Юго-Западный государственный университет (Россия) Московский государственный машиностроительный университет РГКП «Северо-Казахстанский государственный университет им. М. Козыбаева» (Казахстан)

Харьковский национальный автомобильно-дорожный университет (Украина)

Сумской государственный университет (Украина) Ставропольский государственный аграрный университет (Россия)

## ЮНОСТЬ И ЗНАНИЯ – ГАРАНТИЯ УСПЕХА -2015

## СБОРНИК научных трудов

2-й Международной научно-практической конференции

01-02 октября 2015 года

Ответственный редактор Горохов А.А.

TOM 2

Курск 2015

УДК 621+005 ББК Ж.я431(0) Ю55

#### Редакционная коллегия:

Председатель — **Горохов Александр Анатольевич**, к.т.н., доцент кафедры Машиностроительных технологий и оборудования, Юго-Западный государственный университет, Россия.

Walery Okulicz-Kozaryn, doktor hab., MBA, profesor Instytutu Administracji, Akademia im. Jana Długosza w Czestochowie, Polska

**Федотова Гилян Васильевна,** к.э.н., доцент, Волгоградский государственный технический университет.

**Агеев Евгений Викторович**, д.т.н., профессор кафедры АТСиП Юго-Западный государственный университет, Россия.

**Латыпов Рашит Абдулхакович**, д.т.н., профессор, Московский государственный машиностроительный университет (МАМИ), Москва;

**Плотников Владимир Александрович**, д.э.н., профессор, Санкт-Петербургский государственный экономический университет, Россия

**Куц Вадим Васильевич**, д.т.н., профессор кафедры УКиМС Юго-Западный государственный университет, Россия.

Юность и Знания — Гарантия Успеха - 2015[Текст]: Сборник научных трудов 2-й Международной научно-практической конференции (01-02 октября 2012 года) / редкол.: А.А. Горохов (отв. редактор); В 2-х томах, Том 2., Юго-Западный гос. ун-т, ЗАО «Университетская книга», Курск, 2015. 320 с.

#### ISBN 978-5-9907371-2-9

Содержание материалов конференции составляют научные статьи отечественных и зарубежных ученых. Излагается теория, методология и практика научных исследований в области техники и технологии.

Предназначен для научно-технических работников, ИТР, преподавателей, студентов и аспирантов вузов.

Материалы публикуются в авторской редакции.

ISBN 978-5-9907371-2-9

УДК 621+005 ББК Ж.я431(0)

- © Юго-Западный государственный университет, 2015
- © ЗАО «Университетская книга», 2015
- © Авторы статей, 2015

3

# ОГЛАВЛЕНИЕ

| ПРЕДИСЛОВИЕ9                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6. Медицина и Биомедицинские технологии12                                                                                                                                |
| <b>ОЗЕРОВА А.Г., МАСЛОВА Т.А.</b> ИССЛЕДОВАНИЕ ПРЕДСТАВЛЕНИЙ ВЗРОСЛОГО НАСЕЛЕНИЯ О ЗДОРОВОМ ОБРАЗЕ ЖИЗНИ (НА ПРИМЕРЕ РАБОТЫ ШКОЛЫ ЗДОРОВЬЯ)12                            |
| ТУРСУНОВА Ф.У., КУЗЬМИНА Л.П., САПРОНОВА Н.В. ПРОБЛЕМЫ ОРГАНИЗАЦИИ КАЧЕСТВЕННОЙ МЕДИЦИНСКОЙ ПОМОЩИ НА ПРИМЕРЕ Г. ЩИГЫ И ЩИГРОВСКОГО РАЙОНА                               |
| 7. Информационно-телекоммуникационные системы, технологии и электроника                                                                                                  |
| АНТИПИН А.Ф. К ВОПРОСУ О СОКРАЩЕНИИ СИСТЕМЫ ПРОДУКЦИОННЫХ ПРАВИЛ В МНОГОМЕРНЫХ НЕЧЕТКИХ РЕГУЛЯТОРАХ ————————————————————————————————————                                 |
| <b>АНТИПИНА Е.В., АНТИПИН А.Ф.</b> ИССЛЕДОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ХИМИЧЕСКОГО ПРОЦЕССА В РЕАКТОРЕ ИДЕЛЬНОГО СМЕШЕНИЯ НА ОСНОВЕ ТЕОРИИ ГРАФОВ23                       |
| БАКАЕВА О.А. ИСПОЛЬЗОВАНИЕ ИНФОРМАЦИИ В УПРАВЛЕНИИ25                                                                                                                     |
| БУЙ НГОК ЗЫОНГ, НГУЕН ЛЕ ТХАНЬ ТУНГ РАЗРАБОТКА СЛУЖБЫ PUSH-<br>УВЕДОМЛЕНИЙ В СИСТЕМЕ УПРАВЛЕНИЯ КОРПОРАТИВНОЙ<br>МОБИЛЬНОСТЬЮ С ИСПОЛЬЗОВАНИЕМ GOOGLE CLOUD MESSAGING 28 |
| <b>БУЙ НГОК ЗЫОНГ, НГУЕН ЛЕ ТХАНЬ ТУНГ</b> РАЗРАБОТКА УСТАНОВКИ МОБИЛЬНОГО ПРИЛОЖЕНИЯ НА ANDROID-УСТРОЙСТВЕ В СИСТЕМЕ УПРАВЛЕНИЯ МОБИЛЬНЫМИ ПРИЛОЖЕНИЯМИ31               |
| ВАГАПОВА И.И. РАЗРАБОТКА КОНЦЕПТУАЛЬНОЙ ИНФОРМАЦИОННОЙ СИСТЕМЫ «ДВЕРИ СССР» СРЕДСТВАМИ «1С: ПРЕДПРИЯТИЕ»                                                                 |
| ГАРИФУЛЛИН Р.Н. ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ БИОНИЧЕСКИХ И ПОСЛЕДОВАТЕЛЬНЫХ АЛГОРИТМОВ КОМПОНОВКИ СХЕМ ЭЛЕКТРОННЫХ СРЕДСТВ ПО МОДУЛЯМ                                      |
| <b>ЕСЕНИН В.С., МЕДВЕДЕВ М.В. П</b> ОСТРОЕНИЕ КАРТЫ ГЛУБИНЫ СЦЕНЫ ВИДЕОНАБЛЮДЕНИЯ С ИСПОЛЬЗОВАНИЕМ ДВУХ КАМЕР40                                                          |
| <b>КАШИРИН Е.В.</b> РАЗРАБОТКА ПРЕДЛОЖЕНИЙ ПО СОВЕРШЕНСТВОВАНИЮ АУТЕНТИФИКАЦИИ ПОЛЬЗОВАТЕЛЕЙ42                                                                           |
| <b>КОРНИЕНКО К.Н., СИЛАНТЬЕВА А.Н.</b> ПРОБЛЕМЫ ВНЕДРЕНИЯ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В СИСТЕМУ УПРАВЛЕНИЯ ОРГАНИЗАЦИЕЙ                                                    |
| <b>КРЕТОВА А.С.</b> ПОВЫШЕНИЕ КАЧЕСТВА ПРЕДОСТАВЛЕНИЯ ГОСУДАРСТВЕННЫХ И МУНИЦИПАЛЬНЫХ УСЛУГ В ЭЛЕКТРОННОМ ВИДЕ49                                                         |
| <b>КУРЗЫБОВА Я.В.</b> О ДИНАМИЧЕСКИХ СЦЕНАРИЯХ ОБУЧЕНИЯ В ЭЛЕКТРОННЫХ СРЕДАХ                                                                                             |
| <b>ЛАРИОНОВ А.В.</b> МОДЕЛИРОВАНИЕ ПРОЦЕССА ОХЛАЖДЕНИЯ ПЛАТ КОНВЕНЦИЕЙ57                                                                                                 |

| МАМОНТОВ С.С., ГОЛЕВА А.И., СТОРОЖЕНКО Н.Р. СПОСОБ<br>ПОВЫШЕНИЯ УРОВНЯ НАДЁЖНОСТИ И БЕЗОПАСНОСТИ КОРПОРАТИВНОЙ<br>СЕТИ                                         |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| <b>МОЧАЛОВ М.С., МЕДВЕДЕВ М.В., МЕДВЕДЕВ М.В.</b> ИДЕНТИФИКАЦИЯ ЧЕЛОВЕКА В СИСТЕМАХ ВИДЕОНАБЛЮДЕНИЯ64                                                          | 4 |
| МУРАДОВА Д.А. ІР-ТЕХНОЛОГИЯ ПРИ МОБИЛЬНОМ ДОСТУПЕ66                                                                                                            | 5 |
| <b>НГУЕН ТУАН АНЬ, КАМАЕВ В.А.</b> АРХИТЕКТОР СИСТЕМЫ ОБНАРУЖЕНИЯ МОШЕННИЧЕСТВА В ТЕЛЕКОММУНИКАЦИОННОМ ПРЕДПРИЯТИИ С HADOOP                                    |   |
| <b>НЕПОГОЖЕВ А.А., КЕМЕРОВА С.А.</b> ИМПОРТОЗАМЕЩЕНИЕ В СФЕРЕ УПРАВЛЕНИЯ ГОРНОТРАНСПОРТНЫМИ РАБОТАМИ73                                                         | 3 |
| ПЫЖОВА А.А., СОКОЛОВА И.А. ПРИМЕНЕНИЕ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В ОПИСАНИИ И УПРАВЛЕНИИ БИЗНЕСС-ПРОЦЕССАМИ 76                                                  | 5 |
| СПИЦИН А.Н., ЛЯШЕВА С.А. АВТОМАТИЗИРОВАННАЯ СИСТЕМА МОДЕЛИРОВАНИЯ ПАРАМЕТРОВ БЫСТРОПРОТЕКАЮЩИХ ПРОЦЕССОВ НА ОСНОВЕ ЭКСПРЕСС МЕТОДОВ79                          | 9 |
| ТИТОВА Ю.А. СОЗДАНИЕ САЙТА НА CMS JOOMLA82                                                                                                                     | 2 |
| <b>ХАЛИУЛЛИН А.И., МЕДВЕДЕВ М.В.</b> СИСТЕМА ОХРАНЫ ПОМЕЩЕНИЯ НА ПЛАТФОРМЕ ARDUINO С ИСПОЛЬЗОВАНИЕМ ИНФРАКРАСНОГО ДАТЧИКА ОБЪЕМА И GSM-МОДУЛЯ ДЛЯ ОПОВЕЩЕНИЯ85 | 5 |
| ШАКИРОВА А.З., МИННЕБАЕВА Р.Г. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ НА<br>ШВЕЙНОМ ПРЕДПРИЯТИИ СФЕРЫ СЕРВИСА88                                                               | 3 |
| <b>ШАМСУТДИНОВ А.Р., МЕДВЕДЕВ М.В.</b> ПРОГРАММА ДЛЯ ПОИСКА<br>ПОХОЖИХ ИЗОБРАЖЕНИЙ ПО ЗАДАННОМУ ЭТАЛОННОМУ<br>ИЗОБРАЖЕНИЮ92                                    | 2 |
| 8. Технологии продуктов питания96                                                                                                                              | 5 |
| <b>БАУС С.С.</b> СИСТЕМА ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ И КАЧЕСТВА ПРОИЗВОДСТВА СЫРА В РФ96                                                                          |   |
| <b>БЕЛОКУРОВА Е.В., СОЛОХИН С.А.</b> ВЛИЯНИЕ ПРОБИОТИЧЕСКОГО БАККОНЦЕНТРАТА «ИММУНОЛАКТ» НА ПОКАЗАТЕЛИ КАЧЕСТВА БУЛОЧНЫХ ИЗДЕЛИЙ99                             | 9 |
| <b>БЕЛОКУРОВА Е.В., МАСЛОВА В.А.</b> КВАЛИМЕТРИЧЕСКАЯ ОЦЕНКА КАЧЕСТВА ОСНОВЫ ДЛЯ ПИЦЦЫ С ВНЕСЕНИЕМ ЖМЫХА ЗАРОДЫШЕЙ ПШЕНИЦЫ                                     | 1 |
| <b>ДУСТОВ К.Т., ЖАББОРОВ А.Т., РАХМАТУЛЛАЕВ Ё.Ш., КАРИМОВ О.Р</b> . ФАКТИЧЕСКОЕ ПИТАНИЕ МОЛОДЫХ КУРАШИСТОВ И ЕГО РАЦИОНАЛИЗАЦИЯ                                | 4 |
| <b>КИТАЕВСКАЯ С.В., КИТАЕВСКИЙ С.А., ПОНОМАРЕВ В.Я.</b> СРАВНИТЕЛЬНАЯ ОЦЕНКА АНТИОКСИДАНТНОЙ АКТИВНОСТИ ОВОЩНОГО СЫРЬЯ106                                      |   |
| <b>КЛЮЧНИКОВА Д.В.</b> К ВОПРОСУ ИСПОЛЬЗОВАНИЯ БЕЛКОВОГО КОНЦЕНТРАТА109                                                                                        |   |
| <b>КЛЮЧНИКОВА Д.В.</b> ЭКОЛОГИЧЕСКИЙ АСПЕКТ ИСПОЛЬЗОВАНИЯ МОЛОЧНОЙ СЫВОРОТКИ111                                                                                | 1 |
| КОЛОМНИКОВА Я.П., ЛИТВИНОВА Е.В. ОПРЕДЕЛЕНИЕ ВЛИЯНИЯ                                                                                                           |   |

| НЕТРАДИЦИОННОГО РАСТИТЕЛЬНОГО СЫРЬЯ НА БИОТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА СДОБНОГО ТЕСТА                                                                              | МИСЬКО Е. А., СТЕПАНОВ А.А., КОМАРОВ Д.А., КОРЕНЧЕНКО С.С.,<br>АЛИПОВА А.С. ЭКСПЕРИМЕНТАЛЬНАЯ ОЦЕНКА ПРОЧНОСТНЫХ И<br>ДЕФОРМАТИВНЫХ ПАРАМЕТРОВ ГИДРОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| САХАРОЗАМЕНИТЕЛЕЙ В РЕЦЕПТУРНОМ СОСТАВЕ МАРМЕЛАДНЫХ ИЗДЕЛИЙ И НАТУРАЛЬНЫХ СОКОВ                                                                                | ПЕРЕВЕРЗЕВА В.С., АКУЛЬШИН А.А. КОНСТРУКЦИЯ ЛЕГКО                                                                                                                           |  |
| <b>МАГОМЕДОВ Г.О., ЛОБОСОВА Л.А., МАКОГОНОВА В.А., ХРИПУШИНА А.С.</b> ФУНКЦИОНАЛЬНЫЕ ИНГРЕДИЕНТЫ В СОСТАВЕ ПАСТИЛО-                                            | ИЗВЛЕКАЕМОГО ФИЛЬТРА БУРОВОЙ СКВАЖИНЫ И УСТРОЙСТВО ДЛЯ ЕГО<br>ИЗВЛЕЧЕНИЯ176                                                                                                 |  |
| МАРМЕЛАДНЫХ ИЗДЕЛИЙ                                                                                                                                            | <b>РАЗИНКОВА Е.А.</b> ПРОМЫШЛЕННЫЕ ПРЕДПРИЯТИЯ В ГОРОДСКОЙ ЗАСТРОЙКЕ180                                                                                                     |  |
| ТЕХНОЛОГИЙ В ПРИГОТОВЛЕНИИ ФРУКТОВЫХ НАСТОЕК                                                                                                                   | ТОШИН Д.С., СТЕПАНОВ А.А., МИСЬКО Е.А., КОРЕНЧЕНКО С.С., КОМАРОВ Д.А. ОЦЕНКА ДЕФОРМАТИВНОСТИ УТЕПЛИТЕЛЕЙ ПРИ ОДНОКРАТНОМ И ПОВТОРНОМ ПРИЛОЖЕНИИ НАГРУЗКИ                    |  |
| ЛАКРИЧНЫХ КОРНЕЙ                                                                                                                                               | <b>ХУРКОВА Д.А., КОРЕНЬКОВА Г.В.</b> ПРОСТРАНСТВЕННЫЕ РЕШЕТЧАТЫЕ ПОКРЫТИЯ КАК СОВРЕМЕННЫЕ АРХИТЕКТУРНЫЕ ФОРМЫ                                                               |  |
| ТОМАТНОГО СОКА ПРИ ЕГО КОНЦЕНТРИРОВАНИИИ128                                                                                                                    | <b>ХУРКОВА Д.А., КОРЕНЬКОВА Г.В.</b> КИНЕТИЧЕСКАЯ АРХИТЕКТУРА: ПРОШЛОЕ И БУДУЩЕЕ191                                                                                         |  |
| <b>МУСАЕВА Н.Х., ИБРАГИМОВ Р.Р., КУЛДАШЕВА Ф.С.</b> ИССЛЕДОВАНИЕ ТЕМПЕРАТУРЫ КИПЕНИЯ СИЛЬНОПЕНЯЩИХСЯ РАСТВОРОВ130                                              | 10. Безопасность жизнедеятельности и охрана окружающей среды 194                                                                                                            |  |
| <b>МУСАЕВА Н.Х., ИБРАГИМОВ Р.Р., КУЛДАШЕВА Ф.С</b> . ВЫПАРКА ТОМАТА БАРБОТАЖНЫМ ПУТЕМ132                                                                       | Д <b>АМИНОВА Ю.С.</b> ЭЛЕКТРОМАГНИТНЫЕ ПОЛЕЙ И ВЛИЯНИЕ ИХ НА ОРГАНИЗМ ЧЕЛОВЕКА194                                                                                           |  |
| <b>НИКИФОРОВА А.П.</b> ПОСТРОЕНИЕ ДЕРЕВА ПОКАЗАТЕЛЕЙ КАЧЕСТВА ФЕРМЕНТИРОВАННОГО РЫБНОГО ПРОДУКТА                                                               | ЗАГЛОДИНА Т.А. РОЛЬ РИСК-МЕНЕДЖМЕНТА В ПРОФИЛАКТИКЕ ПРОИЗВОДСТВЕННОГО ТРАВМАТИЗМА НА ПРЕДПРИЯТИИ196                                                                         |  |
| <b>СМИРНОВ А.А.</b> ОСОБЕННОСТИ ПРОИЗВОДСТВА И УПРАВЛЕНИЕ КАЧЕСТВОМ МЯСОСОДЕРЖАЩИХ ПОЛУФАБРИКАТОВ137                                                           | Л <b>УГОВСКАЯ Т.К.</b> СОХРАНЕНИЕ ТРАДИЦИЙ В ПОШИВЕ ЖЕНСКОГО СЕМЕЙСКОГО КОСТЮМА (НА ПРИМЕРЕ С.БИЧУРА)200                                                                    |  |
| СОКОЛОВ В.Д., ЕГОРОЧКИН П.В. ИННОВАЦИОННЫЕ ВЗГЛЯДЫ НА ОБЕСПЕЧЕНИЕ КАЧЕСТВА ПИЩЕВЫХ ПРОДУКТОВ, ПОСТУПАЮЩИХ НА СНАБЖЕНИЕ ВООРУЖЁННЫХ СИЛ РОССИЙСКОЙ ФЕДЕРАЦИИ140 | <b>МЕДВЕДЕВ И.Е., ГРИГОРЬЕВА Е.В.</b> УТИЛИЗАЦИЯ НАВОЗА НА ЖИВОТНОВОДЧЕСКИХ ФЕРМАХ203                                                                                       |  |
| ШАРИПОВ М.Х., ГАФУРОВ К.Х. ЭКСТРАГИРОВАНИЕ СЖИЖЕННЫМ ДИОКСИДОМ УГЛЕРОДА                                                                                        | ОВЧАРЕНКО М.С., ЛЕБЕДИНСКИЙ А.Г. СОСТОЯНИЕ АВАРИЙНОСТИ В РОССИЙСКОЙ ФЕДЕРАЦИИ И ПУТИ ЕЕ УЛУЧШЕНИЯ207                                                                        |  |
| <b>ЮНУСОВА Т.Н., ПОНОМАРЕВ В.Я.</b> КАЧЕСТВЕННЫЕ ПОКАЗАТЕЛИ ПОЛУФАБРИКАТОВ ИЗ МЯСА ПТИЦЫ ПРИ ХРАНЕНИИ В ПОЛИМЕРНЫХ                                             | ОВЧАРЕНКО М.С., ОВЧАРЕНКО А.А. ИЗУЧЕНИЕ ФАКТОРОВ, ВЛИЯЮЩИХ НА РАБОТУ И НАДЕЖНОСТЬ ГИДРАВЛИЧЕСКОГО ОПРОКИДЫВАЮЩЕГО УСТРОЙСТВА САМОСВАЛЬНОЙ ТЕХНИКИ211                        |  |
| УПАКОВОЧНЫХ МАТЕРИАЛАХ                                                                                                                                         | РАХМАНОВ Ф.Г., ДАМИНОВА Ю.С., Мухторова М., Суюнов С. ПРОФЕССИОНАЛЬНЫЕ ВРЕДНОСТИ ПРОИЗВОДСТВЕННОЙ СРЕДЫ И КЛАССИФИКАЦИЯ ОСНОВНЫХ ФОРМ ТРУДОВОЙ ДЕЯТЕЛЬНОСТИ                 |  |
| <b>АЛЯБЬЕВ П.О., ПЕРЕВЕРЗЕВА В.С., АКУЛЬШИН А.А</b> . ВОДОЗАБОР ИНФИЛЬТРАЦИОННОГО ТИПА В Г. КУРСКЕ151                                                          | СМИРНОВА Н.А., КОЖАХМЕТОВА А.Н., БУЛАТОВА Г.С., АНИКИНА В.М.                                                                                                                |  |
| ДАШКОВА Е.Г. ОСОБЕННОСТИ КОНСТРУКТИВНОГО РЕШЕНИЯ<br>НЕОБЫЧНЫХ ФОРМ ЗДАНИЙ И СООРУЖЕНИЙ154                                                                      | ЭКОЛОГИЧЕСКИЙ МЕНЕДЖМЕНТ – ЭФФЕКТИВНЫЙ МЕТОД УПРАВЛЕНИЯ КАЧЕСТВОМ ПРИРОДНОЙ СРЕДЫ220                                                                                        |  |
| Д <b>АШКОВА Е.Г.</b> РАЦИОНАЛЬНЫЙ ПОДХОД К ХУДОЖЕСТВЕННОМУ<br>ОФОРМЛЕНИЮ СОВРЕМЕННЫХ ЗДАНИЙ158                                                                 | СМИРНОВА Н.А. АКТУАЛЬНОСТЬ ВНЕДРЕНИЯ СИСТЕМЫ ЭКОЛОГИЧЕСКОГО МЕНЕДЖМЕНТА НА ПРЕДПРИЯТИЯХ АГРОПРОМЫШЛЕННОГО КОМПЛЕКСА224                                                      |  |
| <b>ДЕГТЯРЕВ Д.А., КОРЕНЬКОВА Г.В.</b> ИСТОРИЧЕСКОЕ РАЗВИТИЕ СТЕКЛЯННОЙ АРХИТЕКТУРЫ161                                                                          | СУЮНОВ С., МУХТОРОВА М.Н., РАХМАНОВ Ф.Г., ДАМИНОВА Ю.С. ФИЗИОЛОГИЧЕСКИЕ ИЗМЕНЕНИЯ В ОРГАНИЗМЕ ЧЕЛОВЕКА ПРИ                                                                  |  |
| <b>ЖАРОВА И.В.</b> ИНТЕГРАЦИОННЫЙ МЕХАНИЗМ ПОВЫШЕНИЯ<br>НАДЕЖНОСТИ СИСТЕМЫ САМОРЕГУЛИРОВАНИЯ В СТРОИТЕЛЬСТВЕ И                                                 | ТРУДОВОЙ ДЕЯТЕЛЬНОСТИ                                                                                                                                                       |  |
| ЭКСПЛУАТАЦИИ НЕДВИЖИМОСТИ                                                                                                                                      | <b>ФАЙЗРАХМАНОВА А.Р., ХАЙРУЛЛИН А.Г., КАРАТАЕВ О.Р.</b><br>ЭФФЕКТИВНОСТЬ ВОЗДУХООБМЕНА СПОРТИВНЫХ СООРУЖЕНИЙ 230                                                           |  |
| <b>ЖАРОВА И.В.</b> ПОВЫШЕНИЕ НАДЕЖНОСТИ РАБОТЫ ЗАПОРНОИ И РЕГУЛИРУЮЩЙ АРМАТУРЫ ВЫСОКИХ ПАРАМЕТРОВ169                                                           | <b>ЦЫГАНКОВ Д.В., АНТОНЕНКОВ В.О., ЛУКАШОВ Н.И.</b> СНИЖЕНИЯ                                                                                                                |  |

|    | ВРЕДНЫХ ВЫБРОСОВ ОТ АВТОМОБИЛЬНОГО ТРАНСПОРТА ЗА СЧЕТ ИСПОЛЬЗОВАНИЯ ОКСИГЕНАТНЫХ ПРИСАДОК И ДОБАВОК232                                                                                                          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | <b>ШАМИГУЛОВА А.М., БИЛЯЛОВА З.М., ЮСКЕВИЧ О.И., ВАСИЛЬЕВ В.А.</b> ВСЯ ПРАВДА О КУРЕНИИ236                                                                                                                      |
| 11 | . Фундаментальные и прикладные исследования в области физики,                                                                                                                                                   |
|    | мии, математики, механики241                                                                                                                                                                                    |
|    | <b>АКАБИРОВА Л.Х., ИБРАГИМОВ Р.Р.</b> ДИФФУЗИОННЫЕ ПРОЦЕССЫ ПРОИСХОДЯЩИЕ В ГАЗАХ241                                                                                                                             |
|    | <b>АКАБИРОВА Л.Х., ИБРАГИМОВ Р.Р.</b> ОПТИМИЗАЦИЯ ФЛЕГМОВОГО ЧИСЛА ПРИ ПЕРЕГОНКЕ БРАГИ В РЕКТИФИКАЦИОННОЙ КОЛОННЕ243                                                                                            |
|    | <b>АЛЯУТДИНОВА Ф.Р., СУЗДАЛЬЦЕВ В.А.</b> ФОРМИРОВАНИЕ ОБУЧАЮЩИХ ВЫБОРОК ДЛЯ МАШИННОГО ОБУЧЕНИЯ В ЗАДАЧАХ РАСПОЗНАВАНИЯ ОБРАЗОВ                                                                                  |
|    | <b>АРТИКОВ А.А., ДЖУРАЕВ Х.Ф., ХАЙДАРОВА 3.</b> МНОГОСТУПЕНЧАТЫЙ СИСТЕМНЫЙ АНАЛИЗ СИСТЕМЫ ЭКСТРАКЦИИ В СИСТЕМЕ ТВЕРДОЕ ТЕЛО- ЖИДКОСТЬ                                                                           |
|    | АТАЕВА З.Д., ТАГИЕВ Х., АКРАМОВА Ф., УБАЙДУЛЛАЕВА Ш.Р. СРАВНИТЕЛЬНЫЙ АНАЛИЗ РЕШЕНИЯ ЛИНЕЙНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ 1-ГО ПОРЯДКА С ЗАПАЗДЫВАНИЕМ МЕТОДОМ ШАГОВ И МЕТОДОМ ГРАФОВЫХ МОДЕЛЕЙ                 |
|    | 252<br>ВАСИН А.Н., ИЗНАИРОВ Б.М., ИВАНОВ А.И., МИРОШКИН А.Г.,<br>МУКАТОВА Г.Х. СПЕКТРАЛЬНЫЙ АНАЛИЗ ФОРМЫ ПУСТОТЕЛЫХ ШАРОВ<br>256                                                                                |
|    | ФИЛИППОВ А.И., ЗЕЛЕНОВА М.А., ЩЕГЛОВА Е.П. ПРИМЕНЕНИЕ ЧИСЛЕННОЙ ИНВЕРСИИ К ЗАДАЧЕ О ТЕМПЕРАТУРНОМ ПОЛЕ В СКВАЖИНЕ                                                                                               |
| 12 | . Прогрессивные технологии и процессы                                                                                                                                                                           |
|    | <b>БЕЛАН Д.Ю., КАЗАДАЕВ М.В., ВИНТЕНКО Р.В., ПЕТРОВ И.О., ХАСЕИНОВ К.Б.</b> ПРОЕКТИРОВАНИЕ РЕЖУЩЕГО ИНСТРУМЕНТА ДЛЯ МЕХАНИЧЕСКОЙ ОБРАБОТКИ ЭЛЕКТРИЧЕСКИХ МАШИН ПОСТОЯННОГО ТОКА                                 |
|    | <b>МАРТИНЕЗ ЛЕОН АНДРЕС САНТЬЯГО</b> РАЗРАБОТКА КОНВЕРТОПЛАНА ТИПА ТРИКОПТЕР265                                                                                                                                 |
|    | <b>МИНАЕВА О.Н., СКРИПАЧЕНКО К.К., МАРТЮШОВ Г.Г., ПИЧХИДЗЕ С.Я.</b> ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ АОРТАЛЬНОГО ПРОТЕЗА КЛАПАНА СЕРДЦА «ТриЛИКС»                                                                        |
|    | <b>МИШУРОВА Е.Н., ПОЖИДАЕВ Ю.А.</b> МОДЕЛИРОВАНИЕ ПРОЦЕССА ВОЛОЧЕНИЯ ДЛЯ ОЦЕНКИ ВЛИЯНИЯ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ВОЛОКИ НА УСИЛИЕ ВОЛОЧЕНИЯ272                                                                 |
|    | НИКИТИНА М.С., НИКИТИН С.И., ДЕНИСОВ Ф.ТРОФИМОВИЧ, ЯКОВЛЕВ В.С., НИКИТИН А.И. РАЗРАБОТКА НАПОРНЫХ ОЗОНАТОРНЫХ УСТАНОВОК ДЛЯ ФЛОТАЦИОННОЙ ОЧИСТКИ И ОБЕЗЗАРАЖИВАНИЯ РАЗЛИЧНЫХ ВИДОВ СОЖ И ЭМУЛЬСИЙ ОТ БАКТЕРИЙ И |
|    | МИКРООРГАНИЗМОВ И ПРЕДОТВРАЩЕНИЯ ИХ ЗАГНИВАНИЙ274 <b>ПАРФЕНОВ В.С., ПОЛИТОВ Е.Н.</b> МОДЕЛИРОВАНИЕ КРИВОШИПНО-                                                                                                  |

КУЛИСНОГО МЕХАНИЗМА В ПРОГРАММНО-ВЫЧИСЛИТЕЛЬНОМ

ISBN 978-5-9907371-2-9

01-02 октября 2015 года

| Юность и $3$ нания − $\Gamma$ арантия $У$ спеха − 2015 $TOM 2$                                                    |
|-------------------------------------------------------------------------------------------------------------------|
| КОМПЛЕКСЕ MATHCAD                                                                                                 |
| ПЕРЕВЕРЗЕВ А.С. КОНСТРУКЦИЯ ПОДШИПНИКА НА МАГНИТНОЙ ПОДВЕСКЕ                                                      |
| РОСУЛОВ Р.Х. НОВЫЕ СПОСОБЫ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ<br>ОЧИСТКИ ХЛОПКА-СЫРЦА                                        |
| <b>СЫТЧЕНКО А.Д.</b> ПОЛУЧЕНИЕ НАНОДИСПЕРСНЫХ МАГНИТНЫХ ЖИДКОСТЕЙ                                                 |
| УТАЕВ С.А. ИЗМЕНЕНИЯ СВОЙСТВА МОТОРНЫХ МАСЕЛ ГАЗОВЫХ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ                              |
| <b>ФОМИНА И.П., ЯНЯК С.В.</b> АНАЛИЗ КОЛЬЦЕВОГО СВЕРЛЕНИЯ ПРИ ОБРАБОТКЕ СТЕКЛА СПЕЦИАЛЬНОГО СОСТАВА               |
| <b>ХРИСАНОВ Н.В.</b> АНАЛИЗ ПРЕИМУЩЕСТВ ШАГАЮЩИХ РОБОТОВ                                                          |
| <b>ЧЕВЫЧЕЛОВ И.В., ПОЛИТОВ Е.Н.</b> МОДЕЛИРОВАНИЕ КРИВОШИПНО-<br>ПОЛЗУННОГО МЕХАНИЗМА В ПРОГРАММНО-ВЫЧИСЛИТЕЛЬНОМ |

ЭНЕРГОМЕНЕДЖМЕНТА ВУЗА НА ОСНОВЕ СТАНДАРТА ИСО 50001............318

АНТОНОВ А.И., БЕЛЯКОВ В.Е., ВИШНЯГОВ М.Г., КЛЕУТИН В.И., РУППЕЛЬ А.А., СИДОРЕНКО А.А. СНИЖЕНИЕ КОЭФФИЦИЕНТА

КАМАЕВА И.И., КНЕЛЬЦ В.В. МЕДВЕДЕВА О.А., ЯКОВЛЕВА Н.В.

ЭЛЕКТРОМЕХАНИЧЕСКОЙ И ЭЛЕКТРОМАГНИТНОЙ ПОСТОЯННЫХ ВРЕМЕНИ ЭЛЕКТРОПРИВОДА ПОСТОЯННОГО ТОКА ПО КРИВОЙ ЕГО ВЫБЕГА В РЕЖИМЕ ДИНАМИЧЕСКОГО ТОРМОЖЕНИЯ.......314

HECTEPOB A.A., HECTEPOB C.B., HECTEPOB A.B. PACYET

ТИМЧЕНКО Е.А. СОВЕРШЕНСТВОВАНИЕ СИСТЕМЫ

На третьем иерархическом уровне системы осуществляется анализ процесса в фазах. В системах 3.1 твердой и 3.2 жидкой фазы изучается и взаимное межфазное воздействие процесса экстракции.

Входные параметры системы твердой фазы: это расход растворителя в твердую фазу —  $G_{\rm 3p}$ , температура растворителя —  $T_{\rm 3p}$ , концентрация растворителя— $a_{\rm 3p}$ ; выходные параметры: расход масла из твердой фазы —  $G_{\rm 3p}$ , концентрация мицеллы, перешедшей из твердой фазы в растворитель —  $a_{\rm MII}$ .

На 4-иерархическом уровне системы осуществляется анализ процесса экстракции на уровне частицы. Входные параметры данного иерархического уровня:  $G_{\rm 3p}$ - расход растворителя в частицу, температура растворителя -  $T_{\rm 3p}$ . аэр - концентрация масла в растворителе. и выходные параметры: расход мисцеллы из частицы и ее концентрация

Созданная для данного иерархического уровня математическая модель включает математические описания процесса экстракции, происходящего в частице.

В системе, 5-иерархическом уровне, изучается процесс экстракции в квазислоях частицы. Считается, что частица делится на равные слои. Например, на 5 равных слоев, и вещество (масло) из внутренних слоев путем молекулярной диффузии переходит в следующие поверхностные слои, а на самом внешнем слое, масло путем конвективной диффузии переходит в объем растворителя. Входные параметры данного иерархического уровня следующие:  $G_{\rm эp}$ - расход мисцеллы в слой,  $a_{\rm эp}$ - концентрация масла в мисцелле на входе в слой,  $F_{\rm ташки}$ - поверхность внешнего воздействия слоя, и выходные параметры:  $G_{\rm мой}$ - расход мицеллы из слоя,  $a_{\rm мц}$ - концентрация масла в мицелле, перешедшей из слоя в следующий слой.

Методом многоступенчатого системного анализа и синтеза создана компьютерная модель для процесса внутреннего слоя, в прикладной программе Matlab (рис. 2).



Рис. 2. Компьютерная модель для процесса внутреннего слоя, в программе Matlab.

УДК 004

252

## АТАЕВА ЗАРИНА ДЖУРАЕВНА, ТАГИЕВ ХАБИБ, АКРАМОВА ФИРУЗА НАУЧНЫЙ РУКОВОДИТЕЛЬ

### УБАЙДУЛЛАЕВА ШАХНОЗ РАХИМДЖАНОВНА

Узбекистан, Бухарский филиал Ташкентского института ирригации и мелиорации ushr@rambler.ru

## СРАВНИТЕЛЬНЫЙ АНАЛИЗ РЕШЕНИЯ ЛИНЕЙНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ 1-ГО ПОРЯДКА С ЗАПАЗДЫВАНИЕМ МЕТОДОМ ШАГОВ И МЕТОДОМ ГРАФОВЫХ МОДЕЛЕЙ

Графовое моделирование линейных систем с запаздыванием на основе совокупного применения теории дифференциальных уравнений с отклоняющимся аргументом, аппарата динамических графов и рассмотрения систем с позиций динамичности структур и процессов позволяет получить алгоритм расчёта процессов в системах данного класса, легко реализуемый на любом из современных языков программирования высокого уровня. В работе выполнен сравнительный анализ решения линейного дифференциального уравнения І- го порядка с запаздыванием методом шагов и методом графовых моделей.

Требуется определить выходной сигнал системы, описываемой дифференциальным уравнением [1]:

$$\frac{dx}{dt} = -ax(t) - bx(t - \tau) + u(t)$$

для всех моментов времени  $t > t_0$ , причем в момент времени  $t_0$  на вход системы подается воздействие u(t) = 1 (t). Значения параметров a = 1, b = 1.

Вариант 1. Решение с использованием метода шагов. Рассмотрим вначале формирование выходной величины на отрезке времени  $t_0$ ,  $t_0+\tau$ . На этом отрезке в реальной системе с нулевыми начальными условиями с выхода цели обратной связи сигнала не будет, т.к. он задерживается звеном запаздывания на время, равное величине запаздывания. Таким образом, выходной сигнал x(t) для  $t \in [t_0, t_0+\tau]$  определим, решив неоднородное дифференциальное уравнение 1-го порядка  $\frac{dx}{dt} = -ax(t) + 1$ . Для его решения используем один из известных методов, например, вариацию параметров.

используем один из известных методов, например, вариацию параметров. Решение однородного уравнения находим из характеристического уравнения r+1=0, отсюда r=-1,  $x_h=C_1e^{-t}$ . Предполагая,  $x_p=ue^{-t}$ ,

$$\frac{du}{dt}e^{-t}-ue^{-t}=-ue^{-t}+1,\quad \frac{du}{dt}e^{-t}=1,\quad u=\int\limits_0^t e^tdt=e^t,\quad \text{получим}\quad \text{частное}\quad \text{решениe}$$

 $x_p = ue^{-t} = 1$ . Общее решение будет иметь вид  $x = x_h + x_p = C_1e^{-t} + 1$ , где  $C_1$  - постоянная интегрирования, характеризующая состояние системы в момент

254

времени t=0 . При нулевых начальных условиях получим  $C_1=-1$  и  $x=x_1(t)=1-e^{-t}$  (\*), где  $t\in[0,\tau]$ .

Из выражения (\*) найдем мгновенное значение сигнала x при  $t=\tau$ :  $x(\tau)=1-e^{-\tau}$ . Функция x(t) полностью определяет выходной процесс на отрезке времени  $t\in[0,\tau]$ . Сигнал  $x(t)=x_1(t)$ , проходящий через звено запаздывания, будет воздействовать на вход системы уже на отрезке времени  $[\tau,2]$  и исходное уравнение системы можно записать в виде:  $\frac{dx}{dt}=-x-x_1(t-\tau)+1$ , или  $\frac{dx}{dt}=-x+e^{-(t-\tau)}$  (\*\*).

Найдем значение сигнала x(t) для  $t \in [\tau, 2\tau]$  Решение, удовлетворяющее однородному уравнению  $\frac{dx}{dt} + x = 0$ , следующее  $x_h = C_2 e^{-(t-\tau)}$ . Частное решение находим посредством вариации параметров. Предполагая, что  $x_p = ue^{-(t-\tau)}$ , имеем частное решение  $x_p = ue^{-(t-\tau)} = (t-\tau)e^{-(t-\tau)}$ . Общее решение имеет вид  $x = x_h + x_p = C_2 e^{-(t-\tau)} + (t-\tau)e^{-(t-\tau)}$ . Где  $C_2$ - постоянная интегрирования, характеризующая состояние системы в момент времени  $t = \tau$ . Из решения на предыдущем отрезке мы имели  $x(\tau) = 1 - e^{-\tau}$ , откуда  $C_2 = 1 - e^{-\tau}$  следовательно, на промежутке времени  $t \in [\tau, 2\tau]$  на выходе системы получим  $x(t) = x_2(t) = (1 - e^{-\tau})e^{-(t-\tau)} + (t-\tau)e^{-(t-\tau)}$  и значение выходного сигнала при  $t = 2\tau$ .

Аналогично рассмотрим промежуток времени  $t \in [2\tau, 3\tau]$ . На этом отрезке начальной функцией является сигнал  $-x_2(t-\tau)$  на выходе цепи обратной связи. Следовательно, уравнение системы можно записать Следовательно, уравнение системы можно записать в виде  $\frac{dx}{dt} = -x - [(1-e^{-\tau})e^{-(t-\tau)} + (t-\tau)e^{-(t-\tau)}] + 1 \text{ (***)}.$ 

Находим решение однородного уравнения  $\frac{dx}{dt} = +x = 0$ ,  $x_h = C_3 e^{-(t-\tau)}$ 

Частное решение ищем в виде  $x_p = ue^{-(t-2\tau)}$ .

Общее решение имеет вид

$$x = x_h + x_p = C_3 e^{-(t-2\tau)} + \left[ (e^{-\tau} - 1)(t-2\tau) - \frac{(t-2\tau^2)}{2} + e^{t-2\tau} - 1 \right] e^{-(t-2\tau)}$$

Где  $C_3$  -постоянная интегрирования, характеризующая состояние системы в момент времени  $t=2\tau$ . Его значение мы уже нашли из решения на предыдущем отрезке:

$$C_3 = x_2(2\tau)$$

Следовательно, на промежутке времени  $[2\tau, 3\tau]$  выходной сигнал описывается функцией

$$x = e^{-(t-2\tau)} (1 - e^{-\tau} + \tau) e^{-\tau} + [(e^{-\tau} - 1) \times e^{-\tau}]$$

$$\times (t-2\tau) - \frac{(t-2\tau^2)}{2} + e^{t-2\tau} - 1]e^{-(t-2\tau)}$$

Найденные функции  $x_1(t), x_2(t), x_3(t)$  полностью определяют выходной процесс системы на интервале времени от t=0 до  $t=3\tau$ .

Продолжая последовательно описанную выше процедуру можно получить решение на любом интересующем нас интервале времени.

Юность и Знания — Гарантия Успеха — 2015

Вариант 2. Решение с использованием графовой модели системы. Исходя из дифференциального уравнения системы и учитывая то, что звено запаздывания задерживает сигнал с выхода цепи обратной связи на время  $\tau$ , граф, определяющий поведение системы на отрезке времени  $t \in [0,\tau]$ , можно изобразить в виде, представленном ниже рисунке (рис.1,а).

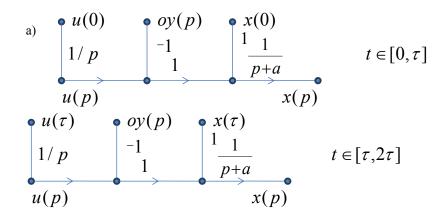



Рис.1

По графу можно определить выходной сигнал системы на отрезке  $x(p) = \frac{1}{p(p+1)}u(0) + \frac{1}{p+1}x(0), \ x(t) = L^{-1}[\frac{1}{p(p+1)}]u(0) = 1 - e^{-t}, \ x(t) = x_1(t)$ 

Функция  $x_I(t)$  определяет выходной процесс системы на отрезке времени  $t \in [0,\tau]$ . При  $t=\tau$  имеем  $x(\tau)=1-e^{-\tau}$ . Так как сигнал  $x_I(t)$  проходит через звено запаздывания, то оно появляется на выходе цепи обратной связи в виде функции  $y(t)=x_1(t-\tau)$  на следующем отрезке времени  $[\tau,2\tau]$ .

Сигнал  $x_I(t-\tau)$  является начальной функцией, а мгновенное его значение -  $x_I(\tau) = x(\tau)$  начальным условием на отрезке  $[\tau, 2\tau]$ . Исходя из этих соображений, строим граф для  $t \in [\tau, 2\tau]$  (рис.1,б). Из рассмотрения графа находим

$$x(p) = \frac{1}{p(p+1)}u(\tau) + \frac{1}{(p+1)}x(\tau) - \frac{1}{p(p+1)^2}$$
. Из последнего соотношения нахо-

$$x(t) = x_2(t) = (1 - e^{-\tau})e^{-(t-\tau)} + (t-\tau)e^{-(t-\tau)}$$
.

Значение выходного сигнала при  $t=2\tau$  равно  $x(2\tau)=x_2(2\tau)=e^{-\tau}(1-e^{-\tau}+\tau)$ 

Функция  $x(t) = x_2(\tau)$  определяет выходной процесс на отрезке  $t \in [\tau, 2\tau]$ .

Рассмотрим далее промежуток времени  $t\in [\tau,2\tau]$ . На выходе цепи обратной связи появляется сигнал  $y(t)=x_2(t)$ , который является начальной функцией, а мгновенное значение  $-x_2(\tau)$  - начальным условием для этого промежутка времени. Для отрезка  $t\in [\tau,2\tau]$ , имеем  $x(p)=x_3(p)\frac{1}{p(p+1)}u(2\tau)+\frac{1}{(p+1)}x(2\tau)-\frac{1}{(p+1)}x_2(p)$ .

Выполнив обратное преобразование Лапласа для последнего соотношения, будем иметь

$$x = e^{-(t-2\tau)} (1 - e^{-\tau} + \tau)e^{-\tau} + [(e^{-\tau} - 1)(t - 2\tau)$$
$$-\frac{(t - 2\tau^2)}{2} - 1]e^{-(t-2\tau)} + 1$$

Выполняя последовательно указанную выше процедуру, можно получить решение и на последующих интервалах времени. Из рассмотренного примера налицо видно преимущество графового метода [2]. Использование графовой модели в значительной степени упрощает описание и анализ системы, исключает непосредственное интегрирование дифференциального уравнения с запаздывающим аргументом.

Список литературы

- 1. Солодов А.В., Солодова Е.А. Системы с переменным запаздыванием. М.:Наука, 1980.
- 2. Кадыров А.А. Топологический расчет систем автоматического управления. Учебное пособие. Ташкент: ТашПИ, 1979.
- 3. Методика расчета величин шероховатости в различных точках обрабатываемой поверхности при проектировании сборных фасонных фрез с учетом возможности подреза гребешка/ Куц В.В., Горохов А.А., Кучеряев И.В.// В сборнике: Современные инструментальные системы, информационные технологии и инновации, материалы IV Международной научно-технической конференции. Ответственный редактор Е. И. Яцун. 2006. С. 97-101.
- Моделирование фрезерования дисковыми фрезами со сменными многогранными пластинами/ Емельянов С.Г., Горохов А.А., Куц В.В.// Техника машиностроения. 2001. № 1. С. 42-43.
- 5. Графовый подход к проектированию, конструированию и изготовлению сборных дисковых фрез/ Емельянов С.Г., Горохов А.А.// Автоматизация. Современные технологии. 1999. № 6. С. 21-24.
- 6. Компьютерное моделирование производящей линии инструмента при создании CAD/CAM системы трехсторонней сборной дисковой фрезы, оснащенной сменными многогранными пластинами, Емельянов С.Г., Горохов А.А., В сборнике: Материалы и упрочняющие технологии-98 VI Российская научно-техническая конференция. Курский государственный технический университет; под редакцией: В. Н. Гадалова, Н. А. Кореневского, В. С. Титова. 1998. С. 75-77.
- 7. Конструкционные материалы, используемые в машиностроении/ Агеева Е.В., Горохов А.А.// Учебное пособие для студентов вузов / Курск, 2014.
- 8. Моделирование конструкции сборных фасонных фрез/ Куц В.В., Горохов А.А., Умрихин Е.В.// В сборнике: Современные инструментальные системы, информацион-

ные технологии и инновации, материалы V Международной научно-технической конференции. Ответственный редактор Е. И. Яцун. 2007. С. 247-250.

TOM 2

9. Моделирование процесса фрезерования сборными дисковыми фрезами/ Куц В.В., Горохов А.А.// В сборнике: Физические и компьютерные технологии в народном хозяйстве Труды 3-й научно-практической конференции. 2001. С. 442-444.

621.431

256

# ВАСИН АЛЕКСЕЙ НИКОЛАЕВИЧ, ИЗНАИРОВ БОРИС МИХАЙЛОВИЧ, ИВАНОВ АЛЕКСАНДР ИВАНОВИЧ, МИРОШКИН АРТЕМ ГРИГОРЬЕВИЧ, МУКАТОВА ГУЛЬНАРА ХАМИДУЛЛОВНА

Саратовский государственный технический университет имени Гагарина Ю.А. г. Саратов, Россия miroshkim artem@mail.ru

#### СПЕКТРАЛЬНЫЙ АНАЛИЗ ФОРМЫ ПУСТОТЕЛЫХ ШАРОВ

В статье говорится о исследовании суперфинишной обработки на примере пустотелых шаров, позволяющей исправлять отклонения их от сферичности.

Спектральный анализ заключается в гармоническом анализе отклонений от круглости профилей сферы путем разложении их функций в тригонометрический ряд Фурье. Измерение величины отклонений формы производится в процессе ощупывания поверхности вращающегося шара. Колебания щупа датчика, вызываемые погрешностями формы, преобразуются в колебания электрического напряжения. Они усиливаются и подаются на автоматический анализатор гармоник, снабженный самописцем. Схема этого устройства представлена на рисунке 1.

Пустотелый шар I устанавливается в магнитную оправку 4 на прецизионном шпинделе с конусом Морзе № 2. Датчик 2 изготовлен в виде виброщупа с агатовым наконечником, контактирующим с шаром. При ощупывании поверхности шара якорь датчика с наконечником перемещается относительно неподвижного магнитного корпуса на величину отклонения от круглости, в результате чего в катушке возникает э.д.с., пропорциональная скорости перемещения щупа. Сигнал от датчика 2 проходит через усилители 6 и 7, а затем - через анализатор 8, где он разлагается на гармонические составляющие. Результаты измерений фиксируются на бумажной ленте при помощи самописца 9 в виде диаграммы, в которой по оси абсцисс отложены в логарифмической шкале номера гармоник, а по оси ординат - соответствующие амплитуды в микрометрах.

В качестве заготовок использованы партии пустотелых шаров, обработанные абразивными брусками 63C6C28KA на бесцентровосуперфинишном станке в течение 10 минут [1].