Элементы химической термодинамики и биоэнергетики.

Задачи химической термодинамики:

- 1 Установление энергетических эффектов химических и физико-химических процессов.
- 2. Установление критериев <u>самопроизвольного</u> протекания физических и физико-химических процессов.
- 3. Установление критериев равновесного состояния термодинамических систем.

Терминология химической термодинамики:

Термодинамическая система —

Изолированные системы - Закрытые системы - Открытые системы -

Гомогенные и гетерогенные системы.

Гетерогенные системы –

Пример:

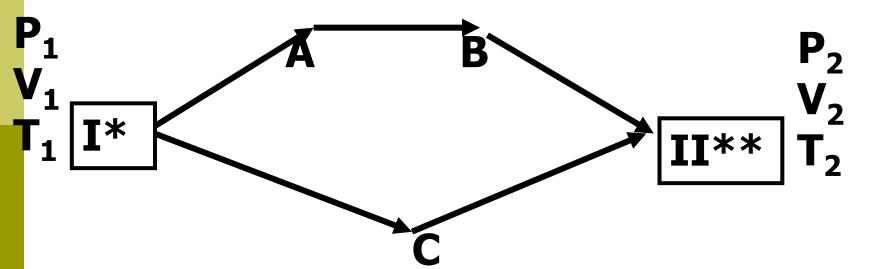
- Zn (TB.) + HCl (
$$\kappa$$
) \rightarrow ZnCl₂ + H₂ ^{\uparrow}

Фаза –

ТЕРМОДИНАМИЧЕСКИЕ ПАРАМЕТРЫ СОСТОЯНИЯ СИСТЕМЫ (ТПСС)

- 1. Основные T, p, V, m, р, η и т.д.
- 2. Функции состояния: внутренняя энергия (U), $U = E_{кин.} + E_{потенц.}$

 $\Delta \mathbf{U} = \mathbf{U_2}$ кон. — $\mathbf{U_1}$ нач.


В СИ: Дж. Вне СИ – калория. 1 кал – 4,18 Дж.

- энтальпия, - энтропия, - свободная энергия Гиббса

$$\Delta \mathbf{P} = \mathbf{P_2} - \mathbf{P_1}$$

$$\Delta \mathbf{V} = \mathbf{V_2} - \mathbf{V_1}$$

$$\Delta \mathbf{T} = \mathbf{T_2} - \mathbf{T_1}$$

Термодинамические процессы.

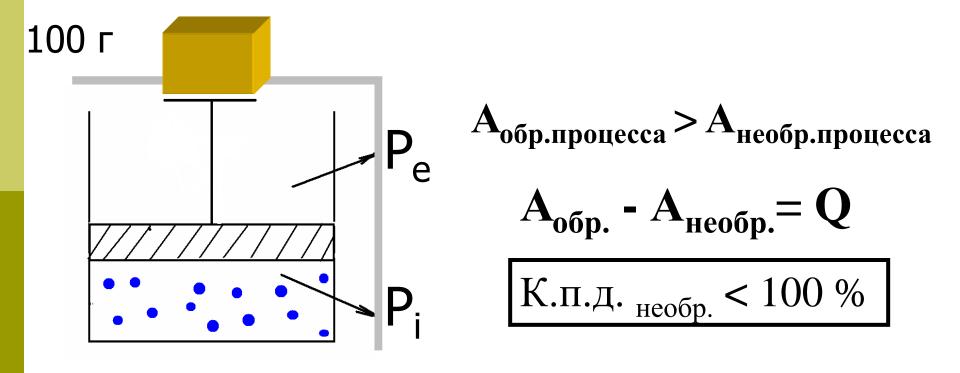
- **1. термодинамически обратимые процессы**
- 2. термодинамически необратимые процессы.

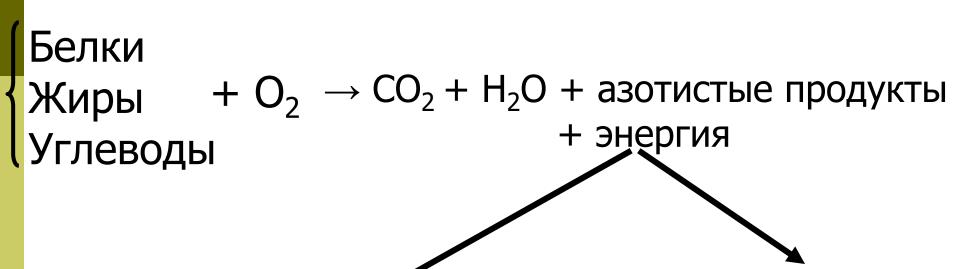
 $\mathbf{P_e} = \mathbf{P_i}$ $\mathbf{P_e}$ (externus)-наружный $\mathbf{P_i}$ (internus)-внутренний

$$\mathbf{A}_{\mathbf{e}} = \mathbf{P}_{\mathbf{e}} \cdot \Delta \mathbf{V}$$

$$\mathbf{A_i} = \mathbf{P_i} \cdot \Delta \mathbf{V}$$

T.K.
$$P_e = P_i$$
, TO $A_e = A_i$

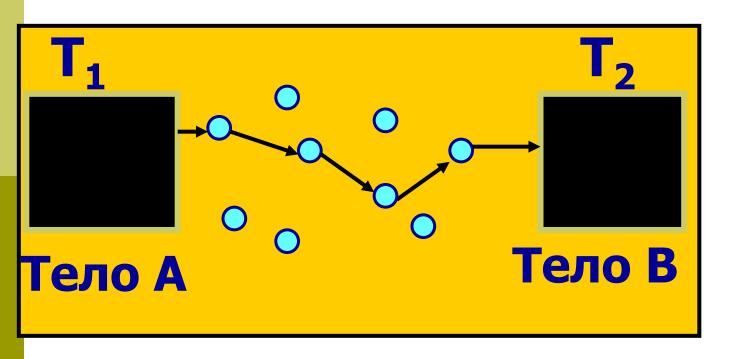

$$A_i = A_e$$
. К.п.д.=100%


Термодинамически необратимые процессы

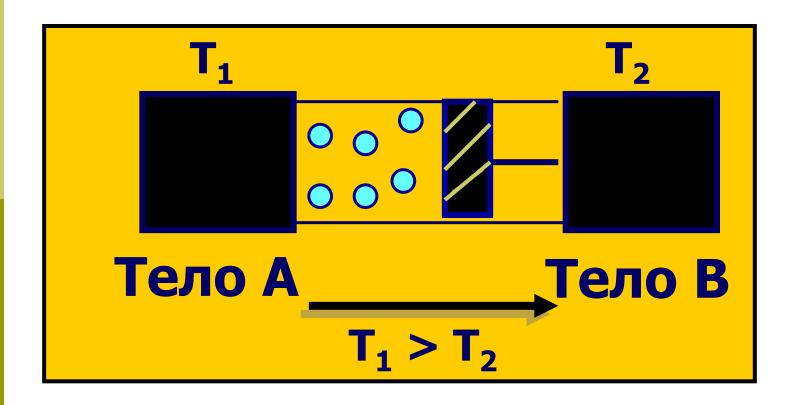
1. Равновесие $P_e = P_i$

$$2. P_e > P_i = > A_e > A_i$$

$$A_e - A_i = Q$$



25% на совершение работы (А)


75% рассеивание в окр.среду в виде теплоты (Q)

ТЕПЛОТА

$$T_1 > T_2$$

РАБОТА

ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ

Р.Майер (1842 г.), Д. Джоуль (1842 г.), Л. Гельмгольц (1847 г.)

$$\mathbf{Q} = \Delta \mathbf{U} + \mathbf{A}$$

Применение первого закона (Q = ΔU + A) термодинамики к различным процессам.

1. Изохорные процессы. V = const, $\Delta V = 0$

$$\mathbf{A} = \mathbf{p} \cdot \Delta \mathbf{V}$$

Т.к.
$$\Delta \mathbf{V} = \mathbf{0}$$
, то и $\mathbf{A} = \mathbf{0}$. Тогда $\mathbf{Q}_{\mathbf{V}} = \Delta \mathbf{U}$

Q_v - изохорный тепловой эффект реакции

2. Изобарные процессы. p = const, $\Delta p = 0$,

$$\mathbf{Q}_{\mathbf{P}} = \Delta \mathbf{U} + \mathbf{p} \cdot \Delta \mathbf{V}$$

Q_P - изобарный тепловой эффект реакции

$$Q_{P} = U_{2} - U_{1} + p(V_{2} - V_{1});$$

$$Q_{P} = U_{2} - U_{1} + pV_{2} - pV_{1}$$

$$Q_{P} = (U_{2} + p \cdot V_{2}) - (U_{1} + p \cdot V_{1})$$

Н- энтальпия

$$\mathbf{H} = \mathbf{U} + \mathbf{p} \cdot \mathbf{V}; \quad \mathbf{Q}_{\mathbf{P}} = \mathbf{H}_2 - \mathbf{H}_1 = \Delta \mathbf{H} \quad \mathbf{Q}_{\mathbf{P}} = \Delta \mathbf{H}$$

3. Изотермические процессы. T = const, $\Delta T = 0$

$$\mathbf{Q} = \Delta \mathbf{U} + \mathbf{A}$$

$$\Delta T = 0$$
, $\Delta U = 0$

$$\mathbf{Q}_{\mathrm{T}} = \mathbf{A}$$

4. Адиабатические процессы.

$$\Delta \mathbf{Q} = \mathbf{0}$$
. $\mathbf{0} = \Delta \mathbf{U} + \mathbf{A}$

$$\mathbf{A} = -\Delta \mathbf{U}$$

ТЕРМОХИМИЯ -

Тепловой эффект реакции -

Стандартный тепловой эффект -

P = 1атм; 101,3 кПа; T=298 К; 25 °С; n=1моль

Термохимические уравнения -

1) Термохимическая форма записи:

$$H_2\left(\Gamma\right)+\frac{1}{2}\,O_2(\Gamma)\to H_2O\left(\pi\right)+Q;$$
 $H_2\left(\Gamma\right)+\frac{1}{2}\,O_2(\Gamma)\to H_2O\left(\pi\right)+286\ кДж/моль$
 Q — термохимический тепловой эффект реакции

2) Термодинамическая:

$$H_2(\Gamma) + \frac{1}{2} O_2(\Gamma) \rightarrow H_2O(\pi); \Delta H = -286 кДж,$$

ДН — **термодинамический** тепловой эффект

$$\mathbf{Q} = -\Delta \mathbf{H}$$

Закон Гесса (1840 г.)

I.
$$C + O_2 \rightarrow CO_2$$
 $\Delta H = -393 \text{ кДж},$
II. a) $C + \frac{1}{2} O_2 \rightarrow CO$ $\Delta H_1 = -283 \text{ кДж},$
6) $2CO + O_2 \rightarrow 2CO_2$ $\Delta H_2 = -110 \text{ кДж}$
 -393 кДж

$$\Delta \mathbf{H} = \Delta \mathbf{H_1} + \Delta \mathbf{H_2}$$

Следствия из закона Гесса

Стандартная энтальпия образования вещества ($\Delta H^{o}_{oбp}$.) —

1.
$$\Delta \mathbf{H}^{\text{o}}_{\text{реакции}} = \sum \Delta \mathbf{H}^{\text{o}}_{\text{обр.прод.}} - \sum \Delta \mathbf{H}^{\text{o}}_{\text{обр.исх.в-в.}}$$

$$C_6H_{12}O_6(TB) + 6 O_2(\Gamma) \rightarrow 6 CO_2(\Gamma) + 6 H_2O(\pi); \Delta H = ?$$

$$\Delta \mathbf{H}^{\circ}_{\mathbf{p}-\mathbf{u}\mathbf{u}\mathbf{u}} = (6\Delta \mathbf{H}^{\circ}_{\mathbf{o}\mathbf{o}\mathbf{p}}\mathbf{C}\mathbf{O}_{2} + 6\Delta \mathbf{H}^{\circ}_{\mathbf{o}\mathbf{o}\mathbf{p}}\mathbf{H}_{2}\mathbf{O}) - (\Delta \mathbf{H}^{\circ}_{\mathbf{o}\mathbf{o}\mathbf{p}}\mathbf{C}_{6}\mathbf{H}_{12}\mathbf{O}_{6} + 6\mathbf{H}^{\circ}_{\mathbf{o}\mathbf{o}\mathbf{p}}\mathbf{O}_{2})$$

$$\Delta H^{\circ}_{\text{ реакции}} = -2800 \ кДж$$

Стандартная энтальпия сгорания $(\Delta \mathbf{H^{\circ}_{cr}})$ —

$$2 \cdot \Delta \mathbf{H}^{\text{o}}_{\text{реакции}} = \sum \Delta \mathbf{H}^{\text{o}}_{\text{сг.исх.в-в.}} - \sum \Delta \mathbf{H}^{\text{o}}_{\text{сг.прод.}}$$

Таблица 1. Калорийность основных составных частей пищи и алкогольных напитков

Составные части пищи и напитков	Калорийность	
	кДж/г	ккал/г
Углеводы	16	3,8
Белки	17	4,1
Жиры	38	9,1
Спирт (этиловый)	29	6,9

"Химия в действии" (М. Фримантл, с.226)

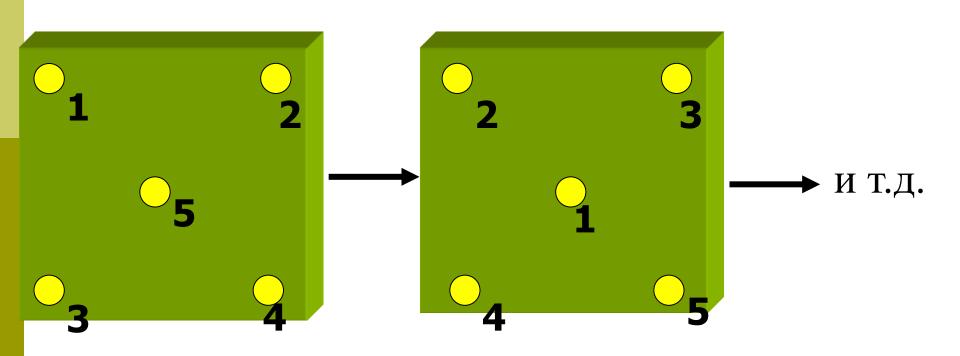
Продукты	Калорийность	
	кДж/г	ккал/г
Сливочное масло	30,41	7,40
Орехи	23,64	5,70
Сыр	16,82	4,06
Caxap	16,80	3,94
Рис	15,36	3,61
Мясо	11,07	2,66
Белый хлеб	9,91	2,33
Мороженое	6,98	1,66
Картофель	3,69	0,86
Апельсины	1,50	0,35
Пиво	1,29	0,31

Таблица 3. Расход энергии при различных режимах двигательной активности

Режим	Расход энергии	
	кДж/мин	ккал/мин
Сидение	6	1,5
Стояние	10	2,5
Ходьба	16	3,8
Бег	40	9,6

Общий расход энергии в сутки:

Мужчины ≈ 9200 - 12100 кДж;


Женщины ≈ 6700 - 8800 кДж

ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ

Статистическое толкование энтропии (S)

Людвиг Больцман

термодинамическая вероятность (W)

$$S = k \cdot \ln W$$

$$-\mathbf{k} = \frac{\mathbf{R}}{\mathbf{N}_{A}}$$

W- термодинамическая

вероятность; S – энтропия;

k – постоянная Больцмана;

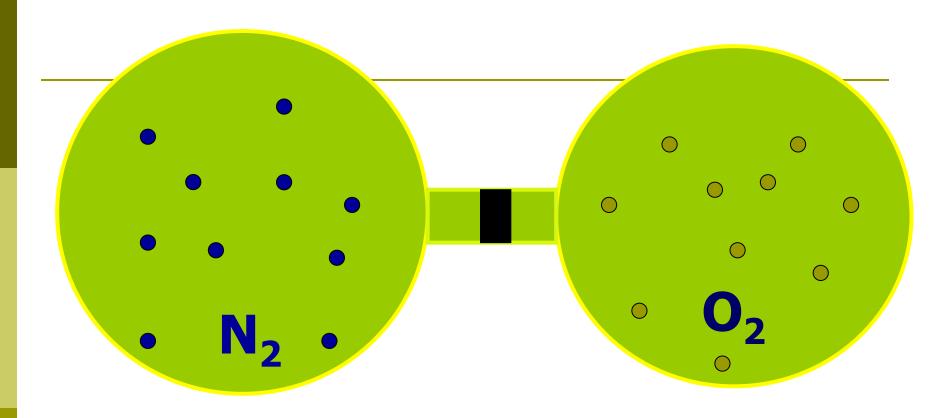
$$R = 8,31$$
 Дж/моль·К;

4 Yem
$$\uparrow$$
 W, Tem \uparrow S

 N_A - число Авогадро.

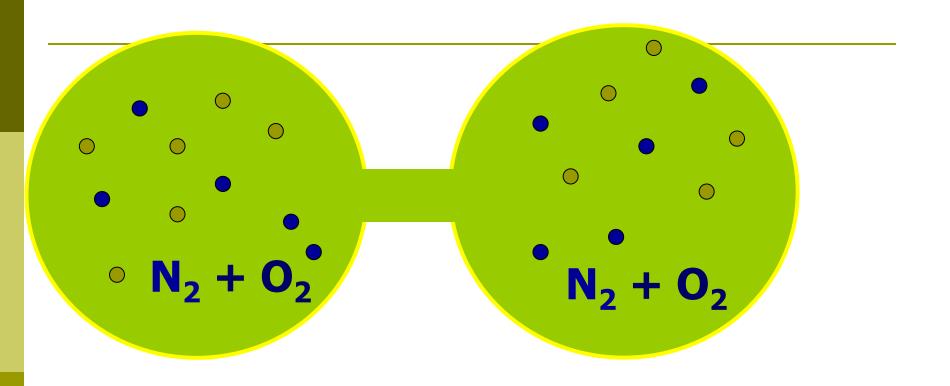
Твердое вещество — Жидкость — Газ

Min S


Max S

2KClO₃ (TB)
$$\rightarrow$$
 2KCl(TB) + 3 O₂(Γ)↑

Энтропия (S) – термодинамическая функция состояния, которая служит мерой беспорядка (неупорядоченности) системы.


I система:

$$\mathbf{T} \mathbf{N}_2 = \mathbf{T} \mathbf{O}_2$$
 $\mathbf{P} \mathbf{N}_2 = \mathbf{P} \mathbf{O}_2$
 $\mathbf{V} \mathbf{N}_2 = \mathbf{V} \mathbf{O}_2$

$$W_1$$
 $S_1 = k ln W_1$

II система

$$\mathbf{W}_2 \qquad \mathbf{S}_2 = \mathbf{k} \; \mathbf{ln} \mathbf{W}_2$$

$$W_2 > W_1 => S_2 > S_1$$

$$\Delta S = S_2 - S_1 = k \ln W_2 - k \ln W_1$$

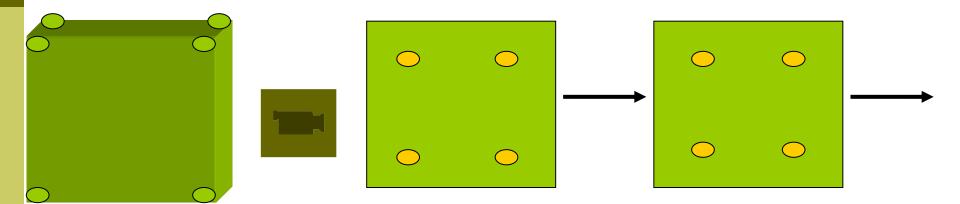
$$\Delta S = k \ln \frac{W_2}{W_1} > 0$$

∆S > 0 - критерий самопроизвольности протекания процесса.

 $\Delta S = 0$ - критерий термодинамического равновесия.

$$\Delta S \ge \frac{Q}{T}$$

математическое выражение второго закона термодинамики.


[S]- [Дж/ моль·К]

Изолированная система: Q = 0 $\Delta S \ge 0$

Второй закон термодинамики:

«Если в изолированной системе протекают самопроизвольные процессы, то ее энтропия возрастает» (закон возрастания энтропии)

Термодинамическое толкование энтропии.

 $W = 1 = S = k \cdot \ln W = k \cdot \ln 1 = 0$, T.K. $\ln 1 = 0$, T.E. S = 0

Объединенное уравнение первого и второго законов термодинамики.

I.
$$Q = \Delta U + A$$
 II. $\Delta S = \frac{Q}{T}$ $Q = T \cdot \Delta S$

$$\mathbf{T} \cdot \Delta \mathbf{S} = \Delta \mathbf{U} + \mathbf{A}$$

$$\mathbf{A}_{\text{общ.}} = \mathbf{p} \cdot \Delta \mathbf{V} + \mathbf{A}_{\text{полезн.}}$$

$$\mathbf{T} \cdot \Delta \mathbf{S} = \Delta \mathbf{U} + \mathbf{A}$$
 общая

$$\mathbf{T} \cdot \Delta \mathbf{S} = \Delta \mathbf{U} + \mathbf{p} \cdot \Delta \mathbf{V} + \mathbf{A}_{\text{полезн.}}$$

$$\Delta \mathbf{H}$$

$$\mathbf{T} \cdot \Delta \mathbf{S} = \Delta \mathbf{H} + \mathbf{A}_{\mathbf{полезн.}}$$

-
$$\mathbf{A}_{\text{полезн.}} = \Delta \mathbf{H} - \mathbf{T} \cdot \Delta \mathbf{S}$$

-
$$A_{\text{полезн.}} = (H_2 - H_1) - (T \cdot S_2 - T \cdot S_1);$$

-
$$A_{\text{полезн.}} = (H_2 - T \cdot S_2) - (H_1 - T \cdot S_1);$$

 $\mathbf{H} - \mathbf{TS} = \mathbf{G} - \mathbf{c}$ вободная энергия Гиббса

-
$$\mathbf{A}_{\text{полезн.}} = \mathbf{G}_2 - \mathbf{G}_1 = \Delta \mathbf{G}$$

$$\mathbf{A}_{\text{полезн.}} = -\Delta \mathbf{G}$$

1.
$$\Delta > 0$$
, $\Delta G < 0$

2.
$$A=0$$
, $\Delta G=0$

3. A<0,
$$\Delta$$
G>0

Влияние энтальпийного (Δ H) <u>и</u> энтропийного (Δ S) фактора на Δ G.

Анализ:

$$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$$

- 1) если $\Delta H < 0$ (экзо-) и $\Delta S > 0$, то $\Delta G < 0$
- 2) если $\Delta H > 0$ (эндо-) и $\Delta S < 0$, то $\Delta G > 0$
- 3) Δ H<0 и Δ S<0, или Δ H>0 и Δ S>0, то знак Δ G зависит от абсолютных значений Δ H и Δ S.
- $|\Delta H| > |T\Delta S|$; то $\Delta G < 0$ самопроизвольный процесс; $|\Delta H| < |T\Delta S|$; то $\Delta G > 0$ самопроизвольно в стандартных условиях не идет. $|\Delta H| = |T\Delta S|$; то $\Delta G = 0$ равновесие.

Расчет свободной энергии Гиббса при стандартных условиях (ΔG^0) в химических реакциях.

 $\Delta \mathbf{G^o}_{\mathbf{298\ ofp.}}$ - стандартная из справочника

- 1) $\Delta G^{o}_{peakции} = \sum \Delta G^{o}_{oбp.продуктов}$ $\sum \Delta G^{o}_{oбp.исх. в-в.}$ с учетом стехиометрических коэффициентов.
- 2) $\Delta \mathbf{G}^{o}_{peakuuu} = \Delta \mathbf{H}^{o}_{peakuuu}$ $\mathbf{T}\Delta \mathbf{S}^{o}_{peakuuu}$

∆G<0, самопроизвольные (экзергонические) реакции

∆G>0, не самопроизвольные (эндергонические) реакции.

 Δ G=0, равновесие.

Расчет ∆G_{реакции} в реальных условиях.

$$A + B \rightleftharpoons C + D$$

$$\Delta \mathbf{G} = \Delta \mathbf{G}^{\mathbf{o}} + \mathbf{R} \mathbf{T} \ln \frac{[C] \cdot [D]}{[A] \cdot [B]}$$

R - 8,31 Дж/моль·К;

 ΔG^{o} – const для данной реакции

Термодинамика химического равновесия.

$$XA + yB \xrightarrow{V_1} mC + nD$$
 V_2
 $V_1 = V_2 \ \underline{xumuческое равновесие.}$
овесные кониентрации -

Равновесные концентрации -

$$\mathbf{K_{x.p.}} = \frac{\left[C\right]^m \left[D\right]^n}{\left[A\right]^x \left[B\right]^y}$$

Чем $> K_{x.p.}$, тем более глубоко процесс идет вправо ——

К_{х.р.} зависит:

- 1. ot T;
- 2. от природы реагентов

Уравнение изотермы химической реакции.

$$A + B \longrightarrow C + D$$

(*)
$$\Delta G = \Delta Go + RT \ln \frac{[C] \cdot [D]}{[A] \cdot [B]}$$
 Реальные концентрации в равновесии: $\Delta G = 0$ веществ и Т

$$[A] \cdot [B]$$
 концентра веществ и $0 = \Delta G^{0} + RT \ln \frac{[C] \cdot [D]}{[A] \cdot [B]}$ - равновесные концентрации $0 = \Delta G^{0} + RT \ln K_{x, x}$

 $0 = \Delta G^{o} + RT \ln K_{x.p.}$

$$\Delta G^{0} = - RT \ln K_{x.p.}$$
 ! B3a1

! Взаимосвязь ΔG^{o} и $K_{x,p,s}$

Подставим это выражение в формулу (*).

$$\Delta \mathbf{G} = \mathbf{R} \mathbf{T} \left(\ln \frac{[C] \cdot [D]}{[A] \cdot [B]} - \ln \mathbf{K}_{\mathbf{x}.\mathbf{p}} \right)$$
- уравнение изотермы

Анализ:
$$\Delta G = RT \left(\ln \frac{|C| \cdot |D|}{[A] \cdot [B]} - \ln K_{x,p} \right)$$

R, T, $K_{x.p.}$ - это const в уравнении, поэтому, знак ΔG зависит от соотношения концентрационного переменного члена — [С].[D]

$$- \ln \frac{[C] \cdot [D]}{[A] \cdot [B]}$$
 обозначим (1)

и постоянного члена $\ln K_{x,p}$ обозначим (2).

- 1) Если (1)>(2), то Δ G>0 и равновесие влево —
- 2) Если (1)<(2), то Δ G<0 и равновесие вправо \rightarrow
- 3) Если (1)=(2), то ∆G=0 состояние равновесия.

Уравнение изобары химической реакции.

$$p=const; \Delta p=0$$

$$p=const; \Delta p=0$$
 $A+B \longrightarrow C+D$

$$\Delta G^{o} = -RT \ln K_{x.p.}$$

 $\Delta G^{o} = \Delta H^{o} - T\Delta S^{o}$

 $\Delta G^{o} = - RT \ln K_{x.p.}$ $\Delta G^{o} = \Delta H^{o} - T\Delta S^{o}$ => интегральная форма уравнения изобары:

$$\ln \frac{K_1}{K_2} = \frac{\Delta H^{\circ}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right), \text{ где}$$

 K_1 - это $K_{x,p}$ при T_1 ;

 K_2 - это $K_{x,p}$ при T_2 ;

∆Н°- тепловой эффект реакции;

 $R = 8,31 \, \text{Дж/моль·К}.$

Анализ:

1. экзотермические реакции: △Н <0

а) повышаем
$$T => T_2 > T_1$$
 и $\frac{1}{T_2} - \frac{1}{T_1} < 0$;

тогда
$$\ln \frac{K_1}{K_2} > 0$$
 и $K_1 > K_2 = >$ равновесие \leftarrow

б) понижаем
$$T=>T_2< T_1$$
 и $\frac{1}{T_2}-\frac{1}{T_1}>0$ тогда $\ln \frac{K_1}{K_2}<0$ и $K_1< K_2=>$ равновесие \to

- 2. эндотермические реакции: △Н>0
 - **a)** \uparrow T \rightarrow равновесие вправо
 - $\mathbf{6}$) ↓ T ← равновесие влево