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 This study investigates a conceptual framework for a hybrid intelligent 

control system designed to optimize the irrigation practice for field crops via 

fertigation technologies. This research is aimed at enhancing irrigation 

management through the improvement of the prediction, optimization, and 

regulation processes. This is achieved through the incorporation of modern 

computational intelligence with advanced deep learning based neural 

networks, evolutionary optimization algorithms, and the adaptive neuro-

fuzzy technique. This hybrid control framework is made up of 

interconnected sets of monitoring and decision-making modules. These 

include subsystems for evaluation of soil conditions, monitoring of plant 

growth and physiological development, assessment of environmental and 

climatic conditions, and measurements of the intensity of solar radiation. 

Additional systems address the preparation of the fertigation mixture and 

control of intelligent decision-making processes. For this system, the overall 

control policy is rendered through a predictive neurocontrol approach with 

execution on a computer platform. A recurrent deep neural model, long 

short-term memory (LSTM) type, provides crop growth and development 

parameter predictions through the ability to explore temporal dependencies 

in agricultural processes. Optimization in the predictive control feedback is 

accomplished through genetic algorithms in an adaptive manner. 
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1. INTRODUCTION 

Modern agricultural production more and more relies on innovative technologies developed to 

maintain a consistent supply of mineral nutrients during the various stages of crop growth throughout the 

crop cycle, namely wheat, maize, oats, cotton and sugar beet. Fertigation, or the simultaneous application of 

irrigation water and mineral fertilizers, is now among the most efficient of those. When combined with 

precise irrigation technologies—e.g., drip and sprinkler systems—fertigation can significantly improve crop 

yield, increase fertilizer-use efficiency, and mitigate undesirable environmental impacts [1]–[4]. In any 

fertigation system, consideration is given to the crop type and the crop growth stage while various 

operational parameters are measured and updated in real time; examples of these measurements, include both 

the irrigation water mineral nutrient concentration, fertilizer application timing and volumes, fertigation 

mixture pH (acidity) and electrical conductivity (EC), soil moisture, nutrient composition, pH, and EC, 

environmental conditions such as air temperature, humidity, gas concentrations and wind speed, and solar 

radiation intensity. 

https://creativecommons.org/licenses/by-sa/4.0/
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Automating fertigation involves the resolution of two main issues for achieving an adequate regime 

for irrigation of field crops:  

a. Optimization of global control–determining supply volumes, target concentrations of mineral nutrients 

and a target pH and EC for the fertigation solution.  

b. Optimization of local control–managing the flow rates to apply individual nutrient solutions along with 

controlling the timing and duration for applying mineral water. Tackling these issues requires accurate 

predictive models and effective algorithms for optimization and for control of irrigation processes. Due to 

the highly nonlinear nature and difficulty in formalizing all aspects of crop growth dynamics, it has 

become increasingly popular to use neural networks for state recognition and predictive modelling of 

agricultural systems [5]–[8]. There is also a lot of literature, particularly in the area of optimization and 

control of complex or poorly formalized systems, including agricultural, using a variety of strategies such 

as evolutionary algorithms, deep learning, and neuro-fuzzy modelling [9]–[14].  

However, the application of these strategies has been largely in isolation or based in subsystems 

rather than an integrated framework. This study presents a composite hybrid intelligent control architecture 

which combines these methods for smart management of irrigation systems based on fertigation technology. 

Predictive model neuro-control is the basis of the architecture, where a forecasting forecast has a neural 

network basis to produce prediction and an adaptive optimization approach is used to optimize performance. 

In the proposed framework, object state recognition and forecasting are implemented using a 

convolutional neural network (CNN) together with a deep learning recurrent network (LSTM), while 

optimization and regulation of control parameters are achieved through a genetic algorithm and an adaptive 

neuro-fuzzy inference system (ANFIS). This hybrid structure provides a foundation for developing smart 

irrigation technologies in precision agriculture. 

 

 

2. METHOD  

Method for hybrid neurocontrol of field crop irrigation Figure 1 presents a general schematic of the 

hybrid neurocontrol system for the regulation of irrigation functions in field crops. The hybrid neurocontrol 

system contains two main components; a computer workstation and a neurofuzzy controller. The computer 

station collects input data from several monitor subsystems and with this data completes the first control step 

using the predictive-model neurocontrol methods [9], [15]. Meanwhile, the neuro-fuzzy controller operates 

the second control step using the ANFIS modeling algorithm [10], [16]. 

 

 

 
 

Figure 1. Generalized diagram of a hybrid neuro-control system for irrigation of field agricultural culture 
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Soil parameters, fertigation solution, environmental conditions, and solar field activity intensity are 

measured using devices placed at data collection locations. Monitoring of plant growth and development 

indices is performed via images collected by an unmanned aerial vehicle with subsequent processing using 

CNN convolutional neural networks [5], [17]. 

The diagram structure of the neurocontrol system for predictive modeling of field crops irrigation is 

shown in Figure 2. The computer part of the predictive model neurocontrol system (outlined in green in 

Figure 2) minimizes the functional cost of the integral error [6], [11], [12], [18], [19], predicted for  

𝑁 = 𝑚𝑎𝑥( 𝑁2, 𝑁𝑢),0 ≤ 𝑁1 ≤ 𝑁2 clock cycles ahead: 

 

𝐽(𝑘) =
1

𝑛
∑ ∑ 𝜌𝑦𝑙

(𝑒𝑙(𝑘 + 𝑗))2 +
1

𝑚
∑ ∑ 𝜌𝑢𝑞

(𝑢𝑞(𝑘 + 𝑗) − 𝑢𝑞(𝑘 + 𝑗 − 1))2

𝑁𝑢−1

𝑗=0

𝑚

𝑞

𝑁2

𝑗=𝑁1

𝑛

𝑙=1

; 

 ∑ 𝜌𝑦𝑙
= 1𝑛

𝑙=1 ;  ∑ 𝜌𝑢𝑞
= 1𝑛

𝑙=1  ,  (1) 

 

where 𝑁1, 𝑁2- minimum and maximum evaluation horizons; 𝑁𝑢- control horizon; k - discrete time; j- 

iteration number; 𝑒𝑙(𝑘 + 𝑗) = 𝑦̂𝑙(𝑘 + 𝑗) − 𝑦𝑙(𝑘 + 𝑗) - error on the l-th output parameter; 𝑦̂𝑙(𝑘 + 𝑗) - model 

value of the l-th output parameter (parameter of plant growth and development); 𝑦𝑙(𝑘 + 𝑗) - actual value of 

the l-th output parameter; 𝜌𝑦𝑙
 - a weighting factor reflecting the relative importance of the l-th output 

parameter; 𝑢𝑞(𝑘 + 𝑗) - the q-th control variable; 𝜌𝑢𝑞
- a weighting factor indicating the contribution of the 

change in the q-th control signal to the overall cost. 

 

 

 
 

Figure 2. A block diagram of predictive model neurocontrol irrigation of field crops functional 

 

 

Prediction of the future behavior of the control object 𝑦̂𝑙(𝑘 + 𝑗);  𝑙 = 1, 𝑛 and calculation of errors 

𝑒𝑙(𝑘 + 𝑗);  𝑙 = 1, 𝑛 is carried out by a pretrained direct neuroemulator. A direct neuroemulator can be built on 

the basis of n recurrent deep learning neural networks LSTM [7], [20], [21]. Each of the neural networks 

predicts one of the output parameters of the control object in accordance with the model of the form, 

 

𝑦̂𝑙(𝑘 + 1) = 𝑓𝑙(𝑦𝑙(𝑘 − 𝑗), 𝑋(𝑘 − 𝑗), 𝐺(𝑘 − 𝑗), 𝑈(𝑘 − 𝑗));  𝑙 = 1, 𝑛;  𝑗 = 0, 𝑁 − 1.      (2) 

 

where 𝑋(𝑘 − 𝑗) is the vector of soil condition parameters; 𝐺(𝑘 − 𝑗) - the vector of environmental parameters, 

including the intensity of solar activity; 𝑈(𝑘 − 𝑗) - the vector of global control parameters. 

Different phases of vegetation 𝑇𝑖 ∈ 𝑇 (𝑇 - a set of seasonal time intervals corresponding to different 

phases of plant vegetation) correspond to different parameters of plant growth and development [22], [23]. 

This division reduces the dimensionality of the set of output parameters for each phase of plant development, 

which reduces decision-making time and increases the efficiency of management. 

Deep neural networks are trained by the method of error back propagation through a direct 

neuroemulator. The optimizer solves the problem of minimizing functionality 𝐽(𝑘) in real time. Considering 

the rather large step of discretization of the process of growth and development of field plants, methods that 

ensure finding a global optimum when the objective function is not smooth can be used for optimization. One 

of such methods is genetic algorithms [24]–[26]. 
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The optimizer receives a target trajectory on clock cycle k for N clock cycles ahead. In its absence, 

the optimizer duplicates the value of the current setting 𝑅(𝑘 + 1) N times, using it as the target trajectory. 

The optimal control action is selected during an iterative computational process in the internal cycle of the 

neurofeedback system (in Figure 2, the internal cycle is outlined in red). During one control cycle, the 

optimizer supplies a series of different effects 𝑈̂1(𝑘 + 𝑡, 𝑗) to the input of the direct neuroemulator, where t is 

the depth of prediction; 0 ≤ 𝑡 ≤ 𝑁 − 1. 

Receiving various variants of the system 𝑌̂(𝑘 + 𝑡 + 1, 𝑗) behavior from a direct neuroemulator, the 

optimizer calculates the cost function according to formula (1) and determines the best control strategy 

{𝑈̂1(𝑘, 𝑗1), 𝑈̂1(𝑘 + 1, 𝑗2),…,𝑈̂1(𝑘 + 𝑁 − 1, 𝑗𝑁) }, which ensures the minimization of the functional 𝐽(𝑘).  

As a result, the input of the neuro-fuzzy controller receives a vector of settings 𝑈1
∗(𝑘) =

{𝑉(𝑘), 𝐶𝑖
р
(𝑘), 𝑝𝐻(𝑘), 𝐸𝐶(𝑘)};  𝑖 = 1,3, where V(k) is the mass of the fertigation solution; 𝐶𝑖

р
(𝑘) - the 

concentration values of the i-th element of mineral nutrition in the fertigation solution in the k-th cycle. On 

the next clock cycle, the control strategy is recalculated again. 

The fertigation solution preparation system, the functional scheme of which is shown in Figure 3, 

includes: three tanks containing water-soluble fertilizers nitrogen, phosphorus, potassium; a water tank; a 

double tank containing acid and alkali (acid/alkali). 

 

 

 
 

Figure 3. Functional diagram of the fertigation solution preparation system (source: own elaboration) 

 

 

The operation of the fertigation solution preparation system is controlled by a neuro-fuzzy controller 

based on the obtained vector of settings 𝑈1
∗(𝑘) and values of concentrations of mineral nutrition elements in 

tanks 𝐶𝑖
∗ [𝑘𝑔/𝑙], 𝑖 = 1,3. 

The neuro-fuzzy controller calculates the required volumes of solutions of mineral nutrition 

elements 𝑚𝑖(𝑘) [𝑙];  𝑖 = 1,3 and water 𝑚𝑤𝑎𝑡𝑒𝑟(𝑘) [𝑙] supplied to the mixing tank at the k-th control cycle 

according to the formulas, 

 

𝑚𝑖(𝑘) = 𝐶𝑖
р
(𝑘)𝑉(𝑘)/𝐶𝑖

∗;  𝑖 = 1,3; (3) 

 

𝑚𝑤𝑎𝑡𝑒𝑟(𝑘) = 𝑉(𝑘) − ∑ 𝑚𝑖(𝑘)3
𝑖=1 , (4) 

 

The filling time of the mixing tank is determined based on the mass 𝑚𝑖(𝑘);  𝑖 = 1,3and 𝑚𝑤𝑎𝑡𝑒𝑟(𝑘) according 

to the formula, 

 

𝑇(𝑘) = 𝑚𝑎𝑥( 𝑚1(𝑘)/𝑣 2 3 𝑤𝑎𝑡𝑒𝑟 𝑤𝑎𝑡𝑒𝑟 𝑚𝑎𝑥  3𝑚𝑎𝑥2𝑚𝑎𝑥1𝑚𝑎𝑥
 (5) 
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where 𝑣 𝑤𝑎𝑡𝑒𝑟𝑚𝑎𝑥3𝑚𝑎𝑥 2𝑚𝑎𝑥1𝑚𝑎𝑥
 is the maximum allowable consumption of substances at the inlet of the 

mixing tank. 

The consumption of substances 𝑣𝑖 , 𝑖 = 1,3; 𝑣𝑤𝑎𝑡𝑒𝑟  at the inlet and the time of supply of substances 

𝑡𝑖 , 𝑖 = 1,3;  𝑡𝑤𝑎𝑡𝑒𝑟  to the mixing tank are determined by the formulas, 

 

𝑣𝑖(𝑘) = 𝑚𝑖(𝑘)/𝑇(𝑘), 𝑖 = 1,3; 𝑣𝑤𝑎𝑡𝑒𝑟(𝑘) = 𝑚𝑤𝑎𝑡𝑒𝑟(𝑘)/𝑇(𝑘), (6) 

 

𝑡𝑖(𝑘) = 𝑚𝑖(𝑘)/𝑣𝑖(𝑘), 𝑖 = 1,3; 𝑡𝑤𝑎𝑡𝑒𝑟(𝑘) = 𝑚𝑤𝑎𝑡𝑒𝑟(𝑘)/𝑣𝑤𝑎𝑡𝑒𝑟(𝑘). (7) 

 

The neurofuzzy controller outputs control signals to controlled electromagnetic relays 1-4, which 

open or close solenoid valves 1-4. The solenoid valves are opened for a time 𝑡𝑖(𝑘), 𝑖 = 1,3; 𝑡𝑤𝑎𝑡𝑒𝑟(𝑘) 

calculated according to the formulas (8). The supply of solutions of mineral nutrition components and water 

to the mixing tank is carried out with the flow rates 𝑣𝑖(𝑘), 𝑖 = 1,3; 𝑣𝑤𝑎𝑡𝑒𝑟(𝑘) calculated according to the 

formulas (7). Control of the flow rate of mineral nutrition components and water is carried out by flow 

sensors 1-4. After the filling time of the mixing tank 𝑇(𝑘) has expired, the solenoid valves are closed. 

After closing the solenoid valves, the irrigation solution preparation system goes into standby mode 

for a time interval corresponding to the interval between the two mixing processes, which is calculated in 

days. In this case, the pH value in the mixing tank is corrected. Then the pump supplies the prepared 

fertigation solution to the irrigation water pipeline. The process of preparation and supply of fertigation 

solution for irrigation is resumed in the next cycle of the system operation with new setpoints (V(k+1), 

𝐶𝑖
р
(𝑘 + 1), 𝑖 = 1,3, pH(k+1), EC(k+1)). 

The pH of the fertigation solution in the mixing tank is monitored by a pH sensor. A neuro-fuzzy 

controller controls the amount of acid or alkali flow at the outlet of valves 5, 6. according to the following 

rules, 

 

{

𝑖𝑓 𝑝𝐻 > 𝑝𝐻(𝑘)   then 𝑣𝑎𝑐 = 𝑉𝑎𝑐/𝑡𝑔𝑖𝑣.&𝑣𝑎𝑙 = 0;

𝑖𝑓 𝑝𝐻 < 𝑝𝐻(𝑘)    then 𝑣𝑎𝑙 = 𝑉𝑎𝑙/𝑡𝑔𝑖𝑣.&𝑣𝑎𝑐 = 0;

𝑖𝑓 𝑝𝐻 = 𝑝𝐻(𝑘)    then 𝑣𝑎𝑐 = 𝑣𝑎𝑙 = 0,                

 (8) 

 

where 𝑣𝑎𝑐 , 𝑣𝑎𝑙- the consumption of acid and alkali at the outlet of the solenoid valves 5, 6; 𝑉𝑎𝑐 , 𝑉𝑎𝑙- the 

required volume of acid and alkali; 𝑡𝑔𝑖𝑣.- the set time for the supply of acid or alkali. 

Decision-making on controlling the supply of acid or alkali in a neuro-fuzzy controller is based on 

the ANFIS model [6], [13]. In conclusion of this section, “methods,” it should be clarified that a deep LSTM 

neural network is used as a predictive mathematical model. The construction of this neural network and its 

practical application in the prediction of dynamic systems described by multidimensional time series is well 

known. It is cited in many scientific works, including scientific articles by the authors. To avoid self-citation, 

these articles are not included in the list of references. 

 

 

3. RESULTS AND DISCUSSION  

The input variables for the neuro-fuzzy decision-making model for acid and alkali are: the value 

(input 1) of the current difference pH-pH(k), volume (input 2) and the current pH value (input 3) of the 

fertigation solution in the mixing tank. The volume and pH level of the fertigation solution in the mixing tank 

are set in relative units (𝑉(𝑘)/𝑉𝑚𝑎𝑥) and (𝑝𝐻/𝑝𝐻𝑚𝑎𝑥). The output variables (output 1 and output 2) are 

variables 𝑉𝑎𝑐  and 𝑉𝑎𝑙 , for each of which its own neuro-fuzzy decision model is built (ANFIS 1 and ANFIS 2).  

The construction of a neuro-fuzzy model in relation to the process of drip irrigation of cotton was 

carried out in MATLAB 2021b using the ANFIS edit editor. The results of constructing a neuro-fuzzy model 

are shown in Figures 4(a)-4(c), Figures 5(a)-4(b), and Figures 6(a)-6(c). The ANFIS 2 model can be 

constructed in a similar way. Determination of the total concentration 𝐶𝛴(𝑘) of mineral nutrition components 

in the fertigation solution is carried out by measuring its electrical conductivity with an EC(k) sensor. 

Moreover, a high EC value of the solution indicates a high concentration of mineral nutrition components in 

the fertigation solution. 

At high concentrations of mineral nutrition components in the soil solution, the absorption of water 

and nutrients by plants slows down sharply [27], [28]. Based on this, it is logical to set the volume flow rate 

𝑣𝛴(𝑘) of the fertigation solution inversely proportional to its ЕС(k). The relationship between 𝑣𝛴(𝑖) and the 

ЕС(i) can be determined experimentally, or based on a survey of experts, and entered into a database table in 

the form of a series of variations ЕС(1) < ЕС(2) <. . . < ЕС(𝑁) and their corresponding values 𝑣𝛴(1) >
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𝑣𝛴(2) <. . . < 𝑣𝛴(𝑁). The neuro-fuzzy controller determines the current value based on the rule: 𝑣𝛴(𝑘) =
𝑣𝛴(𝑖), where 𝑣𝛴(𝑖) is the tabular value of the volumetric flow rate of the fertigation solution. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 4. Membership functions of the input variables (a) for a variable input 1, (b) for a variable input 2, and 

(c) for a variable input 3 

 

 

  
(a) (b) 

 

Figure 5. The results of the construction of the ANFIS 1 neuro-fuzzy model (a) architecture of synthesized 

ANFIS 1 and (b) a window of a fuzzy Sugeno type system 
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The table value 𝑣𝛴(𝑖) is selected based on the condition: 

 

𝛥𝑖 = 𝑚𝑖𝑛
𝑖=1,𝑁

√(𝐸𝐶(𝑘) − 𝐸𝐶(𝑖))2 (9) 

 

where 𝐸𝐶(𝑖) - the i-th tabular value of the ЕС, which corresponds to 𝑣𝛴(𝑖); N - the amount of data in the 

table. The block diagram of the algorithm for hybrid neurocontrol of irrigation of field crops is shown in 

Figure 7. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 6. The results of the construction of the ANFIS 1 neuro-fuzzy model (a) training of a synthesized 

neuro-fuzzy network, (b) graphical view of the dependence of the system output on the inputs,  

and (c) visualization of fuzzy inference for pH control 
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Figure 7. Flowchart of the algorithm of hybrid neurocontrol of irrigation of field crops VMT- the volume of 

fertigation solution in the mixing tank 

 

 

4. CONCLUSION  

The hybrid neurocontrol irrigation system for field crops has several advantages: a modular 

principle simplifies the development of the system, since each module can operate independently, allowing 

for the addition of modules and adjustment of operation as required; The use of LSTM neural networks once 

again allows for the development of a predictive model neurocontrol algorithm that provides high accuracy in 

predicting developmental trends of field crops, which is demonstrated through practical examples. Neuro-

fuzzy control is simple to implement in existing software environments and easily conforms to outside 

conditions; The structure of a neuro-fuzzy controller is an effective option for control over the delivery of 

mineralized water to the root system of field crops because it uses scientifically founded methodologies for 

controlling plant development. 
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