекающий через вольтметр в первый момент, представляет собой ток

короткого замыкания эквнвалентного генератора. Сопротивление вольтметра в этот момент равно нулю и постепенно возрастает по мере заряда емкости. Постояниая времени заряда равна произведению емкости на внутреннее сопротивление эквивалентного генератора (выходное сопротивление испытуемой схемы). В тех случаях, когда кратковременное короткое замыкание может нарушить режим испытуемой схемы, последовательно с вольтметром нужно включать резистор с сопротивлением не более 10 Мом. Этот резистор можно взять и гораздо большего сопротивления, но через некоторое время после включения (до снятия отсчета) его нужно замкнуть накоротко, так как нначе испытуемое напряжение поделится между добавочным сопротивлением и сопротивлением утечкн вольтметра.

Многие вольтметры имеют встроенные в корпус так называемые ограничивающие резисторы. Их назначение состоит в ограничении тока, протекающего через прибор при случайных замыканиях его электродов (от тряски, вибрацни и т. п.), до величины, безвредной для токопроводов прибора. Случайные замыкания электродов прибора не исключены, так как расстояние между ними очень малб.

При измерении переменных напряжений через прибор протекает емкостный ток, пропорциональный емкости и частоте, и активный, связанный с потерями в днэлектрике и изоляции и утечкой через них.

В СССР выпускаются как переносные, так и щитовые электростатические вольтметры. Из переносных можно указать на С50, С95, С70, С71, С100 классов точности 0,05 и 0,1 (С71), 1,0 (С50), 1,5 (остальные), на пределы измерения от 10 до 75 кв. Входная емкость в зависимости от типа и предела измерения — от 4 до 30 $n\phi$, входное сопротивление не ниже 10^{10} ом.

Щитовые вольтметры С74, С75, С76 имеют класс точности 1,5, пределы измерения 30 s — 15 κs , входную емкость — от 13 до 30 $n\phi$,

входное сопротивление не менее 1010 ом.

Относительно высокая входная емкость электростатических вольтметров и изменение этой емкости при отключении подвижной части могут воспрепятствовать их применению для измерений в избирательных цепях, на анодных нагрузках широкополосных усилителей и т. д.

Как правило, электростатические вольтметры однопредельны. Но пределы измерения нетрудно расширить как в сторону повышения, так и снижения. Последнее особенно важио, поскольку вольтметры с пределами измерения ниже 10 в не выпускаются, да и эти вольтметры (типа С70) появились лишь в последние годы. Более распространены вольтметры типов С95 и С50 на 30 в, при помощи которых можно измерять напряжения не ниже 3 в, так как начальная часть шкалы является нерабочей.

Для снижения предела измерення можно зарядить испытуемым напряжением поочередно несколько конденсаторов, соединенных между собой последовательно, и вольтметром измерить напряжение на всей цепочке. Если все конденсаторы имеют одинаковую емкость, то напряжение на цепочке будет больше измеряемого во столько раз, сколько взято конденсаторов. Их емкость должна быть много больше емкости вольтметра, иначе действительное напряжение на цепочке будет меньше номинального значения.

В устройстве, схема которого показана на рис. 6, a, при верхнем по схеме положении переключателей «заряд» все конденсаторы соединяются параллельно и одновременно заряжаются до напряжения U_x . Для измерения переключатели переводят в нижнее положение.

Конденсаторы оказываются включенными последовательно, и напряжение на выходных зажимах устройства, к которым присоединяют электростатический вольтметр, будет равно nU_x , где n— число конденсаторов.

С учетом емкости вольтметра $C_{\rm B}$ напряжение на нем будет несколько меньше, чем nU_{x} , а именно (в предположении равенства

емкостей конденсаторов устройства):

$$U_{\rm B} = \frac{C/n}{C/n + C_{\rm B}} n U_{\rm x}. \tag{23}$$

Чтобы не было никаких погрешностей, должно выполняться условие $C/n\gg C_{\rm B}$. Заметим, что от переключателей не требуется син-

Рис. 6. Изменение пределов измерения электростатических вольтметров и электрометров.

a — переключением конденсаторов с параллельного соединения на последовательное; δ — изменением емкостн параллельно включенного конденсатора; a — включением последовательно конденсатора; a — использованием емкостного делителя; ∂ — применением электростатического трансформатора напряжения.

хронности работы — их, в принципе, можно переключать и поодиночке.

Еще один способ заключается в том, что параллельно электростатическому вольтметру включают конденсатор переменной емкости (рис. 6, 6). Перед нзмерением его устанавливают на максимальную емкость и подключают к источнику измеряемого напряжения через ограничивающий резистор R. После того как процесс заряда конденсатора будет закончен и конденсатор при помощи переключателя Bk отключен от источника, емкость его уменьшают. Так как суммарный электрический заряд на емкости вольтметра и конденсаторе остается неизменным, напряжение на вольтметра возрастает. Обозначим емкость вольтметра соответственно $C_{\text{мак}}$ и $C_{\text{мин}}$ и измеряемое напряжение $U_{\mathcal{X}}$. Прн наибольшей емкости системы заряд на ней $Q = (C_{\text{мак}} + C_{\text{в}})U_{\mathcal{X}}$. Тот же заряд будет и при нанменьшей емкости: $Q = (C_{\text{мин}} + C_{\text{в}})U$, где $U = (C_{\text{мин}} + C_{\text{в}})U$), где $U = (C_{\text{мин}} + C_{\text{в}})U$

$$U = \frac{C_{\text{MSKC}} + C_{\text{B}}}{C_{\text{MMH}} + C_{\text{B}}} U_{x}. \tag{24}$$

Если емкости выбраны такими, что $C_{\text{мин}} \gg C_{\text{в}}$, то

$$U = \frac{C_{\text{Marc}}}{C_{\text{MBH}}} U_{x}. \tag{25}$$

Конденсатор переменной емкости можег быть проградуирован в единицах отношения $C_{\text{макс}}/C_{\text{мин}}$, которое показывает, во сколько раз показываемое вольтметром напряжение больше измеряемого.

Конденсатор переменной ємкости должен иметь достаточно высокое сопротивление изоляции, чтобы за время нзмерения не про-

изошло заметной утечки заряда.

Выбнрая сопротивление ограничивающего резистора, нужно иметь в виду, что оно не должно превышать одной сотой сопротивления утечки конденсатора переменной емкостн или вольтметра. Кроме того, нужно обращать внимание на то, чтобы постоянная времени заряда не оказалась чрезмерно большой.

Упомянутые способы позволяют производить лишь разовые измерения. Еще один способ с возможностью непрерывного измере-

ния будет рассмотрен в конце параграфа.

Повысить предел измерения вольтметра можно путем включения последовательно с ним добавочного конденсатора $C_{\rm д}$ (рис. 6, θ). При измерении постоянного напряжения оно в первый момент распределяется обратно пропорционально емкостям, и показываемое вольтметром напряжение

$$U = \frac{C_{\pi}}{C_{\pi} + C_{E}} U_{x} \tag{26}$$

составляет только некоторую долю измеряемого, определяемую соотношением емкостей $C_{\rm A}$ и $C_{\rm B}$. Чтобы эта доля была малой, должна быть мала и емкость $C_{\rm A}$ добавочного конденсатора. Но тогда на отношение $C_{\rm A}/(C_{\rm A}+C_{\rm B})$ будет оказывать влияние изменение емкости вольтметра с углом поворота его подвижной части, а следовательно, изменнтся характер шкалы вольтметра. Ввиду этого вольтметр дол-

жен быть градуирован совместно с каждым добавочным конденсато-

ром, с которым он будет применяться.

Соотношение (26) оставалось бы неизменным, если бы утечки в конденсаторах отсутствовали и сопрозивление их изоляции было бесконечно велико. Реально это не так, и спустя некоторое время измеряемое напряжение окажется распределенным не обратно пропорционально емкостям конденсаторов, а прямо пропорционально сопротивлениям их утечек. Собственная постоянная времени системы из двух конденсаторов равна произведению суммы их емкостей на сопротивление, эквивалентное параллельному соединению сопротивлений утечек. Эту постоянную времени нетрудно найти экспериментально, наблюдая за изменением показаний прибора после подключения ко входным зажимам системы батарей.

При измерении переменного напряжения оно распределяется пропорционально полным сопротивлениям конденсаторов. Распределение зависит от частоты и сопротивлений изоляции; с повышением частоты и сопротивлений изоляции оно приближается к соотношению (26), с их уменьшением — к распределению пропорционально сопротив-

лениям.

В данном случае используется по сути дела емкостный делитель, одним плечом которого является емкость прибора. Можно использовать внешний (рис. 6, z) емкостный делитель напряжения. Тогда вольтметр подключается к емкости C_2 делителя, которая выбирается настолько большой, чтобы изменение емкости вольтметра в зависимости от угла поворота подвижной части не вызывало заметной погрешности. Показание вольтметра:

$$U = \frac{C_1}{C_1 + C_2 + C_B} U_x \approx \frac{C_1}{C_1 + C_2} U_x.$$
 (27)

На переменном токе коэффициент деления не зависит от частоты, начиная уже с низких частот. Кроме того, делитель можно сделать частотно-независимым. Но так как коэффициент деления будет определяться и сопротивлениями утечек, и высокомегомными шунтирую-

щими резисторами, стабильность его будет невысока.

Недавно одной американской фирмой были разработаны так называемые электростатические трансформаторы напряжения (назовем их сокрашенно ЭТН). С их помощью можно повышать или снижать (ЭТН обратимы) пределы измерения электрометров, в том числе электростатических, в любое число раз, кратное двум или десяти. ЭТН отличаются высокой точностыю коэффициента передачи и допускают непрерывную работу. В каксой-то мере они являются развитием схемы, которая была изображена на рис. 6, а.

На рис. 6, ∂ показана принципиальная схема четырехкаскадного повышающего ЭТН с коэффициентом передачи (трансформации) 10:1. Он состоит из восьми конденсаторов одинаковой емкости и восьми переключателей на два направления (можно считать, что это четыре двухполюсных тумблера). Все переключатели находятся либо одновременно в нижнем по схеме положении («заряд»), либо одно-

временно в верхнем («передача»).

Рассмотрим вначале работу только одного первого каскада, считая, что другие отключены. Когда переключатели в нижнем положении, конденсатор A заряжается до измеряемого напряжения U_x . Затем переключатели переводятся в верхнее положение. Заряженный конденсатор A оказывается включенным последовательно с источником измеряемого напряжения U_x и конденсатором B. Начинается за-

ряд конденсатора B; как только напряжение на нем достигнет значения U_x , заряд прекращается, потому что потенциалы как одного, так и другого электрода конденсатора A имеют в этот момент одинаковый потенциал U_x и ток в цепи уже не течет. Предполагается, конечно, что никакого начального заряда на конденсаторе B нет.

Таким образом, за первый цикл работы переключателей конденсатор А разрядился полностью, передав весь полученный от источника заряд конденсатору B и зарядив его до напряжения U_x . При втором цикле конденсатор А передаст конденсатору В только половину своего заряда и конденсатор В окажется заряженным до напряжения $^{3}/_{2}U_{x}$. После третьего цикла напряжение на конденсаторе \hat{B} станет равным $1^3/_4 U_x$, после четвертого — $1^7/_8 U_x$ и т. д. За каждый цикл напряжение на конденсаторе B (при равенстве емкостей конденсаторов) увеличивается на половину разности между напряжением U_{x} , до которого каждый раз заряжается конденсатор A, и напряжением на конденсаторе В в конце предыдущего цикла. В конце концов, после достаточного числа переключений кондеисатор В окажется заряженным до напряжения, \hat{z} коль угодно близкого \hat{k} 2 U_x . Напряжение на конденсаторе A будет оставаться равным U_x независимо от положения переключателей, и в этих условиях при идеальных конденсаторах ЭТН не потребляет от источника U_x никакого тока. В реальных условиях от источника U_x будет потребляться небольшой ток, покрывающий потери заряда ча конденсаторах. Но, и это очень важно, напряжение не распределится на конденсаторах пронорционально сопротивлениям их изоляцки, как бы долго ни был подключен ЭТН к источнику постоянного напряжения; в этом его большое преимущество по сравнению с предыдущими схемами.

Работа остальных каскадов трансформатора в принципе не отличается от работы первого. Для второго каскада роль напряжения U_x играет напряжение на конденсаторе B, для третьего — напряжение на конденсаторе D. Но при совместной работе всех каскадов равновесное состояние схемы достигается гораздо медленнее. Теперь при нижнем положении переключателей заряд на конденсаторе B не сохраняется постояным — часть этого заряда передается на конденсатор C, а' часть заряда с конденсатора D — на конденсатор E и т. д. В конечном итоге конденсатор D заряжается до напряжения 4 U_x , конденсатор F — до напряжения 8 U_x . Чтобы получить коэффициент траисформации 10: 1, последний каскад построен несколько по-иному. Последовательно с конденсаторамн H и G включается не конденсатор F, как это должно бы быть по аналогии с предыдущими каскадамн, а конденсатор B. Его напряжение, равное 2 U_x , суммируется с напряжением 8 U_x , имеющимся на конденсаторе G, что дает на

выходном конденсаторе H нужное напряжение 10 U_x .

Электрометр подключается параллельио выходному конденсатору H, емкость которого должна быть много больше входной емкости

электрометра.

Если входное напряжение постоянно, а утечки незначительны, то, спустя некоторое время, после достаточного числа переключений напряжение на выходе первого каскада будет точно равно 2 U_x , на выходе второго — точно 4 U_x , на выходе третьего — точно 8 U_x и на выходе последнего, четвертого, — точно 10 U_x . Интересно то, что конечное распределение напряжений ие зависит от емкостей конденсаторов. Они определяют только скорость установления напряжения. Если, например, емкость конденсатора A вдвое меньше емкости B, то за первый цикл он передаст кочденсатору B, как и прежде, весь

свой заряд. За второй цикл он передаст $^{2}/_{3}$ заряда (вместо $^{1}/_{2}$), но так как его заряд теперь вдвое меньше, то и возрастание напряжения на конденсаторе B составит $^{1}/_{3}$ U_{x} вместо $^{1}/_{2}$ U_{x} , как это было при равенстве емкостей. Скорость установления равновесного состояния прн этом замедляется, но все равно напряжение на конденсаторе B асимптотически стремится к конечному значению 2 U_{x} . Ведь только в этом случае зарядный конденсатор будет переключаться вхолостую, не передавая никакого заряда.

Точно так же влияют лишь на скорость установления, а не на распределение равновесных напряжений сопротивления контактов и проводников и время замыкания контактов. Дребезжание контактов для схемы не существенно. Точная синхронизация работы переключателей (обычно это контакты электромагнитных реле) не требуется; важно лишь, чтобы какой-нибуль не оказался в нижнем положении,

когда остальные находятся в верхнем, и наоборот.

Паразитные постоянные э. д. с. в цепях $\operatorname{ЭTH}$ не влияют на его коэффициент трансформации, что дает возможность трансформиро-

вать очень малые напряжения.

Мы упоминали о том, что и после достижения равновесия ЭТН потребляет некоторый ток, восполняющий утечку заряда в конденсаторах. Другими словами, ЭТН имеет некоторое эффективное входное сопротивление. При емкостях порядка 0,01 мф оно составляет 10¹⁰—10¹¹ ом.

Чтобы рассмотренный ЭТН работал как понижающий, с коэффициентом трансформации 1:10, измеряемое напряжение нужно приложить к правым на схеме зажимам, считая их входными, а электрометр подключить к левым, которые будут выходными. Параллельно им нужно в этом случае также включить конденсатор для сглаживания пульсаций.

ЭТН нормально работает только на высокоомную нагрузку, в частности, в комплекте с электростатическими вольтметрами. При заметной нагрузке заряд на нее поступает сразу с первого каскада,

и эффект трансформации пропадает.

Глава третья

ЭЛЕКТРОННЫЕ ВОЛЬТМЕТРЫ НА ЛАМПАХ

Общие положения

Электронные ламповые вольтметры предназначены для измерения напряжений от десятых долей вольта до многих сотен вольт. Для получения линейной шкалы изменение напряжения на управляющей сетке входной лампы вольтметра должно быть небольшим. Поэтому ламповые вольтметры изготавливают, как правило, многопредельными. Низший предел измерения устанавливается равным 1—3 в (его дальнейшему уменьшению препятствует дрейф электронного усилителя) и является основным, а расширение пределов измерения осуществляется обычно при помощ входных делителей напряжении.

В соответствии с этим структурная схема электронного вольтметра постоянного тока состоит в общем случае из трех элементов: вход-

3—982 33

ного делителя напряжения, усилителя мощности и индикаторного

прибора.

К электронному вольтметру предъявляется много требований — большое входное и малое выходное сопротивления, высокая чувствительность, стабильность показаний, простота устройства и обслуживания. Для вольтметров широкого назначения, в которых равное внимание уделено выполнению всех требований и ни один параметр не выделяется в ущерб остальным, бытует иазвание «стандартных». Вольтметры с очень высокимн входными сопротивлениями являются специальными. В них, чтобы повысить входное сопротивление, жертвуют другими качествами, главным образом стоимостью и простотой. Мы рассмотрим вначале стандаргные вольтметры.

Усилители

Усилитель вольтметра преобразует приложенное к его входу постоянное напряжение в постоянный ток, протекающий через выходной индикаторный прибор. Другими словами, он согласует низкое сопротивление индикаторного прибора с высоким сопротивлением входной цепи.

В стандартных вольтметрах наибольшее распространение получил однокаскадный усилитель мостового типа с включением индикаторного прибора между катодами ламп (рис. 7, а). Такой усилитель сравнительно с небалансным катодным повторителем имеет гораздо меньший дрейф, так как изменения накала или анодного напряжения действуют на обе половины моста одинаково, при одинаковых параметрах ламп. В усилителе используют двойные триоды 6Н2П, 6Н1П Лампа 6Н1П рассчитана на большой ток через индикаторный прибор и предпочтительнее при малочувствительном индикаторе.

Если индикаторный прибор — мнкроамперметр, то лучше лампа 6Н2П. Она экономичнее и имеет большой статический коэффициент усиления µ. А стабильность коэффициента передачи катодного по-

вторителя пропорциональна величине μ .

В усилителе заземлена сетка правой лампы, а не отрицательный полюс источника питания. По отношению к нему обе сетки имеют положительный потенциал, равный падению напряжения на нижнем плече R_2 делителя R_1R_2 . Это дает возможность включать в катодные цепи резисторы большого сопротивления, что улучшает линейность, стабильность, чувствительность. Можно заземлять не сетку, а какуюто промежуточную, иапример среднюю, точку источника питания.

То обстоятельство, что входное напряжение оказывается приложенным между сетками ламп, не должно смущать; потенциал — $E_{\rm K}$ отрицательного полюса батареи (точка C) отличается от потенциала сетки правой лампы, соединенной с корпусом, на постоянную величину, и мы вправе считать напряжение сигнала приложенным между входом и точкой C.

Входной фильтр нижних частот $R_{\Phi}C_{\Phi}$ препятствует попаданию на сетку переменной составляющей сигнала, а резистор фильтра одновременно предохраняет прибор от повреждения при случайном подключении к входу большого напряжения положительной поляр-

Для получения расчетной зависимости тока через индикаторный прибор от входного напряжения на рис. 7, 6 изображена эквивалентная схема рассматриваемого усилителя.

Лампы заменены генераторами тока $SU_{c\cdot k}$ (S — крутизна лампы), управляемыми напряжениями между сеткой и катодом $U_{c\cdot k}$ с параллельно включенными внутренними сопротивлениями R_i . Это сокращает вычисления сравнительно с теми, которые были бы необходимы при замещении ламп генераторами напряжения.

Будем считать параметры ламп и катодные сопротивления одинаковыми. Обозначим потенциал катода левой лампы (точка A) через $U_{\kappa 2}$. Напряжения между сеткой

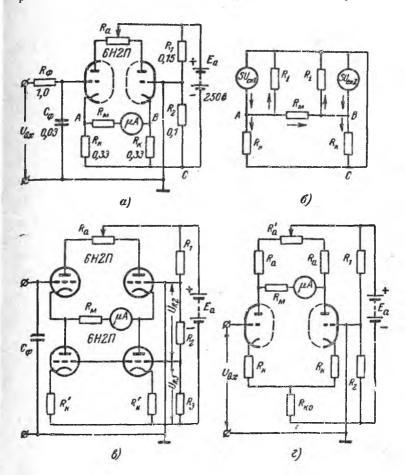


Рис. 7. Ламповые усилители электронных вольтметров.

a — мостовая схема с включением индикаторного прибора между катодами лампы; δ — ее эквивалентная схема; δ — включение ламп в качестве катодных нагрузок; a — мостовая схема с включением индикаторного прибора между анодами.

и катодом первой лампы $U_{\rm c.k1} = U_{\rm BX} - U_{\rm k1}$, а правой $U_{\rm c.k2} = -U_{\rm k2}$. Напишем уравнения баланса токов для точек A и B:

$$U_{K1}\left(\frac{1}{R_{K}} + \frac{1}{R_{I}}\right) + (U_{K1} - U_{K2})\frac{1}{R_{M}} = S\left(U_{BX} - U_{K1}\right), \qquad (28)$$

$$U_{K2}\left(\frac{1}{R_{V}} + \frac{1}{R_{I}}\right) + (U_{K2} + U_{K1})\frac{1}{R_{V}} = -SU_{K2}.$$

Вычтем из верхнего уравнення нижнее и после приведения подобных членов найдем выходное напряжение;

$$U_{\text{K1}} - U_{\text{K2}} = \frac{SU_{\text{BX}}}{S + \frac{1}{R_{\text{V}}} + \frac{1}{R_{\text{V}}} + \frac{2}{R_{\text{V}}}}.$$
 (29)

Ток через индикаторный прибор

$$I_{\rm M} = \frac{U_{\rm K1} - U_{\rm K2}}{R_{\rm M}} = \frac{SU_{\rm BX}}{2 + R_{\rm M} \left(S + \frac{1}{R_{\rm I}} + \frac{1}{R_{\rm K}} \right)} \tag{30}$$

растет с уменьшением его сопротивления. Это естественно: всякий усилитель (или генератор) тока выдает наибольший ток в режиме короткого замыкания. В пределе при $R_{\rm M} = 0$ $I_{\rm M} = \frac{S}{2} U_{\rm BX}$. Последнее выражение удобно для приближенной оценки чувствительности каскада.

При проектировании усилнтеля параметры индикаторного прибора - ток полного отклонения и сопротивление - известны. По соображениям линейности анодный ток покоя (начальный ток) каждой из двух ламп усилителя выбирают равным примерно утроенному току полного отклонения индикатора. Крутизну лампы в зависимости от анодного тока можно найти по приведенному на рис. 8 графику. Поскольку статический коэффициент и мало зависит от режима, внутреннее сопротивление R_i находится делением табличного значения µ на найденную из графика крутизну.

Сопротивления катодиых резисторов желательно иметь возможно большими и для этого источник питания должен давать достаточное (200—300 $\mathfrak G$) напряжение. При помощи делителя $R_1,\ R_2$ оно распределяется так, что напряжение 100-150 в питает анодную цепь, остальное — катодную. Тогда сопротивление резистора в катодной цепи равно падению напряжения на резисторе R_2 , деленному на ток покоя лампы. При больших сопротивлениях $R_{\rm K}$ расчетное уравнение (30) упрощается (полагаем также µ≫1):

$$I_{\rm M} = \frac{SU_{\rm BX}}{2 + SR_{\rm M}}.\tag{31}$$

Заметим, что для увеличения сопротивлений в катоде без повышения напряжения источника питания вместо резисторов R_{κ} ставят лампы (рис. 7, θ), используя их динамическое сопротивление, усиленное действием отрицательной обратной связи по току (считаем параметры всех ламп одинаковыми): $R_{\rm K} = R_i + (\mu + 1) R_{\rm K}^{'}$, где $R_{\rm K}^{'}$ — сопротивление резистора, включенного в катодную цепь лампы. Чтобы оно было достаточно большим, потенциал сеток нижних ламп поднимают

на несколько десятков вольт относительно отрицательного полюса источника питания. Тогда сопротивление $R_{\rm K}$ приближенно равно частному от деления падения напряження U_{R3} на резисторе R_3 на требуемый ток покоя I_0 .

Пусть, например $U_{R3} = 30$ в, $I_0 = 300$ мка. Получим $R_{\rm K}^{'} \approx 100$ ком,

что при лампе 6Н2П дает R_к≈10 Мом.

Возможные отклонения фактической силы тока I_0 от расчетной из-за неточности определения $R_{\mathbf{k}}^{'}$ для работы усилителя обычно несу-

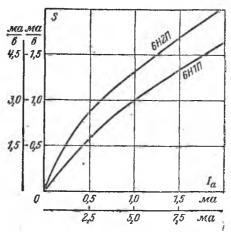


Рис. 8. Зависимость крутизны ламп 6Н1П и 6Н2П от анодного тока.

щественны. Но при желании сопротивление $R_{\rm K}^{'}$ можно рассчитать достаточно точно, включая случай U_{R3} =0, графоаналитическим путем. Для этого нужно располагать подробным семейством характеристик лампы. Расчет ведут методом проб. Из точки на оси анодных напряжений, отвечающей напряжению $U_{R2}+U_{R3}$, проводят линию нагрузки для $R_{\rm K}^{'}\approx (U_{R3}+2)/I_0$. Смотрят, какому значению $U_{\rm C}$ соответствует та кривая, которую линия нагрузки пересекла на уровне I_0 , и проверяют, не выполняется ли условие $U_{\rm C}=U_{R3}-I_0R_{\rm K}^{'}$. Если нет, тC меняют угол наклона линии нагрузки (а он равен агсстр $R_{\rm K}^{'}$) в нужном направленин до тех пор, пока не будет удовлетворено равенство $U_{\rm C}=U_{R3}-I_0R_{\rm K}^{'}$ Найденное таким образом $R_{\rm K}^{'}$ и будет искомым, рассчитанным на ток I_0

Сопротивление потенциометра R_a выбирают равным около 40% внутреннего сопротивления лампы (эта величина покрывает возмож-

ный разброс R_i в $\pm 20\%$).

Теперь по уравнению (31), понимая под $U_{\rm BX}$ нижний предел измерения вольтметра, найдем суммарное сопротивление $R_{\rm M}$, которое

нужно включить в диагональ моста между катодами ламп. Чтобы чувствительность получилась с некоторым запасом, совершенно необходимым ввиду возможного разброса параметров ламп и других элементов схемы, значение нижнего предела нужно подставить с коэффициентом 0,8—0,9. Вычитая из $R_{\rm M}$ сопротивление индикатора, получим сопротивление добавочного резистора, который нужно включить последовательно с индикатором. Так как при градуировке потребуется регулировать чувствительность, этот резистор (или часть его) должен допускать регулировку сопротивления. Лучше переменной сделать только часть, которая находится как разность суммарных сопротивлений в измерительной диагонали, рассчитанных для $0.9U_{\rm RX}$ и $1.1U_{\rm RX}$.

Выбор нижнего предела измерения ограничивается не чувствительностью усилителя, а его нестабильностью. Обратимся к данным эксперимента. Усилитель, показанный на рис. 7, а, проверялся совместно с микроамперметром М-265 с током полного отклонения 100 мка и сопротивлением 450 ом. Без добавочного сопротивления к прибору усилитель обеспечивает нижний предел измерения в 0,37 в (совпадает с расчетом). После прогрева устройства колебания стрелки около положения нуля составляют (в пересчете на вход) ±1,5 мв. Примерно таков же уход нуля при измерении питающих напряжений на ±10%. Но на чувствительность изменения напряжений питания влияют гораздо заметнее. При изменении напряжения источника анодного питания на ±10% коэффициент передачи по напряженню меняется иа ±1,2%, а изменение напряжения накала на ±10% меняет коэффициент передачи на ±2,5%.

Поскольку нзменения напряжений питания в пределах $\pm 10\%$ во время изменения возможны, то лучше выбрать нижний предел измерения в 1 e, доведя сопротивление $R_{\rm M}$ до 6,25 e e e доменения показаний, обусловленных смещением нуля или изменением чувствительности, не выйдут за пределы $\pm 0,25\%$ и ими можно будет пренебречь. Можно нижний предел принять равным н 0,5 e, но придется мириться с некоторыми погрешностями. Кроме того, определенная нестабильность возникнет в связи с действием сеточного тока.

Ток сетки у приемно-усилительных триодов находится в пределах $10^{-9}-10^{-10}a$. Он меняется от экземпляра к экземпляру лампы и зависит от ее режима. В упомянутом усилителе он составляет $3\times \times 10^{-10}$ а. Падение напряжения, создаваемое током сетки на сопротивлении входного делителя, не должно превышать 1% нижнего предела измерения. Тогда при токе сетки 10^{-9} а и нижнем пределе измерения 1 в сопротивление делителя получается равным 10 Мом, что и является его общепринятой величиной.

Теперь для заверщения расчета вольтметра постояниого тока нужно только рассчитать входной делитель. Этому посвящен следу-

ющий параграф.

Менее распространены, мо все же применяются мостовые усилители со включением индикатора между анодами ламп (рис. 7, г). Общий катодный резистор $R_{\rm K0}$ служит для связи между лампами и на чувствительность не оказывает влияния. Ток через индикаторный прибор

$$I_{\rm M} = \frac{SU_{\rm EX}}{2(1 + SR_{\rm K0}) + R_{\rm M} \left(\frac{1}{R_{\rm a}} + \frac{1}{R_{i}} + \frac{SR_{\rm K0}}{R_{\rm a}}\right)}.$$
 (32)

Из более сложных усилителей электронных вольтметров заслуживает упоминания двухкаскадный усилитель с перекрестной связью, отличающийся повышенными чувствительностью и стабильностью (рис. 9). При микроамперметре на 50 мка с сопротивлением 2,35 ком был получен нижний предел измерения 25 мв. Изменение напряжения питания на $\pm 10\%$ вызывало увеличение коэффициента передачи по напряжению иа 3%, а изменение на -10% — уменьшение на 5%. Колебания и смещения стрелки укладываются в пределы $\pm 0,5$ мв в пересчете иа вход. Если установить нижний предел измерения равными 100 мв, то всеми указанными изменениями можно пренебречь.

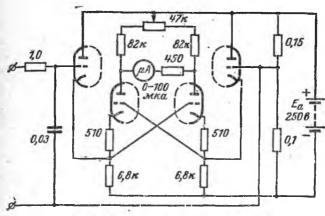


Рис. 9. Перекрестно-связанный каскад.

Очень хорошие результаты дает применение многокаскадных усилителей, охваченных глубокой отрицательной обратной связью. Схема одного из них, нашедшего широкое применение в электронных вольтметрах, показана на рис. $10.\,\mathrm{B}$ целом он представляет собой балансное соединение двух двухламповых усилителей, каждый из которых охвачен 100%-ной отрицательной обратной связью. Между усилителями связь осуществляется при помощи резистора R_7 , включенного в общую катодную цепь ламп J_1 и J_4 , поэтому усилители работают не вполне симметрично: изменения папряжения на катоде лампы J_2 больше, чем на катоде J_3 . Несимметрия невелика: если лампы J_1 и J_4 одинаковы и являются пентодами, как это изображено на схеме, то отношение напряжения, действующего между сеткой и катодом первой лампы, к напряжению на ее катоде, представляющему напряжение сетка — катод четвертой лампы, равно:

$$\frac{U_{\text{c.K1}}}{U_{\text{K}}} = 1 + \frac{1}{SR_7}.$$
 (33)

При наших параметрах это около одного процента. Если бы первая и четвертая лампы были триодами, то

$$\frac{U_{\text{C.KI}}}{U_{\text{K}}} = 1 + \frac{2}{\mu} + \frac{R_i + R_a}{\mu R_7},\tag{34}$$

что довольно близко к предыдущему выражению.

В принципе в схеме заложена возможность уравновешивания и той малой нестабильности, которая порождается указанной несимметрией. В катодные цепи выходных ламп усилителей включены резисторы перемениого сопротивления R_4 и R_5 . Известно, что коэффициент усиления усилителя, охваченного отрицательной обратной

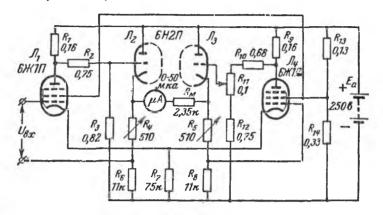


Рис. 10. Балансный автокомпенсационный усилитель.

связью, определяется выражением $K=K_0/(1+K_0~\beta)$, где K_0 — коэффициент усиления при разомкнутой петле обратной связи, а β — коэффициент обратной связи. В нашем случае $\beta \approx R_6/(R_4+R_6)$ и очень близко к единице, а значение K_0 достаточно велико, чтобы положить $K_0\beta\gg 1$ с погрешностью менее 2%. Поэтому коэффициенты усиления

$$K_1 = \frac{R_4 + R_6}{R_6}; \quad K_2 = \frac{R_5 + R_8}{R_8}.$$
 (35)

Для строгой симметрии выходных напряжений на катодах ламп \mathcal{N}_2 и \mathcal{N}_3 нужно, чтобы выполнялось соотношение $K_2/K_1 = U_{\text{с.к.1}}/U_{\text{к}}$, что легче сделать, регулируя глубину обратной связи правого усилителя. При помощи тех же резисторов R_4 , R_5 устанавливают коэффициент передачи равным единице. Заметим, однако, что состояние наилучшей стабильности усилителя проверяют экспериментально, и может оказаться, что оно соответствует какому-то несимметричному режиму. Как бы то ни было, сопротивления резисторов R_4 , R_5 должны удовлетворять двум условиям: наилучшей стабильности усилителя и значению коэффициента передачи, равному единице. Поскольку число условий равно числу независимо регулируемых резисторов (по два), требования совместимы.

 $\hat{}$ Установку нуля можно производить при помощи резистора R_{11} либо одного из резисторов R_4 , R_5 . Нарушения оптимальных условий

при этом почти незаметны.

Усилитель имеет низкое выходное сопротивление. Оно примерно в K_0 раз меньше, чем у балансного катодного повторителя, и равно $R_{\rm Bыx} \approx 2/SK_0$, где S — крутизна выходных ламп. Это означает, что почти все выходное напряжение оказывается приложенным к инди-

каторному прибору и практически не зависит от его сопротивления. Поэтому такой усилитель часто используют в качестве трансформатора сопротивлений для электромеханических вольтметров постояного тока. И действительно, это удобно — какой бы вольтметр мы ни включали в выходную цепь, напряжение на нем равно входному, т. е. измеряемому. Нужно лишь, чтобы ток покоя ламп J_2 и J_3 превышал ток полного отклонения прибора не менее чем втрое. Если предполагаются смены приборов, лучше поставить на выход лампу 6Н1П.

Преимущества низкого (сравнительно с индикатором) выходного сопротивления усилителя заключается и в том, что изменения параметров ламп вследствие, например, старения их не влияют на

градуировку.

При не очень строгих требованиях к вольтметру от резисторов R_4 , R_5 можно отказаться. Коэффициент передачи будет составлять

0.98-0,99 в зависимости от лампы.

При указанных на схеме параметрах усилитель имеет следующие характеристики. Колебания указателя около нулевого положения — в пределах ± 0.6 мв. Изменения анодного напряжения на $\pm 10\%$ смещения нуля не вызывают, а коэффициент передачи меняется на $\pm 0.8\%$. Изменение напряжения накала на $\pm 10\%$ смещает нуль на ± 3 мв, а коэффициент передачи меняется на ± 2.5 (при шкале 0-120 мв).

Пределы измерения. Расчет входных делителей

Усилитель вольтметра обеспечивает полное отклонение указателя индикаторного прибора на низшем пределе измерения. Расширение пределов измерения производится либо при помощи входных делителей, либо переключением резисторов в выходной цепи усилите-

ля (рис. 11). Рассмотрим эти способы по порядку.

Наиболее распространена схема делителя, показанная на рис. 11, а. Входное сопротивление вольтметра с этим делителем (если принять во внимание сеточный ток) постоянно на всех пределах измерения. Что касается сопротивления утечки сетки, то на низшем пределе измерения оно равно полному сопротивлению делителя и при переходе на более высокие пределы уменьшается. В соответствии с этим доля погрешности измерения, обусловленная влиянием сеточного тока, также максимальна на низшем пределе измерения и резко уменьшается на высоких пределах. Обычная величина полного сопротивления делителя такого вида составляет 10—25 Мом.

Обозначим суммарное сопротивление делителя через R:

$$R = R_1 + R_2 + \cdots + R_n = \sum_{m=1}^{n} R_m$$
.

а пределы измерения — через U_1 , U_2 , …, U_{R^*} . Низшим пределом измерения является U_1 . Когда напряжение U_1 приложено к сетке входной лампы усилителя, указатель индикаторного прибора ставится на конечную отметку шкалы. Чтобы это имело место при действии на входе вольтметра напряжения U_2 , оно должно быть поделено так, чтобы на сетке было по-прежнему напряжение U_1 :

$$U_2 \frac{R - R_1}{R} = U_2 \left(1 - \frac{R_1}{R} \right) = U_1,$$

иа третьем пределе измерения

$$U_3\left(1-\frac{R_1+R_2}{R}\right)=U_1.$$

и в общем случае на п-м

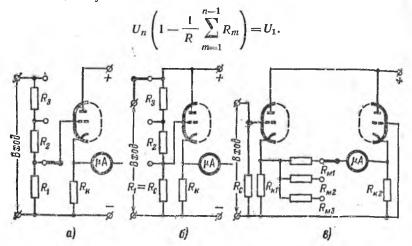


Рис. 11. Схемы переключения пределов измерения в ламповых вольтметрах.

a и 6 — на входе; s — на выходе.

$$R_n = RU_1 \left(\frac{1}{U_n} - \frac{1}{U_{n+1}} \right). \tag{36}$$

При вычислении сопротивления последнего резистора, соответствующего высшему пределу измерения, нужно полагать $U_{n+1} = \infty$ (следовательно, $1/U_{n+1} = 0$) и вот почему. Можно считать, что между последним резистором и нижним зажимом делителя имеется еще резистор, но с бесконечно малым сопротивлением (его возможно представить и конкретно в виде сопротивления вывода и пайки). Он дает (n+1)-й предел измерения, но, чтобы получить на нем напряжение U_1 , на вход делителя нужно подать, очевидно, бесконечно большое напряжение.

Пусть R=10 Мом, $U_1=3$ в, $U_2=10$ в, $U_3=30$ в, $U_4=100$ в, $U_5=300$ в. Для первого предела $U_n=U_1=3$ в, $U_{n+1}=U_2=10$ в. Поэтому $R_1=1\cdot 10^7\cdot 3\,(^1/_3-^1/_{10})=7$ Мом. Для второго предела $U_n=U_2=10$ в, $U_{n+1}=U_3=30$ в и $R_2=1\cdot 10^7$ $3\,(^1/_{10}-^1/_{30})=2$ Мом. Для третьего предела $U_n=U_3=30$ в, $U_{n+1}=U_4=100$ в и $R_3=1\cdot 10^7\times 3\,(^1/_{20}-^1/_{100})=700$ ком. Для четвертого предела $U_n=U_4=100$ в, $U_n=U_4=100$ в

 $U_{n+1}=U_5=300$ в и $R_4=1\cdot 10^7\cdot 3$ ($^1/_{100}$ — $^1/_{300}$) = 200 ком. Для пятого предела $U_n=U_5=300$ в, $U_{n+1}=\infty$ и $R_5=1\cdot 10^7\cdot 3\cdot ^1/_{300}=100$ ком. Когда имеется делитель, резистор R_Φ фильтра нижних частот

Когда имеется делитель, резистор R_{Φ} фильтера нижних частот включают, как правило, перед ним. В этом случае на делитель поступает $R/(R+R_{\Phi})$ часть входного наприжения. Чувствительность усилителя должна быть установлена такой, чтобы полное отклонение указателя индикатора наступало при действии на сетке усилителя напряжения $RU_1/(R+R_{\Phi})$. Если нижний предел измерения вольтметра равен 1 в, R=10 Мом и $R_{\Phi}=1$ Мом (обычная величина), то указатель должен стать на конечную отметку при напряжении на сетке 0,9 в. Поскольку ослабление напряжения одинаково на всех пределах, то расчет делителя никаких изменений не претерпевает и формула (36) остается справедливой. Должна быть, повторяем, лишь увеличена чувствительность усилителя в $(R+R_{\Phi})/R$ раз. К резистору R_{Φ} предъявляют те же требования, что и к остальным резисторам делителя.

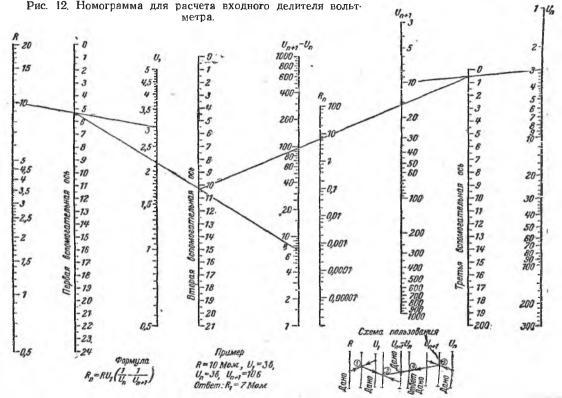
При проектировании вольтметров приходится подчас просчитывать много вариантов делителей, чтобы наилучшим образом сочетать желаемые параметры с техническими и материальными возможностями. На рис. 12 приведена поетроенная для формулы (36) номограмма, которая сэкономит в этом случае труд и время. Расчет окончательного варианта делителя может быть уточнен при помощи

формулы.

Применение делителя вносит в измерения дополнительную погрешность, которая зависит от погрешностей составляющих его резисторов и коэффициента деления. Для двухступенчатого делителя номинальный коэффициент деления

$$K = \frac{U_2}{U_1} = \frac{R_2}{R_1 + R_2}$$

Абсолютную ошибку коэффициента деления найдем, подставляя в это выражение действительные сопротивления резисторов $R_1\pm \Delta\,R_1$ и $R_2\pm\,\Delta\,R_2$ и вычитая номинальный коэффициент деления:


$$\Delta K = \frac{R_2 \pm \Delta R_2}{R_1 + R_2 \pm \Delta R_1 \pm \Delta R_2} - \frac{R_2}{R_1 + R_2},$$

Поскольку берется разность близких величин, никакими малыми величинами пренебречь нельзя.

После приведения к общему знаменателю и деления обеих частей на номинальный коэффициент К получим относительную ощибку:

$$\frac{\Delta K}{K} = \frac{\pm R_2 \, \Delta R_1 \pm R_1 \, \Delta R_2}{R_2 \, (R_1 + R_2 \pm \Delta R_1 \pm \Delta R_2)}.$$

Теперь двумя последними членами в знаменателе можно пречебречь, потому что они много меньше полного сопротивления делителя R_1+R_2 и их отбрасывание почти не скажется на значении $\Delta K/K$. Что касается знаков отклонений ΔR_1 и ΔR_2 , то худшим случаем является тот, при котором они противоположны: если R_2 больше номинальной величины, а R_1 меньше, и наоборот. Тогда их эффекты сложатся. Следовательно, наибольшая возможная, так называемая предельная, погрешность коэффициента деления соответствует максимальным отклонениям сопротивлений от номинала при про-

тивоположных знаках. Поделив числитель и знаменатель на R_1R_2 , получим окончательно:

$$\left(\frac{\Delta K}{K}\right)_{\text{MBKC}} = \frac{R_1}{R_1 + R_2} \left(\frac{\Delta R_1}{R_1} + \frac{\Delta R_2}{R_2}\right) = \left(1 - \frac{U_2}{U_1}\right) \left(\frac{\Delta R_1}{R_1} + \frac{\Delta R_2}{R_2}\right). \tag{37}$$

На рис. 13 эта вависимость изображена графически в виде семейства прямых, для которых параметром является сумма относительных погрешностей резисторов в процентах. Наибольшего значения погрешность показаний электронного вольтметра из-за неточности делителя достигает на больших пределах измерения, где $R_2 \ll R_1$.

Максимальная погрешность резисторов задается его классом точности (допуили классом прибора, при помощи которого оно было измерено. В промышленных электронных вольтметрах на лампах резисторы входного лелителя подбираются обычно с погрешностью ±0,5%. Опенивая влияние делителя, нужно принимать в чет и те изменения сопротивления его резисторов за период между поверками, которые происходят влиянием изменения внешних условий и эффектов старения. О степени их влияния можно судить по вольтметру ВК7-3 (А4-М2). Его максимальная дополнительная температурная погрешность в рабочем диапазоне

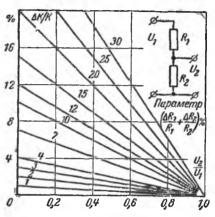


Рис. 13 Зависимость значения коэффициента деления и допусков резисторов.

температур от —40 до +50° С установлена в ±6% верхнего значения шкалы, а дополнительная погрешность при влажности воздуха 95—98% также установлена в +6%. В основном это — погрешность делителя.

Входное сопротивление делителя, показанного на рис. 11, 6, растет с повышением предела измерения, оставаясь постоянным в омах на вольт. При расчете делителя этого вида нам известно сопротивление резистора $R_1 = R_{\rm c}$, являющегося одновременно сопротивлением утечки сетки. Сопротивление делителя, отнесенное к одному вольту шкалы, равно R_1/U_1 , где U_1 , как и прежде, является нижним пределом измерения. Тогда сопротивление на втором пределе должно

быть равным $R_1 \frac{U_2}{U_1}$. Вычитая из него сопротивление R_1 , найдем сопротивление резистора R_2 :

$$R_2 = R_1 \frac{1}{U_1} (U_2 - U_1),$$

Общее выражение для сопротивления n-го резистора делителя будет:

$$R_n = R_1 \frac{1}{U_1} (U_n - U_{n-1}). \tag{38}$$

Считая по-прежнему, что наибольшее сопротивление в цепи сетки равно 10 Mом, а нижний предел измерения I θ , получим входное сопротивление вольтметра 10 Mом/ θ . На пределе измерения 300 θ это даст $3 \cdot 10^9$ ом. Собирать делители с такими сопротивлениями неразумно, потому что нестабильность резисторов приведет к очень большим погрешностям, которые перечеркнут все выгоды очень высокого сопротивления вольтметра.

Из формул (30) и (31) явствует, что пределы измерения можно менять путем изменения сопротивления $R_{\rm M}$ в выходной цепи усилителя (рис. II, θ). Преимущество этого способа заключается в том, что становится ненужный высокоомный делитель со всеми трудностями его изготовления, а делитель на выходе, будучи относительно низкоомным, может быть собран из стабильных проволочных резисторов. Естественно, что точность показаний вольтметра при этом

будет выше.

До тех пор, пока предел измерения укладывается в границы линейного участка характеристики вольтметра, специальный резистор утечки в цепи сетки входной лампы не нужен. Его роль в процессе измерения выполняет выходное сопротивление исследуемой цепи, наибольшее значение которого может составлять, очевидно, те же 10 Мом, коль скоро оно находится в цепи сетки. А если бы на входе вольтметра имелся делитель, то для безошибочных измерений в таких цепях его сопротивление должно бы быть не менее 1 000 Мом.

При установке нуля вход вольтметра отключают от цепи и за-

мыкают на землю.

Чаще всего переключение пределов измерения делают комбинированным: до 150—200 в переключают резисторы в выходной цепи, а для больших пределов измерения предусматривают входной двухступенчатый делитель с коэффициентом деления 1/10. По-видимому, это наилучшее решение вопроса.

Влияние сеточного тока

Некоторая доля тока сетки первой лампы вольтметра (а при некоторых условиях — весь ток сетки) протекает в цепи источника измеряемого напряжения. Поэтому и входное сопротивление постоянному току и дифференциальное входное сопротивление (сопротивление переменному току) вольтметра в значительной мере определяются сеточным током.

Сеточный ток является также источником погрешности показаний. Погрешности возникают вследствие смещения нуля вольтметра при подключении последнего к источнику измеряемой э. д. с., нелинейного характера зависимости сеточного тока от напряжения на сетке лампы (от измеряемого напряжения) и изменения величины сеточного тока в зависимости от окружающих условий и времени («дрейфа» сеточного тока).

Эквивалентная схема входной цепи электронного вольтметра постоянного тока изображена на рис. 14. Здесь U — измеряемое напряжение; $R_{\rm BH}$ — выходное сопротивление измеряемой цепи относительно точек присоединения вольтметра; $R_{\rm c}$ — сопротивление утечки

сетки, которое может быть и частью входного делителя.

Для облегчения анализа входную цепь можно изобразить и в

виде схем, представленных на рис. 14,6 и в.

В схеме на рис. 14, δ источник напряжения U с последовательно включенным внутренним сопротивлением $R_{\rm BH}$ заменен эквивалентным источником тока I с параллельно включенным внутренним сопротивлением $R_{\rm BH}$. В этом случае по эквивалентному сопротивлению $= \frac{R_{\rm BH} R_{\rm C}}{R_{\rm BH} + R_{\rm C}}$ протекает сумма токов сигнала 1 и сет-

К схеме, изображенной на рис. 14, в, можно перейти, воспользовавшись известной теоремой об эквивалентном генераторе или же заменив источник тока в схеме на рис. 14, б эквивалентным источни-

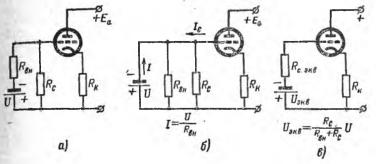


Рис. 14. Эквивалентная схема входной цепи лампового вольтметра на постоянном токе.

ком напряжения. По сопротивлению $R_{\text{с-экв}}$ при этом протекает лишь сеточный ток лампы, а результат протекания во входной цепи тока сигнала учтен соответствующим уменьшением значения напряжения

 $U_{\text{экв}}$ против значения U.

Когда вольтметр подключают к измеряемой цепи, величина сопротивления утечки лампы резко уменьшается из-за присоединения сопротивления $R_{\rm BH}$. В связи с этим происходит смещение указателя вольтметра с нулевой отметки на величину $I_{\rm c}(R_{\rm c}-R_{\rm c\cdot 2KB})$. Если $R_{\rm BH} \approx 0$, то смещение нуля составляет $I_{\rm c}R_{\rm c}$ и для вольтметров на обычных двойных триодах при сопротивлении делителя 10-20 Мом

достигает значения 0,1-0,2 в.

В промышленных вольтметрах с чувствительной основной шкалой принимают специальные меры для устранения указанного влияния начального сеточного тока. Для примера на рис. 15 показана упрощенная схема лампового вольтметра ВК7-3 (А4-М2). На сетку правой половины лампы 6Н1П с резистора R₈ через входной делитель поступает небольщое отрицательное напряжение порядка 0,15 в. Оно примерно равно падению напряжения, создаваемому сеточным током лампы на полном сопротивлении делителя Если теперь сетку лампы замкнуть на корпус прибора (непосредственно или через внутреннее сопротивление источника измеряемой э. Д. с.), то указатель не сместится с нулевой отметки, потому что одновременно замыкаются как делитель, так и резистор R_8 Небольшая разница в падениях напряжений на делителе и резисторе R_3 значения не имеет.

Погрешность из-за смещения нуля можно устранить, если исключить сопротивление $R_{\rm c}$. Роль сопротивления утечки сетки будет в этом случае выполиять внутреннее сопротивление источника измеряемой э. д. с. Но при этом должна быть возможность установки нуля вольтметра без отключения последнего от измеряемой цепи.

Погрешности показаний вольтметров из-за протекания во входной цепи сеточного тока определяются почти полностью указанным смещением нуля. Но, помимо измерения напряжений, высокоомные вольтметры могут использоваться и для измерения малых токов по падению напряжения, которое создается этими токами на большом

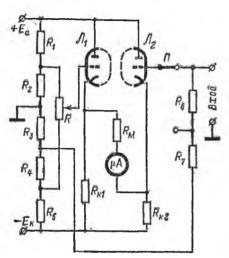


Рис. 15. Схема компенсации влияния начального сеточного тока в вольтметре BK7-3 (A4-M2).

сопротивлении R_c в пепи сетки. В этих случаях нуль шкалы вольтметра может быть установлен с учетом падения напряжения I_{c} R_{c} , создаваемого током сетки на сопротивлении $R_{\rm c}$, и при подключении источника тока с высоким внутренним сопротивлением положение куля вольтметра остается неизменным. Погрешность показаний при этом будет определяться, главным зом, зависимостью величины сеточного тока от напряжения на лампы. Нелинейный характер этой зависимости может при достаточно большой величине сопротивления Рс вообще привести K нестабильной работе устройства.

Для примера на рис. i6 показаны зависимости падения напря-

жения $I_c R_c$ от напряжения на сетке лампы (включая смещение) для трех значений сопротивления R_c . Видно, что при $R_c > 5 \cdot 10^8$ ом и $U_c < -3$ в ламповый каскад нормально работать не сможет, потому что зависимость между напряжением на сетке и сеточным током становится неоднозначной.

Из-за непостоянства сеточного тока во времени учитывать его при градуировке вольтметра нельзя, так как спустя некоторое время

такая градуировка стала бы неверной.

Решительной мерой, снижающей влияние сеточного тока, является уменьшение самого сеточного тока. Вместе с тем это связано с трудностями тем большими, чем меньший ток сетки мы желаем получить. Отметим также, что в отдельных случаях можно удовлетворительно работать и при довольно значительных токах сетки. Поэтому сеточный ток лампы (а точнее, входной ток измерительного устройства) должен быть снижен лишь настолько, чтобы вызываемая им погрешность измерения не превышала заданного значения.

Для успешного решения подобных задач требуются знания природы сеточного тока, причин его возникновения и степени его влия-

ния иа результат измерения.

Подробный анализ первых двух вопросов можно найти в литературе, список которой приведен в конце книги. Здесь же будут даны лишь самые необходимые сведения о сеточном токе и рассмотрен

расчет катодного повторителя с учетом влияния се-

точного тока.

Общий сеточный лампы является суммой многих составляющих. В обычприемно-усилительных радиолампах основное значение имеют следующие четыре из них (рис. 17):

1. Электронный ток сетвозникающий вследст-KH. вие TOTO что некоторая часть электронов вылетает катода с достаточными скоростями, чтобы преодолеть тормозящее поле сетки и попасть на нее. Для электронной составляющей сетка играет роль анода, поэтому этот ток подчиняется тем же закономерностям. что анодный ток диода.

С увеличением отрицательного напряжения на сетке электронный ток сетки уменьшается и при $U_c = -(2+3)$ в полностью прекращается. При прочих равных условиях электронный ток сетки увеличивается при снижении анодного напряжения.

Поскольку электронный ток сетки аналогично анодному току направлен к катоду, он считается положительным. Все остальные составляющие образуют отрицательный сеточный ток.

2. Ионный ток сетки, появляющийся за счет ионизации молекул остаточных газов лампе. В обычных режимах работы ламп - это основная составляющая сеточного намного превосходящая остальные.

Для каждого типа радиолампы отношение ионного то-

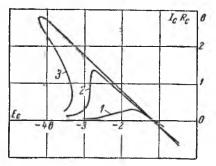


Рис. 16. Влияние сопротивления R_c на величину сеточного смещения (лампа 6H2П, $E_a = 200 e$).

$$1 - R_{\rm C} = 10^{\rm 8}$$
 om: $2 - R_{\rm C} = 5 \cdot 10^{\rm 8}$ om: $3 - R_{\rm C} = 2 \cdot 10^{\rm 9}$ om.

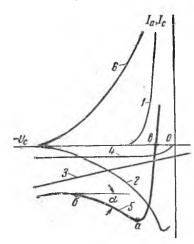


Рис. 17 Сеточный TOK лампы и основные его составляющие.

1 — электронный ток сетки; 2 — ионный ток сетки: 3 — токи утечки по изоли-4 — термоэлектронный ток ции сетки; сетки: 5 — результирующий ток сетки; 6 - анодный ток лампы.

ка сетки к анодному току при неизменном анодном напряжении постоянно. Это напряжение определяется только давлением остатков

воздуха в колбе.

При понижении анодного напряжения ионный ток уменьшается и при $U_a < 7.9$ в полностью прекращается. Объясняется это тем, что при этом летящие к аноду электроны имеют уже недостаточную энергию, чтобы ионизировать илн хотя бы возбудить атомы даже кислорода, который из всех присутствующих в лампе газов имеет наименьшие потенциалы ионизации и возбуждения.

3. Ток утечки сетки, обусловленный недостаточной электрической

изоляцией ее от остальных электродов.

Стекло баллонов лампы не является высококачественным изолятором. Поэтому между сеткой и остальными электродами существуют токи утечки. Величины их зависят от разности потенциалов и сопротивлений между сеткой и соответствующими электродами.

4. Термоэлектронный ток сетки, обусловленный электронами, испускаемыми сеткой вследствие ее разогрева тепловым излучением катода. Эта составляющая сеточного тока заметна у ламп с оксидными катодами.

Другие составляющие сеточного тока имеют гораздо меньшее значение и принимаются во внимание только при работе со специаль-

ными электрометрическими лампами.

При некотором значении потенциала сетки отрицательная и положительная составляющие сеточного тока становятся равными по величине и сеточный ток в цепи сетки фактически отсутствует. Такой же потенциал принимает сетка при обрыве ее цепи, поэтому он называется потенциалом «свободной» или «плавающей» сетки. Этот потенциал, определяемый динамическим равновеснем составляющих сеточного тока, подвержен флуктуациям, и значение его зависит от режима лампы.

Наклон характеристики сеточного тока показывает, как меняется сеточный ток в зависимости от изменения сеточного напряжения. Котангенс угла наклона называется дифференциальным сопротивле-

нием сетки:

$$-R_{c,\mu} = \operatorname{ctg} \alpha = \frac{\Delta U_c}{\Delta I_c} \tag{39}$$

Между точками а и б (кривая 5 на рис. 17) дифференциальное сопротивление сетки можно принять с некоторым приближением постоянным. В данной области оно отрицательно, потому что уменьшению напряжения на сетке соответствует положительное приращение сеточного тока (отрицательный ток сетки уменьшается).

Таким образом, влияние сеточного тока при усилении переменных напряжений отображается включением между управляющей сеткой и катодом лампы дифференциального сопротивления сетки.

В ламповом каскаде с анодной нагрузкой сопротивление $R_{\rm c, J}$ включено параллельно сопротивлению $R_{\rm c}$ утечки сетки. В катодном повторителе вследствие отрицательной обратной связи параллельно сопротивлению $R_{\rm c}$ будет, очевидно, включено уже сопротивление $R_{\rm c, J}(1-K)$, т. е. намного большее (K—коэффициент передачи катодного повторителя).

Так как электронные вольтметры строятся преимущественно по

схемам катодных повторителей, рассмотрим подробнее влияние тока управляющей сетки на работу катодного повторителя и методику определения погрешностей, вызываемых сеточным током (рис. 18).

 $K_{
m Dubas}$ A представляет собой обычную динамическую анодносточную характеристику лампы, а кривая B — характеристику, сия-

тую при наличии в цепи некоторого сопротивления $R_{\rm c}$.

При расчете обычного ($I_cR_c\approx 0$) катодного повторителя из точки на оси ординат, соответствующей гоку $I_{d0}=E_K/R_K$, где R_K — величина сопротивления в катодной цеп и, а E_{-K} — значение напряжения,

к которому это сопротивление присоединено. лится линия нагрузки под vглом arctg 1/Rк. Пересечение линии нагрузки с динамической характеристикой А определяет начальное положение рабочей (точка 1). Чтобы найти рабочую точку при сигнале U, линию нагрузки сдвигают параллельио вправо или влево (в зависимости от знака сигнала) на величину U. Рабочая точка при этом займет, например, положение 4.

При наличии в цепи сетки большого сопротивления R_c начальное положение рабочей точки определяется точкой пересечения линии нагрузки с характеристикой E (точка 2). Проведя из точки 2 горизонтальную прямую до пересечения с характеристикой A, получим точку 3. Отрезок 2—3 показывает в соответствующем масштабе падение иапряжения, создаваемое сеточным током на со-

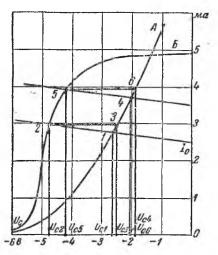


Рис. 18. Графический расчет катодного повторителя при большом сопротивлении в цепи сетки.

Лампа 6Н1П; $E_{\rm a}$ =150 e; $U_{\rm H}$ =6,3 e; $R_{\rm C}$ =2,2 · 10 $^{\rm o}$ om.

противлении утечки сетки, т. е. $I_{c}U_{c}=U_{c3}-U_{c2}$. Тогда потенциал катода окажется выше, чем при $R_{c}\approx 0$, на $U_{c1}-U_{c2}$, а напряжение на

сетке, таким образом, уменьшится и станет равным $U_{{f c}3}$.

Для некоторого другого значения сопротивления в цепи сетки $R_{\rm c}$ соответствующая характеристика строится путем умножения величин отрезков по горизонтали между двумя показанными дииамическими характеристиками на $R_{\rm c}/R_{\rm c}$. Так нетрудно построить семейство характеристик для нескольких различных значений сопротивления утечки сетки. По точкам пересечения линии нагрузки с этими характеристиками можно определить зависимость напряжения на катоде лампы от сопротивления в цепи ее сетки.

Результат протекания по сопротивлению $R_{\rm c}$ тока сигнала $I_{\rm H}$ отображается параллельным переносом лини: нагрузки вправо или влево (в зависимости от направления тока) на величину $I_{\rm x}R_{\rm c}$. Ра-

бочая точка перемещается по динамической характеристике Б, крутизна которой отлична от крутизны характеристики A и зависит от величины сопротивления $R_{\rm c}$ и положения рабочей точки. Поэтому коэффициент передачи катодиого повторителя зависит от величины сопротивления R_{c} , следствием чего является погрешиость измерения

Если, например, рабочая точка займет положения 5, то изменение напряжения сетка — катод вместо $U_{c4} - U_{c1}$ будет $U_{c6} - U_{c3}$. Зависимости погрешности от сопротивления и измеряемого тока легко

могут быть построены.

В общем случае управляющая сетка лампы катодиого повторителя подключается к источнику напряжения U с внутренним сопротивлением $R_{\rm вн}$. Источник напряжения можно заменить параллельным соединением источника тока $I_{\text{якв}} = U/R_{\text{вн}}$ и сопротивления $R_{\text{вн}}$. Теперь рабочая точка будет находиться на пересечении линии нагрузки, сдвинутой параллельно себе на величину $I_{\text{экв}} R_{\text{c}}$, с динамической характеристикой, соответствующей сопротивлению утечки

 $R_{\rm c}' = \frac{R_{\rm c}R_{\rm BH}}{R_{\rm c}}$. Очевидно, что в этом случае возникает дополиительная

погрешность из-за того, что начальное положение рабочей точки переместится с характеристики, соответствующей сопротивлению $R_{\rm c}$,

на характеристику для сопротивления R_c .

Таким образом, располагая двумя динамическими анодно-сеточными характеристиками лампы, сиятыми при $R_{\rm c} = 0$ и при некотором $R_{
m c}$, можно графически построить зависимость выходного напряжения катодиого повторителя от напряжения на его сетке при любых значениях $R_{\rm c}$ и определить значения погрещности, которые вызываются сеточиым током.

Если приемио-усилительная лампа работает катодиым повторителем и поставлена в более или менее обычный режим, когда ток сетки определяется перечисленными выше составляющими и имеет порядок $10^{-10} - 10^{-8}a$, величина этого тока оказывается довольно стабильной. Например, величина $I_{\rm c}R_{\rm c}$ для катодного повторителя, характеристики которого приведены на рис. 18, отклонялась от своего первоиачального значения не более чем ±10% за десятидневный период времени.

Следовательно, указанным графическим расчетом можно определить наибольшую величину R_{c} по заданной максимальной погреш-

ности измерения.

Чтобы свести к минимуму сеточный ток, нужно в первую очередь устраиить или уменьшить перечисленные выше составляющие. Для этого лампу ставят в так называемый электрометрический режим, характеризующийся низким анодным напряжением, значительным отрицательным смещением и пониженным напряжением накала.

Обычные триоды и пентоды мало пригодны для работы в электрометрическом режиме. В самом деле, потенциал запирания триода ляется в основном геометрией лампы и мало зависит от режима, то лампа оказывается запертой раньше, чем потеициал анода будет снижен до величины $U_{\rm ион}$ ($U_{\rm пон}$ — потенциал ионизации газа). Поэтому обычные лампы (иапример, типов 6Н1П, 6К1П) можно использовать лишь в облегченном режиме при аиодных напряжениях 20— 30 в и напряжении накала 4—5 в. Ток управляющей сетки при этом имеет порядок 1 · 10—11 а.

Примерно такой же или несколько меньший сеточный ток показывают лампы прямого накала 2П2П, 2П1П и т. д. после специаль-

иой обработки, которая заключается в следующем1.

Нити накала соединяют последовательно и подключают к иапряжению 2,4±0,1 в. Одновременно на первую сетку подают напряжение от 5 до 7 в, причем отрицательные полюсы обоих источников соединяют вместе. Остальные электроды свободны. В этом режиме лампу выдерживают от 15 до 45 мин. После обработки лампу 2П2П рекомендуется использовать в триодном включении в режиме: напряжение накала 1,2—1,5 в (подается на ножки 1 и 7, ножка 5 свободна); напряжение анода 18—21 в, напряжение на управляющей сетке — 0,5 ÷ —0,6 в. При этом ток сетки — менее 10—11 а, кругизиа 0,2—0,25 ма/в. В основном обработка стабилизует характеристики.

Хорошо работают в электрометрическом режиме лампы — желуди типов 6Ж1Ж и 6К1Ж с управлением по третьей сетке, проницаемость которой высока. В этом случае на аиод лампы и вторую сетку подают напряжение 6 в, на первую сетку 1 в; смещение третьей сетки — 3,75 в; цепь накала питается постоянным напряжением 4 в. При этом анодный ток составляет 50—100 мка, кругизна лампы

40—80 мка/в, ток третьей сетки $2.5 \cdot 10^{-14} - 1 \cdot 10^{-13}$ а.

Для измерения малых токов разработаны и выпускаются специальные электрометрические лампы. Данные некоторых из них приведены в табл. 2. Эти лампы имеют очень небольшой статический коэффициент усиления, равный всего 1—3. Для повышения сопротивления изоляции управляющей сетки ее вывод осуществлен отдельно. Мощность накала невелика, материал катода — торированный вольфрам.

Таблица 2

	Тип лампы						
Параметры лампы						1	
	19111	2Э2Π	эмз	ЭМ4	ЭМ5	эм6	ЭМ7
Напряжение накала			3	1 2	3,15	4.5	1
$U_{\rm H}$, в	46	2 55	120	1,3 24	115	4,5 75	18
U_a , \mathfrak{s}	6 100	6 45	6 60	8 300	5 85	5,0 75	7 200
Напряжение первой сетки U_{c1} , s	4	4	4	1,7	4	3,6	2
Напряжение второй сетки U_{c2} , s Крутизиа характе-	-3	3	3	-	— 3	3	_
ристики S, мка/в. Коэффициент уси-	50	22	5 0	80	5 0	45	80
ления µ	1,3	1,3	1,4	2,2	1,1	1,1	1,6
сетки I_{c} ·10—14, a .	7	8	0,3	7	0,5	0,5	0,5

 $^{^1}$ С. Саакян, Применение обычных радиоламп в качестве электрометрических, «Радио», 1961, № 8.

В сеточном токе ламп, которые работают в электрометрическом режиме, большую роль играют фотоэлектронная составляющая, возникающая вследствие попадания на сетку различных световых и рентгеновских излучений, а также другие составляющие, например, ток ионной эмиссии с катода и т. п. Чтобы уменьшить эти составляющие, во многих электрометрических лампах имеется так называемая «катодная» сетка, помещенная между управляющей сеткой и катодом. На эту сетку подается небольшое положительное напряжение порядка 1—2 в. Катодная сетка выполняет двоякое иазначение. Она как бы увеличивает эффективную поверхность катода, повышая тем самым крутизну лампы, и экранирует управляющую сетку от излучений катода и потока положительных ионов с него.

Интерес представляет работа лампы в режиме «плавающей сетки», когда ток сетки во внешней цепи полностью отсутствует и лампа совершенно не потребляет мощности от измеряемой цепи. Однако работа лампы при этом не всегда оказывается устойчивой; лампа может самопроизвольно запираться или, наоборот, открываться. Кроме того, крутизна сеточного тока вблизи точки «плавающего потенциала» (точка в на рис. 17) очень велика, и уже при небольших отклонениях потенциала сетки от «плавающего потенциала» в сеточной цепи проходит значительный ток. Поэтому допустнмые изменения напряжения сетки лампы под воздействием сигнала должны быть крайне незначительны.

Это условие выполняется в сложных катодных повторителях,

которые рассматриваются в следующей главе.

Положение точки «плавающего потенциала» зависит и от режима остальных электродов лампы. Например, снижение напряжения накала сдвигает эту точку вправо. Действительно, электронный ток сетки уменьшается за счет уменьшения числа и скоростей вылетающих с катода электронов, а также за счет некоторого повышения анодного напряжения (при иаличии нагрузки) вследствие снижения аиодного тока. Уменьшение анодного иапряжения сдвигает эту точку влево, увеличение — вправо.

Лампы, работающие в электрометрическом режиме, требуют бережного и осторожного обращения. Прежде всего баллон лампы должен быть чистым. Его желательно промыть спиртом, затем дистиллированной водой и тщательно высущить. Можно прокипятить лампу в дистиллированной воде в течение 1—2 ч. При этом не только удаляются жир и грязь с поверхности, но и происходит выщелачивание стекла, что уменьшает поверхностную про-

водимость

Лампу следует помещать в пыле- и светонепроницаемый кожух. Желательно туда же поместить осушитель — силикагель или пяти- окись фосфора P_2O_5 . Вывод управляющей сетки осуществляется через проходной изолятор из фторопласта-4. Лампу можно залить очищенным церезином; тогда нзолятор и плотный кожух не нужны.

В однокаскадных усилителях мостобого типа и аналогичных им схемах электрометрические лампы применять нельзя, для этого их крутизна и допустимые изменения напряжения на сетке слишком малы. Эти лампы применяют на входе многокаскадных усилителей, охваченных глубокой отрицательной обратной связью, или в сложных катодных повторителях, которые рассматриваются дальше.

Входные сопротивление и емкость

Входиое сопротивление вольтметра постоянному току определяется обычным образом — как отношение напряжения, действующего на входе, к току, отбираемому входной цепью вольтметра от источника измеряемого напряжения. Оно зависит от сопротивления делителя или утечки сетки $R_{\rm c}$ (если они имеются), от сопротивления изоляции входной цепи и величиы сеточного тока. Из-за иаличия сеточного тока входное сопротивление постоянному току может быть и меньше сопротивления $R_{\rm c}$ и больше его. По той же причине оно различно при различных входных напряжениях, τ е. зависимость входного тока $I_{\rm BX}$ от входиого напряжения $U_{\rm BX}$ нелинейна.

Котангенс угла наклона касательной к кривой, выражающей эту зависимость, показывает дифференциальное входное сопротивление, т. е. сопротивление переменному току вольтметра при постоянной составляющей входного напряжения, соответствующей точке касания. При измерении вольтметром только переменных напряжений, без постоянной составляющей, его дифференциальное сопротивление равно котангенсу угла наклоиа касательной к указанной кривой в точке ее пересечения с осью абсцисс при условии, что амплитуда пере-

менного напряжения невелика.

Вольтметр имеет также некоторую входную емкость. Поэтому в общем случае входная цепь электронного вольтметра на лампах представляется в виде параллельного соединения дифференциального входного сопротивления $R_{\rm BX}$ и входной емкости $C_{\rm BX}$. Дифференциальное входное сопротивление в свою очередь есть параллельное соединение сопротивления утечек входной цепи и дифференциального сопротивления сетки лампы.

Полное входное сопротивление вольтметра

$$Z_{\rm BX} = \frac{R_{\rm BX}}{\sqrt{1 + (2\pi f R_{\rm BX} C_{\rm BX})^2}}.$$
 (40)

Для определения входного сопротивления вольтметра по постоянному и переменному току необходимо измерить входной ток вольтметра. В большинстве случаев из-за цезначительности токов утечек во входной цепи основной составляющей входного тока высокоомных вольтметров является сеточный ток первой лампы.

Методика измерения сеточного и входного токов одинакова, только в изложении методики в соответствующих местах выражения «цепь сетки» и «анодная цепь лампы» заменяются выражениями

«входная цепь вольтметра» и «выходная цепь вольтметра».

Ток сетки при измерении методом компенсации (рис. 19, а) определяют по величине падения напряжения на резисторе известной величины, включениом в цепь сетки. Порядок измерения следующий. При замкиутом выключателе Вк устанавливают заданный режим лампы и отмечают ток анода по показанию миллиамперметра в анодной цепи лампы. Затем выключатель размыкают. Меняя напряжение управляющей сетки при помощи потенциометра R, доводят анодный ток лампы до раиее отмеченного значения. Ток сетки вычисляют по формуле

$$I_{c} = \frac{U_{2} - U_{1}}{R_{c}} [M \kappa a],$$
 (41)

где U_1 — заданное напряжение сетки, θ ; U_2 — напряжение, установленное при разомкнутом выключателе, θ ; R_c — сопротивление из-

вестной величины, Мом.

Для повышения точности измерения можно применять цепь компенсации тока анода, которая дает возможность точно отсчитывать малые изменения тока анода. Повысить чувствительность метода путем использования очень больших сопротивлений R_c нельзя из-за неустойчивости в этом случае режима работы лампы (см. рис. 16).

Получение полной характеристики сеточного тока требует много времени. Несколько видоизменив метод компенсации, можно быстро снять две анодно-сеточные характеристики лампы: одну — при замкнутом выключателе Вк, другую — при разомкнутом, т. е. при

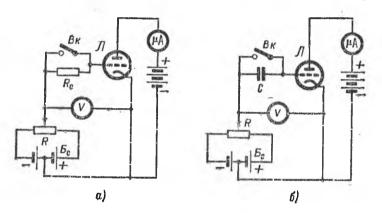


Рис. 19. Схемы измерения сеточного тока лампы. a — методом компенсации: b — по скорости заряда конденсатора.

наличии сопротивления $R_{\rm c}$. Такая пара характеристик была показана на рис. 18. По ней легко найти значение сеточного тока для любого напряжения на сетке. Например, при напряжении сетки $U_{\rm ce}$ ток сетки равен отрезку 5—6 в масштабе оси напряжений, деленному на величину $R_{\rm c}$: 3,75 e/2,2 · 108 ом=1,7 · 10—9 a.

Метод компенсации очень прост. Однако при измерении малых сеточных токов ламп, работающих в электрометрическом режиме, при котором крутизна лампы очень невелика, в анодную цепь лампы необходимо включать чувствительный гальванометр, а сопротивления R_c брать слишком большими, известными лишь приблизительно. В этих случаях прибегают к измерению сеточного тока по скорости

заряда конденсатора.

При этом методе (рис. 19,6) между сеткой лампы и движком потенциометра R, с которого снимается напряжение, имитирующее сигнал, включают конденсатор C небольшой емкости с высоким сопротивлением изоляции. Вначале конденсатор замыкают накоротко выключателем $B\kappa$ и снимают зависимость анодного тока лампы от напряжения на ее сетке. Затем на сетке лампы устанавливают заданное напряжение U_0 и одновременно с запуском секундомера размыкают выключатель. Конденсатор будет заряжаться сеточным током,

и спустя время t напряжение на сетке лампы станет равным U_1 . Тогда сеточный ток, если полагать его в течение времени заряда неизменным, можно определить по формуле

$$I_{\rm c} = \frac{U_0 - U_1}{t} C_{\rm c} \tag{42}$$

Напряжение U_1 определяется по анодному току в соответствии с предварительно снятой зависимостью анодного тока от напряжения на сетке лампы (другими словами, по крутизне лампы). При малых токах конденсатор C должен быть очень небольшой емкости. Роль этого конденсатора может играть входная емкость лампы, но точно измерить величину этой емкости трудно. Поэтому часто вливние входной емкости совсем исключают. Для этого производят два измерения с двумя конденсаторами, емкости которых C_1 и C_2 . Значение сеточного тока подсчитывают по формуле

$$I_{c} = \frac{(U_{0} - U_{1})(U_{0} - U_{2})}{(U_{0} - U_{2})t_{1} - (U_{0} - U_{1})t_{2}}(C_{1} - C_{2}). \tag{43}$$

Отметим, что для снятия кривой сеточного тока по скорости заряда коиденсатора нужна определенная сиоровка, потому что сеточные токи ламп, работающих в электрометрическом режиме, очень непостоянны во времени и полученные точки могут не образовать плавную кривую.

Быстро входное сопротивление вольтметра или усилителя может быть измерено, например, при помощи источника напряжения и вспомогательного резистора R, включаемого между источником и входом вольтметра (рис. 20,a). Резистор R и входное сопротивление вольтметра $R_{\rm BX}$ образуют делитель. Если напряжение источника $U_{\rm I}$, а напряжение на выходе вольтметра $\tilde{U}_{\rm BMX}$, то

$$R_{\rm BX} = R \; \frac{U_{\rm BMX}}{KU_1 - U_{\rm BMX}} \; , \tag{44}$$

где K — коэффициент передачи (усиления) вольтметра по напряжению.

Напряжение должно быть достаточно низкой частоты, с тем, чтобы можно было не принимать во внимание емкость входа $C_{\rm BX}$ и паразитную емкость резистора R.

Сопротивление резистора R должно быть большим, того же по-

рядка, что и $R_{\rm BX}$. Это ограничивает величину измеряемых $R_{\rm BX}$.

При измерении методом заряда конденсатора (рис. 20, 6) необходимы генератор прямоугольных импульсов и осциллограф. Импульсы подают на вход испытуемого усилителя через конденсатор С и наблюдают форму импульсов на выходе усилителя, которые повторяют форму кривой зарядиого и разрядного токов конденсатора С и являются начальными участками экспоненциальной функции.

Пусть генератор выдает двуполярные импульсы с амплитудой U_1 , длительностью τ и скважностью 2 (рис. 20, θ). У выходных импульсов будет наблюдаться спад вершины, определяемый постоянной времени $R_{\rm Bx}$. C входной цепи и длительностью импульса τ . Если $\tau \ll R_{\rm Bx}$ C, то плоская часть выходиого импульса, представляя

собой начальный участок экспоненты, достаточно точно описывается линейной функцией времени:

$$U = U_1 \left(1 - \frac{t}{R_{\rm BX} C} \right) *$$

В начале действия импульса $U=U_1$, в конце

$$U_2 = U_1 \left(1 - \frac{\tau}{R_{\rm BX}C} \right) .$$

Отсюда спад вершины $U_1 - U_2 = U_1 \; \frac{\tau}{R_{\rm BK} C}\;$ и входное сопротивление

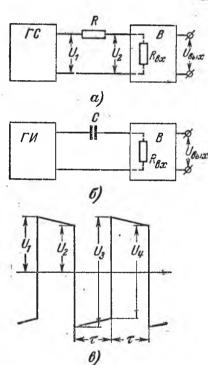


Рис. 20. Схемы измерения входного сопротивления вольтметров и усилителей.

a— с помощью добавочного резистора; 6— по способу заряда емкости: a— форма импульсов на выходе усилителя; ΓC — генератор синусоидального напряжения; ΓM —генератор прямоугольных импульсов; B— испытуемый вольтметр (усилитель).

$$R_{\rm EX} = \frac{U_1}{U_1 - U_2} \frac{\tau}{C} = \frac{U_3}{U_3 - U_4} \frac{\tau}{C} . \tag{45}$$

Применение этого способа возможно при условии, что сам усилитель пропускает импульсы без искажений. Для проверки импульсы подают на вход усилителя непосредственно и убеждаются в идентичности их формы на входе и выходе.

Емкость конденсатора берут тем меньше, чем больше ожидаемое $R_{\rm BX}$, но она должна быть много больше входной емкости усилителя, потому что, строго говоря, постоянная времени входа равна $R_{\rm BX}$ ($C+C_{\rm BX}$). Сопротивление утечки конденсатора C должно быть много больше $R_{\rm BX}$.

Динамическая входная емкость вольтметра отличается от статической. Для вольтметра по схеме катодного повторителя

$$C_{\text{BX}} = C_{\text{c.a}} + (1 - K) C_{\text{c.k}} + C_{\text{M}},$$
 (46)

где $C_{\text{c.a}}$ — емкость сетка — анод лампы, превышающая такую же емкость у неработающей лампы на I-2 $n\phi$ из-за влияния пространственного заряда; $C_{\text{c.k}}$ — емкость сетка — катод; C_{M} — емкость сетка — корпус (монтаж-

ная); К — коэффициент передачи кагодного повторителя. Поэтому

измерять входную емкость нужно в динамическом режиме.

Из формулы (46) видно, что входная емкость постоянна лишь в том диапазоне частот, в котором коэффициент передачи К можно полагать не зависящнм от частоты. В связи с этим у многих высокоомных вольтметров нельзя непосредственно измерить входную емкость, например, резонансным методом, методом замещения и другими методами, при которых используются частоты порядка сотен килогерц.

Измерить входную емкость можно следующим способом. Возьмем конденсатор известной емкости C и зарядим его до напряжения U. Конденсатор получит при этом заряд Q = CU. Подключим заряженный конденсатор параллельно входу вольтметра (усилителя). Емкость входа станет равиой $C + C_{\rm Bx}$, а так как заряд не изменился (считаем $R_{\rm Bx}$ достаточно большим), то новое напряжение в результате перераспределения заряда будет $U_1 = Q/(C_{\rm Bx} + C)$. Условие сохранения суммарного заряда:

$$CU = (C + C_{\rm BX}) U_1,$$

откуда

$$C_{\rm EX} = C \frac{U - U_1}{U_1} \tag{47}$$

Зная U и отмечая U_1 в момент присоединения конденсатора (лучше всего при помощи осциллографа на выходе), можно найти $C_{\rm BV}$. По кривой разряда, который затем будет иметь место, можно будег определить и $R_{\rm BX}$.

Для измерения входной емкости можно воспользоваться также тем обстоятельством, что из-за изличия этой емкости величина полного входного сопротивления $Z_{\rm BX}$ вольтметра зависит от частоты.

Пусть ко входу вольтметра подключен источник тока I, частоту которого можно менять. Тогда напряжение на входе вольтметра будет $U_{\rm BX} = IZ_{\rm BX}$. На низкой частоте $Z_{\rm BX} = R_{\rm BX}$. С повышением частоты значение $Z_{\rm BX}$ уменьшается и на некоторой частоте $f_{\rm B}$ оно упадет до

$$Z'_{\rm BX} = \frac{R_{\rm BX}}{\sqrt{1 + (2\pi f_{\rm B} R_{\rm BX} C_{\rm BX})^2}} = \frac{R_{\rm BX}}{\sqrt{2}}.$$
 (48)

В соответствии с этим напряжение на выходе вольтметра (коэффициент передачи усилителя в этой области частот считаем постоянным) также снизится до $1/\sqrt{2}$ первоначальной величины, т.е. уменьшится на $3\ \partial \delta$. Очевидно, что частота $f_{\rm B}$ является верхней граничной частотой полосы пропускания вольтметра в целом. Из соотношения (48) можно найти входную емкость:

$$C_{\rm BX} = \frac{1}{2\pi R_{\rm BX} f_{\rm B}} . \tag{49}$$

Практически вместо источника тока достаточно иметь источник напряжения U с активным внутренним сопротивлением $R_{\rm BH}$ примерно той же ведичины, что и $R_{\rm Bx}$. При замене его эквивалентиым ис-

точником тока (см. рис. 14) все предыдущие рассуждения остаются справедливыми, только величина $R_{\rm BX}$ станет равной $R_{\rm EX}^{\prime}$:

$$R'_{\rm BX} = \frac{R_{\rm BX} R_{\rm BH}}{R_{\rm BX} + R_{\rm BH}},$$

которая и должна быть подставлена в формулу (49).

В простейшем случае источником тока может служить генератор звуковой частоты с последовательно включенным активным добавочным сопротивлением *R*. Во избежание ошибок паразитиая емкость этого сопротивления должна быть много меньше входной емкости вольтметра.

Иногда полоса пропускания вольтметра ограничивается полосой пропускания электронного усилителя. Этот случай будет рассмот-

рен в следующей главе.

Входную емкость можно также измерить по одному из спосо-

бов, которые будут рассмотрены в гл. 7.

Постоянная времени входиой RC цепи высокоомных измерительных устройств может быть значительной, что ограничивает полосу пропускания устройства. Особенно это сказывается при измерении малых токов. Поэтому высокоомные вольтметры всегда имеют цепи отрицательных обратных связей. При этом постоянная времени входа уменьшается в K_0 β раз, где K_0 — коэффициент усиления усилителя без обратной связи, а β — коэффициент обратной связи.

Заметим, что в электрометрии и в импульсной технике часто вместо понятия верхней граничной частоты полосы пропускания оперируют понятием времени нарастания τ_{Φ} , в течение которого сигнал возрастает от 0,1 до 0,9 своего установившегося значения. Величи-

ны эти связаны соотношением

$$\tau_{\Phi} f_{B} = \frac{1}{3} \quad (50)$$

Глава четвертая

ЭЛЕКТРОННЫЕ ВОЛЬТМЕТРЫ И УСИЛИТЕЛИ С ВЫСОКИМИ ВХОДНЫМИ СОПРОТИВЛЕНИЯМИ НА ЛАМПАХ

Простые катодные повторители

На рис. 21 показана схема вольтметра, высокое входное сопротивление которого достигается включением в цепь катода первой лампы большого сопротивления, порядка десятков мегомов. При этом напряжение из сетке лампы устанавливается близким к потенциалу запирания, анодный ток лампы составляет доли микроампера, и, таким образом, электронная и ионная составляющие сеточного тока практически отсутствуют. Сеточный ток определяется почти целиком сопротивлением изоляции участка сетка — анод, потому что анодное напряжение лампы довольно велико.

При подаче на вход вольтметра положительного сигнала ток утечки сетки первой дампы уменьшается, так как уменьшается раз-

ность потенциалов между сеткой и анодом, а разность потенциалов

между сеткой и катодом остается почти без изменения.

Чтобы снизить ток утечки сетки по внешней поверхности баллона, в качестве первой лампы используют лампу с отдельным выволом сетки (6 \times 1 \times 6 \times 6 \times 6 м и т. п.), вокруг которого с помощью коллоидального графита наносят «охранное кольцо». На это кольцо полают потенциал (с катода лампы \mathcal{J}_1 или \mathcal{J}_2), который близок к потенциалу сетки. Поскольку разности потенциалов между сеткой и кольцом почти нет, ток утечки по стеклу также отсутствует.

Показывающий прибор подключают через второй катодный повторитель на лампе \mathcal{I}_2 из-за незначительной величины анодного тока лампы \mathcal{I}_1 . Сопротивлением утечки сетки лампы \mathcal{I}_2 служит выходное

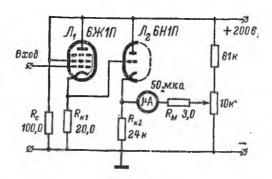


Рис. 21. Вольтметр по схеме простого катодного повторителя с большим сопротивлением в цепи катола.

сопротивление первого катодного повторителя (а не только сопротивление $R_{\rm K1}$). Поэтому, грубо говоря, вне зависимости от сопротивления $R_{\rm K1}$ сеточный ток лампы \mathcal{J}_2 не будет оказывать влияния на работу вольтметра, пока этот ток много меньше анодного тока лампы \mathcal{J}_1 . При слишком же малом анодиом токе лампы \mathcal{J}_1 будут набилодаться хаотические колебания стрелки выходного прибора вследствие временной нестабильности сеточиого тока лампы \mathcal{J}_2 .

Верхний предел измерения определяется границей линейного участка характеристик катодных повторителей и для сигнала положительной полярности приблизительно равен (E_a —50) θ , где E_a —

напряжение источника анодного питания.

Для сигналов отрицательной полярности предел измерения ограничен несколькими вольтами. Но его можно расширить до любого значения, если катодные цепи ламп подключить не к «корпусу» а к источнику отрицательного напряжения, увеличив соответственно сопротивления резисторов $R_{\rm K1}$ и $R_{\rm K2}$.

Вольтметр, который был собран по указанной схеме, имел следующие характеристики. Шкала 0-150 s, нелинейность шкалы — менее 1%. Суммарный коэффициент передачи 0.91, дрейф «нумя» после 15 мин прогрева 40 мв/ч. Величина сеточного тока изменялась от $4.9 \cdot 10^{-11}$ до $1.6 \cdot 10^{-11}$ a, будучи примерно пропорциональной

напряжению сетка — анод, причем баллон лампы и ламповая панель

специальной очистке не подвергались.

С лампой 6Ж1Ж результаты оказались приблизительно такими же. Нанесение «охранного кольда» уменьшило сеточный ток примерно втрое. При сопротивлениях резисторов $R_{\rm K1} = 100~{\it Mom}$ и $R_{\rm K2} = 100~{\it kom}$ и подключении их к источнику отрицательного напряжения $E_{\rm K} = -200~{\it g}$ коэффициент передачи составлял 0,93.

N в первом и во втором случаях сопротивления резистора $R_{\rm kl}$ оптимальны. Их увеличение вызывает заметную нестабильность

«нуля».

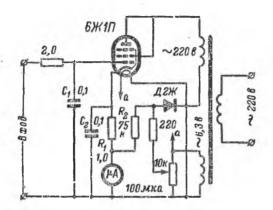


Рис. 22. Вольтметр по схеме катодного повторителя с питанием цепи анода переменным током.

На рис. 22 приведена схема вольтметра, представляющего собой катодный повторитель с питанием анода переменным напряжением.

Можно рассматривать его и как выпрямитель с регулируемым вентилем, работающий на нагрузку, которая состоит из резистора R_1 и сглаживающего конденсатора C_2 . Микроамперметром измеряется ток нагрузки, пропорциональный сигналу. Начальный ток, протекающий через прибор при отсутствии напряжения на сетке лампы, компенсируется при помощи вспомогательного выпримителя на германиевом диоде. Диод может быть любого типа.

В течение части периода питающего напряжения в цепи сетки протекает положительный сеточный ток, а затем отрицательный. Положительный электронный ток будет преобладать при высоких уровнях сигнала, а отрицательный ионный — при малых. Суммар-

ный сеточный ток, усредняемый емкостью C_1 , невелик.

При указанных на схеме данных вольтметр имеет следующие характеристики. Верхний предел измерения $100\ s$, нелинейность шкалы — менее 1,5%. Сеточный ток в начале шкалы отрицателен и равен $1,6\cdot10^{-12}\ a$, а в коице шкалы положителен и равен $2\cdot10^{-11}\ a$. При входном напряжении около $20\ s$ он равен нулю. Для получения меньших шкал нужно соответственно уменьшить сопротивления резисторов R_1 и R_2 .

Рассмотренные в этом параграфе вольтметры пригодны для измерения напряжений лишь постоянного тока. Кроме того, коэффициенты передачи простых катодных повторителей заметно отличаются от единиц, что не дает возможности использовать их в качестве нысокоомных приставок к имеющимся показывающим вольтметрам.

Вместе с тем они просты в изготовлении и имеют довольно высокое входное сопротивление, что в ряде случаев является решаю-

ним обстоятельством при выборе схемы вольтметра.

Сложные катодные повторители

Для улучшения характеристик катодных повторителей (особенно электрометрических) в их схемы вводят различные дополнительные лампы и цепи, выполняющие вспомогательные функции. Такие

катодные повторители называют сложными.

В первую очередь усложнения связаны с задачами повышения полного входного сопротивления $Z_{\rm BX}$ и расширения амплитудной характеристики. В самом деле, из-за низкого напряжения на аноде электрометрической лампы допустимые изменения потенциала напряжения на ее сетке ограничиваются величиной порядка I θ , в то время как вольтметры предназначены для измерения напряжений в десятки и сотни вольт.

Для повышения входного сопротивления необходимо увеличи-

вать сопротивление R_{BX} и уменьшить входную емкость C_{BX} .

Составляющую сопротивления $R_{\rm BX}$, определяемую токами утечки, увеличивают двойным экранированием входной цепи. Внутрений экран выполняет роль «охранного кольца» входного проводника, а иаружный экран заземляют для предохранения входа от различных наводок. При этом эффективное сопротивление утечки возрастает во столько раз, во сколько разность потенциалов между входным зажимом и внутренним экраном станет меньше разности потенциалов между входным зажимом и «землей». Если, например, внутренний экран соединен с выходным зажимом катодного повторителя, коэффициент передачи которого равен K, то эффективное сопротивление утечки возрастает в 1/(1-K) раз.

Составляющую входного сопротивления, определяемую сеточными токами лампы, можно уменьшить, если применять в вольтметре электрометрические лампы. При правильиом выборе их режима работы дифференциальное сопротивление сетки может быть

доведено в отдельных случаях до 1016 ом.

Однако при заданной частотной характеристике вольтметра уменьшать активную составляющую входной проводимости имеет смысл только при достаточно малой емкости входной цепи, так как, например, даже емкость 1 $n\phi$ на частоте 100 кгц имеет сопротивле-

ние всего лишь 1,6 Мом.

Из формулы (46) видно, что у простого катодного повторителя входная емкость не может быть сделана очень малой, в основном, из-за наличия емкости $C_{\mathbf{c},a}$, которая не испытывает воздействня со стороны коэффициента передачи катодного повторителя. Емкость $C_{\mathbf{m}}$ при присоединении экрана (внутрениего при двойном экрапировании) входного кабеля к катоду становится частью емкости $C_{\mathbf{c},\mathbf{k}}$ -

У электрометрических каскадов с катодной нагрузкой входная емкость еще увеличена в связи с тем, что коэффициент передачи электрометрических катодных повторителей гораздо меньше едини-

цы. Это очень важное обстоятельство, и на нем нужно остановиться подробнее.

Известно, что закон Ома для триода записывается так:

$$I_a = \frac{\mu U_{\text{c.k}} + U_{\text{a.k}}}{R_I} [\text{Ma}], \tag{51}$$

где $U_{\mathbf{c.k}}$ — напряжение между сеткой и катодом лампы, θ ; $U_{\mathbf{a.k}}$ — напряжение между анодом и катодом лампы, θ ; R_i — внутреннее сопротивление лампы. $\kappa o m$.

Следует заметить, что напряжения $U_{\text{с.к.}}$ и $U_{\text{а.к.}}$ в действительности представляют собой изменения напряжений между электродами под воздействием сигнала, приложенного к какому-либо элект-

роду лампы.

Для простого катодного повторителя $U_{\text{с.к}} = U_{\text{вх}} - I_{\text{а}} R_{\text{к}}; U_{\text{а.к}} = -I_{\text{а}} R_{\text{к}}$ и $U_{\text{вых}} = I_{\text{а}} R_{\text{к}}$. Подставив эти значения в формулу (51), после преобразований получим выражение для коэффициента передачи катодного повторителя:

$$K = \frac{U_{\text{BbJX}}}{U_{\text{BX}}} = \frac{\mu R_{\text{K}}}{R_l + (\mu + 1)R_{\text{K}}} = \frac{1}{1 + \frac{1}{\mu} + \frac{1}{SR_{\text{K}}}}$$
(52)

Выше указывалось, что для электрометрических ламп $\mu=1-3$. Поэтому даже при очень больших сопротивлениях катодной нагрузки коэффициент передачи электрометрических катодных повторителей составляет всего лишь 0.5-0.75.

Уменьшение коэффициента передачи приводит к возрастанию не только входной емкости, но также и нелинейных искажений, так как рабочая точка при этом перемещается по значительно большему

участку динамической характеристики.

Значение коэффициента передачи каскада с катодной нагрузкой может быть значительно приближено к единице, если на анод лампы подать напряжение, примерно равное входному и совпадающее с ним по фазе. Ламповый каскад в этом случае является не

только «катодным», но и «анодным» повторителем.

С этой целью на анод лампы катодного повторителя подается его же выходное напряжение через второй катодный повторитель с коэффициентом передачи K_2 . Чтобы для такой схемы иайти выражение коэффициента передачи по уравнению (51), в него должно быть подставлено иное значение напряжения анод — катод, а именно:

$$U_{a,K} = -I_a R_K + I_a R_K K_2 = -(1 - K_2) I_a R_{K*}$$

В результате

$$K = \frac{1}{1 + \frac{1 - K_2}{\mu} + \frac{1}{SR_v}},$$
 (53)

Очевидно, что при $K_2 \approx 1$ коэффициент передачи не зависит от значения μ и при достаточно большом сопротивлении катодной нагрузки $R_{\rm K}$ может быть сделан очень близким к единице.

Для иллюстрации эффективности этого метода укажем, что коэффициент передачи простого катодного повторителя на электрометрической лампе ЭМ-4 (μ =2,2; R_i =27,5 ком) при $R_{\rm K}$ =200 ком составляет 0,66, в то время как подача на анод лампы повторителя напряжения 0,9 $U_{\rm BbIX}$ поднимает значение коэффициента передачи до 0,904, подача 0,99 $U_{\rm BbIX}$ — до 0,94, а одновременное увеличение величины $R_{\rm K}$ до 1 Mом — до 0,997.

На рис. 23 показаны две основиые схемы таких катодных повтопителей: параллельная и последовательная. Удобнее вначале рас-

смотреть работу и расчет параллельной схемы.

 $\eta_{\rm AM}$ па η_1 — электрометрическая или какая-либо иная, поставленная в электрометрический режим. Лампа η_2 — с большой допустимой мощностью рассеяния на аноде и рабочим током 20—50 ма.

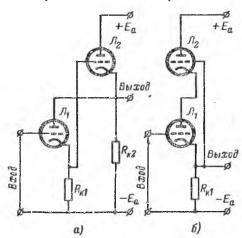


Рис. 23. Основные схемы сложных катодных повторителей.

a — параллельная; δ — последовательная.

Анодный ток лампы \mathcal{J}_1 много меньше анодного тока лампы \mathcal{J}_2 , поэтому в первом приближении каждый катодный повторитель можно рассматривать независимо. И так как напряжение анод — катод лампы \mathcal{J}_1 равно напряжению сетка — катод лампы \mathcal{J}_2 , начальное положение рабочей точки можно найти следующим образом.

Строят зависимость напряжения на катоде \mathcal{J}_2 от напряжения на ее сетке, для чего вначале на семействе анодных характеристик лампы \mathcal{J}_2 проводят обычным образом линию нагрузки под углом агссtg R_{K2} из точки на горизонтальной оси, соответствующей полному напряжению источника анодного питания. Пусть это полное напряжение источника питания разделено так, что анодная цепь питается напряжением $+E_{\text{B}}$ в, и катодная — E_{K} в. Тогда потенциал катода $U_{\text{K2}} = E_{\text{B}} - U_{\text{B-K2}}$ и указанная зависимость (рис. 24, линия 1) строится пе соотношению

$$U_{c2} = U_{\kappa 2} + U_{c.\kappa 2} = E_a - U_{a.\kappa 2} + U_{c.\kappa 2}.$$

Затем на том же графике нужно построить зависимость изменения напряжения на катоде лампы \mathcal{J}_1 от изменения напряжения

на ее аноде. Необходимое для этого уравнение получим следующим путем. При изменении потенциала анода лампы J_1 на величину $U_{\rm d1}$ изменение напряжения между сеткой и катодом будет $U_{\rm a\cdot K1} = U_{\rm a1} - I_{\rm a1}R_{\rm K1}$. Подставив эти выражения в формулу (51) и учитывая, что $U_{\rm K1} = I_{\rm a}R_{\rm K1}$, получим:

$$\frac{U_{\rm a1}}{U_{\rm K1}} = \frac{1}{\frac{R_i'}{R_{\rm KI}} + 1 + \mu_1} \,. \tag{54}$$

Отношение $R_i/R_{\rm KI}$ в подобиых схемах всегда гораздо меньше единицы. Поэтому из начала координат ($U_{\rm cl}=U_{\rm al}=0$) проводят прямую под углом arctg 1/(1+

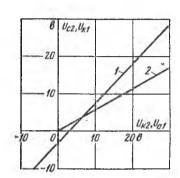


Рис. 24. Графический расчет начального положения рабочей точки сложного катодного повторителя параллельного типа.

Расчет выполнен для ламп ЭМ-4 и 6П6С. ординат $(U_{c1}=U_{a1}=0)$ проводят прямую под углом arctg $1/(1+U_{c1}+U_{c1})$ (линия 2 на рис 24), и так как $U_{c2}=U_{a1}$, и $U_{K2}=U_{a1}$, то точка пересечения построенных таким образом линий определит начальное положение рабочей точки.

В качестве лампы \mathcal{J}_2 прелпочтение следует отдать пентоду, хотя это и связано с небходимостью иметь дополнительный изолированный источник питания экранирующей сетки. Во-первых, коэффициент передачи пентодного повторителя выше, чем триодного. Например, повторитель на лампе 6П6С в триодном включении при $R_{\rm K} = 4$ ком имеет коэффициент передачи порядка 0,85, а в пентодвключении — 0,925. Во-вто-HOM рых, регулируя напряжение на экранирующей сетке, можно менять режим работы лампы \mathcal{J}_1 . Так. при снижении напряжения этой сетке лампы \mathcal{J}_2 напряжение U_{a-61} уменьшается. Необходимые для расчетов семейства анодных

характеристик пентодов при различных напряжениях на экранирующих сетках можно получить пересчетом имеющегося семейства для какого-либо одного значения этого напряжения по методу, опубликованному, например, в журнале «Радио» № 2 за 1953 г.

Коэффициент передачн первого катодного повторителя на лампе \mathcal{J}_1 может быть определен по формуле (53), где коэффициент пере-

дачи второго катодного повторителя на лампе \mathcal{I}_2

$$K_2 = \frac{1}{1 + \frac{1}{\mu_2} + \frac{1}{S_2 R_{\kappa_2}}}.$$
 (55)

Формула дает верный результат при условии, что анодным током лампы \mathcal{J}_1 можно пренебречь по сравнению с анодным током лампы \mathcal{J}_2 . В общем же случае значение K_1 находят анализом параллельной схемы с учетом взаимного влияния цепей обеих ламп. Этот анализ несложен. Из схемы видно, что напряжения анод—катод и сетка — анод ламп \mathcal{J}_1 и \mathcal{J}_2 равны:

$$\begin{split} U_{\text{C.K1}} = U_{\text{BX}} - I_{\text{B1}} R_{\text{K1}}; \\ U_{\text{B.K1}} = -I_{\text{Z1}} (R_{\text{K1}} + R_{\text{K2}}) + I_{\text{B2}} R_{\text{K2}}; \\ U_{\text{C.K2}} = I_{\text{B1}} (R_{\text{K1}} - R_{\text{K2}}) - I_{\text{B2}} R_{\text{K2}}; \quad U_{\text{B.K2}} = I_{\text{B1}} R_{\text{K2}} - I_{\text{B2}} R_{\text{K2}}. \end{split}$$

Подставив поочередно для каждой лампы соответствующие значения в формулу (51), получим два уравнения, из совместного решения которых с учетом того, что $U_{\rm KI} = I_{\rm al}~R_{\rm KI}$, найдем:

$$K_{1} = \frac{U_{K1}}{U_{BX}} = \frac{1}{1 + \frac{1 - K_{2}}{\mu} + \frac{1}{S_{1}R_{K1}} + \frac{K_{2}}{\mu_{1}S_{1}R_{K1}}}.$$
 (56)

Последний член в знаменателе и учитывает тот факт, что часть анодного тока лампы \mathcal{J}_1 ответвляется в анодную цепь лампы \mathcal{J}_1 .

Полный коэффициент передачи сложного катодного повторителя по параллельной схеме

$$K = \frac{U_{K2}}{U_{BX}} = K_1 K_2 \left(1 - \frac{1}{S_2 R_{K1}} \right) \approx K_1 K_2.$$
 (57)

Его выходное сопротивление

$$R_{\rm BMX} \approx \frac{1}{S_2} \,. \tag{58}$$

Выражение для коэффициента передачи сложного катодного повторителя по последовательной схеме можно получить из следующих рассуждений. Последовательная схема отличается от параллельной лишь отсутствием сопротивления $R_{\rm K2}$ (роль его выполняет лампа \mathcal{J}_1).

Поэтому, полагая в формулах (55) и (56) $R_{\kappa 2} = \infty$, получаем выражение для коэффициента передачи последовательной схемы:

$$K_{\text{c.K1}} = \frac{1}{1 + \frac{1}{\mu_1 (1 + \mu_2)} + \frac{1}{S_1 R_{\text{K1}}} + \frac{\mu_2}{\mu_1 (1 + \mu_2) S_2 R_{\text{K1}}}}, \quad (59)$$

Аналогичным образом из формулы (57) может быть определен и коэффициент передачи последовательной схемы от сетки к аноду лампы \mathcal{J}_1 :

$$K_{\text{c.a1}} \approx \frac{\mu_2}{1 + \mu_2} K_{\text{c.k1}}.$$
 (60)

Благодаря тому, что емкость сетка— анод входной лампы в сложных катодных повторителях также испытывает воздействие со стороны коэффициента передачи, входная динамическая емкость сложных катодных повторителей неизмеримо меньше, чем простых.

67

Для катодного повторителя по параллельной схеме

$$C_{\rm BX} = (1 - K_1) C_{\rm c.K1} + (1 - K) C_{\rm c.a1} + C_{\rm M*}$$
 (61)

5*

Для повторителя по последовательной схеме

$$C_{\text{BX}} = (1 - K_{\text{c.k1}}) C_{\text{c.k1}} + (1 - K_{\text{c.a1}}) C_{\text{c.a1}} + C_{\text{M}}. \tag{62}$$

Входную цепь (чаще всего вместе с входной лампой \mathcal{J}_1) экранируют, причем экран соединяют с выходным зажимом устройства. В связи с этим вместо емкости входной цепи относительно корпуса появляется емкость входной цепи относительно экраиа, которая в последовательной схеме является частью емкости $C_{\text{с.к1}}$, а в параллельной— частью емкости $C_{\text{с.к1}}$, Величина ее в динамическом режиме уменьшается точно так же, как и эти последние емкости. Очень небольшая емкость сетки относительно корпуса может сохраняться лишь в самой лампе между вводами сетки и нитью накала. Именно эту величину и отображает в вышеприведенных формулах символ $C_{\text{м.}}$.

Приблизительно рассчитать верхнюю границу частотной характеристики сложного катодного повторителя можно следующим образом.

Между катодом входной лампы J_1 и корпусом имеется емкость $C_{\rm K1}$, включающая в себя емкость катода относительно нити накала (в лампах прямого накала — емкость между цепью накала и корпусом), входную емкость катодного повторителя на лампе J_2 , емкость монтажа, а при последовательной схеме — еще и емкость экрана входной цепи. Поэтому скорость изменения напряжения на катоде лампы J_1 определяется скоростью заряда емкости $C_{\rm K1}$ анодным током входной лампы.

Пусть начальный анодный ток входной лампы составляет I_{80} . Обычно он равен примерно половине максимального анодного тока $I_{8.\text{макс}}$. При повышении потенциала управляющей сетки лампы J_{1} ее анодный ток изменяется в пределах от I_{80} до $I_{8.\text{макс}}$. Считая для простоты, что емкость $C_{\text{к1}}$ заряжается постоянным током $\frac{I_{8.\text{макс}}-I_{80}}{2} \approx$

 $pprox rac{I_{
m a.make}}{4}$, получим наибольшую скорость изменения входного напряжения, воспроизводимую на выходе:

$$\frac{\Delta U}{\Delta t} = \frac{I_{\text{A-M-BKC}}}{4C_{\text{KI}}} \tag{63}$$

Очевидно, что чем больше напряжение прикладывается к управляющей сетке, тем медленнее оно должно нарастать, чтобы емкость $C_{\rm K1}$ успевала заряжаться. Поэтому полоса пропускания сложного катодного повторителя зависит от амплитуды входного напряжения. Она наименьшая при максимальном входном напряжении. Полагая в предыдущей формуле $\Delta U \! = \! U_{\rm BX.Makc}$, а $\Delta t \! = \! T_{\rm H}$ и учитывая формулу (50), получим верхнюю граничную частоту полосы пропускания при наибольшем входном сигнале:

$$I_{\text{B-MHB}} = \frac{I_{\text{A.MBKC}}}{12U_{\text{EX.MBKC}}C_{\text{El}}}.$$
 (64)

Для лампы ЭМ-4 при $U_{\rm BX-MAKC} = 100~s$ и $C_{\rm K1} = 10~n\phi$

$$f_{\rm B} = \frac{200 \cdot 10^{-6}}{12 \cdot 100 \cdot 10 \cdot 10^{-12}} = 16,7 \text{ key.}$$

При меньших сигналах полоса пропускания соответственно рас-

ширяется.

Заметим, что с повышением частоты входного напряжения изменение разности потенциалов между управляющей сеткой входной лампы и ее катодом увеличивается и, следовательно, уменьша-

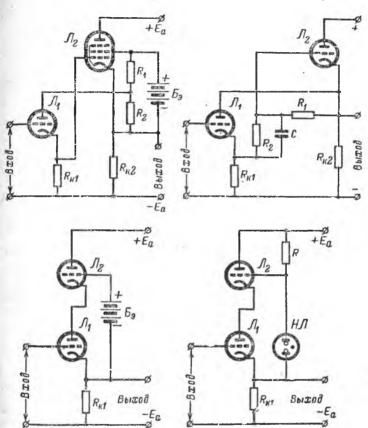


Рис. 25. Способы повышения анодного напряжения входной лампы в сложных катодных повторителях.

ется входное сопротивление (как его активная составляющая, так и

емкостная).

При необходимости расширить полосу пропускания сложного катодного повторителя анодный ток лампы J_1 увеличивают повышением анодного напряжения. Возможные варианты схем приведены на рис. 25. При этом, естественно, приходится мириться с некоторым возрастанием сеточного тока лампы J_1 .

$$1 - K_1 = \frac{U_{\text{C.K1}}}{U_{\text{BX}}} \quad \text{w} \quad 1 - K = \frac{U_{\text{C.81}}}{U_{\text{BX}}}$$

и эти величины могут быть измерены достаточно точно при помощи электронного вольтметра, то, измерив емкости $C_{c,\kappa 1}$ и $C_{c,a 1}$ готового устройства в холодном состоянии, можно с хорошим приближением вычислить динамическую входную емкость катодного повторителя.

Сложные катодные повторители с электрометрическими лампами на входе пригодны для передачи напряжений, которые намного превышают напряжение между анодом и катодом самой электрометрической лампы. Очевидно, что предельные значения входного напряжения определяются границами линейного участка динамической характеристики катодного повторителя на лампе \mathcal{I}_2 и примерно равны (E_8 —50) в и $E_{\rm K}$. В этом диапазоне режим работы входной лампы меняется мало, что создает очень благоприятные условия для использования ее в режиме «плавающей сетки».

Необходимые значения коэффициентов передачи от сетки входной лампы к ее катоду и аноду тесно связаны с максимальной величиной напряжения $U_{\rm BX.Makc}$, которое может быть приложено к вхо-

ду сложного катодного повторителя.

Предположим, что заданное допустимое изменение разности потенциалов между сеткой входной лампы и ее катодом или анодом составляет ΔU , в. Тогда величина соответствующего коэффициента передачи должна быть:

$$K \geqslant 1 - \frac{\Delta U}{U_{\text{Bx.Marc}}} \tag{65}$$

Значение ΔU определяется либо по наибольшему допустимому сеточному току входной лампы, либо по нужной степени линейности характеристики. Считая для электрометрической лампы $\Delta U_{\text{c.a}} = 1$ в, при $U_{\text{BX-MARC}} = 200$ в, например, необходимо иметь $K_{\text{c.a}} \geqslant 0,995$.

Если сложный катодный повторитель построить непосредственно по основной схеме (рис. 23), то коэффициент передачи будет гораздо ниже этого значения. Практически его пределы измерения были бы порядка ± 50 в при общем коэффициенте передачи около 0,9.

Чтобы значения коэффициентов передачи существенно приблизить к единице, основные схемы должны быть несколько видоиз-

менены.

В параллельной схеме вместо сопротивлений $R_{\rm K1}$ и $R_{\rm K2}$ в католные цепи ламп J_1 и J_2 включают лампы. С помощью уравнения (51) легко показать, что включенная в качестве катодной нагрузки радиолампа — обозначим ее, например, J_3 — эквивалентна сопротивлению

$$R'_{\kappa 1} = R_{t3} + (1 + \mu_3) R_{\kappa 3}$$
 (66)

Наиболее подходят для этой цели пентоды, работающие на горизонтальном участке анодной характеристики, так как значение внутреннего сопротивления R_i и статического коэффициента усиления μ пентодов гораздо выше, чем у триодов,

Если включен пентод, то

$$R'_{k1} = R_{i3} + (1 + S_3 R_{k3})$$
.

При этом в выражения для коэффициентов передачи вместо $R_{\kappa 1}$ и $R_{\kappa 2}$ следует подставить $R_{\kappa 1}$ и $R_{\kappa 2}$ (последнее получается виалогично $R_{\kappa 1}$).

При большом сопротивлении катодной нагрузки коэффициент передачи катодиого повторителя близок к величине $\mu/(1+\mu)$. Отсюда следует, что лампа \mathcal{J}_2 должна быть пентодом.

На рис. 26 показана полная схема сложного катодного повторителя последовательного типа. Напряжения на экраиирующие сет-

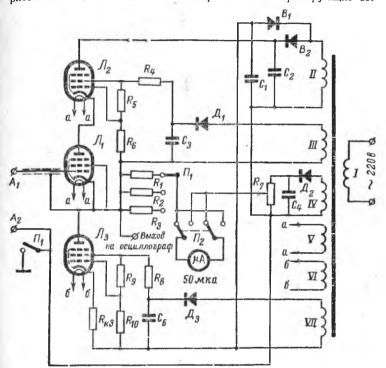


Рис. 26. Принципиальная схема сложного катодного повторителя последовательного типа со вспомогательными цепями.

ки пентодов \mathcal{J}_2 и \mathcal{J}_3 сиимаются с выпрямителей на диодах \mathcal{J}_1 и \mathcal{J}_3 , питающихся от отдельных изолированных обмоток силового траисформатора. На управляющую сетку лампы \mathcal{J}_3 подается положительный относительно ее катода потенциал. Это дает возможность увеличить сопротивление резистора $R_{\mathbf{K}3}$, а тем самым $R_{\mathbf{K}1}$.

Когда напряжение на управляющей сетке лампы \mathcal{J}_1 равно нулю, потенциал выходного зажима лампы \mathcal{J}_3 несколько выше потенциала «земли». Поэтому для того чтобы иметь возможность уста-

навливать указатель показывающего прибора на нулевую отметку, предусматривается выпрямитель на диоде \mathcal{I}_2 , питающийся от отдельной обмотки с напряжением 6 ε .

Зажим A_2 нормально соединен с корпусом, но он может быть подключен в измеряемой цепи к точке с низким сопротивлением, например к катоду лампы, для непосредственного измерения разности потенциалов сетка—катод.

Наибольшее напряжение, которое может быть приложено к входу вольтметра, определяется напряжением анодиого питания. Однако нужно иметь в виду, что анодное напряжение лампы J_2 или J_3

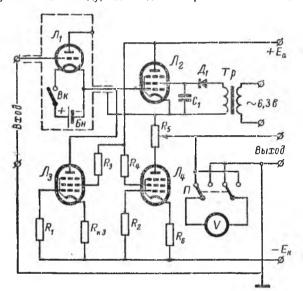


Рис. 27. Принципиальная схема сложного катодного повторителя параллельного типа.

(в зависимости от полярности сигнала) более чем вдвое превысит при этом входное напряжение. Анодиое напряжение такой величины не должно быть для этих ламп пробойным. Используя лампы с отдельным выводом анода (6Ж1Ж, 6П13С), верхние пределы измерения можно довести до $\pm 500~s$.

Из-за малой величииы анодного тока (200—300 мка) выходное сопротивление подобного катодного повторителя довольно велико и на низшем пределе измерения добавочное сопротивление к микро-амперметру нужно подбирать с учетом этого выходного сопротивления. Поэтому изменения параметров ламп будут влиять на градуировку.

На рис. 27 показана полная принципиальная схема сложного катодного повторителя параллельного типа. Лампу \mathcal{J}_1 часто вместе с батареей накала помещают в выносной пробник. Эта лампа может быть и электрометрическим тетродом. Его катодная сетка долж-

на быть соединена с аподом через резистор сопротивления порядка 5 ком (для 191П). Резистор R₅ служит для установки нуля.

Оба рассмотренных устройства могут быть оформлены как самостоятельные вольтметры со встроенными показывающими приборами, а также служат приставками к имеющимся вольтметрам (по-

скольку их коэффициент передачи очень близок к единице) н осцил-

лографам.

Для последних применений предпочтение следует отдать повторителю параллельного типа как имеющему более низкое выходное сопротивлеиие и более широкую полосу пропускания (несколько сотен килогерц). Объясняется это тем, что в связи с разделением цепей ламп оконечная лампа I_{2} может быть достаточно мошной, с большим анодным током и большой крутизной. Поэтому емкости, которые имеют входной экран и источник питания экранирующей сетки лампы Π_2 относительно земли. будучи подключенными к катоду мощиой лампы, оказывают гораздо меньшее влияние на полосу пропускания, чем если бы они подключались к катоду лампы \mathcal{J}_1 .

Лампы J_2 и J_4 могут быть типов 6ПЗС, 6ПТС, 6П1ЗС. Одиако следует иметь в виду, что верхние пределы измерений ограничиваются допустимой мощностью рассеяния на анодах этих ламп и в катодных повторителях последовательного типа.

Если пределы измерений должны быть выше 200 а, можно рекомеидовать выполнить источник анодного питания изолированным, а между ним и корпусом ввести дополиительный маломощный регулируемый источник напряжения.

В сложных катодных повторителях, предназначаемых для передачи только переменных напряжений, вместо пентодов могут быть использова-

Рис. 28. Сложный катодный повторитель последовательного типа.

ны триоды. При этом отпадает необходимость в изолированных источниках для питания цепей экранирующих сеток и устраняются связанные с ними довольно значительные паразитные емкости, а снижение коэффициента передачи можетбыть компенсировано включением дополнительной лампы, как это показано на рис. 28. Лампа \mathcal{J}_4 в данной схеме играет для лампы \mathcal{J}_2 ту же роль, что лампа \mathcal{J}_2 для лампы \mathcal{J}_1 .

При включении подобным образом нескольких дополиительных ламп коэффициент передачи в прииципе может быть сделан сколь Угодно близким к единице. На практике включение одной лампы дает уже вполне достаточный эффект. В этом случае коэффициент передачи

$$K = \frac{1}{1 + \frac{1}{\mu_{1}(1 + \mu_{2})(1 + \mu_{4})} + \frac{1}{S_{1}R'_{K1}}} + \cdots + \frac{1}{\frac{R_{i2}}{\mu_{1}(1 + \mu_{2})R'_{K1}} + \frac{R_{i4}}{\mu_{1}(1 + \mu_{2})(1 + \mu_{4})R'_{K1}}}.$$
(67)

При сравнении выражений (52), (59) и (67) видна определенная закономерность их написания при увеличении числа последовательно включаемых ламп, Поэтому при необходимости не составит труда написать выражение для коэффициента передачи катодного повторителя такого типа с любым количеством ламп.

Из формулы (67) следует, что особое виимание должно быть обращено на повышение сопротивления $R_{\rm kl}$. В первую очередь это связано с необходимостью увеличения $R_{\rm k3}$, что возможно при подаче на управляющую сетку лампы \mathcal{J}_3 некоторого положительного на-

пряжения, как это было показано на рис. 26.

В отдельных случаях в качестве катодной нагрузки лампы \mathcal{J}_3 можно использовать дополнительную лампу, причем резистор $R_{\kappa 3}$ вводится уже в катодную цепь этой лампы. Эквивалентное сопротивление катодной нагрузки лампы \mathcal{J}_1 , для этого случая будет:

$$R_{\kappa 1} = (1 + \mu_3) R_{\kappa 5} + (1 + \mu_3) (1 + \mu_5) R_{\kappa 3}$$
,

где иидексом 5 отмечены параметры этой дополиительной лампы. Если сложный катодный повторитель предназначен для передачи только переменных напряжений, к величине его сеточного тока, а следовательно, и величине анодного тока предъявляются не слишком жесткие требования. Ведь входная лампа работает на очень малом участке динамической характеристики и ее сеточный ток меняется незначительно даже при больших изменениях напряжения иа выходе. Это означает, что входиое сопротивление лампы переменному току чрезвычайно велико и в расчет нужно брать лишь сопротивление утечки сетки. Например, для повторителя по схеме, показанной на рис. 28,

$$R_{\rm BX} = \frac{R_{\rm c}}{1 - K} \,, \tag{68}$$

где K определяется по формуле (67), поскольку $R_1 \ll R_{\rm k1}^{'}$.

Подобиое устройство может быть приспособлено и для передачи постоянных напряжений, для чего сетки всех ламп, кроме \mathcal{I}_1 и \mathcal{I}_8 , подключают, например, к делителю из неоновых ламп. Этот делитель включают между источником анодного напряжения (через балластное сопротивление) и катодом лампы \mathcal{I}_1 .

Если на анод входной лампы \mathcal{J}_1 сложного катодного повторителя подать напряжение, которое по фазе совпадает с входным, а по амплитуде может превышать его (т. е. $K_{\text{c.al}} > 1$), то регули-

руя его амплитуду, можно входную емкость снизить до нуля. Соответствующая схема показаиа на рис. 29. Входную емкость устанавливают потенциометром R_1 , от положения движка которого зависит доля выходного напряжения, подаваемого на управляющую сетку лампы \mathcal{J}_2 через балаисный усилитель на лампах \mathcal{J}_4 и \mathcal{J}_5 .

При зиачении K_{c.a} чуть большем единицы такое устройство склонно к самовозбуждению, а его динамический диапазон узок.

По этой причине сложиые катодные повторители по указанной схеме не получили широкого распространения.

Дрейф сложиых катодных повторителей имеет порядок 0,1 в/ч (без учета дрейфа, обусловлениого разрядом батареи накала лам-

пы II_1).

В сложных католных повторителях c целью уменьшения выходной емкости рекомендуется для питания экранирующих сеток лами применять отдельные 27). трансформаторы (рис. Первичная обмотка такого трансформатора может питаться от 6-вольтовой обмотки такого трансформатора. Каркас катушки следует изготовить так, чтобы вторичная обмотка отделялась от первичной и сердечника большими воздушными промежутками; в резульемкость вторичной обмотки на землю будет составлять всего несколько пикофарад. Цепь питания экранирующей сетки должна располагаться в непосредственной близости к лампе.

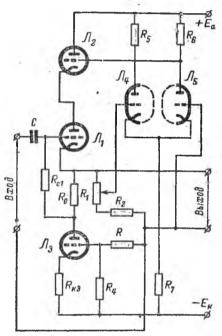


Рис. 29. Схема сложного катодного повторителя с «иулевой» входной емкостью.

Сложные катодные повторители с усилением в цепи обратной связи

Рассмотренные выше сложные катодные повторители сохраияют и отдельные свойства простых катодных повторителей, которые

в ряде применений могут рассматриваться как недостатки.

Сюда относятся: невозможность получить коэффициент передачи равным единице, относительно высокое (сотни и тысячи омов) выходное сопротивление, сдвиг уровней входного и выходного напряжений. Вводимое для устранения этого сдвига сопротивление (например, R_5 на рис. 27) еще более увеличивает выходное сопротивление повторителя.

Способы устранения этих недостатков можно уяснить путем

следующих рассуждений.

Катодиый повторитель — это усилительный каскад, который имеет коэффициент усиления $K_0 = \mu R_K/(R_i + R_K)$ и охвачен 100%-ной отрицательной обратной связью. Поэтому коэффициент передачи катодного повторителя может быть записан в той же форме, что и для

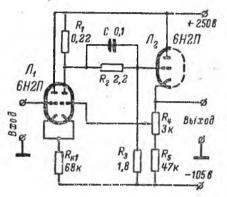


Рис. 30. Схема катодного повторителя с усилителем в цепи обратной связи.

всякого усилителя с обратной связью:

$$K = \frac{K_0}{1 + K_0 \,\beta} \,, \qquad (69)$$

где β — коэффициент обратной связи, в данном случае равный I.

Очевидно, что коэффициент передачи будет в точности равен единице в том случае, если

$$\frac{K_0}{1 + K_0 \beta} = 1 \text{ н } \beta = \frac{K_0 - 1}{K_0}.$$
 (70)

Когда K_0 достаточно велико, значение β мало отличается от единицы

и обратная связь остается практически 100%-ной со всеми вытекающими из этого преимуществамя.

Выходное сопротивление катодного повторителя может быть вы-

ражено через K_0 :

$$R_{\text{Bbix}} = \frac{R_{K}R_{i}}{(R_{K} + R_{i})(1 + K_{v})}.$$
 (71)

Отсюда видно, что уменьшение $R_{
m BMX}$ достигается также повышением K_0 .

Одиако с помощью только одиого каскада нельзя добиться большого коэффициента усиления. Поэтому в цепь обратной связи вводят дополнительный каскад усиления. Подобная схема показана на

рис. 30.

Левая половина лампы \mathcal{J}_1 представляет собой катодный повторитель, правая — усилительный каскад. Сигнал с левой половины на правую передается при помощи общего резистора $R_{\mathbf{K}1}$ в цепи катода, который служит и сопротивлением катодной нагрузки и сопротивлением связи. Лампу в таком включении называют обычно усилителем с катодной связью.

Входной сигиал изменяет потенциал катода лампы \mathcal{J}_1 . Эти изменения усиливаются и через катодный повторитель на лампе \mathcal{J}_2 подаются на сетку правой половины лампы \mathcal{J}_1 в фазе с сигналом. Так как правая половина лампы \mathcal{J}_1 усиливает разность между высидным напряжением и напряжением на катоде лампы \mathcal{J}_1 , то, очевидно, оба эти напряжения будут поддерживаться практически равными. В свою очередь иапряжение иа катоде лампы \mathcal{J}_1 приблизительно равно входному.

Правая половина лампы \mathcal{J}_1 не будет уменьшать коэффициент передачи входиого катодного повторителя, потому что потенциал ее сетки меняется так же, как и потенциал катода, и, грубо говоря, для входиого катодного повторителя дело обстоит так, если бы входной сигнал поступал на обе сетки лампы \mathcal{J}_1 одновременно.

Подавая на сетку правой половины лампы \mathcal{I}_1 лишь часть входного напряжения в соответствии с (70), можно коэффициент передачи всего устройства сделать точно равным единице и даже ие-

сколько большим. В показанной на рис. 30 схеме при помощи резистора R_4 значение коэффициента передачи регулируется от 0,97 до 1,1. Значение коэффициента негрудно довести до 10, мало затрагивая при этом другие параметры схемы.

Сдвиг выходного уровня устраняют подбором сопротивлений резисторов делителя R_1 , R_2 и R_3 . Регулирующим может быть любой

из этих резисторов.

Выходное сопротивлеине устройства составляет

иесколько омов.

Главная петля обратной связи. замыкающаяся правой половины лампы \mathcal{J}_1 , не улучшает характеристик входного катодного повторителя - его коэффициента передачи, вход иого сопротивления, макси мальиую величину сигнала Поэтому в схему вводят ряд дополнительных цепей и элементов, роль большинства которых была выяснена предыдушем параграфе. этнми изменениями схема приобретает вид, показанный на рис. 31.

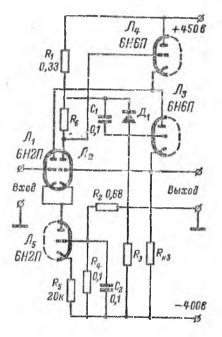


Рис. 31. Катодный повторитель с усилением в цепи обратной связи и вспомогательными цепями.

Чтобы делитель напряжения, связывающий лампы \mathcal{J}_2 и \mathcal{J}_3 , не снижал коэффициента усиления в петле обратной связи, часть этого делителя, заключенная между анодной цепью лампы \mathcal{J}_2 и сеткой лампы \mathcal{J}_3 (резистор R_2 на рис. 30), представляет собой один или несколько полупроводниковых диодов, включенных в обратном направлении. В области пробойных напряжений величина падения иапряжения на диоде мало завнсит от протекающего через него тока, т. е. дифференциальное сопротивление диода в этой области сравиительно невелико. Если последовательно с диодом включено большое сопротивление, то днод при этом ведет себя в известной мере подобно стабиливольту.

Практически можно использовать почти любые типы диодов, более важно подобрать подходящий экземпляр. К примеру, отдельные экземпляры диодов типа Д2Ж показали дифференциальные сопротивления 75—100 ком при падении постоянного напряжения на них порядка 120 в и токах 150—300 мка. По температурной стабильности предпочтение следует отдавать кремниевым диодам. В рассматриваемой схеме падение напряжения иа этой части делителя имеет порядок 200 в.

Наличие в анодной цепи лампы \mathcal{J}_2 резистора R_6 позволяет осуществить подачу на сетку лампы \mathcal{J}_4 несколько большего напряжения, чем на сетку лампы \mathcal{J}_3 . Подбирая сопротивление этого резистора, можно коэффициент передачи от управляющей сетки входиой лампы к ее аноду также сделать очень близким к единице. Однако получить этот коэффициент в точности равным единице ясльзя из-за

возникновения при этом неизбежной генерации.

Высокое входное сопротивление обусловливается работой входной лампы в режиме «плавающей сетки». Режим устанавливается следующим образом. В готовом устройстве обрывается цень управляющей сетки первой лампы и изменением сопротивления резистора $R_{\rm K3}$ добиваются нулевого потенциала катода лампы $J_{\rm I3}$ (выходного зажима).

При наличии в схеме резистора R_6 вначале устанавливают его сопротивление, а уже потом регулировкой резистора $R_{\rm K3}$ добиваются того, чтобы нулевой потенциал выходиого зажима соответство-

вал «плавающему» потенциалу сетки входной лампы.

Для сложного катодного повторителя, изображенного на рис. 31, сопротивление резистора R_6 может лежать в пределах 40—70 ком, а резистора $R_{\rm KS}$ — в пределах 20—40 ком. Выбор сопротивления резистора R_3 определяется режимом работы диодов.

Входное сопротивление такого повторителя составляет приблизительно $5\cdot 10^{11}$ ом, динамический диапазои ± 250 в, выходное со-

противление - около 3 ом.

Когда является достаточным значение $R_{\rm BX} \approx 2 \cdot 10^{10}$ ом, резис-

тор R_6 становится ненужным.

Полоса пропускания подобных катодных повторителей может быть доведена до 5—7 Мгц.

Схемы с операционными усилителями

Потребности счетно-решающей техники привели к разработке и серийному выпуску унифицированных функциональных узлов электронных устройств, в первую очередь операционных усилителей.

Их применение упрощает также проектирование измерительных схем с большими входными сопротнвлениями, позволяя сосредото-

чить внимание на принципиальной стороне дела.

Упрощенная схема одного из электрометров с использованием операционных усилителей показана на рис. 32, а. Во входиом каскаде схемы применена электрометрическая лампа, которая связаиа с остальной частью схемы так, что изменения потенциала сетки приводят почти к таким же изменениям потенциалов других электродов осталампы. Поэтому соотношения между потенциалами электродов остаются практически неизменными независимо от уровня входного сигнала, как и в схемах сложных катодных повторителей. Большой коэффициент усиления операционного усилителя обеспечивает высокую точность слежения.

Электрометрическая лампа, резистор $R_{\rm K}$ в цепи ее катода и потенциометр $R_{\rm I}$ могут рассматриваться как мост сопротивлений, выходное напряжение $U\!=\!U_1\!-\!U_2$ которого поступает на вход операционого усилителя.

В исходном состоянии мост уравновешен и U=0. При поступлении на сетку лампы сигнала $U_{\rm BX}$ на выходе моста появляется напряжение k $U_{\rm BX}$, где k—коэффициент передачи моста, представляющий собой отношение выходного напряжения моста к изменению потенциала сетки лампы при условии, что это изменение мало.

При выбранных параметрах моста коэффициент k является вполне определенной величиной, поддающейся и расчету, и экспе-

риментальному определению.

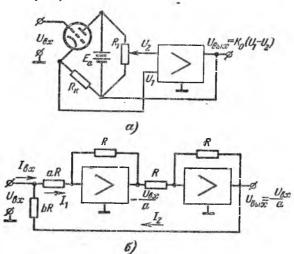


Рис. 32. Примеры использования операционных усилителей в устройствах с высокими входными сопротивлениями.

Нарушение равновесия моста приводит к появлению на выходе устройства напряжения $U_{\rm Bыx}$, стремящегося это равновесие восстановить. Потенциалы всех точек моста, в том числе электродов лампы (кроме сетки), изменяются иа $U_{\rm Bыx}$, причем знаки $U_{\rm Bx}$ и $U_{\rm Bhx}$ одинаковы. Изменение потенциала сетки относительно катода составляет уже не $U_{\rm Bx}$, а $U_{\rm Bx}$ — $U_{\rm Bhx}$, и для нового положения равновесия можно написать:

$$kK_0 (U_{\text{BX}} - U_{\text{BMX}}) = U_{\text{BMX}},$$

0ткуда

$$U_{\rm BbIX} = \frac{U_{\rm BX}}{1 + \frac{1}{bK}} \ . \tag{72}$$

При большом K_0 оба положения равновесия почти не отличаются: $U_{\rm BMX}\!\approx\!U_{\rm BX}$. Система является автокомпенсационной, дающей повышение эффективного входного сопротивления прибора на несколько порядков по сравнению с обычным электрометрическим усилителем.

В этой схеме для повышения входного сопротивления использована отрицательная обратная связь. На рис. 32, б показана схема с двумя операционными усилителями, в которой теоретически бескоиечно большое входное сопротивление создается при помощи по-

ложительной обратной связи.

На схеме сопротивления всех резисторов выражены в долях сопротивления резистора обратной связи усилителя R. Первый усилитель имеет коэффициент усиления — R/aR = -1/a, второй — минус единицу и служит для изменения полярности напряжения, появляющегося на выходе первого.

Выходной ток устройства

$$I_{\rm EX} = I_1 - I_2, \tag{73}$$

Ток входной цепи первого усилителя

$$I_1 = \frac{U_{\rm BX}}{aR} ,$$

поскольку вход усилителя является потенциально нулевой точкой. Ток в цепи обратной связи

$$I_2 = \frac{U_{\text{BbIX}} - U_{\text{BX}}}{bR} = \frac{U_{\text{BX}}}{R} \left(\frac{1}{ab} - \frac{1}{b} \right),$$

так как $U_{\text{вых}} = -\left(-\frac{U_{\text{вх}}}{a}\right)$.

Подставляя значения токов в (73), получим:

$$I_{\rm EX} = \frac{U_{\rm EX}}{R} \left(\frac{a+b-1}{ab} \right). \tag{74}$$

Если a+b=1, то входной ток равен нулю, т.е. от источни-

ка $U_{\,{
m BX}}$ никакой мощности не потребляется.

Условие a+b=1 означает, что резисторы aR и bR являются частями одного потенциометра, к движку которого и прикладывается испытуемое напряжение $U_{\rm bx}$. Одновременно для более точной установки нужного режима коэффициент усиления второго усилителя берут больше единицы, например равным двум, и в то же время напряжение на его вход снимают с потенциометра, включаемого на выход первого усилителя. Регулируя этим потенциометром долю подаваемого на второй усилитель напряжения, можио установить коэффициент передачи точно равным единице.

Вольтметры с лампами в обращенном режиме

Вольтметр с высоким входным сопротивлением и большим верхним пределом измерения можно получить при использовании так называемого обращенного режима работы лампы, когда роль входного электрода играет анод, а выходного — управляющая или иная сетка. На эту сетку подают некоторос положительное напряжение;

в ее цепи протекает ток, величина которого управляется отрицатель-

ным потенциалом анода.

Таким образом, семейству анодных характеристик лампы при обычном включении соответствует в обращенном режиме семейство зависимостей тока сетки от напряжения на ней при напряжении анода, принятом за параметр. Такие зависимости для триода 6Н1П представлены на рис. 33.

В обращенном режиме обычная лампа приобретает многие свойства электрометрической. В самом деле, анод лампы находится под значительным отрицательным потенциалом и поэтому электронная

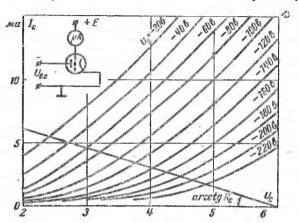


Рис 33. Семейство характеристик лампы 6H1П в обращенном режиме.

Линия нагрузки проведена для $R_{\mathbf{C}} = 1$ ком.

составляющая входного тока отсутствует. От излучений катода апод защищен сеткой, да и находится он от катода на значительном расстоянии. Для устранения ионного тока потенциал сетки устанавливают ниже потенциала возбуждения остаточных газов в лампе. Следовательно, входной ток определяется только токами утечки по изоляции и баллону лампы.

Вместе с тем допустимые пределы изменения потенциала управляющего электрода лампы в обращенном режиме гораздо больше, чем у лампы в обычном включении, так как управляющее действие анода на катодный ток приблизительно в µ раз слабее, чем сетки.

Поэтому всего лишь на одной обращенной лампе можно построить электрометрический вольтметр с верхним пределом измерения до нескольких сотен вольт, в то время как при использовании обычной электрометрической лампы необходимы специальные меры для удержания изменения потенциала управляющей сетки относительно других электродов в пределах ±1 в.

Суммарное действие напряжений анода и сетки на сеточный ток $I_{\mathbf{c}}$ эквивалентно действию на пего гак называемого действую-

щего напряження $U_{\mathtt{д}}$, приложенного только к сетке и равного:

$$U_{\pi} = \frac{U_{c.K} + DU_{s.K}}{1 + \kappa D}, \tag{75}$$

где $D=1/\mu=C_{a.\kappa}/C_{c.\kappa}$ — проницаемость лампы; \varkappa — коэффициент, определяемый геометрией лампы. Для плоскопараллельного триода в режиме пространственного заряда, например $\varkappa=(r_a/r_c)^{a/2}$, где r_a — расстояние между катодом и анодом, r_c — расстояние между катодом и сеткой.

Поскольку измеряемое напряжение прикладывается к аноду в отрицательной полярности, значение его в эту и последующие

формулы должно подставляться с минусом.

При положительных значениях $U_{\rm A}$, когда отрицательное напряжение на аноде невелико, сеточный ток подчиняется закону «трех вторых»:

$$I_{c} = A \left(U_{c,\kappa} + DU_{a,\kappa} \right)^{3/2},$$
 (76)

где A — коэффициент пропорциональности.

Когда отрицательное напряжение на аноде увеличивается настолько, что действующее напряжение становится отрицательным, ток сетки описывается выражением, подобным выражению для анодного тока диода в области отрицательных значений потенциала его анода:

$$I_{\rm c} = I_{\rm c0} \, e^{\frac{q}{kT} U_{\rm II}},\tag{77}$$

где $I_{\rm c0}$ — «нулевой» ток сетки, протекающий при $U_{\rm д}$ = 0, т. е. когда $U_{\rm C.K}$ = — $DU_{\rm a.K}$; q — заряд электрона, равный 1,6 · 10 — 19 κ ; k — постоянная Больцмана, равная 1,38 · 10 — 23 $\partial \varkappa/ z$ рад; T — абсолютная температура катода, κ

Эти уравнения позволяют сделать ряд выводов.

Напряжение между сеткой и катодом $U_{\mathrm{C,K}}$ складывается из внешнего напряжения, приложенного к сетке, и контактной разности потенциалов. Как известно, последняя подвержена изменениям, поэтому работа при малых напряжениях сетки будет отличаться повышенной нестабильностью и поэтому нежелательна.

Характеристики ламп в обращенном режиме нелинейны, как нелинейны характеристики ламп в обычном включении. Особенно велика нелинейность на участках, где действующее напряжение положительно или равно нулю. Здесь не только сопрягаются кривые по уравнениям (76) и (77), но и сильнее всего меняется пространственный заряд, а вместе с ним и проницаемость. Поэтому эти участки из работы исключают, подавая на катод лампы постоянное положительное напряжение 20—50 в, играющее роль начального смещения.

Когда измеряются положительные или переменные напряжения, на катод должно быть дополнительно подано постоянное напряжение (смещение), равное амплитудному значению измеряемого напряжения

Дальнейшая линеаризация характеристик осуществляется включением в цепь сетки, являющейся теперь выходным электродом, сопротивления $R_{\rm c}$. При этом для сохранения режима работы лампы напряжение источника питания должно быть соответственно увеличено. Действие вводимой таким образом отрицательной обратной связи тем эффективнее, чем сопротивление $R_{\rm c}$ больше.

Чтобы получить динамическую характеристику каскада, на семействе характеристик обращенной лампы строят обычным образом линию нагрузки согласно уравнению

$$U_{\text{c.K}} = E_{\text{c}} - I_{\text{c}} R_{\text{c}}, \tag{78}$$

 $_{\Gamma A}$ е E_{c} — напряжение питания сетки.

На рис. $\hat{3}3$ проведена линия нагрузки для $R_{c} = 1$ ком, $E_{c} = 6$ в.

Динамическая характеристика практически линейна.

При выбранной лампе пределы измерения можно менять изменением $E_{\rm c}$ или $R_{\rm c}$ (или того и другого вместе). При этом следует принимать во внимание, что при уменьшении потенциала анода потенциал сетки растет, стремясь к величине $E_{\rm c}$. Если проектируется вольтметр с возможно большим входным сопротивлением, то напряжение на сетке во избежание появления ионного входного тока не должно подниматься выше 6 s, что соответствует примерно потенциалу возбуждения кислорода. Правда, этот ток невелик, потому что он возникает, когда лампа находится вблизи запирания и ток сетки мал, в связи с чем мала производимая им ионизация. Чем больше верхний предел измерения, тем выше допустимое напряжение $E_{\rm c}$ при сохранении входного сопротивления.

В вольтметрах с лампами в обращенном режиме о значении измеряемого напряжения удобнее судить не по величине тока сетки $I_{\rm c}$, а по падению напряжения, создаваемого этим током на

резисторе $R_{\mathbf{c}}$.

В зависимости от типа лампы и предела измерений сигнал с сетки обращенной лампы снимают через катодный повторитель или

усилительный каскад.

Из формулы (77) следует, что характеристики лампы в обращенном режиме сильно зависят от температуры катода (напряжения накала) и в меньшей степени — от напряжения источника питания сетки. Поэтому стабилизация питающих напряжений приобретает в случае применения обращенных ламп особо важное значение. Стабильность может быть значительно повышена применением балансных каскадов, которые, кроме разного назначения электродов, не отличаются от балансных каскадов на лампах в обычном включении (см. рис. 7, а и г).

Все приемы анализа цепей с радиолампами распространяются и на лампы в обращенном включении. Отличие состоит лишь в параметрах эквивалентного генератора, которым заменяется обращенная лампа. Электродвижущая сила этого генератора равна U_a/μ (μ — табличное), а внутренним сопротивлением является сопротивление промежутка сетка—катод R_{ic} . Оно меньше внутреннего сопро-

тивления лампы Ri.

Закон Ома для обращенной лампы:

$$I_{\rm c} = \frac{\frac{U_{\rm a}}{\mu} + U_{\rm c.\kappa}}{R_{ic}} \,. \tag{79}$$

Заметим, что ток $I_{\mathbf{c}}$ находится в фазе с напряжением $U_{\mathbf{a}}$ и в противофазе с напряжением $U_{\mathbf{c.k.}}$

Для простейшего каскада, изображенного на рис. 33, $U_{\mathbf{c}.\mathbf{\kappa}}$

 $=-I_{c}R_{c}$, $U_{a}=U_{BX}$, поэтому

6*

$$I_{\rm c} = \frac{U_{\rm BX}}{\mu \left(R_{i\rm c} + R_{\rm c} \right)} \,. \tag{80}$$

Коэффициент передачи по напряжению

$$K = \frac{I_c R_c}{U_{\rm ex}} = \frac{R_c}{\mu (R_{lc} + R_c)}$$
 (81)

При увеличении сопротивления резистора $R_{\mathbf{c}}$ коэффициент передачи стремится к своему максимальному значению 1/µ, что для

лампы 6Н1П составляет примерно 0,03.

Если нужен обращенный вольтметр с низким пределом измерения, то применяют пентоды с отдельным выходом третьей сетки, которую и используют в качестве выходного электрода. Проницаемость этих сеток обычно велика.

Тинамическая крутизна каскада
$$S_{\mu} = \frac{I_{c}}{U_{\text{BX}}} = \frac{1}{\mu (R_{ic} + R_{c})}. \tag{82}$$

Для лампы 6Н1П μ =35, $R_{10}\approx$ 250 ом. При $R_{\rm C}$ =1 ком расчетная динамическая крутизна $S_{\rm A}$ =1/35 · 1 250 =22,8 мка/в. Измеренное значение S_{π} у каскада на том экземпляре лампы, характеристики ко-

торого были приведены на рис 33, равно 20 мка/в.

Начальное смещение на лампу задают обычно при помощи резистора, вводимого в катодную цепь лампы. На динамические характеристики каскада он оказывает практически такое же действие, как и при включении в цепь сетки. Если в обычном ламповом каскаде сопротивление $R_{f k}$ в цепи катода эквивалентно сопротивлению $(1 + \mu) \, R_{\rm K}$ в цепи анода, то в каскаде с обращенной лампой включение сопротивления $R_{\scriptscriptstyle
m K}$ в катод равносильно включению с цепь сетки сопротивления $(1+1,\mu)R_{\kappa}$, т. е. почти той же величины. Ток через лампу при этом

$$I_{c} = \frac{U_{BX}}{\mu \left[R_{:c} + R_{c} + \left(1 + \frac{1}{\mu} \right) R_{K} \right]} \approx \frac{U_{BX}}{\mu \left(R_{:c} + R_{c} + R_{R} \right)}.$$
 (83)

Начальное смещение в отсутствие измеряемого напряжения ($U_{\mathtt{RX}}\!\!=\!$

=0) равно $I_{\mathbf{c}}R_{\mathbf{K}}$.

Входное сопротивление и другие характеристики вольтметра или электрометра на лампе в обращенном режиме в значительной мере определяются типом лампы.

Для вольтметров с входным сопротивлением до 10^{10} — 10^{11} ом и пределами измерения 30-300 в пригодны одинарные и двойные триоды. На двойных триодах удобнее конструировать балансные

каскады.

Входное сопротивление до 1015 ом может быть получено только у лампы, имеющей вывод анода через купол баллона и малую мощность накала. Это — лампы «желуди» бЖ1Ж, 6К1Ж, 6С1Ж, прямо-пакальные пентоды 2Ж15Б, 2Ж27П, 2П29П, 1П5Б, 1П22Б и т. д., стержневые 1Ж24Б, 1Ж29Б и т. д.

Непременным условием применения пентода является отдельный вывод третьей сетки, что позволяет поставить лампу в опти-

мальный режим.

Киловольтметры могут быть построены на высоковольтных про-

ходных триодах 6С20С, 6С39С, 6С40П.

Меняя назначение электродов и устанавливая на них соответствующие потенциалы, можно получать различные пределы измерения при хорошей линейности шкалы. При измерении малых напряжений в качестве выходного электрода используют третью сетку.

проницаемость которой высока, а при измерении больших напря-

жений — вторую.

В последнем случае для линеаризации характеристики на третью сетку подают отрицательное напряжение порядка 50 в. Напряжение на первой сетке должно быть порядка 1,5—2 в, а на второй 2—4 в.

Схема подобного вольтметра на лампе 6 Ж1 Ж показана на рис. 34. Вольтметр имеет шкалу 0—200 θ ; нелинейность шкалы 1 %. Наибольший входной ток $1,1\cdot 10^{-11}$ α (при $U_{\text{вх}}=-200$ θ). В ос-

новном это ионный ток, обусловленный тем, что напряжение между второй сеткой и катодом превышает потенциал ионизацин.

Выбор несколько повышенного напряжения объясняется желаиием получить максимальную простоту схемы (прн этом не требуется дополнительного лампового каскада). Напряжение накала 4 в.

Особый интерес представляют лампы стержневой конструкции, в частности 1Ж24Б и 1Ж29Б.

Во-первых, эти лампы удовлетворяют всему комплексу требований: анод выведен через купол баллона, у третьей сетки вывод отдельный, мощность накала минимальна. У 1Ж24Б она составляет всего 16 мет (напряжение иакала 1,2 в, ток накала 13 ма). Это меньше, ность накала лампы 1Ж29Б 50 мвт.

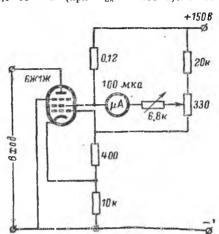


Рис. 34. Вольтметр на пентоде в обращенном режиме.

накала 13 ма). Это меньше, чем у электрометрических ламп. Мощность накала лампы 1Ж29Б при включении одной нити — около

Во-вторых, стержневые лампы имеют интереспую особенность, заключающуюся в том, что в обращенном режиме их характеристики по второй и третьей сеткам симметричны, т. е. в широкой области отрицательных потенциалов анода изменение этого потенциала влияет только на токораспределение между второй и третьей сетками, а их суммарный ток и ток первой сетки остаются неизменными. При этом изменение накала не меняет крутизну характеристики положение точки их пересечения, а лишь сдвигает характеристики параллельно себе вверх — при увеличении накала, вниз — при его уменьшении.

На рис. 35 показаны экспериментально снятые статические характеристики лампы 13(296) при трех значениях напряжения накала: 2.1~s (нижние кривые); 2.4~s (средние кривые); 2.7~s (верхние кривые). Напряжения питания второй и третьей сеток +6~s, первой -1~s.

Симметрия не нарушается до тех пор, пока сопротивления в цепях второй н третьей сеток не превышают 10 ком. Таким образом, если включить в цепи второй и третьей сеток резисторы сопротивления по 10 ком, а между выводами микроамперметр, будет получен балансный каскад на одной лампе (рис. 36), превосходящий по стабильностн обычные балаисные каскады на двойных триодах. Это объясняется тем, что в нем токи сеток являются частями единого электронного потока, в то время как в двойных триодах каждая си-

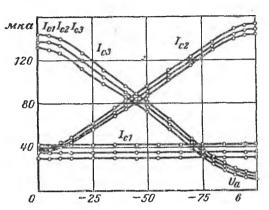


Рис. 35. Характеристики стержиевой лампы 1Ж29Б в обращенном режиме.

стема имеет свой катод (хотя и расположенные на одном подогревателе) и свой электронный поток.

Потенциал анода U_{a0} , при котором токи второй и третьей сеток равны, зависит от тока первой сетки и в гораздо меньшей степени — от напряжения питания второй и третьей сеток. Его можно регули-

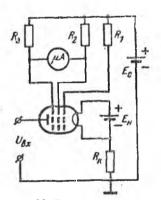


Рис. 36. Балансный электрометрический каскад на стержневой лампе в обращенном режиме.

ровать изменением сопротивления резистора, включенного в пепь первой сетки.

Напряжение на катоде лампы (смещение) должно быть равно U_{a0} и задается путем включения в катодную цепь резистора $R_{\rm K}$ подходящего сопротивления.

Ввиду высокой стабильности рассматриваемого каскада сигнал с него может быть усилен, а все устройство в целом охвачено отрицательной обратной связью. Это открывает возможность конструирования многопредельных электрометров. По такой схеме автором совместно с Г. Н. Фесенко был построен электрометр с пределами измерения 0—1—3—10—100 в, входным сопротивлением порядка 1015 ом и входной емкостью 0,26—0,6 пф (зависит от предела измерения).

ЭЛЕКТРОННЫЕ ВОЛЬТМЕТРЫ И УСИЛИТЕЛИ С ВЫСОКИМИ ВХОДНЫМИ СОПРОТИВЛЕНИЯМИ НА ТРАНЗИСТОРАХ

Вольтметры с усилителями тока на транзисторах

Сопротивление вольтметра магнитоэлектрической системы, выраженное в омах на вольт, численно равно обратной величине тока полного отклонения измерительного механизма. Предельным в настоящее время можно считать сопротивление 1 Мом/в. Однако оно достигается лишь в лабораторных приборах; они не только дороги и редки, но и требуют особо внимательного обращения, исключаю-

щего повседневное их использование.

Радиолюбители чаще всего изготавливают вольтметры сами, на базе малогабаритных щитовых микроамперметров магнитоэлектрической системы, ток полного отклонения которых находнтся в пределах 50 мка — 5 ма, в соответствии с чем сопротивление вольтметра может быть от 20 ком/в до 200 ом/в. Чтобы повысить входное сопротивление, есть несколько путей. Один из иих — примеиение лампового усилителя, преобразующего входное напряжение в ток, протекающий через прибор, — мы рассмотрели.

Второй путь, весьма практичный, заключается в повышении эффективной чувствительности приборов по току путем использования транзисторных усилителей мощности, входное сопротивление которых имеет тот же порядок, что и сопротивление измерительного ме-

ханизма, и которые являются поэтому усилителями тока.

Магнитоэлектрический микроамперметр с током полного отклонения $I_{\rm H}$ и усилитель с коэффициентом усиления по току K_I , рассматриваемые совместно, эквивалентны микроамперметру, ток полного отклонения которого равен $I_{\rm H}/K_I$, а сопротивление равно входному сопротивлению усилителя $R_{\rm BX}$ (при нагрузке его на данный прибор). При этом сохраняется прочность и надежность, присущие

относительно грубому микроамперметру.

Тип усилителя, значение K_I выбирают в зависимости от требуемого входного сопротивления, пределов измерения, чувствительности прибора. Слишком большим коэффициент усиления траизисторного усилителя выбирать не следует, потому что дрейф усилителя и нестабильность добавочных резисторов большого сопротивления сведут на нет полученные преимущества. Наиболее целесообразно сочетание микроамперметра на 50-500 мка и усилителя с коэффициентом усиления 20-50. Такое усиление может быть получено от каскада с одним транзистором или двумя, включенными по балансной схеме.

Недостатком транзисторов является зависимость их параметров от температуры. Поэтому важно выбрать такую схему, при которой коэффициент усиления либо не зависел бы от изменения температуры, либо допускал корректировку его изменения. То же самое

относится и к стабильности нуля усилителя.

Простейшая схема вольтметра с усилителем на одном транзисторе показана на рис. 37. Транзистор может быть любого типа. Нужное значение чувствительности устанавливается при помощи пере-

менного сопротивления $R_{
m m}$.

Перед началом измерения производят калибровку вольтметра. Для этого тумблер Π_3 устанавливают в левое по схеме положение. Микроамперметр с добавочным сопротивлением $R_{\rm д}$ образует при этом стрелочный вольтметр, который измеряет напряжение батареи питания. Затем тумблер Π_3 возвращают в первоначальное положение, переключатель Π_2 устанавливают в положение для измерения на шкале 3 в и тумблер Π_1 переводят в положение «Калибровка». Теперь на вход вольтметра подается измеренное ранее напряжение батареи и с помощью сопротивления $R_{\rm III}$ это значение устанавливают на шкале прибора.

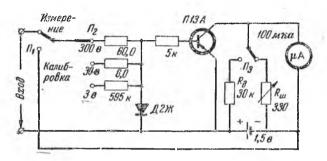


Рис. 37. Схема вольтметра с усилителем на одном транзисторе.

Таким образом корректируется изменение коэффициента усиления транзистора при изменении температуры и напряжения питающей батареи. Одновременно осуществляется своевременная сигнализация о иеобходимости сменить батарею. Диод позволяет измерять переменное напряжение. Он может быть любого типа.

При входном напряжении, равном нулю, через микроамперметр протекает часть начального тока коллектора, поэтому шкала вольтметра начинается не с нуля и в начальной части ($\sim 10\%$ всей

шкалы) нелинейна (рис. 38).

Более совершенны однокаскадные усилители параллельно-балансного типа по схеме с общим эмиттером. Начальные коллекторные токи транзисторов балансного каскада вычитаются в нагрузке (индикаторном приборе), поэтому характеристика усилителя проходит через нуль, имея линейный начальный участок. Точно так же вычитаются в нагрузке приращения коллекторных токов, вызываемые изменениями температуры и питающего папряжения, в связи с чем положение нулевой точки меняется мало; ее смещение прямо связано с тем, насколько одинаковы характеристики транзисторов каскада. Дальнейшее повышение стабильности усилителя достигается введением глубокой отрицательной обратной связи. Для этого стараются выбрать транзисторы с большими значениями β (порядка 150-200), с тем чтобы общее усиление каскада получить равным 20-30. В этом случае получается удовлетворительная стабильность как начальной точки (нуля), так и коэффициента усиления по току даже при не слишком тщательном подборе пар транзисторов по идентичности их характеристик, что сопряжено с большими трудностями (особенно когда дело касается температурной зависимости). Выбор же транзисторов с большим значением β не пред-

ставляет труда.

В отдельных случаях все же приходится прибегать к тщательному отбору парных транзисторов для входного каскада высокочувствительного усилителя, чтобы получить одновременно и высокую стабильность, и большое усиление на каскад.

Для этого у нескольких экземпляров транзисторов снимают зависимости токов коллекторов от токов баз и отбирают пары, у которых эти зависимости наибо-

лее близки.

Но и у отобранных таким образом транзисторов при изменении температуры коллекторные токи могут меняться по-разному. Больше всего изменяется с температурой обратный (тепловой) ток коллектора $I_{\kappa 0}$ — ток, который протекает в цепи коллектора при нулевом токе эмиттера, т. е. при разомкиутой эмиттерной цепи. У германиевых плоскостных транзисторов ток Іко меняется в сред-2 раза на 10—11° С перепада температур и нестабильность $I_{\rm KO}$ является основной причиной нестабильности нуля транзисторных усилителей постоянного тока. По-ИЗ отобранных пар

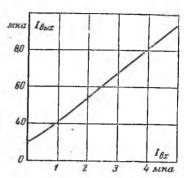


Рис. 38. Градуировочная кривая шкалы вольтметра, собранного по схеме на рис. 37.

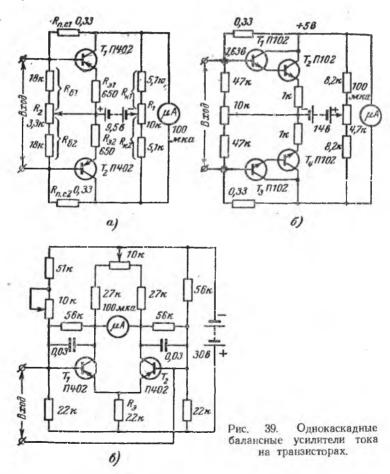
дополнительно отбирается пара транзисторов с близкими температурными характеристиками токов $I_{\rm KC}$. Для этого надо замерить величину обратного коллекторного тока $I_{\rm KC}$ при двух температурах, близких к началу и концу рабочего диапазона температур, — примерно +20 и $+40^{\circ}$ С. Окончательно отбирается та пара транзисторов, у которой температурные изменения обратных коллекторных токов примерно равны.

Обычно же стараются спроектировать усилитель так, чтобы нужды в очень тщательном отборе транзисторов не было, так как такой отбор долог, дорог и вызывает затруднения при ремонте

и воспроизведении усилителя.

Для уменьшения влияния температуры принимают также меры конструктивного характера. Транзисторы помещают в медную герметически закрытую коробку с толщиной стеиок 2—4 мм. Коробку термоизолируют, например асбестом, и помещают в другую коробку. Получается термостат. Из-за большой теплоемкости системы изменение внешней температуры не окажет на транзисторы заметного влияния. В коробку помещают только транзисторы.

Для описываемых ниже устройств транзисторы отбирались


только по β и $I_{\kappa 0}$.

Автором было проверено несколько усилителей, схемы которых показаны на рис. 39 и 40. Результаты сведены в табл. 3, а на рис. 41 приведены экспериментальные зависимости коэффициентов усиления по току и напряжению от сопротивления нагрузки (прибора). Табличные данные были получены при включении в выход-

ную цепь усилителя микроамперметра M-265 на 100 $m\kappa a$ с сопротивлением 450 оm.

Усилитель с последовательной отрицательной обратной связью по напряжению (рис. 39, a) был собран в двух вариантах — на транзисторах П402, отобранных по максимальному значению β (T_1 : β =195, $I_{\kappa 0}$ =0,6 мка; T_2 : β =215, $I_{\kappa 0}$ =0,6 мка) и на транзисторах П13Б (T_1 : β =48, $I_{\kappa 0}$ =1 мка; T_2 : β =51, $I_{\kappa 0}$ =0,9 мка).

Чтобы сохранить коэффициент усиления равным 20, сопротивления в эмиттерах в последнем случае были уменьшены до 240 ом. Приведенные в таблице данные относятся к усилителю с транзисторами П402. Усилитель на транзисторах П13Б отличался втрое меньшей температурной стабильностью нуля из-за уменьшения глубины обратной связи, в остальном они были примерно одинаковы.

Смысл отбора транзистора с большим β и заключается в воз можности ввести более глубокую отрицательную обратную связь (при заданном $K_{\rm I}$), что уменьщает нестабильность коэффициента усиления каскада при температурных и иных изменениях β тран-

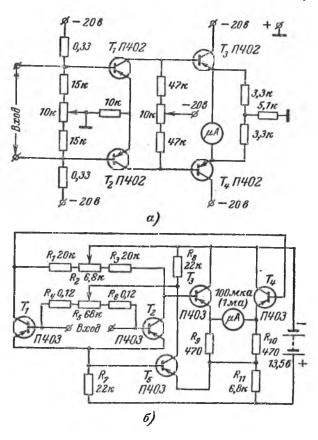


Рис. 40. Двухкаскадные транзисторные усилители тока.

зисторов. В остальном транзисторы с большими значениями $\, eta \,$ преи-

муществ не дают.

При необходимости пересчитать усилитель для других условий можно пользоваться следующими приближенными формулами, полученными из рассмотрения Т-образной эквивалентной схемы замещения каскада (рис. 42) (погрешность при их применении составляет 10—15%):

$$R_{\text{BX}} = \frac{R_6 \left[r_6 + (1+\beta) \left(r_9 + R_9 \right) \right]}{R_6 + r_6 + (1+\beta) \left(r_9 + R_9 \right)} \approx \frac{R_6 \beta \left(r_9 + R_9 \right)}{R_6 + \beta \left(R_9 + r_9 \right)},$$
 (84)

$$R_{\text{BbIX}} = \frac{R_{\text{K}} \left[r_{\text{K}}^* \left(1 + \beta \gamma_6 \right) \right]}{R_{\text{K}} + r_{\text{K}}^* \left(1 + \beta \gamma_6 \right)}, \tag{85}$$

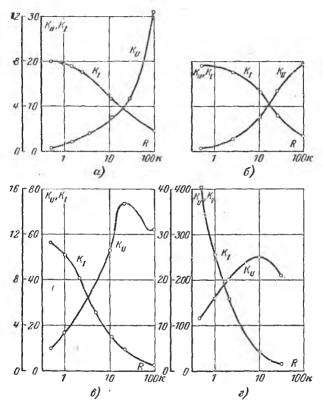


Рис. 41. Зависимости коэффициентов усиления по току и напряжению от сопротивления нагрузки.

$$K_I = \frac{I_{\text{BMX}}}{I_{\text{EX}}} \approx \frac{R_6}{R_6 + \beta (r_2 + R_2)} \beta \frac{R_K}{R_K + R_H},$$
 (86)

$$K_U = \frac{U_H}{U_\Gamma} = \beta \frac{R_K R_H}{(R_K + R_H)(R_\Gamma + R_{BX})}$$
 (87)

В этих выражениях

Параметры

Коэффициент усиления по току K_I
Входное сопротивление $R_{\rm BX}$, ком
Уход нуля (приведенный ко входу):
при измерении температуры, а/град
при отклонении напряжения питания от номи-
нального значения на: $+10\%$
—10%
Изменение коэффициента усиления по току:
при измерении температуры, в процентах на
градус
при отклонении напряжения питания от но
минального значения на +10%, (в процен
тах):
на — 10%
Амплитуда шума в пересчете на вход, a
Напряжение батареи питания, в
Потребляемый ток, ма
При включении индикаторным прибором микро
амперметра М-265 со шкалой 0-100 мка и со
противлением 450 ом:
номинальный входной ток Ін, мка
номинальное падение напряжения $U_{ m H}$, мв
порог чувствительности по току, a
Входное сопротивление вольтметра, построен
ного на базе усилителя, ком/ ε
77

Примечанне. Номинальный входной ток— это так на всю шкалу.

400

				таолица,			
Для схем							
рис. 39, а	рис. 39, б	рис. 39, в	рис. 40, <i>а</i>	рис. 40, 6			

100

34,8	92	15,7	. 30	15,6
0,92.10-8	1-10-8	1,5.10-8	1,6.10-8	0,5.10-9
Не заметно » »	1,5-10-s	2,6·10-8 1,8·10-8	Не измерялось То же	+7,5·10 ⁻⁹ -7,5·10 ⁻⁹
0,12	0,1	0,1	0,1	0,05
і,0 5,0 Не заметно 9,5	0,5 1,0 1,5·10—s	2,0 2,5 2,6-10-8 30	2,5 3,0 4·10 ⁻⁹ 20	3,5 4,0 1,2·10 ⁻⁹ 13,5

50

33,33

20

акой входной

0,64 1,35 1,3 3,04 2,5 5 1,0 0,25

2 25 5·10—s -170 250 30

ток, при котором стрелка индикаторного прибора отклоняет-

5-10-8 9-10-9

 $2,5 \cdot 10^{-10}$

$$\beta = \frac{1}{2} (\beta_{1} + \beta_{2}); \quad R_{6} = R_{61} + R_{62};$$

$$r_{6} = r_{61} + r_{62}; \quad r_{9} = r_{21} + r_{32};$$

$$R_{K} = R_{K1} + R_{K2}; \quad r_{K}^{*} = r_{K1}^{*} + r_{K2}^{*};$$

$$\gamma_{6} = \frac{r_{9} + R_{9}}{r_{9} + r_{6} + R_{9} + R_{6}}, \qquad (88)$$

 γ_6 — коэффициент токораспределения базы; $I_{\scriptscriptstyle \mathrm{BMX}}$ — ток через нагрузку (индикаторный прибор); I_{BX} — ток во входной цепи, отбираемый от источника измеряемого напряжения $U_{\mathfrak{r}}$ и равный сумме

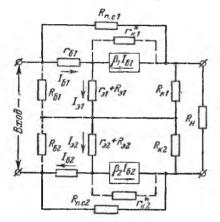


Рис. 42. Эквивалентная схема балансного транзисторного каскада.

токов через базу и сопро-

тивление R_6 .

Ток через индикаторный прибор

$$I_{\text{BMX}} = I_{\text{BX}} K_{I} = \frac{U_{\text{r}}}{R_{\text{A}} + R_{\text{BX}}} \times \frac{R_{6}}{R_{6} + \beta (r_{9} + R_{9})} \beta \frac{R_{\text{K}}}{R_{\text{K}} + R_{\text{H}}},$$
(89)

где $R_{\rm Д}$ — последовательное сопротивление во входной цепн. Оно равно сумме сопротивлений источника измеряемого напряжения и добавочного сопротивления, если это сопротивление имеется.

Для вольтметра на пределе измерения $U_{\rm H}$ добавочное сопротивление равно:

$$R_{\rm A} = \frac{U_{\rm B} K_I}{I_{\rm B}} - R_{\rm BX}, \tag{90}$$

где $I_{\rm H}$ — ток полного отклонения индикатора.

Сопротивление шунта, который нужно включить параллельно входу усилителя на предел измерения по току I_{Π} , равно:

$$R_{\rm III} = \frac{I_{\rm H} R_{\rm BX}}{I_{\rm II} K_{\rm I} - I_{\rm H}}.$$
 (91)

При расчете усилителя параллельная обратная связь не учитывалась, так как ее действие в данном случае незиачительно. Действительно, коэффициент обратной связи

$$K_{\rm II} = \frac{R_{\rm H}}{R_{\rm H} + R_{\rm II.C}} \frac{R_6}{R_6 + \beta (r_9 + R_9)} \tag{92}$$

в этой схеме менее двух сотых процента. Здесь резистор $\bar{R}_{\text{п.с}}$ задает лишь начальный режим транзистора и то, что он присоединен к коллектору, а не непосредственно к батарее, не играет существенной роли.

Удобно последовательно с входом усилителя включить резистор такого сопротивления, чтобы оно дополняло входное до ближайшего целого круглого значения. Например, при полученном в данном случае $R_{\rm BX} = 34.8$ ком последовательно с ним нужно включить 15.2 ком,

тогда сопротивление входа будет 50 ком.

Следует округлить и коэффициент усиления по току, выбрав надлежащие сопротивления резисторов в эмиттере, но проще включить параллельно входу резистор с регулируемым сопротивлением и скорректировать им коэффициент усиления. Второй путь — включить регулируемое сопротивление последовательно или параллельно индикатору.

Проектируя каскад, нужно учитывать условия получения максимальной его стабильности. Основной причиной самопроизвольных изменений тока нагрузки (дрейфа) является сильная зависимость обратного тока коллектора $I_{\rm K0}$ от температуры. Для полностью симметричного каскада изменение тока в нагрузке связано с изменения-

ми обратных токов $\Delta I_{\kappa 01}$ и $\Delta I_{\kappa 02}$ следующим образом:

$$\Delta I_{\rm H} = S \, \frac{\Delta I_{\rm K.01} - \Delta I_{\rm K.02}}{2\left(1 + \frac{R_{\rm H}}{R_{\rm K}}\right)} \,. \tag{93}$$

Величина

$$S = \frac{\beta}{1 + \beta v_6} \tag{94}$$

называется коэффициентом нестабильности. Этот коэффициент показывает, попросту говоря, насколько изменяется ток коллектора транзистора при изменении обратного тока I_{κ^0} . Заметим, что такое определение коэффициента нестабильности правильно для германиевых транзисторов; у кремниевых нестабильность тока коллектора вызывается не столько изменениями I_{κ^0} , сколько температурными изменениями β и напряжения на эмиттере транзистора.

Очевидно, что для обеспечения малого дрейфа балансного кас-

када необходимо:

1. Выбирать транзисторы с возможно близкими зависимостями обратных токов коллектора от температуры. Так как такой отбор сложен, ограничиваются обычно выбором транзисторов с равными значениями I_{к0} при комнатной температуре. Поскольку интервал рабочих температур усилителя практически укладывается в 20° С (12—32° С), в первом приближении такого выбора достаточно.

2. Коэффициент нестабильности должен быть возможно меньшим. Из выражения (88) для γ_6 видно, что для этого следует в цепь эмиттера включить возможно большие, а в цепь базы возможно меньшие сопротивления. Оптимальный случай $r_9 + R_9 \gg r_6 + R_6$ и $S \approx 1/\gamma_6 \approx 1$. Однако практически такого значения коэффициента нестабильности добиться почти невозможно. Это объясняется тем, что уменьшение R_6 и увеличение R_9 влечет за собой уменьшение коэффициента усиления каскада по току, а также необходимость повышения напряжения батареи питания для сохранения режима транзистора.

Принято считать удовлетворительными значениями S=2:-б. Однако посмотрим, как связаны между собой коэффициент нестабильности S и коэффициент усиления каскада по току K_I . Для простоты расчет произведем для одной половины параллельно-балансного каскада.

Коэффициент усиления по току при малом сопротивлении на-

грузки Rм≪Rк равен:

$$K_I = \frac{R_6}{R_6 + \beta R_9} \beta, \tag{95}$$

поскольку входное сопротивление самого транзисторного усилителя $R_{\rm BX}^{'}=r_6+(r_9+R_9)(1+\beta)\approx \beta R_9$. Разрешая выражение (95) относительно β , получим:

$$\beta = \frac{K_I R_6}{R_6 - K_I R_8}.$$

С другой стороны, из выражения (94) для коэффициента нестабильности (учитывая, что $r_9 \ll R_{\bar 0}$ и $r_9 \ll R_{\bar 0}$)

$$\beta = \frac{S}{1 - S \frac{R_{\theta}}{R_{\theta} + R_{\theta}}}.$$

Приравнивая правые части, найдем окончательно:

$$K_{I} = \frac{S}{1 + S \frac{R_{\vartheta}^{2}}{R_{6}(R_{\vartheta} + R_{6})}}.$$
 (96)

Отсюда видно, что коэффициент усиления по току меньше коэффициента нестабильности.

При очень большом значении $\beta \, K_I \approx \! R_6/R_9$, а $S\!=\!1\!+\!R_6/R_9$, и в этом случае

$$K_I = S - 1. (97)$$

От каскада требуется усиление по току порядка 20, такого порядка будет и S.

Однако вследствие глубокой отрицательной обратной связи рассматриваемый балансный каскад и при таком значении достаточно стабилен для того, чтобы служить усилителем тока (K_I =15 ÷ 25) для вольтметра или авометра. Если нужна предельно малая нестабильность при сохранении сравнительно большого коэффициента усиления каскада (работа на высокочувствительный индикатор, например), то включают общее эмиттерное сопротивление. На коэффициент усиления каскада оно не влияет, так как токи сигнала обоих транзисторов находятся в противофазе и падение напряжения на общем сопротивлении остается неизменным. Токи же $I_{\rm KOI}$ и $I_{\rm KOS}$ протекают через общее сопротивление в фазе — они одновременно увеличиваются и одновременно уменьшаются, и в отношении влияния этого сопротивления на нестабильность дело обстоит так, как если

бы в эмиттере каждого транзистора было включено сопротивление, вдвое превышающее обшее эмиттерное. Для сохранения режима транзистора напряжение питания должно быть соответственно

увеличено.

Из схемы усилителя (рис. 39, a) видно, что у него два органа регулировки нуля. Потенциометр R_1 служит для уравнивания потенциалов коллекторов при зачкнутых накоротко базах, о чем судят по отсутствию отклонения указателя индикаторного прибора. При наличии во входной цепи добавочных сопротивлений нужно предусмотреть специальную кнопку для замыкания баз или, в крайнем случае, производить регулировку на низшем пределе измерения, когда добавочное сопротивление имеет наименьшее значение. Если эту операцию выполнять при большом добавочном сопротивлении, то равенство коллекторных потенциалов может быть установлено и при разных потенциалах баз, г. е. при протекании во входной цепи некоторого тока, который, складываясь при измерении с током сигнала, исказит результат.

При помощи потенциометра R_2 проязводят установку равных

токов баз при разомкнутом входе.

Эти регулировки оказывают взаимное влияние, поэтому при первоначальной наладке усилителя их приходится выполнять поочередно несколько раз до тех пор, пока индикаторный прибор будет показывать отсутствие тока как при замкнутых накоротко базах, так и при разомкнутой входной цепи. Для установки нуля в процессе эксплуатации достаточно потенциометра R_2 . Практика показывает, что, будучи однажды установленной, нулевая разность коллекторных

потенциалов остается долгое время неизменной.

Имея в виду вольтметры, выгодно вводить параллельную отрицательную обратную связь по току. Она снижает входное сопротивление усилителя и номинальное падение напряжения на нем, в связи с чем появляется возможность получить малый предел измерения напряжения, коль скоро стабильность каскада позволит это сделать. Для уменьшения значения S в каскад необходимо ввести общее эмиттерное сопротивление и повысить напряжение питания. Таким образом, мы приходим к схеме каскада, показаннего на рис. 39, в. Расчетные соотношения для него те же, что и для предыдущего, с той лишь разницей, что здесь нельзя пренебречь действием параллельной отрицательной обратной связи по току, которая уменьшает и коэффициент усиления, и входное сопротивление усилителя в 1+ $+K_{n.c}$ K_1 раз. Выражения для $K_{n.c}$ и K_1 даны выше. Коэффициент нестабильности этого каскада 2,35, что позволило получить от каскада в 2,5 раза больший коэффициент усиления по току по сравнению с предыдущей схемой при примерно одинаковой их стабильности (см. таблицу 3).

Вольтметр с этим усилителем имел первую шкалу 0-30 мв, при

входном сопротивлении 15 ком

Большой интерес представляет применение в балансных каскадах кремниевых транзисторов, у которых температурная зависимость обратных коллекторных токов выражена не так ярко, как у германиевых. Но эти транзисторы, как правило, имеют низкие значения В-Большой коэффициент усиления можно получить от так называемого составного транзистора, образуемого соединением двух транзисторов по схеме, показанной на рис. 43. Для составного транзистора Однако, хотя каждый из транзисторов имеет малый ток $I_{\kappa 0}$, обратный коллекторный ток достаточно велик:

$$I_{\text{KO-COCT}} = I_{\text{KO2}} + (1 + \beta_2) I_{\text{KO1}}.$$

Температурные колебания $I_{\text{ког}}$ также усиливаются в $1+\beta_2$ раз и в целом нестабильность усилителя может иметь тот же порядок, что и усилителя на двух германиевых транзисторах с большим β . При тщательном подборе креминевых гранзисторов, правильно выбранном режиме и введении обратных связей можно получить очень хороший усилитель, но все это требует большого труда.

На рис. 39, δ показана схема усилителя, которая была собрана на кремниевых транзисторах типа $\Pi102$ ($\beta_1=32$, $\beta_2=28$, $\beta_3=31$,

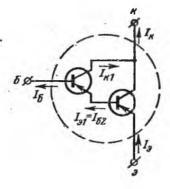


Рис. 43. Схема составного транзистора.

 $\beta_4 = 29$). Его характеристики приведены в табл. 3.

Последовательное включение двух балансных каскадов (рис. 40) позволяет получить коэффициент усиления по току 100-400. Но стабильность двухкаскадного усилителя без принятия специальных мер не может быть лучше, чем одиокаскадного. Одной из таких мер является поддержание напряжения эмиттер — коллектор входных транзисторов неизмененным вне зависимости от изменения их коллекторных токов при помощи отрицательной обратной связи, осуществляемой через дополнительный каскад усиления (транзистор T_5 на рис. 40, б). С помощью этого каскада напряжения эмиттер — коллектор транзисторов поддерживаются ными падениям напряжений на ре-

зисторах R_9 и R_{10} , поскольку напряжениями эмиттер — база транзи-

сторов T_3 , T_4 и T_5 можно пренебречь ввиду их малости.

Рассмотрим действие обратной связи при работе только какихлибо одних половин балансных каскадов усилителя, например транзисторов T_2 и T_3 . Пусть коллекторный ток транзистора T_2 возрастает вследствие, например, повышения температуры. Падение напряжения на резисторе R_8 при этом увеличивается. Тем самым уменьшится падение напряжения на резисторах R_9 и R_{11} нагрузки эмиттерного повторителя T_2 . Так как $R_{11} \gg R_9$, то практически весь сигнал выделится на резисторе R_{11} . Заметим, что для этого напряжение батареи питания выбирается довольно высоким; в данном усилителе оно составляет 13,5 ϵ .

При уменьшении падения напряжения на $R_{\rm II}$ увеличивается напряжение эмиттер — база транзистора $T_{\rm 5}$. Это ведет к увеличению его коллекторного тока и увеличению падения напряжения на резисторе $R_{\rm 8}$, а последнее в свою очередь — к уменьшению напряжения эмиттер — база транзистора $T_{\rm 2}$ и, следовательно, к уменьшению его коллекторного тока приблизительно до первоначальной величины.

Когда работают обе половины балансных каскадов, указанная цепь отрицательной обратной связи подавляет тепературные изменения коллекторных токов, но не влияет на коэффициент усиления. Действительно, при изменении температуры коллекторные токи транзисторов T_1 и T_2 либо одновременно розрастают, либо одновременно уменьшаются, в связи с чем на резисторе R_7 появляется некоторое падение напряжения. Токи же полезного сигнала протекают по резистору R_7 в противофазе и никакого падения напряжения на нем не создают.

Температурный эффект самого транзистора T_5 также способствует температурной стабилизации схемы. В самом деле, при повышении температуры коллекторный ток транзистора T_5 и создаваемое этим током падение напряжения на резисторе R_8 увеличиваются, противодействуя увеличению коллекторных токов транзисторов T_1 и T_2 .

Усилитель был собран на транзисторах П403 (T_1 : $\beta=46$, $I_{K0}=-0.8$ мка; T_2 : $\beta=48$, $I_{K0}=0.8$ мка; T_3 : $\beta=39$, $I_{K0}=0.9$ мка; T_4 : $\beta=-0.8$

=40, $I_{K0} = 0.9$ MKa; $T_5: \beta = 42$, $I_{K0} = 1.0$ MKa).

Приведенные в табл. 3 данные усилителя относятся к случаю, когда индикаторным прибором является микроамперметр M-265 со шкалой 0—100 мка и сопротивлением 450 ом. Усилитель испытывался и при включении параллельно индикатору шунта (~45 ом), расширяющего предел его измерения до 1 ма. Характеристика оставалась линейной.

Если предполагается использовать усилитель только с индикаторным прибором на 100 мка, общее эмиттерное сопротивление второго каскада целесообразно увеличить до 6,8 ком, что снижает потребление тока усилителем.

Непосредственно на входе усилителя, между выводами транзисторов первого каскада, должен быть включен конденсатор емкостью 0.5 мф.

Транзисторные усилители напряжения

Подобно катодному повторителю в ламповой технике эмиттерный повторитель является основой построения большинства транзисторных усилителей с высоким входным сопротивлением. Конечно, порядки величин здесь разные: у транзисторных усилителей сопротивление входа в несколько десятков мегомов считается уже очень большим. Но этого вполне достаточно, чтобы работать, например, с различными пьезодатчиками, ввиду чего такие усилители представляют большой интерес.

Входное сопротивление простого эмиттерного повторителя (рис. 44, a) на постоянном токе, низких и средиих частотах дается

выражением:

$$S_{\text{BX}} = r_6 + (1 + \beta) \left[r_{\text{K}}^* \| (r_9 + R_9 \| R_H) \right] \approx \beta \left[r_{\text{K}}^* \| (R_9 \| R_H) \right],$$
 (98)

которое выводится из T-образной эквивалентной схемы каскада с общим коллектором, $r_{\rm K}^*$ — сопротивление коллектора в схеме с общим коллектором.

На высоких частотах входное сопротивление имеет также реактивную составляющую, обусловленную действием емкости нагрузки и емкости коллекторного перехода. Первая включена параллельно $R_{\rm H}$, вторая — параллельно $r_{\rm K}^*$.

Наибольшее входное сопротивление получается при $R_{\mathfrak{g}} || R_{\mathfrak{g}} \gg r_{\kappa}^*$:

$$R_{\text{BX.Makc}} = \beta r_{\text{K}}^* = r_{\text{K}}.$$
 (99)

У отдельных маломощных транзисторов сопротивление коллекторного перехода $r_{\rm K}$ достигает нескольких мегомов.

Входное сопротивление эмиттерного повторителя ограничивается сопротивлением делителя в цепи базы, задающего начальное смещение. Как известно, в интересах стабильности сспротивление в цепи

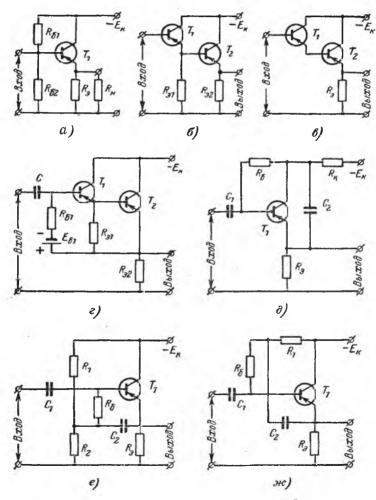


Рис. 44. Схемы эмиттерных повторителей.

базы должно быть небольшим. При непосредственном соединении входа с источником сигнала делитель можно исключить, а смещение

задать при помощи отдельной батареи или стабилитрона.

Практически входное сопротивление простого эмиттерного повторителя трудно сделать большим $100-200~\kappa$ ом. Ведь повторитель является согласующим устройством и работает на низкоомную натрузку, поэтому даже при больших значениях R_9 и $r_{\rm K}$ входное сопротивление определяется в основном сопротивлением нагрузки:

$$R_{\rm BX} \approx \beta R_{\rm H}$$
. (100)

Из всего сказанного следует, что для повышения входного сопротивления эмиттерного повторителя иеобходимо увеличивать сопротивление в цепи эмиттера, сопротивление коллекторного перехода $r_{\rm K}$ и сопротивление делителя в цепи базы.

Поскольку нагрузка задана, увеличение сопротивления в цепи эмиттера достигается включением нагрузки через второй эмиттерный повторитель (рис. 44, б) или даже через несколько последовательно

включенных повторителей.

Условие $R_{\rm H}||R_{\rm 9}\gg r_{\rm K}^*||$ может быть выполнено при непосредственном подключении малого сопротивления нагрузки, если коэффициент усиления β транзистора достаточно велик. Чтобы его получить, применяют составные транзисторы, у которых результирующий коэффициент усиления приблизительно равен произведению коэффициентов усиления составляющих транзисторов: $\beta_{\rm COCT} = \beta_1\beta_2$ (рис. 44, β). Заметим, что в отношении входного сопротивления составной транзистор представляет собой каскадное соединение двух эмиттерных повторителей, причем эмиттерный ток первого из них является базовым током второго.

Теоретическое значение наибольшего входного сопротивления, которое можно получить при каскадном соединении эмиттерных повторителей, уменьшается с ростом их числа по сравнению с максимально возможным входным сопротивлением простого повторителя, равного $r_{\rm K}$. При каскадном соединении сопротивления коллекторных переходов отдельных транзисторов оказываются включенными параллельно. Поэтому наибольшее возможное входное сопротивление эмиттерного повторителя на составном транзисторе, например, равно $r_{\rm K}/2$. Смысл же каскадирования заключается в том, что с ростом числа каскадов влияние величины нагрузки на входное сопротивле-

ние падает быстрее, чем само входное сопротивление.

Например, простой эмиттерный повторитель, собранный на транзисторе с параметрами $\beta=50$, $r_{\rm K}=2$ Мом, имеет входное сопротивление 500 ком при сопротивлении в цепи эмиттера $R_{\rm 3}R_{\rm H}/(R_{\rm 9}+R_{\rm H})=32$ ком. То же входное сопротивление будет получено при нагрузке всего 800 ом, если повторитель собрать на составном транзисторе (при тех же параметрах составляющих транзисторов). При каскадном соединении двух эмиттерных повторителей, полагая сопротивление в цепи эмиттера первого транзистора равным 10 ком, и сопротивление нагрузки 800 ом, получим входное сопротивление 350 ком. Сопротивление нагрузки уменьшилось в 40 раз, а входное сопротивление — лишь в 1,5 раза (шунтирующее действие сопротивления цепи смещения первого транзистора не учитывалось).

Дальнейшее повышение входного сопротивления требует увеличения $r_{\rm K}$. Известно, что сопротивление коллекторного перехода обратно пропорционально току через него и пропорционально корню

квадратному из напряжения коллектор — база. Поэтому работа транзистора с малым коллекторным током является обязательной предпосылкой получения высокого входного сопротивления. Если увеличивать сопротивление в цепи эмиттера, оставляя ток через транзистор неизменным за счет повышения напряжения батареи, то еопротивление $r_{\rm K}$ также остается неизменным, ограничивая входное сопротивление. Если же с увеличением $R_{\rm K}$ напряжение батареи не менять, то, благодаря уменьшению тока, коллекторное, а вместе с ним и входное сопротивление будут возрастать. Одновременю с этим возраста выходное сопротивление, поэтому на выходе первого повторителя включают второй, входное сопротивление которого должно быть много больше сопротивления в цепи эмиттера первого.

Например, входное сопротивление эмиттерного повторителя, собранного на транзисторе П402 (он имел $\beta=100$ и $r_{\rm K}=8$ мом при $I_9=1$ ма) и питаемого от батареи с напряжением 12 σ , зависело от сопротивления в цепи эмиттера R_9 (с учетом сопротивления вольтметра, но без учета сопротивления цепи смещения) следующим об-

разом:

$R_{\rm s}$, ком .			1,2	12	108	360
I_9 , MKA .			2400	425	55	17
$R_{\rm BX}$, Mom				0,81	5,5	20
β			83,5	67,5	51	55,5

Практически входное сопротивление равно здесь βR_9 и сопротивлением $r_{\rm K}$ не шунтируется. Увеличение самого произведения βR_9 затрудняется тем, что с уменьшением тока значение β уменьшается и, кроме того, сам ток должен быть все-таки заметно больше неуправляемого обратного тока коллектора $I_{\rm KO}$. Существуют транѕисторы, специально предназначенные для работы в микротоковом режиме, но они пока редкость и мы их касаться не будем. А стремление увеличить R_{91} без дальнейшего уменьшения тока приводит опять к

составному транзистору, работающему с малыми токами.

Для повышения входного сопротивления широко используют обратные связи. При каскадном соединении эмиттерных повторителей, например, увеличивают эффективные значения сопротивлений в цепях эмиттеров, присоединяя их не к одному из полюсов источника питания, а к эмиттерам последующих эмиттерных повторителей (рис. 44, г). Эффективное сопротивление резистора R_{61} , задающего совместно с батареей Ебі начальный ток базы первого транзистора, увеличивается во столько же раз, что и $R_{\rm al}$, а именно, в 1/1-K раз, где К — коэффициент передачи напряжения устройства в целом. На рис. 44 показано еще несколько вариантов повышения эффективного сопротивления цепей смещения при помощи обратных связей. Для простоты на всех схемах показан простой эмиттерный повторитель, хотя чаще применяются многокаскадные схемы, в которых обратные связи действуют более эффективно. Сопротивления резисторов R_{6} сами по себе могут быть выбраны достаточно большими, так как отрицательная обратная связь устранит ту повышенную нестабильность, которая имела бы место при больших R_{6} .

На рис. 45, а приведена схема двухкаскадного эмиттерного повторителя с отрицательной обратной связью, действующей с выхода усилителя на коллектор первого транзистора через конденсатор большой емкости C_3 . Входное сопротивление усилителя в полосе ча-

стот 10 гу-100 кгу равно 5,6 Мом.

На рис 45, δ показана схема четырехкаскадного усилителя с большим входным сопротивлением, достигающим на низких частотах нескольких сотен мегомов, и коэффициентом передачи около единицы. Первые два каскада — эмиттерные повторители. Два других образуют усилитель с глубокой отрицательной обратной связью. Его коэффициент усиления по напряжению, равный $(R_1+R_2)/R_2$,

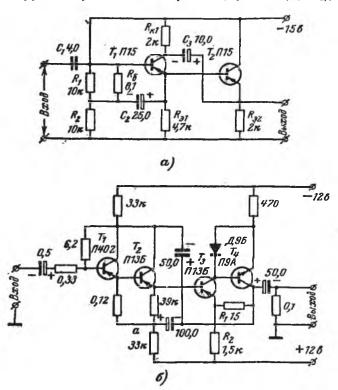


Рис. 45. Транзисторные усилители с высоким входным сопротивлением.

a — двухкаскадный эмиттерный повторитель с отрицательной обратной связью, $R_{\rm BX}$ =5,6 Mom; δ — четырехкаскадный усилитель ϵ коэффициентом передачи 1, $R_{\rm BX}$ =286 Mom.

устанавливается несколько больше единицы, с тем чтобы компенсировать ослабление напряжения на первых двух каскадах и получить

общий коэффициент усиления 1.

Измерения входного сопротивления при тех параметрах и транзисторах, что показаны на схеме, дали 286 Мом на частоте 20 гц. На частотах свыше 500—1 000 гц начинается уменьшение входного сопротивления, что объясняется влиянием емкости входной цепи. Для ее уменьшения нужно отбирать транзисторы с малой емкостью коллектора и входную цепь экранировать, присоединяя экран к точ $_{\rm Ke}$ a Тогда действие обратной связи распространится и на емкость $_{\rm Me-}$ жду входной цепью и экраном, уменьшая ее, а емкость экрана $_{\rm OT-}$ носительно корпуса окажется включенной параллельно выходу усилителя. Однако эта емкость также не должна быть значительной, $_{\rm B}$

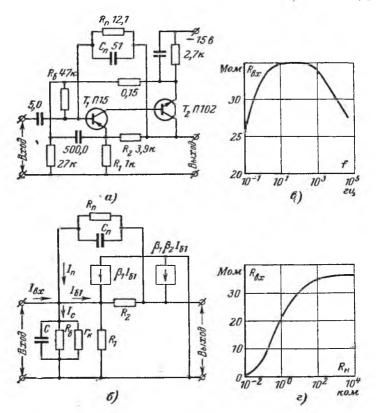


Рис. 46. Двухкаскадный усилитель с отрицательной и положительной обратными связями, $R_{\rm BX} = 35~Mom$.

a — принципиальная схема; δ — эквивалентная схема; ϵ — зависимости входного сопротивления от частоты; ϵ — зависимость входного сопротивления нагрузки.

противном случае вследствие относительно высокого выходного сопротивления усилителя полоса пропускания будет сужена. Возможно подключение экрана через отдельный эмиттерный повторитель, характеристики которого в этом случае особой роли не играют.

Монтаж усилителя должен вестись аккуратно, ибо усилитель склонен к генерации, как, впрочем, и всякая другая система с обрат-

ными связями.

Измерения коэффициента передачн на частотах 20 гц, 1 кгц, 10 кгц, 20 кгц дали одинаковый результат — единицу. Границы поло-

сы пропускания не определялись.

Ввиду того, что в большинстве практических случаев является достаточным входное сопротивление усилителя в несколько десятков мегомов, от входных эмиттерных повторителей в рассмотренной схеме можно отказаться, сохранив, однако, обратную связь для увеличения эффективного сопротивления в цепи базы. Такая схема поназана на рис. 46. В ней дополнительно введена положительная обратная связь (через цепочку $R_{\rm II}C_{\rm II}$) для устранения шунтирования входа коллекторным сопротивлением $r_{\rm K}$.

Коэффициент усиления по напряжению определяется цепью отри-

цательной обратной связи R_1 , R_2

$$K_U = \frac{R_1 + R_2}{R_1} \left(1 + \frac{1}{\beta_2} \cdot \frac{R_2}{R_1 + R_2} \right) \approx \frac{R_1 + R_2}{R_1} > 1.$$
 (101)

Чтобы найти входную проводимость, обратимся к эквивалентной схеме усилителя (рис. 46, δ). Сопротивлениями r_{δ} и r_{ϑ} транзисторов пренебрежем. Из схемы видно, что полный входной ток усилителя может быть представлен в виде трех составляющих:

$$I_{\rm EX} = I_{\rm 61} + I_{\rm c} - I_{\rm m}. \tag{102}$$

Ввиду того, что сопротивление цепи обратной связи R_Π , C_Π много больше R_1+R_2 , ответвлением тока в цепь обратной связи можно пренебречь и считать, что через резистор R_2 протекает весь ток эмиттера второго транзистора. Практически такой же ток протекает и через резистор R_1 , так как при $\beta_2\gg 1$ ток эмиттера первого транзистора много меньше тока эмиттера второго. Отсюда ток базы первого транзистора

$$I_{61} \approx \frac{U_{\text{BX}}}{\beta_1 \beta_2 R_1} . \tag{103}$$

Ток $I_{\rm c}$ отображает шунтирование входа цепью смещения и сопротивлением коллектора, параллельно которому включена сумма емкостей коллектора $C_{\rm K}$ и монтажа $C_{\rm m}$. Обозначим суммарную проводимость этой цепи, равную $1/R_6+1/r_{\rm K}+\omega(C_{\rm K}+C_{\rm m})$, через $Y_{\rm c}$. Тогда

$$I_{c} = U_{\text{BY}} Y_{c}. \tag{104}$$

Ток I_{Π} является током положительной обратной связи и равен:

$$I_{\rm n} = (U_{\rm BMX} - U_{\rm EX}) Y_{\rm n} = U_{\rm EX} \frac{R_2}{R_1} Y_{\rm n},$$
 (105)

где $Y_{\Pi} = \frac{1}{R_{\pi}} + \omega C_{\Pi}$ — проводимость цепи обратной связи.

Полная входная проводимость

$$Y = \frac{I_{BX}}{U_{B}} = \frac{I_{61} + I_{C} - I_{II}}{U_{BX}} = \frac{1}{\beta_{1}\beta_{2}R_{1}} + Y_{C} - Y_{II} \frac{R_{2}}{R_{1}}.$$
 (106)

Регулируя глубину обратной связи изменением сопротивления R_{Π} и емкости C_{Π} , входную проводимость можно сделать сколь угодно малой и даже равной нулю. Однако должен быть оставлен запас

устойчивости, учитывающий наибольшие возможные отклонения коэффициентов усиления β_1 и β_2 . Иначе с ростом температуры, например, входная проводимость станет отрицательной и усилитель превратится в автогенератор. Вполне достаточно, чтобы обратная связь компенсировала проводимость $Y_{\rm c}$. Тогда

$$R_{\rm BX} = \frac{1}{Y} = \beta_1 \beta_2 R_1. \tag{107}$$

При налаживании усилителя вначале на низкой частоте устанавливают нужное $R_{\rm BX}$ при помощи резистора $R_{\rm H}$, а затем на средних частотах устанавливают такое же значение $R_{\rm BX}$ регулировкой $C_{\rm II}$, т. е. раздельно уравновешивают активную и емкостную составляющие проводимости $Y_{\rm C}$. Само сопротивление $R_{\rm 6}$, через которое задается начальный ток базы первого транзистора, относительно невелико. В сочетании с отрицательной обратной связью, охватывающей весь усилитель, это обеспечивает хорошую его стабильность.

На рис. 46, в и г показаны экспериментально снятые характеристики усилителя, которые он имел при указанных на схеме параметрах. Его входное еопротивление было равно 35 Мом в полосе частот

1 гц — 10 кгц.

У рассмотренных нами схем имеются многочисленные разновидности, в которых используются те же способы повышения входного сопротивления.

Усилители с полевыми транзисторами

Широко известные биполярные *p-n-p* и *n-p-n* транзисторы имеют небольшие входные сопротивления и управляются, по сути дела, током. Транзисторные усилители напряжения с высоким входным сопротивлением могут быть получены лишь в результате специальных мер и схемных решений, которые рассмотрены в предыдущем параграфе. Входное сопротивление 1 000 — 2 000 Мом представляет дляних, по-видимому, предел. К тому же в этом случае стабильность и полоса пропускания являются предметом особой заботы.

Относительно недавно получил известность новый класс полупроводниковых приборов — полевые (униполярные, канальные) транзисторы, которые по многим свойствам сродни лампам; в частности, они управляются напряжением. Входное сопротивление постоянному току обычного полевого транзистора составляет 10⁷—10⁸ ом, а по-

левого транзистора с изолированным затвором — до 10¹⁵ ом.

На рис. 47, а схематически изображено устройство простейшего полевого транзистора, получившего название унитрон. Он представляет собой брусок креминия n-типа, на который с обсих сторон мето-дом диффузии изнессны области p-типа. Обе p-области, соединенные между собой, составляют единый электрод, называемый затвором. Еще двумя электродами являются омические контакты на концах бруска. Тот из них, от которого движутся носители заряда под воздействием приложенного к бруску напряжения, называется источником, а тот, к которому ови движутся, — стоком. При бруске n-типа истоком будет конец, соединенный с отрицательным полюсом батареи питания, а стоком — с положительным.

Когда на затвор подается отрицательное напряжение, то в частях бруска, непосредственно примыкающих к затвору, возникают

сильные электрические поля, которые выталкивают из них электроны и образуют объединенные электронами области (это p-n пере-

ходы, смещенные в обратном направлении).

Сечение бруска между этими областями (переходами) называют каналом. Изменение напряжения на затворе приводит к изменению ширины канала, т. е. к изменению проводимости бруска, а тем самым к изменению тока через него.

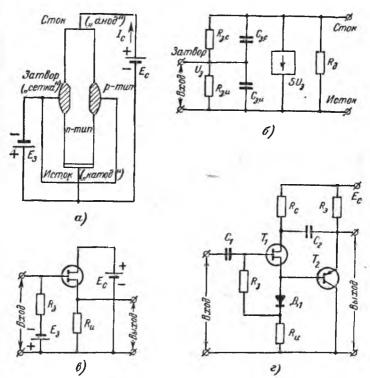


Рис. 47. Полевые транзисторы

a — схематическое устройство унитрона; δ — его уквивалентная схема; s — каскад на унатроне, аналогичный катодному повторитель» («истоковый» повторитель); s — схема компеисации емкостн затвор-сток с помощью эмиттерного повторителя.

Название «полевой транзистор» указывает на то, что ток в этом приборе управляется электрическим полем затвора. Встречаются также названия «канальный» транзистор, униполярный транзистор. Последнее название основано на том обстоятельстве, что в данном приборе ток образуется носителями только одного знака (в рассмотренном унитроне — электронами), в то время как в обычных транзисторах важную роль играют оба типа носителей — как электроны, так и дырки.

Другие полевые транзисторы (текнетрон, алкатрон и т. д.) отличаются от унитрона лишь более сложной конструкцией или технологией изготовления. Принцип работы у всех приборов полевой группы один и тот же.

Выходные характеристики полевого транзистора, представляющие собой зависимость тока стока от напряжения стока при различных смещениях затвора, аналогичны анодным характеристикам

пентода.

Если при некотором фиксированном смещении затвора увеличивать от нуля напряжение стока, то вначале наблюдается пропорциональный ему рост тока. Вызываемое током падение напряжения вдоль канала приводит к росту ширины *p-n* переходов (к увеличению смещения затвора в обратном направлении). Наконец, при некотором напряжении, именуемом напряжением отсечки или насыщения, переходы перекрывают канал. Его сопротивление возрастает настолько, что в дальнейшем ток остается неизменным и не зависит от напряжения стока вплоть до его пробоя. Этот ток называют током насыщения.

Чем больше по абсолютной величине было задано отрицательное смещение на затвор, тем раньше наступит насыщение и тем меньше

ток насыщения.

Как и в лампах, усилительные свойства канального транзистора характеризуются крутизной (прямой передаточной проводимостью), которая определяется как отношение приращения тока стока к вызвавшему его приращению напряжения на затворе при постоянном напряжении стока:

$$S = \left(\frac{\Delta I_{c}}{\Delta U_{3}}\right)_{U_{c} = \text{const}}.$$
 (108)

Крутизна современных полевых транзисторов достигает 8—10 ма/в. Входное сопротивление полевого транзистора равно сопротивлению смещенного в обратном направлении диода. Существуют модификации полевых транзисторов, в которых между затвором и остальной частью прибора имеется тонкий слой окисла, например SiO₂, который и повышает входное сопротивление такого прибора примерно до 10^{16} ом.

Выходное сопротивление полевых транзисторов также довольно

велико — до нескольких сотен килоом.

Благодаря отсутствию рекомбинационных шумов полевые транзисторы шумят меньше обычных. Осуществить температурную стабилизацию в них также проще, так как температурные изменения база — эмиттер отсутствуют. Температурный коэффициент крутизны и тока насыщения полевых транзисторов отрицательны, поэтому при совместном их использовании с обычными температурные эффекты в значительной мере компенсируются.

Упрощенная эквивалентная схема полевого транзистора изображена на рис 47, δ . Она включает в себя генератор тока SU_3 с параллельно включенным внутренним сопротивлениям $R_{\rm L}$, представляющим собой дифференциальное сопротивление канала. Резистор $R_{\rm 3.c}$ и конденсатор $C_{\rm 3.c}$ отображают сопротивление и емкость перехода затвора в цепи стока, $R_{\rm 3.h}$ и $C_{\rm 3.h}$ — то же в цепи истока. На этой схеме не показаны сопротивления стока и истока, поскольку на них схемным путем трудно воздействовать.

При конструировании каскада с высоким входным сопротивлением входная емкость должна быть сведена до минимальной. Для

уменьшения емкости затвор — исток C_{s*m} применяют каскад с общим стоком, аналогичный катодному повторителю. Его коэффициент передачи по напряжению

$$K_U = \frac{SR_{\text{H}}}{1 + SR_{\text{H}}} \tag{109}$$

и динамическая емкость затвор — исток

$$C_{3,H,A} = C_{3,H} (1 - K_U).$$
 (110)

Уменьшение емкости затвор — исток может быть осуществлено теми же методами, что в сложных катодных повторителях. Одна из

возможных схем показана на рис. 47, г.

Полевые транзисторы используют в сочетании с обычными. Это позволяет получить высокое входное и одновременно низкое выходное сопротивление, малые шумы и хорошую температурную стабильность.

Глава шестая

ИЗМЕРЕНИЕ НАПРЯЖЕНИЙ КОМПЕНСАЦИОННЫМИ МЕТОДАМИ

Схемы с ручным уравновешиванием

Сущность компенсационного метода измерений заключается в том, что измеряемая э.д.с. уравновешивается падением напряжения, которое создается на калиброванном потенциометре известным током от постороннего источника Момент равновесия определяется по отсутствию тока в указателе, обычно гальванометре. Очевидно, что при этом измеряемая э.д. с. равна компенсирующему напряжению, величина которого отсчитывается по положению движка или ручки потенциометра.

Достоинствами компенсационного метода являются его высокая точность и то обстоятельство, что в момент равновесия от источника э.д. с. практически не потребляется мощность: вся мощность, расходуемая компенсатором, поставляется вспомогательной цепью.

Принципиальная схема компенсатора показана на рис. 48. Перед началом измерений устанавливают определенную величину рабочего тока $I_{\rm p}$. Для в толо переключатель Π ставят в положение «Стандартизация» и при помощи установочного реостата $R_{\rm ycr}$ величину

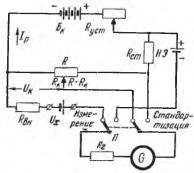


Рис. 48. Принципиальная схема компенсатора.

тока устанавливают такой, чтобы падение напряжения на образцовом резисторе $R_{\rm cr}$ было равно э. д с. нормального элемента $H\mathfrak{I}$, что определяется по отсутствию отклонения указателя гальванометра от нулевой отметки.

Затем переключатель переводят в положение «Измерение» и при помощи потенциометра R производят уравновешивание измерительной цепи. В положении равновесия, когда указатель гальванометра находится на нулевой отметке, имеют место соотношения:

$$U_x = I_D R_K; I_D R_{CT} = U_{U,9},$$
 (111)

из которых получают выражение для измеряемого напряжения:

$$U_{x} = U_{\text{H.a}} \frac{R_{\text{K}}}{R_{\text{CT}}} . \tag{112}$$

Производя отсчет положения движка потенциометра R, вновь переключают гальванометр в цепь контроля рабочего тока и убеждаются, что рабочий ток в течение процесса измерения был неизменным.

В связи с тем, что указатели равновесия имеют копечную чувствительность, момент равновесия невозможно установить абсолютно точно. Поэтому в действительности в определяемый нами момент равновесия через источник измеряемой э. д. с. и гальванометр протекает ток I_0 , соответствующий отклонению указателя гальванометра на α_0 от кулевого положения. Для стрелочного прибора величину α_0 можно принять равной одной пятой деления шкалы. Таким образом, входное сопротивление компенсатора в момент компенсации

$$R_{\rm BX0} = \frac{U_{\rm x}}{I_0} - R_{\rm BH} = \frac{U_{\rm x}}{\alpha_0} S_I - R_{\rm BH}, \tag{113}$$

где $R_{\rm BH}$ — внутреннее сопротивление источника, ом; $S_{\rm I}$ — чувствительность гальванометра, делений на 1 a.

 S_1 — чувствительность гальванометра, делении на 1 α . Протекание в измерительной цепи тока I_0 приводит к возникно-

$$U_{r} - U_{\kappa} = I_{0} (R_{RK} + R_{r} + R_{\kappa})$$

и относительная погрешность измерения

вению погрешности измерения. В момент отсчета

$$\delta = \frac{U_x - U_K}{U_x} = \frac{I_0 (R_{BH} + R_\Gamma + R_K)}{U_x} = \frac{\alpha_0}{\delta_I} \frac{R_{BH} + R_\Gamma + R_K}{U_x}.$$
 (114)

К этой погрешности метода измерения добавляется еще погрешность отсчета напряжения $U_{\rm K}$. Когда, например, в схеме отсутствует нормальный элемент и величина $U_{\rm K}$ измеряется вольтметром, дополнительная погрешность определяется классом точности последнего.

Из выражения для входного сопротивления и погрешности измерения следует, что чувствительность указателя положения равновесия должна быть возможно большей. Для повышения чувствительности указателя часто применяют усилители малых токов с непосредственным усилением или с преобразованием сигнала в переменный ток. Очень удобны для этих целей усилители на транзисторах.

При измерениях напряжения компенсационным методом в любительских условиях основная схема компенсатора может подвергаться различным упрощениям. Но формулы (113) и (114) остаются справедливыми и с их помощью могут быть определены возможно-

сти любого компенсатора.

На рис. 49, a показана простейшая схема измерения напряжений компенсационным методом, в которой используется обычный непроволочный потенциометр R_1 . Указателем равновесия служит стрелочный микроамперметр, а значение компенсирующего напряжения отсчитывается по вольтметру. Резистор R_2 ограничивает потребление тока от источника измеряемого напряжения в моменты, далекие от состояния равновесия, и предохраняет микроамперметр от чрезмерных перегрузок.

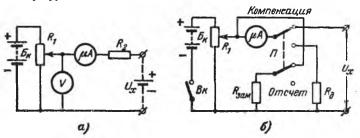


Рис. 49. Простейшие компенсационные схемы. a-c двумя приборами; b-c одним прибором.

В подобной схеме можно обойтись только микроамперметром (рис. 49, δ). Когда переключатель находится в положений «Компенсация», микроамперметр служит указателем равновесия, а при переводе переключателя в положение «Отсчет» микроамперметр вместе с добавочным сопротивлением $R_{\rm A}$ образует вольтметр, по которому определяется значение компенсирующего напряжения.

Чтобы сопротивление потенциометра R_1 между его движком и корпусом не зависело от того, какую в данный момент роль выполняет микроамперметр, к движку потенциометра при разрыве цепи вольтметра подключается эквивалентное последнему сопротивление

R_{зам}. Сопротивления определяются по формулам

$$R_{\rm A} = \frac{E_{\rm 6}}{I_{\rm H}} - R_{\rm M}; \quad R_{\rm 39M} = \frac{E_{\rm 6}}{I_{\rm H}} , \qquad (115)$$

где $I_{\rm H}$ — ток полного отклонения микроамперметра, a; $R_{\rm M}$ — внутреннее сопротивление микроамперметра, oм; $E_{\rm G}$ — э. д. с. батареи $E_{\rm K}$.

Если сопротивление потенциометра много меньше $R_{\mathtt{SIM}}$ (в сот-

ни раз), то последнее можно опустить.

Переход от измерения методом непосредственной оценки к компенсационному по простейшей схеме уменьшает потребление энергии в измерительной цепи в 50—100 раз.

Обсудим некоторые проблемы, возникающие при конструпрова-

нии точного компенсатора.

Падеиие напряжения на калиброванном потенциометре (см. рис. 48) равно верхнему пределу измерения компенсатора и, следовательно, может быть достаточно велико. В то же время необходимо устанавливать и отсчитывать положение равновесия как можно более точно. Для этого нужно, чтобы изменение компенсирующего напряжения, приходящееся на единицу угла поворота потенциометра (или на единицу линейного перемещения), было малым. Поэтому потенциометр должен иметь большую длину намотки.

Само по себе это условие не проблема — существуют многооборотные потенциометры. Однако современная технология не позволяет пока получить линейность многооборотных потенциометров лучше 0,5%. Поэтому вместо них применяют многоступенчатые делители напряжения, с которыми можно получить намного меньшие погреш-

ности.

Схема делителя должна быть такова, чтобы количество резисторов в нем было минимальным и в то же время чтобы наименьшая ступень изменения напряжения была меньше заданной погрешности.

Еще одно требование к делителю заключается в постояистве его входного (со стороны источника питания) сопротивления независимо от положения переключателей. Изменения нагрузки на источник в процессе уравновешивания могли бы вызвать изменения его напряжения, а тем самым привести к дополнительной погрешности.

Два применяемых в компенсаторах делителя показаны на

рис. 50.

У делителя, показанного на рис. 50, а (его называют иногда делителем Вольфа — Поггендорфа), последняя, третья, декада представляет собой обычный делитель и состоит из десяти резисторов. В каждой из остальных декад имеются две цепи деления, содержащие по девять резисторов одииакового сопротивления, причем левая цепь разомкнута на нижней стороне, а правая на верхней. К отводам цепей подключается последующая декада, общее сопротивление которой равно сопротивлению одного резистора цепи деления предшествующей декады. Переключателя перемещаются одновременно по отводам обеих цепей. Таким образом, делитель каждой декады (кроме последней) состоит из трех резисторов левой цепи, которые находятся выше движка переключателя, затем последующей декады и резисторов правой цепи, находящихся ниже переключателя.

При том положении переключателя, которое изображено на рисунке, делитель второй декады включает в себя три верхних резистора левой цепи, третью декаду и шесть нижних резисторов правой цепи. В данном случае третья декада представляет собой целиком седьмой резистор делителя второй декады. При помощи переключателя Π_2 (с двумя секциями a и b третья декада может занять любое место в делителе второй декады. Получающийся таким образом делитель второй декады в свою очередь входит в качестве одного из резисторов в делитель первой декады. Сопротивления резисторов цепей первой декады (и в 100 раз — третьей). Так может быть набрано в принципе любое число декад.

У показанного на рисунке трехдекадного делителя третья декада набрана из 100-омных резисторов, вторая— из резисторов в 1 ком и первая— в 10 ком, так что делитель представляет для ис-

точника сопротивление в 100 ком.

О роли и сопротивлении резистора $R_{\rm A}$ будет сказано позже, при рассмотрении источников питания.

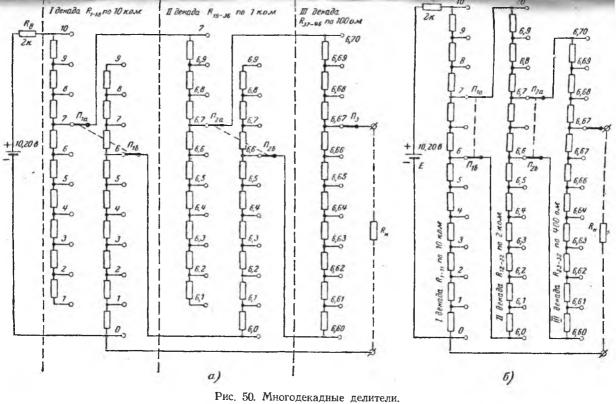


Рис. ЭО. МНОГОДЕКАДНЫЕ ДЕЛИТЕЛИ. а — Вольфа — Поггендорфа; б — Кельвииа — Варлея.

Предположим, что напряжение на делителе 10 в, тогда первая декада делителя позволяет менять выходное напряжение ступенями в 1 в, вторая — в 0,1 в, третья — в 0,01 в. При положении переключателей, как на рисунке, на делителе второй декады имеется напряжение 1 в, причем потенциал нижнего конца делителя 6,0 в, а верхиего 7,0 в. На делителе третьей декады падение иапряжения составляет 0,1 в, причем потенциал нижнего конца делителя 6,60 в, верхнего 6,70 в. Падение напряжения на делителе третьей декады 0,1 в, и на каждом его резисторе падает 10 мв. Общее выходное на-

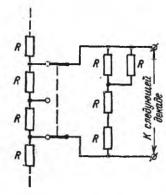


Рис. 51. Схема включення дополнительной цепи, позволяющей собрать делитель из резисторов одного номииала.

пряжение составляет 6,67 в. Таким образом, с описываемого устройства можно получить любое напряжение в пределах 0-10 в ступеиями через 10 мв, т.е. всего 1 000 значений при помощи 46 резисторов в делителе. Переключателем Π_3 устанавливаются десятки милливольт, Π_2 — десятые вольта и Π_1 — единицы вольт.

В делителе, показанном на рисунке 50, б и называемом иногда делителем Кельвина — Варлея, на последнюю декаду приходится, как обычно, 10 резисторов, а на остальные — по 11. Каждая декада включена параллельно двум резисторам предыдущей декады и составлена из резисторов, сопротивление которых в 5 раз меньше сопротивлений резисторов предыдушей декады. Поэтому падение иапряжения на каждой декаде составляет одну десятую долю падения напряжения на предыдущей декаде. У изображенного на рисунке лелителя первая декада составлена из

резисторов в $10 \ ком$, вторая — $2 \ ком$, третья — $400 \ ом$, так что сопротивление делителя, как и предыдущего, $100 \ ком$. При показанном положении переключателей и напряжении на входе делителя $10 \ в$

с делителя снимается напряжение 7,67 в.

Некоторым недостатком указанных делителей является различие в сопротивлениях резисторов разных декад. Найти или изготовить точные резисторы нескольких номиналов труднее, чем одного. Кроме того, при значительном числе декад — пяти, например, отношение наибольшего к наименьшему сопротивлению становится велико, а резисторы слишком малого (или слишком большого) сопротивления отличаются меньшей стабильностью.

Рисунок 51 поясняет способ, позволяющий собирать делители резисторов одного номинала. На этом рисунке изображена часть

делителя второго из рассмотренных типов.

Задача сводится к тому, чтобы сопротивления декад были равны сумме сопротивлений двух резисторов, из которых собран делитель. Для этого параллельно каждой декаде (кроме первой, самой старшей) подключается цепочка вспомогательных резисторов того же номинала R, что и остальные резисторы делителя, с суммарным сопротивлением 2,5R. Для этого два резистора включают последовательно с двумя другими, включенными между собой параллельно.

Так как сопротивление собственно декады равно $10\ R$, то вместе с вспомогательной цепочкой сопротивление будет $2.5\ R \cdot 10R/(2.5R + 10R) = 2R$, т. е. как раз столько, сколько у двух резисторов, к которым декада присоединена. Вместе они составляют опять сопротивление R, и на декаде упадет десятая часть напряжения более старшей лекалы

При сборке делителя первого типа из одинаковых резисторов параллельно каждой декаде включают сопротивление 10/9R, тогда их совместное сопротивление будет равно требуемому значению R. Если R=10 ком, то вспомогательная цепочка должна состоять из 9 параллельно соединенных резисторов того же номинала R=10 ком.

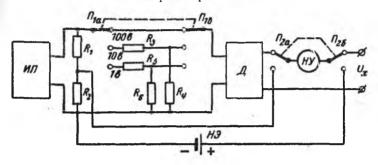


Рис. 52. Трехпредельный компенсационный вольтметр.

 $\mathit{И\Pi}$ — источник питания; \mathcal{H} — многодекадный делитель; $\mathit{H3}$ — нормальный элемент; HV — нулевой указатель.

Применение рассмотренных делителей позволяет получать отсчет в цифровой форме (в десятичной системе счисления) по положению ручек переключателей, т. е. это будет цифровой компенса-

ционный вольтметр.

Относительная погрешность отсчета из-за дискретности возрастает при уменьшении измеряемого напряжения. Чтобы погрешность отсчета была одинаковой при измерении и больших, и малых напряжений без увеличения числа декад, цифровые компенсационные вольтметры также делают многопредельными. Переключение пределов измерения производится путем изменения напряжения на делителе при помощи вспомогательных прецизионных делителей напряжения (рис. 52). Учитывая, что входное сопротивление основных делителей неизменно, эти делители в принципе сами могли бы играть роль нижнего плеча вспомогательного делителя, т. е. последовательно с делителем достаточно было бы включить добавочный резистор ($R_{\rm A}$ на рис. 50) подходящего сопротивления. Но ток через делитель будет при этом разным на различных пределах, и последствия этого нужно взвешивать при выборе схемы.

При смешанном уравновешивании, когда младшая декада заменяется потенциометром, общее число декад может быть сокра-

щено при сохранении точности отсчета.

Нормальные элементы в эксплуатации неудобны. В частности, их ни в коем случае нельзя переворачивать, трясти или взбалтывать, что почти исключает их применение в переносных приборах. Однако

они могут быть с успехом заменены окисно-ртутными элементами

или стабилитренами.

Окисно-ртутные щелочные герметизированные элементы портативны, могут работать в любом положении, не боясь тряски, и гораздо дешевле нормальных элементов. Сохранность их несколько ниже, чем нормальных, и составляет 1—2 года. Электродвижущая сила окисно-ртутных элементов находится в пределах 1,351—1,352 в, ее изменение со временем составляет менее 0,1% за год. Температурный коэффициент э. д. с. при 20°С равен 0,003% на 1°С— ниже, чем у нормальных насыщенных элементов (0,04% на

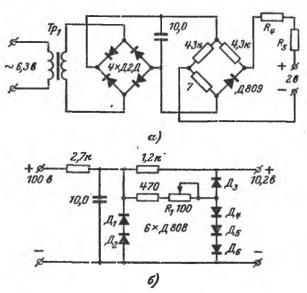


Рис. 53. Стабилизаторы, заменяющие нормальные элементы.

a — источник питания измерительной схемы электронного автоматического потенциометра ЭПВ2; δ — двухкаскадный параметрический стабилизатор напряжения.

 1° C). Внутреннее сопротивление элементов — единицы или десятки ом. Допустимая плотность разрядного тока — до 20 мка на 1 см²

площади электродов элемента.

Сравнимы с нормальными элементами по стабильности и температурному коэффициенту или даже превосходят их стабилизаторы напряжения на кремниевых стабилитронах. Кроме того, они имеют ряд существенных преимуществ перед ними — практически неограниченный срок службы, дешевизну, способность работать в любом положении, в условиях тряски и т. д. и поэтому завоевывают все большее признание.

Высокие качества стабилизаторов позволяют вообще отказаться от цепей стандартизации. Например, до недавних пор питание

измерительных цепей автоматических электронных потенциометров ЭПП-09, ЭПВ-2 и т. д. производилось от батарей, а для периодической установки рабочего тока были предусмотрены цепи стандартизации с нормальными элементами III класса. Теперь измерительная цепь питается от стабилизатора на кремниевом стабилитроне (рис. 53, а), а цепь стандартизации исключена. Приборы сохранили свой класс точности 0 5

На рис. 53, б показана схема двухкаскадного параметрического стабилизатора на стабилитронах, который по своим качественным показателям (исключая температурный коэффициент) превосходит нормальный элемент III класса и может быть использован в качестве источника питания компенсационного вольтметра. Изготовленый стабилизатор имеет выходное напряжение 10,2 в. Оно не регулируется и определяется в основном напряжением пробоя стабилитрона Дз, в данном случае Д808. При подключении стабилизатора к делителям (см. рис. 50) излишек напряжения в 0,2 в гасится на

резисторе $R_{\rm H} = 2$ ком.

Температурная компенсация осуществляется диодами \mathcal{L}_{4-6} , включенными в прямом иаправлении. Величину и знак температурного коэффициента стабилизатора подбирают, задавая ток через компенсирующие диоды при помощи резистора переменного сопротивления \mathcal{R}_1 (выходное напряжение при этом несколько меняется). Изготовленный стабилизатор имел температурный коэффициент $1.82 \cdot 10^{-3}$ % на 1° С. Заметим, что в принципе его можно уменьшить на порядок, если сделать отводы от каждого компенсирующего диода и подбирать оптимальный ток через каждый диод отдельно, а для создания одинаковых температурных условий поместить диоды в медную коробку с наружной термоизоляцией.

Коэффициент стабилизации его — около 4 000.

По аналогичной схеме можно построить стабилизаторы и на более высокие напряжения, используя другие типы стабилитронов

или включая стабилитроны последовательно.

Следовательно, возможная схема достаточно точного и одновременно простого компенсатора выглядит так: высокостабильный источник напряжения, трех- четырехдекадный делитель (или двухтрехдекадиый с потенциометром взамен последней декады), нулевой указатель. Три декады означают погрешность отсчета в 0,1%, четыре — в 0,01% от верхнего предела измерения. Сколько брать кон-

кретно — это уж зависит от стабильности источника.

Нужный порог чувствительности нулевого указателя приблизительно можно найти так. Если нижний предел измерения $U_{\rm H}$ и число декад n, то минимальное изменение компенсирующего напряжения равно $U_{\rm H}\cdot 10^{-n}$ в. Указатель должен отмечать ток, который примерно равен этому напряжению, делениому на максимально возможное входное сопротивление испытуемых цепей. $\alpha_{\rm O}/S_I$ есть порог чувствительности нулевого указателя. Заменим чувствительность более привычной постоянной прибора (ценой деления шкалы) по току $C_{\rm I}=1/S_{\rm I}$ а/дел, тогда

$$C_I = \frac{U_{\rm H} \cdot 10^{-n}}{\alpha_0 R_{\rm BH,MAKC}}.$$
 (116)

То же самое можно получить из общей формулы (114) для относительной погрешности измерения (т. е. относительной погрещности измерения $U_{\rm H}$), равной 10^{-n} . Поэтому $U_x = U_{\rm H}$,

 $\delta=10^{-n}$, $R_{\rm BH}=R_{\rm BH,Makc}$ (для случая наибольшей погрешности). Подставляя это в формулу (114) и считая $R_{\rm r}+R_{\rm K}\ll R_{\rm BH,Makc}$ полу-

чим предыдущее выражение.

Чувствительность всякого нулевого указателя конечна, поэтому компеисатор сохраняет свою точность до тех пор, пока внешнее сопротивление (т. е. сопротивление испытуемой цепи) не превысит определенной величины. Для каждого компенсатора это сопротивление должно быть известно. Если, например, $U_{\rm H}\!=\!100$ в, $n\!=\!3$ (погрешность отсчета 0,1%), а нулевым указателем является транзисторный усилитель (см. рис. 40 и табл. 3) с порогом чувствительности по току $2,5\cdot10^{-10}$ а, то установленная погрешность отсчета не будет превышена, пока внешнее сопротивление меньше

$$100 \cdot 10^{-3} / 2.5 \cdot 10^{-10} = 40 \cdot 10^7$$
 om.

В нулевом указателе обязательно предусматривают регулировку чувствительности, чтобы избежать опасных для него перегрузок.

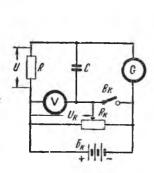


Рис. 54. Компенсационная схема интегрирующего типа.

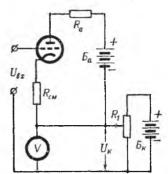


Рис. 55. Ламповая компенсационная схема с ручным уравновешиванием.

Автоматически это выполняется в указателях с логарифмиче-

ской характеристикой.

Возникновение погрешностей в компенсаторе связано с протеканием через измерительную цепь в момент отсчета некоторого тока I_0 . При измерениях по компенсационной схеме интегрирующего типа (рис. 54) это обстоятельство исключается. Отличие процесса измерения по этой схеме состоит лишь в способе определения положения равновесия.

Процесс измерения протекает следующим образом. При разом-кнутом выключателе $B\kappa$ вводят некоторое компенсирующее напряжение $U_{\rm K}$ и замечают его величину по вольтметру V. Спустя время $t \approx 5RC$, конденсатор C окажется заряженным до напряжения $U_{\rm c}$, равного разности измеряемого и компенсирующего напряжений: $U_{\rm c} = U - U_{\rm K}$. Заряд конденсатора будет $Q = C(U - U_{\rm K})$. Знак заряда зависит от того, какое из напряжений больше.

При замыкании выключателя конденсатор разрядится через баллистический гальванометр G. Отклонение светового пятна галь-

ванометра составит $a_m = S_O$ $C(U-U_u)$ делений, где S_O — баллистигальванометра. Желательно первоначувствительность чальную величину U_{κ} подобрать такой, чтобы указатель отклонялся

примерно на всю шкалу.

Затем выключатель снова размыкают и устанавливают новое значение $U_{\mathbf{k}}$, при котором отклонение указателя гальванометра уменьшится. Так проделывают несколько раз, доводя величину U_{κ} до такого значения, при котором указатель будет отклоняться примерно на всю шкалу, ио в другую, чем первоначально, сторону.

По полученным результатам строят зависимость ат от U_{K} . Она представляет собой прямую линию. Точка пересечения этой прямой с горизонтальной осью ($\alpha_m = 0$) соответствует равенству напряжений U и U_{κ} .

Подобный способ измерения пригоден для измерения малых напряжений, что при длительном процессе накопления заряда на емкости устраняются флуктуации напряжения и их влияние на результат измерения. Он позволяет обнаружить мошность до 10—15—10—16 *вт*. При внутрен-

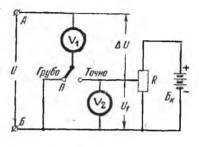


Рис. 56. Дифференциальная схема измерения напряжения.

нем сопротивлении источника измеряемого напряжения порядка 108 ом это соответствует напряжению 0.1 мв. если принять емкость

конденсатора С равной 2 мф.

С увеличением емкости конденсатора чувствительность схемы повышается, но одновременно с этим увеличивается и время, необходимое для полного заряда конденсатора. Практические соображения ограничивают это время 2—3 мин.

Для повышения входного сопротивления компенсационных схем в них используют электронные лампы Упрощенная схема лампового компенсационного вольтметра изображена на рис. 55. Обычно лампа работает в режиме «плавающей» сетки, что обеспечивается

выбором соответствующего сопротивления резистора $R_{\rm CM}$.

Входной сигнал изменяет анодный ток лампы. Перемещая движок потенциометра R_1 , значение анодного тока возвращают к первоначальному, что фиксируется либо по микроамперметру, включенному в анодную цепь лампы, либо по вольтметру, измеряющему иапряжение на анодном сопротивлении $R_{\rm a}$. При этом напряжение $U_{\rm K}$ на потенциометре R₁ равно измеряемому напряжению и его величина прочитывается на шкале вольтметра V.

Иногда возникает необходимость снять с большой точностью характеристику какого-либо устройства с высоким внутренним сопротивлением. В этих случаях, если нет специальных измерительных приборов, удобен дифференциальный метод измерения, когда измеряемое напряжение компенсируется лишь частично. Схема измерения изображена на рис. 56. $\hat{\mathbf{B}}$ нее входят: ламповый вольтметр V_1 обычной точности, низкоомный лабораторный вольтметр V_2 класса 0,2 или 0,5 и регулируемый источник постоянного напряжения — батарея или стабилизированный выпрямитель. Входное сопротивление устройства по этой схеме оказывается в десятки раз выше, чем входное сопротивление лампового вольтметра, а погрешность измерения всего лишь в 2 раза больше, чем у используемого лабораторного

вольтметра.

Измеряемое напряжение U подключают к зажимам A и B и переключатель Π устанавливают в положение «Грубо». При этом ламповый вольтметр покажет полную величину U. Это показание округляют в большую или меньшую сторону до значения U_1 , которое удобно было бы отсчитывать по шкале лабораторного вольтметра, и устанавливают это напряжение на потенциометре R. Затем переключатель переводят в положение «Точно», а вольтметр переключают на наименьший предел измерения.

Теперь к ламповому вольтметру приложено лишь небольшое напряжение ΔU , являющееся разностью между значением $U_{\rm I}$ и изме-

ряемым иапряжением U, так что $U = U_1 + \Delta U$.

Абсолютная погрешность измерения будет равна сумме абсолютных погрешностей обоих вольтметров. Абсолютная погрешность измерения лабораторным вольтметром определяется в соответствии с его классом точности. Погрешность лампового вольтметра по абсолютной величине оказывается очень небольшой, поскольку измерения проводятся на его самой чувствительной шкале. Поэтому полная относительная погрешность измерения напряжения U оказывается того же порядка, что и при измерении одним лабораторным вольтметром.

Для входного сопротивления устройства, обозначив входное со-

противление лампового вольтметра через $R_{\bf c}$, можем написать:

$$R_{\rm BX} = \frac{U}{I} = \frac{UR_{\rm c}}{\Delta U} = \frac{U_1 + \Delta U}{\Delta U} R_{\rm c} = \left(1 + \frac{U_1}{\Delta U}\right) R_{\rm c}. \tag{117}$$

Поясним сказанное примером. Пусть ламповый вольтметр имеет $R_{\rm C}=11$ Мом и максимальную погрешность $\pm 5\%$ верхнего значения шкалы, а в качестве лабораторного вольтметра используется прибор класса 0,2, например, M106/1. В положении «Грубо» ламповый вольтметр на шкале 30 в показывает 20,2 в. Это напряжение показывается с погрешностью $\pm 30 \cdot 5/100 = 1,5$ в. С помощью потенциометра R устанавливаем в соответствии с 30-вольговой шкалой лабораторного вольтметра округленное значение $U_1=20$ в. С переводом переключателя в положение «Точно» переключим ламповый вольтметр на шкалу 1 в. Пусть он покажет на этой шкале 0,7 в. Таким образом, измеряемое напряжение U=20+0.7=20.7 в. При этом абсолютная погрешность показаний лабораторного вольтметра $\pm 30 \cdot 0.2/100=0.06$ в. Абсолютная погрешность показаний лампового вольтметра $\pm 1 \cdot 5/100=0.05$ в; полная абсолютная погрешность измерения 0.06+0.05=0.11 в (вместо 1.5 в), относительная погрешность измерения $0.11 \cdot 100/20.7=0.54\%$.

Входное сопротивление устройства

$$R_{\rm BX} = \left(1 + \frac{20}{0.7}\right) 11 \approx 326 \; Mom.$$

При снятии характеристик величину U_1 обычно не нужно менять для целой серии точек и остается лишь отсчитывать значения по ламповому вольтметру.

Схемы с автоматическим уравновешиванием

Измерение меняющихся напряжений при помощи компенсационных схем весьма затруднительно. Кроме того, процесс измерений требует значительной затраты времени, входное сопротивление схем в неуравновешенном положении сравнительно невелико, отсчет напряжений довольно неудобен.

Эти недостатки устраняются автоматизацией процесса уравновешивания Схемы, в которых уравновешивание осуществляется автоматически, называются автокомпенсационными, а устройства, вы-

полненные по таким схемам, — автокомпенсаторами.

Автоматизация может быть осуществлена различными способами. В простейшем случае разность $U - U_{\rm K}$ между измеряемым и компенсирующим напряжениями подают через усилитель на электродвигатель. С ротором электродвигателя кинематически соединяют движок потенциометра, с которого снимается компенсирующее напряжение. В зависимости от знака разности $U-U_{\rm K}$ двигатель перемещает движок потенцио-

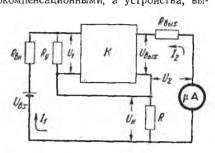


Рис. 57. Схема автокомпенсатора с обратной связью по току.

метра в нужную сторону до тех пор, пока компенсирующее напряжение сравняется с измеряемым. Одновременно двигатель перемещает и указатель.

Компенсаторы такого типа сложны, о самостоятельном их изготовлении не может быть и речи. Эти компенсаторы имеют еще и тот недостаток, что из-за инерции механически движущихся частей их частотная характеристика ограничена несколькими герцами.

Для измерения в высокоомных цепях наиболее приемлемы автокомпенсационные схемы, базирующиеся на основе схемы усилителя, охваченного 100%-ной отрицательной обратной связью. Прешмущественно распространены схемы с обратной связью по току.

Принципиальная схема автокомпенсатора с обратной связью по току показана на рис. 57. Измеряемая э. д. с. уравновешивается падением напряжения на резисторе R, которое создается выходным током I_2 усилителя с коэффициентом усиления K. На входе усилителя действует напряжение U_1 , равное разности измеряемого и компенсирующего напряжений.

Если коэффициент усиления достаточно велик, в измерительной цепи устанавливается состояние, очень близкое к полной компен-

сации, и $U_{\rm K} \approx U_{\rm EX}$. В свою очередь $U_{\rm BMX} \approx U_{\rm K}$

Для выходного напряжения усилителя можно написать:

$$U_{\text{BMX}} = (R_{\text{BMX}} + R) I_2 = (U_{\text{BX}} - U_{\text{K}}) \beta_1 K$$
,

где

$$\beta_1 = \frac{R_y}{R_y + R_{BH} + R}.$$

Отсюда выходной ток

$$I_2 = \frac{U_{\text{BX}}}{R\left(1 + \frac{1}{\beta_1 K}\right) + \frac{R_{\text{BMX}}}{\beta_1 K}} \approx \frac{U_{\text{BX}}}{R}.$$
 (118)

При большой величине $\beta_1 K$ и стабильном резисторе R ток в измерителе не зависит от параметров автокомпенсатора и измеритель может быть проградуирован в вольтах.

Следует заметить, что вообще говоря, всякий катодный повторитель может рассматриваться как автокомпенсатор. Катодный

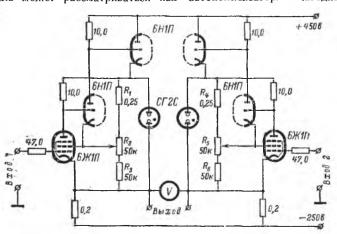


Рис. 58. Схема дифференциального автокомпенсационного вольтметра.

повторитель развивался как согласующий элемент — «трансформатор сопротивлений» — большей частью в импульсных устройствах, в то время как автокомпенсатор развивался как сугубо измерительное устройство.

Из формулы (118) следует, что пределы измерения автокомпенсатора можно менять измененнем сопротивления резистора об-

ратной связи или изменением чувствительности измерителя.

Чтобы определить входное сопротивление, подставим в формулу (113) значение входного тока

$$I_1 = I_0 = \frac{U_{\text{BX}} - U_{\text{K}}}{R_{\text{Y}} + R_{\text{BH}} + R}$$
.

Заменив $U_{\rm R}$ на I_2R , причем I_2 берется из (118), после преобразований получим:

$$R_{\rm BX} = R + R_{\rm y} + \frac{RR_{\rm y}K}{R + R_{\rm max}} \approx R_{\rm y} (1 + K),$$
 (119)

потому что $R \ll R_y$, а $R_{\text{вых}} \ll R$.

В автокомпенсационных схемах благоприятны условия работы входной лампы в режиме «плавающей» сетки. Разность потенциалов между сеткой и катодом входной лампы благодаря наличию сильной отрицательной обратной связи почти не меняется. Следовательно, точка «плавающего» потенциала сдвигается только за счет изменения анодного напряжения. При небольших величинах измеряемых напряжений сеточный ток, возникающий вследствие этого сдвига, имеет малые значения. Когда же величины измеряемых напряжений значительны, предусматривается дополнительная цепь для подачи на анод входной лампы напряжения, примерно равного входному (гл. 4).

Автокомпенсационными являются вольтметры, схемы которых

изображены на рис. 10 и 32.

На рис. 58 представлена схема автокомпенсатора, являющаяся развитием ламповой компенсационной схемы с ручным уравновешиванием (рис. 55). Автокомпенсатор выполнен в виде дифференциального вольтметра; это делает его более удобным и более стабильным. Когда используется лишь один вход, второй замыкают на корпус.

Режимы «плавающих» сеток устанавливают регулировкой экранных напряжений входных ламп при помощи потенциометров R_2 и R_5 . Момент достижения режима «плавающей» сетки определяется тем, что замыкание сетки на корпус не меняет потенциала выходного зажима. Иля более точной проверки между управляющей сеткой и корпусом включают конденсатор небольшой емкости с хорошей изоляцией. Если плавающий потенциал сетки установлен точно, то после подключения конденсатора выходное напряжение не будет «ползти».

Резисторы R_1 , R_3 , R_4 , R_6 желательно брать проволочные. Пределы измерения — от —150 до $+300\ s$.

Глава седьмая

ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ ВЫСОКООМНЫХ ВОЛЬТМЕТРОВ ДЛЯ ИЗМЕРЕНИЯ РАЗЛИЧНЫХ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН

Высокоомные вольтметры могут быть использованы для измерения различных электрических и неэлектрических величин, преобразованных в пропорциональное им напряжение.

Некоторые измерительные схемы представлены на рис. 59.

Схема на рис. 59, a используется для измерения малых токов. Протекая через резистор R большого известного сопротивления, измеряемый ток создает падение напряжения, которое измеряет вольтметр. Это — основная схема измерения токов ионизационных камер, фотоэлементов и других источников с высоким внутренним сопротивлением. Последнее должно быть по крайней мере в 100 раз больше сопротивления R. Верхняя граница частотной характеристики устройства (при спаде 3 $\partial 6$) равна $f_B = 1/2\pi RC$, где C — входная емкость вольтметра и емкость монтажа.

Измерение электрических зарядов производится по схеме, изображенной на рис. 59, б. По этой же схеме можно измерять малые постоянные токи. Конденсатор С должен быть небольшой емкости,

с высоким сопротивлением изоляции. При измерении тока должно выполняться соотношение $t \ll R_{\rm BX} C$, где t — время измерения. Чем больше допустимое время измерения, тем меньший ток может быть измерен.

На рис. 59, в приведена схема киловольтметра с емкостным делителем, пригодного для измерения напряжений в рентгеновских аппаратах, распределения напряжений на изоляторах и т. п. Время измерения должно быть много меньше постоянных времени саморазряда конденсаторов:

$$R_{\text{ут1}}C_1$$
 и $\frac{R_{\text{ут2}}R_{\text{EX}}}{R_{\text{ут2}}+R_{\text{EX}}}C_2$,

где $R_{yт1}$ и $R_{yт2}$ — сопротивления утечек конденсаторов C_1 и C_2 .

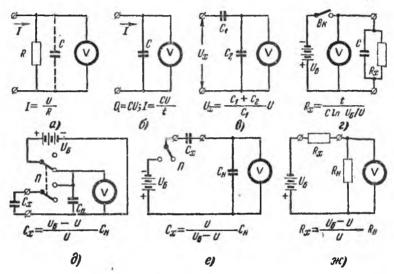


Рис. 59. Схемы измерения некоторых электрических величин вольтметром с высоким входным сопротивлением.

По схеме, показанной на рис. 59, z, осуществляют измерение больших сопротивлений, в том числе сопротивлений изоляции конденсаторов. Измеряемое сопротивление подключают параллельно конденсатору известной емкости C, который заряжают до некоторого напряжения $U_{\rm B}$ Затем размыкают выключатель $B\kappa$ и одновременно запускают секундомер. За некоторый промежуток времени t конденсатор разрядится до напряжения $U_{\rm I}$. Однако при этом надо иметь в виду, что конденсатор разряжается не только через измеряемое сопротивление, но и через собственное сопротивление утечки и через входное сопротивление вольтметра. Поэтому после вычислений будет получено не искомое сопротивление R_x , а результат параллельного соединения этих трех сопротивлений. Для устранения

влияния сопротивления утечек процесс измерения повторяют, но

уже при отключенном резисторе R_{x} .

Пусть продолжительность заряда будет принята в обоих случаях одинаковой и конденсатор во втором случае разрядится до напряжения U_2 . Тогда действительное значение измеряемого сопротивления

$$R_x = \frac{t}{C \ln \frac{U_2}{U_1}} \,.$$

Разумеется, поправка необходима лишь при измерении очень больших сопротивлений, в большинстве же случаев влиянием утечек можно пренебречь.

Схема на рис. 59, ∂ предназначена для измерения емкостей при условин, что измеряемая емкость $C_x > 0,1$ C_H , где C_H — емкость об-

разцового конденсатора.

Предварительно образцовый конденсатор заряжают до напряжения $U_{\rm B}$; при этом заряд на конденсаторе $Q=C_{\rm H}U_{\rm B}$. Затем переключателем Π батарею отключают, а параллельно конденсатору $C_{\rm H}$ подключают измеряемый конденсатор C_{x} . Теперь часть заряда Q перейдет на емкость C_{x} и вольтметр покажет новое значение напряжения $U=Q/(C_{x}+C_{\rm H})$. Так как полный заряд в обоих случаях один и тот же, можно написать:

$$C_{\mathrm{H}}U_{\mathrm{B}} = (C_{\mathrm{x}} + C_{\mathrm{H}})U$$

откуда и определяется значение C_r .

Схема на рис. 59, e предназначена для измерения малых емкостей, когда $C_{\rm x}{<}10~C_{\rm H}$. Вначале цепь батареи разомкнута и напряжение на конденсаторе $C_{\rm H}$ равно нулю. После замыкания цепи батареи последовательно соединенные конденсаторы получают одинако-

вые заряды $Q = \frac{C_x C_y}{C_x + C_y} U_{\rm B}$, а напряжение на конденсаторе C_y

измеряемое вольтметром, будет $U = \frac{C_x}{C_x + C_H} U_B$. Отсюда и опреде-

ляют искомую величину C_x .

Схема на рис. 59, ж сл/жит для измерения сопротивлений. Она подобна схеме обычного омметра с той лишь разницей, что очень высокое входное сопротивление вольтметра позволяет применять образцовые большие сопротивления и измерять тем самым большие сопротивления.

В сочетании с емкостными, пьезоэлектрическими и подобными им датчиками, а также с датчиками, использующими радиоактивные излучения, вольтметры с высоким входным сопротивлением используются также для измерения самых разнообразных неэлектри-

ческих величин.

Литература

Арутюнов В. О., Электрические измерительные приборы, Госэнергоиздат, 1958.

Бонч-Бруевич А. М., Применение электронных ламп в экспе-

риментальной физике, Гостехиздат, 1956.

Ваксер Э.Б., Электронные вольтметры постоянного тока, Изд-во Министерства высшего, среднего специального и профессионального образования БССР, Минск, 1963.

Векслер М. С., Электростатические приборы, «Энергия», 1964.

Гальперин Б. С., Непроволочные сопротивления, Госэнергоиздат, 1958.

Заруцкий Ю. Ф., Сеточные токи, расчет и конструирование электрометрических ламп, Сборник материалов по вакуумной технике, вып. XXII, Госэнергоиздат, 1960.

Ложников А. П., Сонин Е. К., Каскодные усилители, изд. 2-е,

«Энергия», 1964.

Карандеев К. Б., Методы электрических измерений, Госэнерго-

издат, 1958.

Эрглис К. Э., Степаненко И. П., Электронные усилители, Физматгиз, 1961.

ИНФОРМАЦИЯ

РЕДАКЦИЯ МАССОВОЙ РАДИОБИБЛИОТЕКИ

имеется в продаже

M е е р с о н $\ A$ $\ M$., Радиоизмерительная техника, 27 л., 1 р. 23 к.

В книге, представляющей собой учебное пособие по изучению основ радиоизмерительной техники, рассматриваются основные методы радиоитехнических измерений, устройство различных радиоизмерительных приборов, практические схемы приборов, доступных для самостоительного изготовления, а также принципы расчета и конструирования этих приборов.

Книга рассчитана на широкие круги радиолюбите-

лей.