
Типовые логические элементы

Логический элемент

Преобразователи, которые могут, получая сигналы об истинности отдельных простых высказываний, обработать их и в результате выдать значение логического отрицания, логической суммы или логического произведения, называются логическими элементами.

<u>Логический элемент компьютера</u> — это часть электронной логической схемы, которая реализует элементарную логическую функцию.

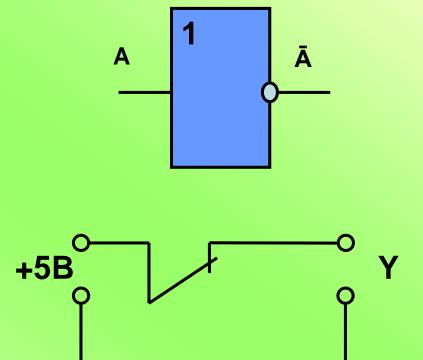
Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И—НЕ, ИЛИ—НЕ и другие (называемые также вентилями), а также триггер.

С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера. Обычно у вентилей бывает от двух до восьми входов и один или два выхода.

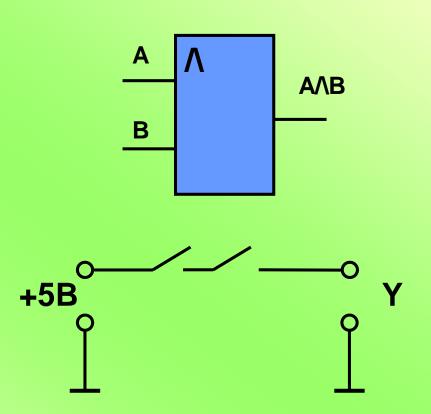
Чтобы представить два логических состояния — "1" и "0" в вентилях, соответствующие им входные и выходные сигналы имеют один из двух установленных уровней напряжения. Например, +5 вольт и 0 вольт.

Высокий уровень обычно соответствует значению "истина" ("1"), а низкий — значению "ложь" ("0").

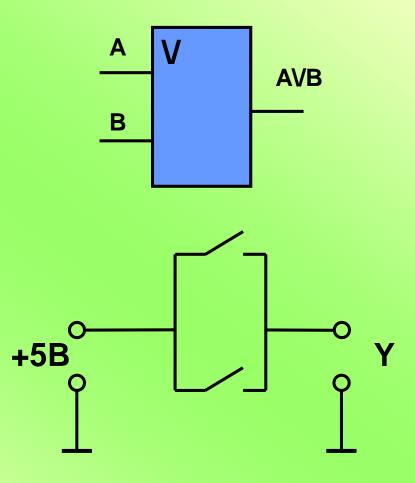
Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нем реализована.


Цифровой сигнал

- это сигнал, который может принимать только два установленных значения.
- При этом существенно, чтобы имелось **два резко отличных состояния** физических величин, моделирующих истинность или ложность логических высказываний.
- Например
 - есть два уровня напряжения: +5В и +0,4В
 - сила тока равна 20 мА и 1 мА
 - лампа горит или нет
 - кнопка нажата или нет и т.п.


ЛОГИЧЕСКИЙ ЭЛЕМЕНТ "НЕ" (инвертор)

• Обеспечивает на выходе сигнал, противоположный сигналу на входе, т.е. на его выходе будет 1, если на вход поступает 0 и наоборот.


ЛОГИЧЕСКИЙ ЭЛЕМЕНТ "И" (конъюнктор)

• Логическим элементом "И" называется такой элемент, который на выходе выдает значение логического произведения входных сигналов.

ЛОГИЧЕСКИЙ ЭЛЕМЕНТ "ИЛИ" (дизъюнктор)

• Логическим элементом "ИЛИ" называется такой элемент, который на выходе выдает значение логической суммы входных сигналов.

Логические элементы "И-НЕ" и «ИЛИ-НЕ»

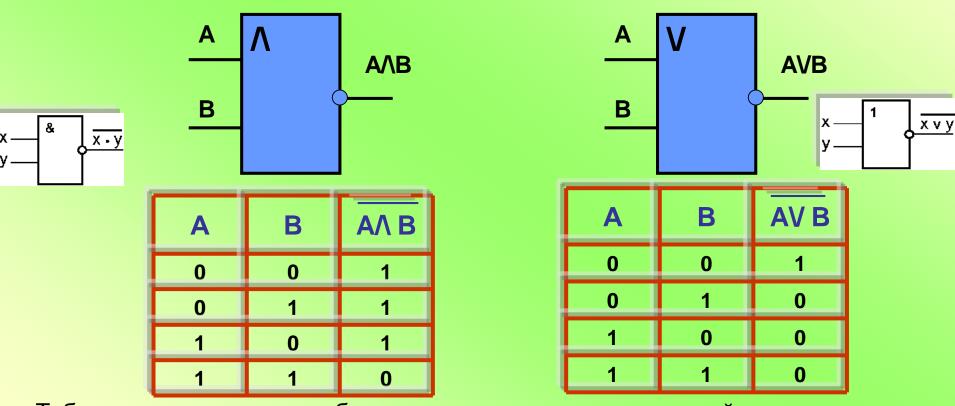
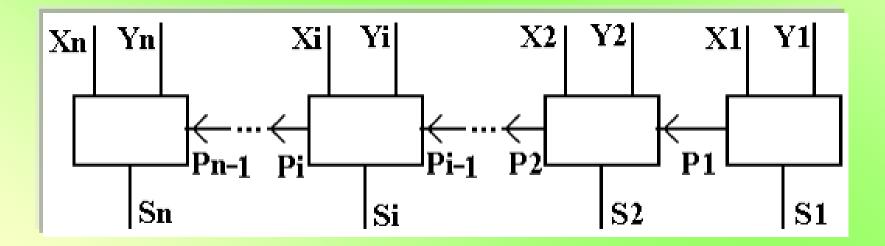
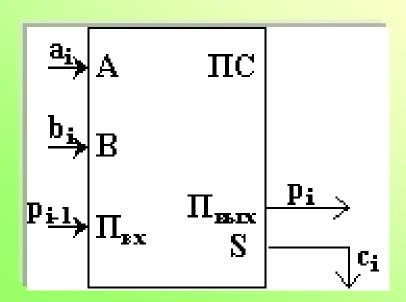



Таблица истинности это табличное представление логической схемы (операции), в котором перечислены все возможные сочетания значений истинности входных сигналов (операндов) вместе со значением истинности выходного сигнала (результата операции) для каждого из этих сочетаний.

СУММАТОРЫ

 Сумматор является основным узлом арифметикологического устройства ЭВМ и служит для суммирования двоичных чисел поразрядным сложением.


При сложении чисел A и B в одном i-ом разряде приходится иметь дело с тремя цифрами:

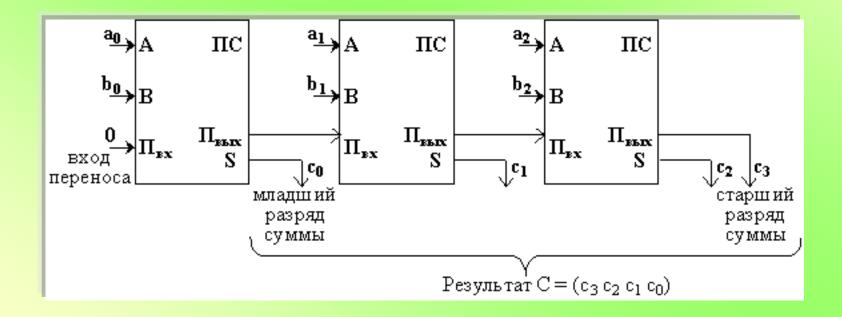
- 1. цифра аі первого слагаемого;
- 2. цифра bi второго слагаемого;
- 3. перенос рі–1 из младшего разряда.

В результате сложения получаются две цифры:

- 1. цифра сі для суммы;
- 2. перенос рі из данного разряда в старший.

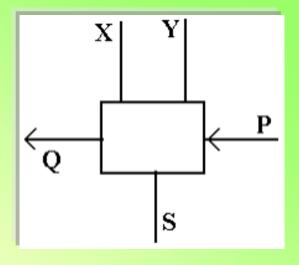
Таким образом, одноразрядный двоичный сумматор есть устройство с тремя входами и двумя выходами, работа которого может быть описана следующей таблицей истинности:

Таким образом, одноразрядный двоичный сумматор есть устройство с тремя входами и двумя выходами, работа которого может быть описана следующей таблицей истинности:

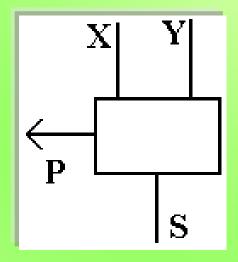

Первое слагаемое	Второе слагаемое	Перенос	Сумма	Перенос
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Выходы

Входы

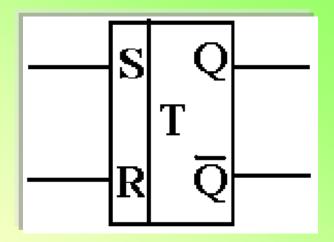

Если требуется складывать двоичные слова длиной два и более бит, то можно использовать последовательное соединение таких сумматоров, причём для двух соседних сумматоров выход переноса одного сумматора является входом для другого.

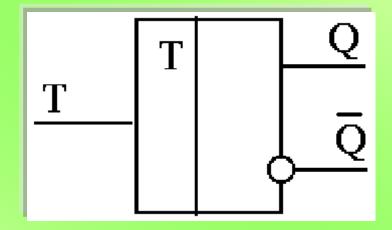
Например, схема вычисления суммы C = (c3 c2 c1 c0) двух двоичных трехразрядных чисел A = (a2 a1 a0) и B = (b2 b1 b0) может иметь вид:



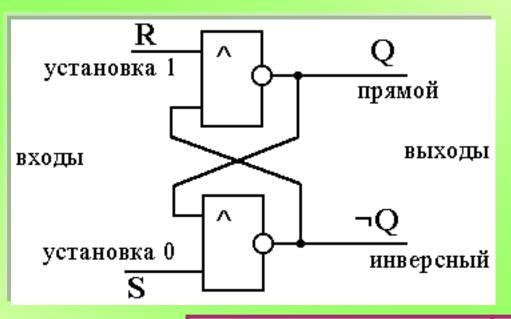
СУММАТОРЫ

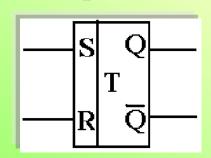
• Полусумматор

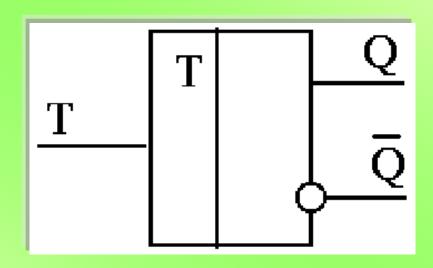

• Сумматор


ТРИГГЕР

Триггер — это электронная схема, широко применяемая в регистрах компьютера для надёжного запоминания одного разряда двоичного кода. Триггер имеет два устойчивых состояния, одно из которых соответствует двоичной единице, а другое — двоичному нулю.

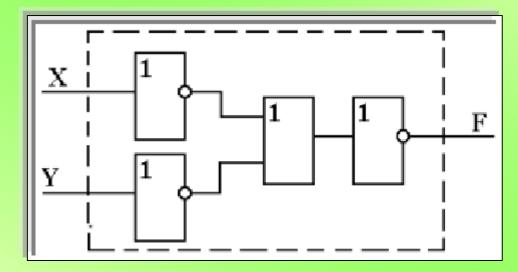

• устройство, которое может запоминать сигналы 0 и 1, демонстрировать их, а в случае необходимости и забывать.


RS - триггер

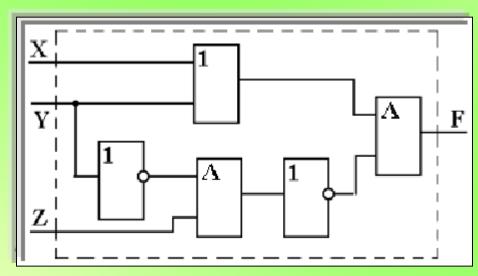

Т – триггер

RS - триггер

	Режим работы		Входы		Выходы		
			R	Q	_ Q	Влияние на выход Q	
	Запрещённое состояние	0	0	1	1	Запрещено - не используется	
	Установка 1	0	1	1	0	Для установки Q в 1	
	Установка 0	1	0	0	1	Для установки Q в 0	
	Хранение	1	1	Q	- Q	Зависит от предыдущего состояния	



Т - триггер


- Триггер имеет один счетный вход, обозначаемый _буквой Т, и два выхода - прямой Q и инверсный Q.
- Под действием сигналов, поступающих на счетный вход, триггер меняет свое состояние с нулевого на единичное и наоборот. Число перебрасываний точно соответствует числу поступивших сигналов.
- Если последовательно соединить несколько Т-триггеров, то получится электронный счетчик.

Для данных логических схем составьте таблицу истинности:

1)

2)

