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Preface

A modern electric drive system consists of a motor, an electric converter, and a con-
troller that are integrated to perform a mechanical maneuver for a given load. Be-
cause the torque/volume ratio of modern electric drive systems is continually
increasing, hydraulic drives are no longer the only option to use for industrial ap-
plications. In addition to their use in industrial automation, modern electric drives
have other widespread applications, ranging from robots to automobiles to aircraft.
Recent advances in the design of electric drives have resulted in low-cost, light-
weight, reliable motors; advances in power electronics have resulted in a level of
performance that was not possible a few years ago. For example, induction motors
were never used in variable-speed applications until variable frequency and rapid
switching were developed. Due to advances in power electronics, several new de-
signs of electric motors are now available.

Modern electric drive systems are used increasingly in such high-performance
applications as robotics, guided manipulations, and supervised actuation. In these
applications, controlling the rotor speed is only one of several goals; the full range
includes controlling the starting, speed, braking, and holding of the electric drive
systems. The exploration of these control functions forms the core of this text.

This book is designed to be used as a teaching text for a one-semester course
on the fundamentals of electric drives. Readers are expected to be familiar with the
basic circuit theories and the fundamentals of electronics, as well as with three-
phase analysis and basic electric machinery.

In this book, I cover the basic components of electric drive systems, including
mechanical loads, motors, power electronics, converters, and gears and belts. Each
component is first discussed separately; then various components are combined in
a discussion of the complete drive system. If instructors use this book in the first
course on the subject, they will not need to seek and use additional material because
this book is self-contained.

The focus of this book is on the fundamentals of electric drive systems. The
general types of electric loads and their dependence on speed are explained early
in the book, and load characteristics are considered throughout. In addition, I ex-
plain and analyze industrial motors from the drive perspective. To help the reader
understand why a particular motor is selected for a particular application, I pres-
ent and highlight the differences and similarities of electric motors.

Power converters are discussed in some detail, with ample mathematical analy-
sis. Early in the book, I present several solid-state switching devices and specific
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characteristics of each; this comparison of solid-state devices allows the reader to
understand their features, characteristics, and limitations.

Converters are divided into several groups: ac/dc, ac/ac, dc/ac, and de/dc. Sev-
eral circuits are given for these converters and are analyzed in detail to help read-
ers understand their performance. Detailed analyses of the electrical waveforms of
power-converter circuits demonstrate the concepts of power and torque in a har-
monic environment.

After readers become familiar with electric machines and power converters,
they can comprehend the integration of these two major components that creates
an electric drive system. This book includes detailed explanations of the various
methods for speed control and braking. Well-known applications appear through-
out the book in order to demonstrate the theories and techniques. Discussions of
the merits, complexities, and drawbacks of the various drive techniques help read-
ers form opinions from the perspective of a design engineer.

Finally, in each chapter, examples and problems simulate several aspects of
drive performance. The problems are designed to address key design and per-
formance issues and are therefore more than mere mathematical exercises.

An Instructor’s Solutions Manual (0-534-37167-1) to accompany this book is
available from the publisher.
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Elementis of Electric
Drive Sysiems

The study of electric drive systems involves controlling electric motors in the steady
state and in dynamic operations, taking into account the characteristics of me-
chanical loads and the behaviors of power electronic converters.

In the not-so-distant past, designing a versatile drive system with broad per-
formance was a difficult task that required bulky, inefficient, and expensive equip-
ment. The speed of an electric motor was controlled by such restrictive methods as
resistance insertion, use of autotransformers, or complex multimachine systems.
Motor selection for a given application was limited to the available type of power
source. For instance, dc motors were used with direct current sources, and induc-
tion motors were driven by ac sources.

To alleviate the problem of matching up the motor and the power source and
to provide some form of speed control, a common and elaborate scheme such as
that shown in Figure 1.1 was commonly used. Because its terminal voltage is rela-
tively easy to adjust, the dc motor was regularly selected for applications requiring
speed control. Given the status of the available technology, controlling the speeds
of alternating-current machines was much more difficult.

The system in Figure 1.1 consists of three electromechanical machines: an ac mo-
tor, a dc generator, and a dc motor. The ac motor (induction), which drives a dc gen-
erator, is powered by a single- or multiphase ac source. The speed of the induction

FIGURE 1.1
Multimachine system for speed control

ac current dc current
_— —_—

dc
generator

Shaft

/

Induction
motor

ac
source
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motor is faitly constant. The output of the dc generator is fed to the dc motor. The
output voltage of the dc generator is adjusted by controlling its excitation current.
Adjusting the field current of the generator controls the terminal voltage of the dc
motor, Hence, the speed of the dc motor is controlled accordingly.

The system described here is expensive, inefficient, and complex, and it re-
quires frequent maintenance. However, because of the limited technology available
during the first half of the 20th century, this system was the leading option for speed
control. In fact, a number of these systems are still in service; for example, old ele-
vators may still use this system today.

During the past few years, however, enormous strides have been made in the
areas of power electronics, digital electronics, and microprocessors. With the ad-
vances in power electronic devices, cheaper, more efficient, and versatile options
for speed control are now available.

Continuous improvements in solid-state technologies are yielding even more
reliable and better-performance devices, as well as new types of solid-state switches.
Solid-state devices can now handle larger amounts of current and voltage at higher
efficiencies and speeds. Additionally, the prices of these devices are continually
dropping.

Among the important developments in solid-state power electronics technol-
ogy is the integrated module. Solid-state switches can now be found in various con-
figurations, such as H-bridge or six-pack modules. Complete driving circuits are
now a part of very sophisticated and elegant designs. Most designs now have built-
in options for speed control and overcurrent protection. Previously, building such
modules took several months.

With the development of power electronic devices and circuits, virtually any
type of power source can now be used with any type of electric motor. Speed con-
trol can now be achieved by using a single converter. In fact, the older, inefficient
drive systems currently being used in some industrial applications are now being
replaced with solid-state drives. This retrofitting process is estimated to be a multi-
billion-dollar business in the United States alone.

With modern solid-state power technology, motors can be used in more pre-
cise applications, such as position control of robots and airplane actuation. Hy-
draulic and pneumatic systems are now being replaced by electric drives.

1.1 HISTORICAL BACKGROUND

Due to the lack of technology, electric drives historically were designed to provide
crude power without consideration of performance. Advances in industrial manu-
facturing led to a need for more sophisticated drives, which stimulated the devel-
opment of modern systems. The drive systems have various forms:

1. Line shaft drives. This s the oldest form of an electric drive system. (An example
is shown in Figure 1.2.) The system consists of a single electric motor that drives
equipment through a common line shaft or belt. This system is inflexible because
it cannot change the speed of one of the loads alone. It is also inefficient because
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known as fly-by-wire) is much lighter and faster, involves lower maintenance,
and does not require the heating of any hydraulic fluid. It is therefore a more
popular method in aviation.

The rover used by NASA for Mars exploration is a six-wheeled vehicle of a
rocker bogie design to negotiate obstacles. Vehicle navigation is accomplished
through control of its drive and steering motors. The energy source of the vehicle
is solar—several solar panels capture solar energy and store it in a battery pack.

The industrial manipulator or the robot arm can employ as many motors
as the process requires. The manipulator shown in Figure 1.4 is used for
waterjet cutting. The end effector of the manipulator or the robot arm must be
accurately controlled to achieve the desired precision.

1.2 BASIC COMPONENTS OF AN ELECTRIC
DRIVE SYSTEM

A modern electric drive system has five main functional blocks (shown in Figure 1.5):
a mechanical load, a motor, a converter, a power source, and a controller. The power
source provides the energy the drive system needs. The converter interfaces the motor
with the power source and provides
the motor with adjustable voltage, cur-

rent, and/or frequency. The controller FIGURE 1.5

supervises the operation of the entire
system to enhance overall system per-

formance and stability.

Often, design engineers do not se- Power | Electronic
lect the mechanical loads or power source " | converter
sources. Rather, the mechanical loads
are determined by the nature of the in- }

dustrial operation, and the power
source is determined by what is avail-
able at the site. However, designers

A

usually can select the other three com- |  Controller -

Functional blocks of an electric drive system

Mechanical
load

ponents of the drive systems (electric
motor, converter, and controller).

The basic criterion in selecting
an electric motor for a given drive application is that it meet the power level and
performance required by the load during steady-state and dynamic operations.
Certain characteristics of the mechanical loads may require a special type of mo-
tor, For example, in the applications for which a high starting torque is needed, a
dc series motor might be a better choice than an induction motor. In constant-
speed applications, synchronous motors might be more suitable than induction or
dc motors.

Environmental factors may also determine the motor type. For example, in
food processing, chemical industries, and aviation, where the environment must be
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clean and free from arcs, dc motors cannot be used unless they are encapsulated.
This is because of the electric discharge that is generated between the motor’s
brushes and its commutator segments. In those cases, the squirrel cage induction
motor or other brushless machines are probably the better options.

The cost of the electric motor is another important factor. In general, dc mo-
tors and newer types of brushless motors are the most expensive machines, whereas
squirrel cage induction motors are among the cheapest.

The function of a converter, as its name implies, is to convert the electric wave-
form of the power source to a waveform that the motor can use. For example, if
the power source is an ac type and the motor is a dc machine, the converter trans-
forms the ac waveform to de. In addition, the converter adjusts the voltage (or cut-
rent) to desired values. The controller can also be designed to perform a wide
range of functions to improve system stability, efficiency, and performance. In ad-
dition, it can be used to protect the converter, the motor, or both against excessive
current or voltage.

1.2.1 MECHANICAL LOADS

Mechanical loads exhibit wide variations of speed—torque characteristics. Load
torques are generally speed dependent and can be represented by an empirical
formula such as

T = CT,(E)k (1.1)

r

where C is a proportionality constant, T, is the load torque at the rated speed 7,, 7
is the operating speed, and £ is an exponential coefficient representing the torque
dependency on speed. Figure 1.6 shows typical characteristics of various mechani-
cal loads.

FIGURE 1.6
Typical speed—torque characteristics of mechanical loads

Speed 4 Constant torque
‘}nz
T~-1
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The mechanical power of the load is given by Equation (1.2), where w is the an-
gular speed in rad/sec, and 7 is the speed in r/min (or rpm). Figure 1.7 shows the me-
chanical power characteristics that correspond to the loads shown in Figure 1.6.

n
P = Toy; =2m—— 1.2
) o =2m- (1.2)
Figure 1.8 shows several types of me-
chanical loads that are commonly used in FIGURE 1.7 )
households. In general, the load characteris- Typical speed-power characteristics of

tics can be grouped into one or more of the mechanical loads

following types:
gtyp Constant torque

A 1
Speed T~

1. Torque independent of speed. The char- ™~

acteristics of this type of mechanical load
are represented by Equation (1.1) when
k is set equal to zero and C equals 1.
While torque is independent of speed,
the power that the load consumes is lin-
early dependent on speed. There are

many examples of this type of load, such >
as hoists or the pumping of water or gas Power
against constant pressure.

2. Torque linearly dependent on speed. The
torque is linearly proportional to speed £ = 1, and the mechanical power is
proportional to the square of the speed. This is an uncommon type of load
characteristic and is usually observed in a complex form of load. An example
would be a motor driving a dc generator connected to a fixed-resistance load,
and the field of the generator is constant.

FIGURE 1.8
Types of common mechanical loads

Fan: & =2 Electric drill: £ = —1
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3. Torque proportional to the square of speed. The torque-speed characteristic is
parabolic, £ = 2. Examples of this type of load are fans, centrifugal pumps, and
propellers. The load power requirement is proportional to the cube of the
speed and may be excessive at high speeds.

4. Torque inversely proportional to speed. In this case, & = —1. Examples of this type
include milling and boring machines. This load usually requires a large torque at
starting and at low speeds. The power consumption of such a load is independ-
ent of speed. This is why the motor of an electric saw does not always get dam-
aged (due to overcurrent) when the saw disk is blocked.

Some loads may have a combination of the characteristics listed. For example,
the friction torque exhibits a complex form of speed—torque that varies according to
the operating speed. At low speeds, the friction torque is almost inversely propor-
tional to the speed due to the magnitude of the static and coulomb frictions. At high
speeds, it is almost linearly proportional to the speed due to the viscous friction.
1.2.2 ELECTRIC MOTORS
Electric motors exhibit wide variations of speed-torque characteristics, some of
which are shown in Figure 1.9. Synchronous or reluctance motors exhibit a constant-
speed characteristic similar to that shown by curve L. At steady-state conditions, these

motors operate at constant speed regard-

less of the value of the load torque. Curve

FIGURE 1.9 11 shows a dc shunt or a separately ex¢ited
Speed-torque characteristics of electric motors motor, where the speed is slightly reduced
when the load torque increases. Direct

4 I (synchronous) current series motors exhibit the charac-
Speed| - 1V (igduction) II (dc shunt/ teristic shown in curve III; the speed is

separately excited) high at light loading conditions and low at

somewhat complex speed characteristic

------ similar to the one given by curve IV; dur-
) ing steady state, they operate at the linear
....................... portion of the speed-torque characteris-
tic, which resembles the characteristic of

/ heavy loading. Induction motors have a

/ Torque - a dc shunt or a separately excited motor.
Tonax The maximum developed torque of in-
duction motors is limited to Tp,,.

In electric drive applications, elec-
tric motors should be selected to match the intended performance of the loads.
For example, in constant-speed applications, the synchronous motor is probably
the best option. Other motors, such as induction or dc, can also be used in con-
stant-speed applications, provided that feedback circuits are used to compensate
for the change in speed when the load torque changes.
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1.2.3 POWER SOURCES

Two major types of power sources are used in industrial applications: alternating
current (ac) and direct current {dc). Alternating current sources are common in in-
dustrial installations and residences. These sources can either be single-phase or
multiphase systems. Single-phase power sources are common in residences, where
the demand for electric power is limited. Multiphase power sources are used in
high power consumption applications. The most common type of power source in
the United States is the three-phase, 60-Hz power source. In Europe, most of the
Middle East, Africa, and Asia, the frequency is 50 Hz.

Extensive industrial installations usually have more than one type of power
source at different voltages and frequencies. Commercial airplanes, for example,
may have a 400-Hz ac source in addition to a 270-volt dc source.

1.2.4 CONVERTERS

The main function of a converter is to transform the waveform of a power source
to that required by an electric motor in order to achieve the desired performance.
Most converters provide adjustable voltage, current, and/or frequency to control
the speed, torque, or power of the motor. Figure 1.10 shows the four basic types of
converters.

1. dc 10 ac. The dc waveform of the power source is converted to a single- or mul-
tiphase ac waveform. The output frequency, current, and/or voltage can be ad-
justed according to the application. This type of converter is suitable for ac
motors, such as induction or synchronous motors.

2. dctode This typeis also known as a “chopper.” The constant-input dc waveform
is converted to a dc waveform with variable magnitude. The typical application of
this converter is in dc motor drives.

3. ac to dc. The ac waveform is converted to dc with adjustable magnitude. The in-
put could be a single- or multiphase source. This type of converter is used in dc
drives.

4. ac to ac. The input waveform is typically ac with fixed magnitude and fre-
quency. The output is an ac with variable frequency, magnitude, or both. The
conversion can be done directly or through a dc link. The dc link system con-
sists of two converters connected in cascade; the first is an ac/dc, and the sec-
ond is a dc/ac. Typical applications of the dc link converter are ac motors.

In addition to electric drives, dc link converters are also used in such applica-
tions as the uninterruptable power supply (UPS). Figure 1.11 shows the basic com-
ponents of a UPS. The dc link between the two converters has a rechargeable
battery. In normal operation, the input current z, is converted to a dc current Iy,
This current is divided into two parts: one, I, charges the battery; the other, Iy,
is converted to the ac current 7, that feeds the load.

9
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FIGURE 1.10
Four types of converters

A — — Time
dc/ac
/\/\ converter
| " .
Time !
Clean or distorted Variable V and f
A \
R /\/\ de/de
| converter Time
Time SR
Clean or distorted Variable V
Time A
ac/dc +<
converter Time
—
Clean or distorted Variable V
Time Time
converter
Clean or distorted Variable V and f

When the source power is lost (such as in a power outage), the input current
i, and the dc current Iy are each zero. In this case, the energy stored in the bat-
tery is used to feed the load. The battery current Iz becomes the input current to
the de/ac converter so that the load power is not interrupted. The capacity of the
rechargeable battery and the magnitude of the load current determine the time by
which the system can feed to load during an outage.

1.2.5 CONTROLLERS

A well-designed controller has several functions. The most basic function is to mon-
itor system variables, compare them with some desired values, and then readjust the
converter output until the system achieves a desired performance. This feature is
used in such applications as speed or position control. Some drive systems may lack
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stability due to limitations in the converter or load characteristics. In such cases, a
controller may also be designed to enhance overall stability.

High-performance drives (HPDs)—such as robotics, guided manipulation, and
supervised actuation—are good examples of elaborate controllers. In these applica-
tions, the system must follow a preselected track at all times. A multirobot system
petforming a complementary function must move the end effectors about the space
of operation according to a preselected, time-tagged trajectory. To achieve this, each
motor in the robot arm must follow a specific track so that the aggregate motion of
all motors keeps the end effector alongside its trajectory at all times, even when the
system loads, inertia, and parameters vary. In addition, the stability of the system
must be guaranteed in all operating conditions. The controllers in these applications
are complex; their structure and/or parameters must be adaptively tuned to achieve
the two basic objectives: (a) to provide the best possible tracking performance with-
out overstressing the hardware and (b) to enhance system stability and robustness.

FIGURE 1.11
A UPS system

. Idcl Idcz .
%in —_— —_— Lout
— —
ac/dc Ip l ‘_I[r dc/ac
dc link
(a) Normal operation
Iy .
—— out
_/ .

ac/dc I T J— de/ac

dc link

(b) During outage

11
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Devices

In electric drive applications, the source waveforms often do not match the waveforms
needed by the electric motors to perform the needed functions. For example, if the
power source is a dc type (battery) and the motor is an ac type, the motor cannot be
powered directly from the source. In this case, a converter composed of electronic de-
vices is used to change the dc waveform into ac with suitable frequency and voltage.

The main building blocks of a converter are the solid-state power electronic
switches. They are similar to devices used in analog and digital circuits, such as tran-
sistors and diodes. However, power devices are designed to handle high currents and
voltages, operate at low junction losses, and withstand high rates of change of voltage
and current (dv/d# and di/dt). The switching speeds of solid-state devices should be
as high as possible in order to reduce the size of the circuit magnetic components and
to reduce audible noise due to the switching action. Because the human ear may de-
tect sounds between 20 Hz and 20 kHz, the technology of solid-state power switches
is continually pushing the switching frequency beyond the audible range.

Most solid-state power electronic devices are used to mimic mechanical
switches by connecting and disconnecting electric loads. Ideally, a mechanical
switch has the current—voltage characteristics depicted in Figure 2.1. When the
switch is open (off), it carries no current, and its terminal voltage is equal to the
source voltage. When the switch is closed
(on), its terminal voltage is zero, and its

FIGURE 2.1 current is determined by the load imped-
Current-voltage characteristics ance (Ohm’s laws).
of an ideal switch

A large part of the ongoing develop-
74 ment in power electronics research is de-
voted to improving the characteristics of
solid-state devices and making them com-
parable to the ideal switch. In this chapter,
we will discuss some of the basic opera-
v tional concepts that make solid-state
switches behave more like ideal mechani-
cal switches. Although this chapter covers
some of the well-established power elec-
tronic devices, keep in mind that the tech-
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In Figure 2.3, the symbol of the transistor is shown in the middle, and its pos-
itive bias is shown on the right side. The collector is positive-biased with respect to
the emitter or base, and the base voltage is positive with respect to the emitter, The
base-emitter junction is a simple diode. Hence, the voltage difference between the
base and emitter is very small (about 0.6 V).

The basic equations of the bipolar transistor can be written as

le =Bl + Icpo 2.1
IE = IB + IC (2.2)
Vep = Veg + Vag (2.3)

where B is the current gain (ratio of collector to base currents), and I, is the leak-
age current of the collector—emitter junction. The rest of the symbols are explained
in Figure 2.3. Because the leakage current is very small compared with BIj, it is of-
ten ignored.

A transistor can be connected in a common-base or common-emitter form.
Figure 2.4 shows the characteristic of an #-p-# transistor connected in the common
emitter. The base characteristic, shown in Figure 2.4(a), is very similar to that of the
diode. In the forward direction, the base-emitter voltage is below 0.7 V. A substan-
tial increase in the base current occurs at
a slightly higher value of the base-emitter
FIGURE 2.3 voltage.

Bipolar transistor Figure 2.4(b) shows the collector

characteristics, which can be divided
) () into three basic regions: the linear re-
() l Ic gion, the cutoff region, and the satura-
tion region. In the linear region, the

Iy transistor operates as an amplifier, where
(B) (B) Vg B is almost constant and in the order of a

(

Collector

(B)o—
Base

few hundreds. Any base current is am-

plified a few hundred times in the collec-

Emitter 1IE tor circuit. This is the region in which

(®) most audio amplifiers operate when us-

(E) ing bipolar transistors.

The cutoff region is the area of the

characteristic in which the base current

is zero. In this case, the collector current is negligibly small regardless of the value

of the collector-emitter voltage. In the saturation region, the collector—emitter
voltage is very small at high base currents.

The magnitude of the current gain B is dependent on the operating region of

the transistor. In the linear region, B is in the range of hundreds. In the saturation

region, it is often less than 30. When a transistor is used as a switch, it operates in

Te— x [y —eD
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two regions: cutoff and saturation. On a FIGURE 2.4
continuous basis, power transistors do not
operate in the linear region because the

Characteristics of the bipolar transistor

current of the power transistor is high, and Saturation
in the linear region, the voltage Vg is also A region Ip,
large. Therefore, the losses of the transis- A Ic
tor (the current multiplied by Vg) are ex- L Ip,< I3,
cessive and lead to thermal damage of the
transistor.

In the cutoff region, the transistor Tegion
acts as an open switch, where the collec-
tor current is almost zero regardless of N / B: 0
Vcg. In the saturation region, the transis- Vge 06 Cutoff J Vee
tor operates as a closed switch because region

the voltage across the switch is very
small, and the external circuit deter-
mines the magnitude of the collector cur-
rent. Compare these features with the mechanical switch characteristics in
Figure 2.1.

The circuit in Figure 2.5 explains the operation of a transistor in a switching
circuit. The transistor is connected to an external circuit that consists of a dc source
Ve and a load resistance R;. The base circuit of the transistor is connected to a
current source to prodiice the base current of the transistor.

The loop equation of the collector circuit is represented by

Vee = Ve + Ridle (2.4)

This equation, which demonstrates a linear relationship between I¢ and Vg, is
shown in the characteristics of Figure 2.5 and is known as the load-line equation.
The equation has a negative slope and intersects the V¢ axis at a value equal to V¢
and the I axis at a value equal to Vc/R;.

If the base current is set equal to zero, the operating point of the circuit is in
the cutoff region point 1. The collector current in this case is very small and can be
ignored. The collector emitter voltage of the transistor is almost equal to the source
voltage V. This operation resembles an open mechanical switch.

Now, assume that the base current is set to the maximum value. The tran-
sistor operates in the saturation region at point 2. The voltage drop across the
collector—emitter terminals of the transistor is small and can be ignored. The col-
lector (or load) current is almost equal to Ve/R;. In this case, the transistor is
equivalent to a closed mechanical switch.

The bipolar transistor is a current-driven device. To open the transistor, the
base current should be set to zero. To close the transistor, the base curtent should
be set as high as the ratings permit. Keep in mind that the base current must exist

(a) Base characteristics (b) Collector characteristics
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FIGURE 2.5

Switching operation of transistors

for as long as the transistor is closed.
Because B is small in the saturation
region and the collector current is
high in power applications, the base
current is also high in magnitude.
This situation creates two major
problems: the first is that there are
relatively high losses in the base cir-
cuit. The second is that the driving
circuit must be capable of producing
a large base current for as long as the
transistor is closed. Such a circuit is
large, of low efficiency, and complex

to build.

A transistor has B; = 200 in the linear region and B, = 10 in the saturation region.
Calculate the base current when the collector current is equal to 10 A, assuming
that the transistor operates in the linear region. Repeat the calculation for the satu-
ration region.

IC IB max

SOLUTION
In the linear region,
Ic 10
Ip=—"=—=50mA
B=g, 200 M
In the saturation region,
I 10
Iz = =€ = =1A
B, 10

Note that the base current in the saturation region is 20 times that in the linear
region. This ratio is the same as B,/j,.

2.1.2 FIELD EFFECT TRANSISTOR (FET)

Field effect transistors (FETs) are widely used as electronic switches in computer
and logic circuits. There are several subspecies of FETs. The most common are the
junction gate FET (JFET), the metal-oxide-semiconductor FET (MOSFET), and
the insulated gate FET (IGFET).

The operation of FETs is based on the principle that the current near the
surface of a semiconductor material can be changed when an electric field is ap-
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plied at the surface. An example is shown in Figure 2.6. Two FIGURE 2.6

n-junctions (source and drain) are embedded in a p material. N-channel IGFET

The gate, which is metal, is connected to the positive side of

a dc supply. The source and drain are connected to another Gate (G)

dc supply, with the drain on the positive side and the source Source (S) Drain (D)

on the negative side. The voltage difference between the

drain and source creates a current flowing in the channel. The

magnitude of the current is affected by the strength of the Electric field

electric field from the gate. Thus, the gate voltage controls Yy vy vYYY

the drain current. Remember that the base current of the " I "

bipolar transistor controls the collector current, which makes N

the FET much easier to control than the bipolar transistor. » \
Several characteristics can be obtained from the many FET

subspecies. Figures 2.7 and 2.8 show the characteristics of a Channel

MOSFET in enhanced mode and in enhanced/depletion mode.
The difference between the two is that a MOSFET designed for enhanced/deple-
tion mode has a narrow-doped conducting layer diffused into the channel. The

FIGURE 2.7
Enhanced-mode MOSFET

(D) Ip vGs,

vGs, < UGS,

UGS, < UGS,

O<vgs <o
GS4 GS3

Vps
FIGURE 2.8
Enhanced/depletion mode MOSFET
\
(D) IDﬂ VGSI >0
|
Vs, =
(G)
K ) VDS VGSa <0
Ves
(S >

Vps
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presence of this layer results in current I, flowing inside the channel even if the
gate-to-source voltage Vi is negative.

The main advantage of FETs over bipolar transistors is in the way the current
in the switching circuit is controlled. The FETs are voltage-driven devices, unlike
the current-driven bipolar transistors. The gate voltage controls the drain current
Ip of a FET, which is relatively easy to implement.

2.2 THYRISTORS

Thyristor is a name given to a family of devices that include the silicon-controlled rec-
tifier (SCR), the bidirectional switch (triac), and the gate turnoff SCR (GTQO). These
devices can handle large currents and are widely used in power applications. Although
not commonly used, other thyristor devices are also available for low-current control
circuits, such as the silicon unilateral switch (SUS) and the bilateral diode (diac).

2.2.1 FOUR-LAYER DIODE

The four-layer diode is the basic form of thyristor. Its structure is shown on the left
in Figure 2.9. The four-layer diode consists of four layers of semiconductor materi-
als constructed in the p-#-p-n order. To understand its operation, reconstruct the
thyristor in the form shown in the middle of Figure 2.9. The four-layer diode can
be modeled as two three-layer devices
(Q, and Q,) with a common #-p junc-

tion. These two devices are in fact tran-

FIGURE 2.9
Four-layer diode sistors, where Q; is a p-n-p transistor
and Q, is an #-p-# transistor. The circuit
Anode (A) (A) (A) representing these transistors is shown
7 I on the right side of Figure 2.9. The sym-
I l 4 HA I bols A and K are for anode and cath-
—5 ode, which represent the emitters of Q,
p p QZ QI d . l
1 and Q,, respectively.
" I l When the anode-to-cathode volt-
p p 1 p o . . . .
age is negative, the base-emitter junc-
7 p Q2 X ‘
Q tions of the two transistors are reverse
l lIA bias. Only leakage current is flowing

Cathode (K)

between the anode and cathode. The
leakage current is very small and the
device is actually open. If the magni-
tude of the applied voltage increases to
a breakdown limit (called reverse breakdown Vi), the device is destroyed and a
permanent short occurs. This phenomenon is known as thermal runaway.

When the anode-to-cathode voltage is positive, the base-emitter junctions of
both transistors are in forward bias. In this case, the following equations apply:
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= oyl + Iepo,

Ic2 =l — IC302

IA = ICI + ICZ

Icpo, = Icpo,

Iy

T (o tay)

(2.5)
(2.6)
(2.7)

(2.8)

where a is the current gain (the ratio of collector current to emitter current),
and I¢po is the leakage current in the collector-base junction. The current gain
varies in magnitude depending on the collector-to-emitter voltage. If the volt-
age is small, the quantity a; + «, is much less than one, and the anode current
is very small. The device in this case is considered open. When the voltage in-
creases, the current gain also increases. When the value of a; + o, approaches
unity, a breakover occurs, and the anode current tends to increase without lim-
its. However, the impedance of the external circuit will limit the current ac-
cording to Ohm’s laws. The voltage at breakover is called the breakover voltage

or Vpo.

The basic current—voltage characteristic of the four-layer diode is shown in Fig-

ure 2.10. In the forward direction (quad-
rant 1), the anode current is negligibly
small when the anode-to-cathode voltage
is less than the breakover voltage V(. At
the breakover voltage, the device starts to
conduct and the external circuit deter-
mines the magnitude of the forward cur-
rent. During the conduction period, the
voltage across the device is very small (=~
1 V). This voltage drop results in power
losses inside the device; these losses pro-
duce heat that must be dissipated to pro-
tect the device from thermal damage.

If the anode current is reduced be-
low a certain value called holding current
I,, the device opens, and the current
drops to zero. The voltage across the de-
vice is now equal to the source voltage.
This process is called commutation.

FIGURE 2.10

Basic characteristics of the four-layer diode

4
I4

Quadrant 1

2.2.2 SILICON-CONTROLLED RECTIFIER

Figure 2.11 shows various silicon-controlled rectifiers (SCRs) used in power appli-
cations. SCRs are frequently used in power electronic circuits. However, this may
change in the future, as other devices such as the IGBT are getting larger ratings

Veo Vax
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FIGURE 2.12
Silicon-controlled rectifier
Anode (A) (A) (A)
lIA }
L
p p Q; Qi
Gate (G) |7 no” Ie
— Gloe—— » — ? 11
" I Q " ©re— Q:
l l o
Cathode (K) (K) (K)
FIGURE 2.13

SCR symbol and characteristics

Anode (A)

Gate (G)

Cathode (K)

A SCRis connected in series with an ac voltage source of 120 V (rms value) and a load
resistance. The breakover voltage of the SCR Vo = 200 V, and K = 0.2 mA ™. Cal-
culate the approximate value of the dc gate current required to trigger the SCR at 30°.

SOLUTION
The source voltage can be written as

V, = V2(120)sin (o)

21
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When the SCR is open, the voltage across the SCR is equal to the source voltage.
For a 30° triggering angle, the voltage across the SCR is

Vo = V2(120)sin(30)
The dc triggering current can then be calculated using Equation (2.9):
Vio = V2(120)sin(30) = 200¢~ 020
I = 429 mA

2.3 OTHER POWER DEVICES

Various newer hybrid designs of power electronic devices are available that offer new
characteristics or substantial modifications to the existing characteristics of the single
devices. In this section, a few of these hybrid devices are described. However, be aware
that changes in this area are very rapid and that newer devices are continually emerging.

2.3.1 DARLINGTON TRANSISTOR

When a bipolar transistor operates as a switch, only the cutoff and saturation re-
gions are used. In the saturation region, the current gain § is very small. Hence,
when the transistor is closed, a large base current is needed. This base current must
be maintained for as long as the transistor is closed. The continuous large base cur-
rent results in high transistor losses and demands an extensive control circuit to
provide it.

Assume that the load current (which is equal to the emitter current) is
100 A, and B is 4. The base current in this case must be

=20A
1+ 0

which is very large. To reduce the base current, two transistors can be connected in
Darlington fashion as shown in Figure 2.14. The emitter current of Q is (1 + B)5,.
This emitter current is also equal to the base current of transistor Q,. The emitter
current of transistor Q, is

Ig, = (1 + By)lp, = (1 + By)(1 + Byl (2.10)

Hence, the ratio of the emitter current of Q, (which is the load current) and the
base current of Q, (which is the triggering current) is

E =(1+B)A + By (2.11)
Bl
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Assume that Q; and Q, are identical transistors with 8; = 8, = 4. Also assume that
the load current is 100 A. In this case, the base current for the Darlington transis-
tor is 4 A, which is one-fifth of the base current computed for the single transistor
in the preceding case.

2.3.2 INSULATED GATE BIPOLAR TRANSISTOR (IGBT)

Bipolar transistors are devices with relatively low losses in the power circuit (col-
lector circuit) during the conduction period, due to their relatively low forward
drop Vg when closed. Bipolar transistors are also more suitable for high switching
frequencies than SCRs. These are very desirable features for power applications.
However, bipolar transistors have very low current gains at the saturation region
(when closed). Thus, the base currents are relatively high, which makes the trig-
gering circuits bulky, expensive, and of low efficiency.

On the other hand, MOSFETs are voltage-controlled devices that require very
small input current. Consequently, the triggering circuit is much simpler and less
expensive to build. In addition, the forward voltage drop Vs of a MOSFET is
small for low-voltage devices (<200 V). At this voltage level, the MOSFET is a
fast-switching power device. Because of these features, MOSFETs replace bipolar
transistors in low-voltage applications (<200 V).

In high-voltage applications (>200 V), both the bipolar transistor and the
MOSFET have desirable features and drawbacks. Combining the two in one circuit,
as shown in Figure 2.15, enhances the desirable features and diminishes the draw-
backs. The MOSFET is placed in the input circuit and the bipolar transistor in the
output (power) circuit. The MOSFET is triggered by a voltage signal with a very low
gate current. Then the source current of the MOSFET triggers (closes) the bipolar
transistor. The losses of the output power circuit are relatively low even for high-
voltage applications. Furthermore, because the output circuit is a bipolar transistor,
it can be used in high-frequency switching applications. These two devices can now
be included on the same wafer; the new device is called the insulated gate bipolar

FIGURE 2.14 FIGURE 2.15
Darlington transistor MOSFET and bipolar circuit
(©) (®)
(D)
Ip
(B) o——= @ '—d‘ Iy
Q2 Ves
lIEz lIE

23
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FIGURE 2.16
Characteristics of the IGBT

o Vs, > Vas, > Vs,
Ves,
Vs,
VCE= (C)
I A l I
(G) ’—‘

transistor or IGBT. The symbol (for N-channel type) and characteristics of an IGBT
are shown in Figure 2.16.

2.4 RATINGS OF POWER ELECTRONIC DEVICES

Most power electronic devices are robust with a long operational life, providing
they are adequately protected against excessive currents and voltages. A quick
summary of various aspects of power device protection follows.

1. Steady-state circuit ratings. The steady-state current and voltage of the circuit
should always be less than the device ratings. A good rule of thumb is to select
a device that has ratings at least double the circuit requirements.

2. Junction temperature. Losses inside solid-state devices are due to impurities of
their material as well as to the operating conditions of their circuits. These
losses are as follows:

a. During the conduction period, the voltage drop across the solid-state
device is about 1 V. This voltage drop multiplied by the current inside
the device produces losses.

b. When the device is in the blocking mode (open), a small amount of
leakage current flows inside the device, which also produces losses.
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of false triggering that may lead to excessive current or excessive di/dt. To
protect the device against excessive dv/dt, a snubbing circuit for dv/dt must

be used.

2.5 di/dt and dv/dt PROTECTION

To protect a power electronic device against excessive di/dt and dv/dt, a snubbing cir-
cuit must be used. The function of this circuit is to limit the current and voltage tran-
sients. A simple snubbing circuit for an SCR is shown in Figure 2.18. The circuit is
composed of a source voltage, a load, and an SCR. The circuit has a snubbing induc-
tor L, to limit the di/d¢ in the current path. It also contains an RC circuit to limit the
dv/dt across the SCR.

Let us first assume that the load has the following impedance:

JoCy,
Now examine the path of the current 7;, which can be written in Laplace form as
V()

= (2.13)
<R + SL + —)

CS

where R=R, + R;,,L =L, + L;,and C = C; C / (Cs + C.). Assume that the
source voltage is step input. Hence, V(§) = V/S. Equation (2.13) can be written as
CVw?

T2y 2bw,S + ol @14

_ L
®n =L
R [C

STV

L)

where £ is called the damping coefficient, and w,, is the natural frequency of oscil-
lation. The time domain solution of Equation (2.14) is

L = A%ewg‘”ﬂ‘sin (wn (1 - 52)t>
Vit - &)

The di/dt of 7, can be computed using Equation (2.15):

- _ 2
% = -\/(—f—vf——%e_gwntsin [,V (1 — )] + CVwle ®¥cos [,V (1 — 7] (2.16)

(2.15)
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FIGURE 2.18
Snubbing circuit for di/dt and dv/dt protection

Let us assume that the capacitors are initially uncharged. Furthermore, the charge
on the capacitors cannot instantly change. The maximum dJ7/d¢ then occurs at the
initial time (¢ = 0). Hence,

dl’l . L/
| = 217)

The snubbing inductor is then calculated as

=Y (2.18)

dt max
For adequate protection, L, should be selected so that Vis substituted by the max-

imum nonrepetitive forward blocking voltage Vi, and di/dt by, say, half the max-
imum d7/dt rating of the SCR.

L - %W _1, (2.19)
7
0.5 (dt) rating

Equation (2.19) should be adequate to protect the SCR from excessive di/dr due to
supply surges. This is only one of three types of transients that a SCR should be able
to withstand without damage. The other two transients are the dv/dr and the di/d¢
created by the RC snubbing circuit itself when the SCR is turned on.

The RC circuit (R, and C,) can protect the SCR from the other two transients.
Let us assume that the charge on the capacitor C, is zero when the voltage Vis ap-
plied. With this assumption, the voltage across the SCR Vg at the initial time is

Vser = R, 7 (2.20)

27
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Then
dVscr _ 5, 4y
SR =R, (2.21)
Substituting d7,/d¢ of Equation (2.17) into (2.21) yields
dVscrk _ , V
7 R, I (2.22)

Equation (2.22) shows that the smaller the resistance R, is, the smaller is the dv/dt
across the SCR. In fact, Equation (2.22) shows that there will be no dv/dt if R; is set
equal to zero. However, as we will see next, R, is needed to limit the di/dt created
by the snubbing capacitor.

Let us assume that the user triggers the SCR. The current going through the SCR
has two components: one is 7, from the source, and the other is 7, from the snubbing
capacitor, as shown in Figure 2.18. We already discussed the di/dt attributed to 7.
The current Z, will also cause a 4i/dt and must also be limited to a tolerable value.

Let us first write the equation for 7.

Vo —treC)

= 2 o H/RC, 2.23
) R, e (2.23)
where V, is the capacitor voltage due to its initial charge before the SCR is trig-
gered. You may assume the worst value for V,,, which is equal to the Vgo. The di/dt
of this circuit is then

di, -V, —HRC)

-d; = FEO e (2.24)
s 5
The maximum d7,/dt occurs at ¢ = 0. Hence,
= |max = 22 (2.25)
[ dt R2C,

As in the previous discussion, d7,/dt should also be limited to, say, half the SCR
rating.

Now examine Equations (2.22) and (2.25). Equation (2.22) shows that small
R, leads to small dv/dt, but Equation (2.25) shows that if R, is made small, the d,/dt
will be large. This is a situation in which a compromise is made.

An SCR is connected between an ac source of 120 V (rms) and a resistive load. The
maximum di/d¢ of the SCR is 100 A/psec, and the maximum nonrepetitive forward
blocking voltage Vo is equal to 300 V. Calculate the minimum value of the snub-
bing inductance.
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SOLUTION
Direct substitution in Equation (2.19) yields

300

L=m=6|¢h

To reduce the size of the inductor, iron-core material could be used. The prob-
lem with iron-core inductors, however, is the core saturation, which reduces the
value of the inductance at high current values. Air-core inductors do not suffer
from saturation but are bulky. Nevertheless, air-core inductors are normally used
for snubbing circuits.

Design a snubbing circuit to protect a SCR from excessive dv/dt. The SCR has a
snubbing inductor of 8 wh. The snubbing circuit must not allow the SCR to exceed
the following:

Vo = 4000 V
di
— = A
7 200 A/psec
dv
0 1500 V/usec

SOLUTION
Equation (2.22) can be used to select R,. However, any value selected for R, should
ensure that the d7,/dt of Equation (2.25) is not excessive. The easiest method is to
pick a reasonable value for the capacitance C,, then compute the R, that limits the
maximum d7,/d¢ to half the SCR rating. Then we must check the value of the dv/dt
across the SCR.

Let us select C, to be 10 pf. Then, from Equation (2.25),

R = VBQ _ 4000 —5q
di 0.5 X 200 X 10
0.5 I C,

Substituting R into Equation (2.22) yields

1% \% 000
ddjf:Rs £O=248 = 1kV/ps

The dv/dt is below the rating of the SCR.

29



30 CHAPTER 2

Another factor that should be kept in mind is the losses of the snubbing circuit
due to the presence of R,. When the SCR is not triggering, the current 7; causes
losses in the snubbing circuit that can be expressed by

P=:R

5

A bypass diode can be used in parallel with R, to reduce the losses. The diode
can also reduce the dv/dt in Equation (2.22).

CHAPTER 2 PROBLEMS

2.1 A bipolar transistor is connected to a resistive load as shown in Figure 2.19.
The source voltage V¢ is 60 V and Ry is 5 €.

In the saturation region, the collector—emitter voltage Vg is 5V and B
FIGURE 2.19 . . . .. . .
is 6. While the transistor is in the saturation region, calculate the fol-

- lowing:
[ ¢ R . Load current
L

. Load power
Ve
I Vee

Losses in the collector circuit
Losses in the base circuit
Efficiency of the circuit

o an o

2.2 For the transistor in Problem 2.1, compute the load current, load power, and
efficiency of the circuit when the transistor is in the cutoff region. Assume that
the collector current is 100 mA in the cutoff region.

2.3 Design a snubbing circuit for a power bipolar transistor that operates in a cir-
cuit between a resistive load of 20  and an ac source of 120 V (rms) at 60 Hz.
The available ratings of the transistor are

di,
dt

(d;;e)max = 300 V/psec ( )max = 20 A/psec (V) max = 600 V

2.4 Design a snubbing circuit for a power transistor that operates in a circuit con-
sisting of an inductive load and an ac source. The resistive component of the
load is 20 Q and the inductive component is 10 . The ac source is 120 V (rms)
at 60 Hz. The transistor has the same ratings as the one in Problem 2.3.



Infroduction to Solid-State
Switching Circuits

Reduction of system losses is one of the major achievements resulting from the use
of solid-state power devices. As an example, the induction motor is known for its
low efficiency at light loading conditions. To reduce its losses, the terminal voltage
of the motor should be reduced during no-load or light loading conditions. This
can be achieved by using an autotransformer equipped with control mechanisms
for voltage adjustment. This is an expensive option that also requires much main-
tenance. An alternative method is to use a power electronic circuit designed to con-
trol the motor voltage; this option is often much cheaper and more efficient.

In addition to improving system efficiency, power electronic devices can
greatly enhance system operation and can provide features that may not otherwise
be achieved. For example, when an induction motor is operating in a variable-
speed environment, the frequency of the supply must vary. (Speed control of the
induction motor is explained in a later chapter.) Without a power electronic circuit,
the frequency can only be varied by using complex electromechanical systems em-
ploying several electric machines.

In this chapter, we will introduce the concept of solid-state switching circuits
applied to static loads (resistive, inductive, and capacitive). Solid-state switching for
dynamic loads, such as electric motors, is treated in later chapters. In the following
analyses, we will assume that the solid-state devices are ideally switched without
losses or transients.

3.1 SINGLE-PHASE, HALF-WAVE, ac/dc
CONVERSION FOR RESISTIVE LOADS

Figure 3.1 shows a simple circuit consisting of an alternating current source of po-
tential v, a load resistance, and an SCR connected between the source and the load.
An external circuit, not shown in the figure, triggers the SCR. The load voltage is
labeled v,. Assume that the SCR is an ideal device with no voltage drop during con-
duction. When the SCR is open, the current of the circuit is zero and the load volt-
age is also zero. When the SCR is closed, the voltage across the resistance is equal
to the source voltage.
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FIGURE 3.1
Half-wave SCR with resistive load

3

7
QD vt R

Let us assume that the source voltage is sinusoidal, expressed by the equation

v. =V

5 max

sin(wt) (3.1)

At an angle wf = «, the SCR is triggered (closed). No current existed in the circuit
before the SCR was triggered. For the discontinuous current operation of this
switching circuit, the current waveform can be expressed by

2
i = E(% — up) (3.2)

where #,, and # are step functions defined as

ty, = ulwt — a), Uy, =0 forws<a, otherwises, =1

ug = u(wt — ), ug = 0 forwr <180° otherwise #g = 1

The waveforms of the current and voltages are shown in Figure 3.2. Before a,
the current and the load voltage are both zero. After a, the SCR is closed and the
load voltage is equal to the source voltage. The current, as expressed in Equation
(3.2), is equal to zero except between « and 1. At , the current reaches zero and
the SCR is turned off. (Remember that the SCR is turned off when its current falls
below its holding value.) The voltage across the SCR is zero while closed. When the
SCRis open, the voltage across its terminals is equal to the source voltage. The volt-
age across the load can be expressed by

v, = iR = v(uy — up) (3.3)

The average voltage across the resistance (V) is a function of the area under the
waveform of v,.

1 27 1 ™ 1 1T
v (g — ug) dot = Z—-J' v, dwt = ?J Vinax Sin(w?) dwt
™ s o

we 2w, 2m

Vv
Vo= 221 4+ cosa) (3.4)

ave 2 T
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FIGURE 3.2
Waveforms of the circuit in Figure 3.1
4
ot
A
USCR
o ot
FIGURE 3.3
Average voltage across the load
Vave“
Vinax/T
Vinax/(270)
/2 i o

Figure 3.3 shows the load average voltage, which is expressed by Equation
(3.4). The maximum average voltage is V,,,./m, which is obtained when the trig-
gering angle is zero. The minimum average voltage is zero at & = w. The average
current of the circuit is linearly proportional to the load average voltage

V.
Iave = -% (35)
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A single-phase, half-wave SCR circuit is used to reduce the average voltage across
a nonlinear resistance with a resistive value represented by

R=02V?

ave

+ 56

The source voltage of the circuit is 110 V(rms). Calculate the average current when
the triggering angle is 90°.

SOLUTION

The first step is to calculate the average voltage across the load as given in Equa-
tion (3.4):

_ Vinas V2110

1+ cosa) = >
T

V

ave 2

[1+ cos(90)] =24.75V

The resistance of the load is a nonlinear function of the average voltage. At 24.75
V, the load resistance is

R=02V2, +5=02(4752+5=12760Q

The average current of the load can be obtained by dividing the average voltage
over the load resistance:

3.1.1 ROOT-MEAN-SQUARES

Electric quantities (current, voltage, and power) are often expressed by their root-
mean-square (rms) values. In a purely sinusoidal system, the rms value is

V — Vmax

rms ,\/E

where V_,_is the maximum (peak) of the voltage waveform and V is the root-
mean-square.

In nonsinusoidal systems, the above equation is not valid. The rms then must
be computed using the basic definition for the rms values. To do that, you first
compute the square of the waveform, find its average value, and then compute its
square root. These three steps are shown in Equation (3.6).

B —17 2w , 3 _1_ 2w ] ,
Vims = \/;'r J’o [v(£)])° dwt = \/2“_ L [Vinax sin(w#) ] dot (3.6)
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Since the load voltage exists only during the conduction period (between o and ),
the integration limits of Equation (3.6) are also the limits of the conduction period.

2 ™ V2 ™
Vrms = \/ﬂ J [Sil’l((x)l)]z dwt = \/—w J [1- COS(Z(.\)Z‘)] dwt
2w Jq 47 4

Vims = %‘“\/ [1 -+ ———~Sin(2°‘)} (.7)

™ 2w

\% a sin(2a)>
\4 _ Ysrms 1— 2+
rms V2 ( T 2w

where V, .., is the rms voltage of the sinusoidal source

V,
V — max

§rms \/2‘

Figure 3.4 and Equation (3.8) show that the rms voltage across the load V,  is a
function of the triggering angle o. When a = 0,

Vv
V — 5 rms

rms \/E

The rms current can also be calculated similarly to the way given in Equation (3.6).
A simpler method is to use the expression

Iy = 2

FIGURE 3.4
rms voltage of the load

A
Vrms

V,

§ rms

V2

Y
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An ac source of 110 V (rms) is connected to a resistive element of 2 () through a
single SCR. For a = 45° and 90°, calculate the following:

a. rms voltage across the load resistance

b. rms current of the resistance

c. Average voltage drop across the SCR

SOLUTION
For a = 45°

_ % [1 ~ 45(721180) . Sinz(:O)] — 7413V
b Imszv—;@:%—li:nom

c. As shown in Figure 3.2, the voltage across the SCR is equal to the source volt-
age when the SCR is not conducting. When the SCR is closed, the voltage
across its terminals is zero. Hence, the average voltage across the SCR can be
computed as

1 ¢ 2Tr — VmaX
Vicr = >l | s dwt + v,dwt| = — o (1 + cosa)

0
V2110
2

Vser = [1+ cos(45)] = —4227V

Note that the average voltage across the SCR is a negative quantity. This is ex-
pected, because most of the waveform across the SCR is negative when the SCR is
not conducting, as shown in Figure 3.2.

For a = 90°

Vi a sin(2a)] _ 110 \/[ 90(77/180)] i
Vo= (1 2 P = = - T =55V
RV [

Tr 2w V2 w
V. 55
b, Lo =~ =22 = 275 A
s R 5 27.5
V2110
C. VSCR = — ZH:X(l + cos OL) = - Py = _‘2476V
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It is expected that the rms voltage and rms current are lower when the trigger-
ing angle increases. However, it may not be obvious why the average voltage across
the SCR is also lower. It is lower because more of the positive ac voltage waveform
will be across the SCR when it is not conducting. As shown in Figure 3.2, when the
positive section of the SCR voltage increases, the magnitude of the SCR’s average
voltage is reduced.

3.1.2 ELECTRIC POWER

Electric power is the average quantity of the instantaneous power, which is the di-
rect multiplication of the instantaneous current and instantaneous voltage. The in-
tegration of power is known as energy. The power computation is very essential in
power electronic circuits because it provides information on the flow of energy in
the circuit as well as on circuit performance and efficiency. In circuits with purely
sinusoidal waveforms, the computation of power is very straightforward. However,
in circuits with discontinuities, the power must be computed by special methods.
Three of these methods are discussed here.

3.1.2.1 THE RMS METHOD
This is the most common method for calculating electric power. It is based on the rms
values of current or voltage. For a resistive load, electric power can be computed as

V2
P= _fzmg =1 R (3.9)

Substituting the value of V,,,,; of Equation (3.7) into Equation (3.9) yields

1% .
P= W[Z(w — a) + sin(2a)] (3.10)

3.1.2.2 THE INSTANTANEOUS POWER METHOD
Electric power is also the average value of the instantaneous power p(#).

p(e) =1(2) v(2) (3.11)

where #(¢) is the instantaneous current and »(¢) is the instantaneous voltage. For the
particular case of a resistive load, the instantaneous power can also be represented by

vt)?

R (3.12)

p@) =
The power P consumed by the load is the average value of Equation (3.11) or (3.12):

3 1 2T 3 1 2w v(t)2
P—Z*n' L pit) dwt—zﬂ JO R dwt (3.13)
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FIGURE 3.5
Electric power of the load

P

Y

For the conduction period between o and r, the integration limits of Equation
{3.13) can be changed to the limits of the conduction period.

po L [T _LJMA
P_ZTrL R dwt_z,n.a R dwt
.._anax T 2 _anaxj’"
"= 2nr L [sin(wn) [ dot =" T | [L~ cos(@un]der
V2
P — __max [2(’1T - OL) + Sin(za)] (3'14)

8mR

Note that Equation (3.14) is identical to Equation (3.10).

Figure 3.5 shows the electric power as a function of the triggering angle a. The
average power consumed by the load is determined by the triggering angle « (as-
suming the source voltage and load resistance are both constant). The maximum
value of the average power occurred at & = 0. At a = mr, the load power is zero.

3.1.2.3 THE HARMONICS METHOD

Based on the law of conservation, load power can also be calculated by using the
equations at the source side. The process is more involved since the waveform of
the source voltage is sinusoidal and that of the current is discontinuous. Let us start
by defining the instantaneous power at the source side as

p(8) = v(#) (2) (3.15)

where v{#) is the source voltage and #(¢) is the current of the circuit. Since the cur-
rent is discontinuous, it can be represented by the Fourier series

18) = ig. + i(8) + 4(8) + () + - (3.16)
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where 7. is a dc component-of #(#), 7,(¢) is the fundamental frequency component,
7,(#) is the second harmonic current, and so on.

Only voltages and currents of the same frequency produce power. If the fre-
quencies of the current and voltage are not identical, the average value of Equation
(3.15) is zero. Assume that the source voltage is purely sinusoidal. Then the aver-
age power can only be produced by the fundamental component of #(#).

p= V:rms Il rms COS d)l (317)

where ¢, is the phase shift between the fundamental frequency current and the
source voltage. I; .. is the rms value of 7,(¢). V, ... is the rms value of the source
voltage. Both ¢, and I ,,,, can be computed by using the Fourier formula for fun-
damental components

71(t) = ¢y sin(wt + &) (3.18)

where

¢ =Va + b3 (3.19)

by = tan‘1<ﬂ> (3.20)
by

2w
j {(w2) cos(wf) dwt
0

=R

1 27

b = — J (o) sin(w?) dot
™ Jo

where 7(w?) is the total current of Equation (3.16), including all harmonics. This is

the source voltage divided by the load resistance during the conduction period.

Qutside the conduction range, the current is equal to zero. Hence, 4, and 4, can be
computed as follows:

1 (" I
@ == J I ax sin(@?) cos(w?) dwt = ;’;X [cos(2a) — 1] (3.21)

by = % JﬂImax [sin(w#)]? dot = % [sinQa) +2(m — )] (3.22)

where

The phase shift angle of the fundamental current is
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= tan- YA = an-t J(M]
¢, = tan (51) tan Lin(Za)+2(1‘r—a) (3.23)

The angle ¢, is also called the displacement angle. The cosine of this angle is called
the displacement power factor, or DPF.

DPF = cos ¢, = al (3.24)

a

Equation (3.23) shows that when a is equal to zero, the current of the fundamental fre-
quency and the source voltage are in phase, and the displacement angle is equal to zero.
Let us go back to the calculation of the power. We rewrite Equation (3.17) as

V. I V. .c
= — _smax -] max _ “srmst*l
p= Vs rms Il rms €OS d)l - 2 cos (bl = > cos d)l

Replacing ¢, by the formula in Equation (3.19) and substituting for cos &, yields

ysmax Y d% + b% bl bl

= = meaxuw
P 2 \/gf + b 2
2
P = w[zm —a) + sin 2a)] = @[Z(ﬂ — a) + sin (2a)] (3.25)
8w 8wR

Note that the calculations of power using Equation (3.10), (3.14), or (3.25) give
identical results.

3.1.3 dc POWER

Another widely used term for electric power is known as dc power, P, which is

defined as
Py = Vol (3.26)

ave “ave

Keep in mind that the dc power is not equal to the power computed in Equation
(3.17); it is mainly used as a simple and approximate number.

An ac/dc, single-phase SCR converter is connected to a 10 € resistive load. The
voltage on the ac side is 110 V (rms). The triggering angle of the converter is 60°.
Compute the power dissipated in the load resistance using the instantaneous power
and the harmonics method.

SOLUTION

The power computed by the instantaneous power method is given in Equation (3.14):

_ Vo ‘ _ 21102 Sl I -
= SnR 2(m — ) + sina)] = 87 (10) [2(17 60180) + sm(lZO)} =~ 486 W
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Now we use the harmonics method:

I \%
a; = ;’:rx [cosRa) — 1] = ﬁ%[cos(lZO) - 1]1= =371

b = Lnas [sin(2a) + 2(w — )] = 6.24
4

o =Va + b =726

b, = tan'1<zl> = 30.73° lagging
1
Vi rms € V2(110)(7.26
pP= V:rms Il rms €OS (d)l) = ] COS(d)l) = MLl c0s(30.73) = 486 W

2 2

3.1.4 POWER FACTOR

As described in Equation (3.11), instantaneous power is defined as the multiplica-
tion of the instantaneous current by the instantaneous voltage. In a purely sinu-
soidal circuit, the voltage and current can be expressed as

v(t) = Vg Sin(o2)
(1) = I, sin(wf — &)

where ¢ is the phase shift between the voltage and current waveforms. In a purely
resistive load, the phase shift is zero. In a purely capacitive and inductive load, ¢ =
90° and ¢ = — 90°, respectively. The general expression of instantaneous power is

I

max

p()y =v() i) =V

max sin(w?) sin(w? — ¢)

Voo L,
plt) = %[cos(d)) — cos(2ut — &)]

Recalling that the rms voltage and current are V,,,,/y2 and I,,,,/y2, we can
write the equation of instantaneous power as

P(t) = Vrms Irms cos d) - Vrms Irms COS(Z(’M - d))] (327)

The first term of Equation (3.27) is the real power, and the second term is the re-
active power. The power that produces work is the average value of p(#). When we
compute the average power (P) by using Equation (3.27), only the first term will be
nonzero.

2m
P=— J’ p) dwt = VI cosd (3.28)
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where cos ¢ is called the power factor, or pf. The apparent power S is defined as

S=Vunl

rms T rms

Hence,

P
pf = cos(¢) = 3 (3.29)

The pf is a good indicator of how much of the apparent power is converted into
work. For given values of voltage and current, the maximum value of P is for a re-
sistive load when ¢ = 0.

In circuits with current harmonics, the power factor is defined in a similar way.
As you recall from Equation (3.17), a voltage and a current of the same frequency
produce power. Assume that the ac supply is a sinusoidal voltage source; then

P=YV Il rms €OS (bl

rms

where I} ... is the rms value of the current component at the frequency of the sup-
ply voltage. This is known as the fundamental component or first harmonic. The
phase angle & is defined in Equation (3.20); this is the phase shift between the volt-
age waveform and the fundamental component of the current waveform. Since ¢,
is the phase shift of the fundamental component alone, it is called the displacement
power factor angle. As given in Equation (3.24), cos &, is called the displacement
power factor, or DPF

The pf of a system with harmonics is defined the same way as given in Equa-
tion (3.29):

P Vrms Il rms €OS d)l Il rms Il rms
== = = ™ ppF ,
pf S Vrms Irms Irms o8 d)l [rms 3 30)

Note that when the harmonics are severe, the ratio of the fundamental current to
the total current is small, This results in a low power factor even for a resistive load.
A poor power factor is a very undesirable aspect of power electronics, since it in-
dicates that only a small portion of apparent power S is converted to work.

For the circuit given in Example 3.3, compute the power factor at the ac side.

SOLUTION
In Example 3.3, we computed the following parameters:
| = ~3.71

e =Va + b5 =726
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b, = tan_1<%> = 30.73° lagging
1

Now let us compute the rms value of the fundamental current:

2
726 _ 5134

Irms: -
: V2 V2

The total rms current can be computed by using the load rms voltage as given in
Equation (3.8):

V Vs rms 8.2 sin(Za)]
I = rms = 1 e + = . A

The power factor can now be computed as

Il rms _ 2 _
of = i cos(d,) = 0.86 cos(30.73) = 0.447

rms

Note that the power factor is poor, even for this resistive load. If the circuit has
no switching device, the harmonics will not be present, and the power factor will
be equal to one.

43

3.2 SINGLE-PHASE, FULL-WAVE, ac/dc
CONVERSION FOR RESISTIVE LOADS

Figure 3.6 shows an example of a full-wave SCR circuit, which is known as a full-wave
bridge. The circuit consists of four solid-state switches (SCRs) and a resistive load.
S,and S, are triggered when point A of v, is positive, whereas S; and S are triggered
when it is negative. The waveforms of the full wave circuit are shown in Figure 3.7.
When S, and S, are triggered, the current 7; flows in the direction of the solid arrows.
The current will cease conduction when the potential of point A reaches zero at 180°.
The waveform of the load voltage during this period is identical to that of v,. During
the negative half of the sine wave, point B is positive. When S; and S are triggered,
the current £, flows in the direction of the dashed arrows. Due to this bridge arrange-
ment, 7, and 2, flow in the same direction in the load branch. This makes point C al-
ways positive with respect to point D. Hence, the load current and the load voltage
do not change direction in either part of the ac cycle of v,.

The analysis of the full-wave circuit is almost identical to that of the half-wave
circuit. Since we are using both halves of the sine wave, the average voltage across
the load is double that given in Equation (3.4):

V.

ave

1 (™ 1 (™ V.
ij vsdu)tZTrJ V. sin{w?) dot = 2 (1 + cosa) (3.31)

max
o m
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FIGURE 3.6
Full-wave SCR circuit

o
AN

FIGURE 3.7
Waveforms of full-wave SCR circuit

A

Note that the rms voltage across the load in full-wave circuits /s 7ot double the value
in the half-wave circuit. To explain this, let us modify Equations (3.6) through (3.8)
to accommodate the full-wave analysis.

2w 2w
Vo= \/1 J v(1)? dwt = \/ 1~j [V ax S (002) ]2 deot (3.32)
2T 0 27 0

If we assume that the triggering of the SCRs is symmetrical in both halves of the ac
cycle, Equation (3.32) can be written as

VZ ™ VZ m
Vims = \/ maXJ sin(w?)? dwt = \/;QXJ [1 — cosRwt)] dwt (3.33)
o ™ [43

™
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V. = Vinax [1 oy sin(Zcx)]
mso4/> T 21
max

Voax . .
The term V> is the rms voltage of the sinusoidal source, V,
2

. 1 2
Vims = V;rms\/ [1 e a)} (3.34)
m 2w
Comparing Equations (3.8) and (3.34), we can conclude that the load rms voltage
of the full-wave circuit is V2 larger than that for the half-wave circuit (not double!).

The electric power of the load P in a full-wave circuit can also be calculated by
the method described in Equations (3.9) and (3.10).

V2 V?_
— Yims _ Y max _ + si ]
P R AnR 2(m — ) + sin2a)] (3.35)

Note that the load power in the full-wave circuit is double that for the half-wave
circuit.

A full-wave, ac/dc converter is connected to a resistive load of 5 Q. The voltage of the
ac source is 110 V(rms). It is required that the rms voltage across the load be 55 V.
Calculate the triggering angle and the load power.

SOLUTION
The rms voltage across the load is given as

Vins = V, rms\/ [1 ~ %y sm(z""]
™ 2w

55 = 110\/[1 ~ %y rsm(Za)]
™ 27
11' sin(2a)
225 =0 —
SRS T
By iteration, we can solve for a:
o = 112.5°

The load power can be computed using the rms voltage across the load:

V2 (55)?
p=—tms — 770 — 605 W
R 5 2
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3.3 SINGLE-PHASE, HALF-WAVE, ac/dc
CONVERSION FOR INDUCTIVE LOADS
WITHOUT FREEWHEELING DIODE

Inductors do not consume energy but rather exchange energy with the source. In
any half cycle, an inductor can temporarily store energy during one-fourth of the
cycle and then return the energy back to the source during the next one-fourth. In-
ductors cannot permanently store energy, and hence the net energy during the pe-
riod of current conduction must be zero.

Assume that a mechanical switch is used to interrupt the current of an in-
ductor, When the switchblades open while the inductor energy is not fully re-
turned to the source, the voltage across the switchblades increases rapidly,
creating an arc between the blades. The arc keeps the current flowing until the
inductor energy is totally dissipated. This explains the arc berween an ac outlet
and a load plug when we disconnect highly inductive loads such as electric saws
or home appliances.

In the steady-state operation, the current of a purely inductive load lags the
voltage by 90°. Hence,

v(2) = Vi sin(of)
(1) = — 1 cos(wf)

The instantaneous power consumed by a given load is the multiplication of the in-
stantaneous voltage across the load times the instantaneous load current. For a
purely inductive load, the instantaneous power is

v

max "max

5 sin(2wt) (3.36)

Two basic characteristics can be obtained from Equation (3.36). The first is that the
average power (the one that produces energy) is zero. The second is that the fre-
quency of the instantaneous power p(#) is double the frequency of the voltage or
current.

Figure 3.8 shows the waveforms associated with a sinusoidal circuit with purely
inductive load. The average power of an inductor is equal to zero for any half of the
cycle. Note that the power is averaged to zero at all the zero crossings of the cur-
rent, Hence, if the switch is opened at exactly the zero crossings of the current, the
inductor energy is zero and no arc is produced.

Let us now consider the solid-state switching circuit of Figure 3.9. It consists
of an inductance and a resistance and is powered from a single-phase, half-wave,
ac-to-dc converter. In purely sinusoidal circuits, the voltage across the resistance vg
is in phase with the current, and the voltage across the inductor v;, is leading the
current by 90°.
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FIGURE 3.8
Waveforms of purely inductive load

A

FIGURE 3.9
Half-wave inductive circuit

VR

vL

Let us assume that the voltage source of the circuit in Figure 3.9 is sinusoidal.
We also assume that the SCRis triggered at an angle a. Because of the SCR switch-
ing, we would expect the current to be discontinuous. To calculate the load current,
let us start by defining the terminal voltage across the entire load v, as

v, = vty — tg) = [Vinax sin(w?) (4, — up) (3.37)

a7
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where B is the angle at which the instantaneous current reaches its zero crossing. #,
and ug are step functions defined by

=0 forot<a

(0 —a) 1
u, =ulwt — o
@ u,=1 forot=a

uy = it — B) {uB-O foror <
ug=1 foror=p

Equation (3.37) indicates that the terminal voltage of the load is equal to the
source voltage during the period when the current is flowing in the circuit. This pe-
riod is known as the conduction period.

The load current is equal to the load voltage divided by the load impedance.
Since the load voltage has step functions and the load impedance is a complex vari-
able, the computation of the load current can be simplified by using Laplace trans-
formations. Let V(S) denote the Laplace transformation of v,.

Ssina + wcosa SsinB +wcosB_
— — (—aS/w) _ (—BS/w)
Ly, Vmax[ 7t o e 71 o e ] (3.38)
The load current is the load voltage divided by the load impedance
_vis v
1= 26 "R+ 5L
_ Vi [Ssina +ocosa (g, Ssinp + ocosP (—BS/m)]
I(S)'R+5L[ ST ST+ 2 C 6:39)

Inverting the current of Equation (3.39) into the time domain yields

i(r) = L71I(S)
i = K’;J*X [(zo — ug) sin(wt — $) +

gy [sin{d — )] e_[(‘*”"_“)/""]—uﬁ sin(¢p — B)e~Lwr—Brerl] (3.40)

where 7, &, and 7 are the load impedance, phase angle, and the time constant of the
load, respectively.

Z=\/Rz+—(mL)2

b = tan%%)

=t

A
I
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Upon a close examination of Equation (3.40), one would note that the load current
has three components. The first is sinusoidal, shifted by the load power factor an-
gle &. This component is only present during the conduction period (between a
and B). The second and third components are exponentially decaying functions.
The second component is present after the triggering angle o, whereas the third
component is active after . One may simplify Equation (3,40} during the conduc-
tion petiod by setting #, = L and #, = 0.

7

Vv . .
i) = ':‘ﬁ[sin(wt — &) + [sin(p = a)] o~ liws aifur]] (341}

Figure 3.10 shows the wavetforms of the load current and voltage. Note that the
current is a deformed half-wave. To calculate the angle at which the current is at
maximum, we set the derivative of Equation (3.41) to zero:

g ¢ Vo I . s
i) — ¥ max cos{wt — ) — [sm(_d) _ Ot)]f’ [twe (xrmr]] =0
i wT

o Wt z
or

WT Cos{w? — ¢} = [Simd) — cx)] C,—[(mxﬂn,fm]

The computation of w/ is numerical. A reasonable approximation is to assume that
the exponential term is fast decaying. In this case, the peak of the current occurs at
wt =90 + &,

FIGURE 3.10
Current waveform of the circuit in Figure 3.9

&
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The instantaneous current of Equations (3.40) and (3.41) is equal to zero at the
boundary conditions (at a and B). The conduction period y = B — « can be com-
puted by setting w¢ of Equation (3.40) or (3.41) equal to § and the instantaneous
current equal to zero.

iB) = V‘;“X [sin(B — &) + [sin(d — ] LB @ol] =0 (3.42)

If the load impedance is known and the system voltage is given, B of Equation
(3.42) can be computed using an iterative method.

To compute the average current, you can integrate the expression of Equation
(3.41), which is a rather laborious process. Another simpler method is first to com-
pute the average load voltage, and then calculate the average load current. As we
explained earlier, the load voltage is equal to the source voltage during the con-
duction period. Hence, the average voltage of the load V. can be obtained by the
following integration:

! f - dot = J " oot = - jﬁv d
vty — ug) dot = —— v, dwt = —— . sin(wt) dot
B 27 ), 20 J, ™

ave 2"“‘ 0 T

= Vonax [cos o — cos B)] (3.43)
2m

3.3.1 AVERAGE VOLTAGE ACROSS INDUCTANCE
AND RESISTANCE

The average voltage across the load V.. is equal to the average voltage across the
resistance V ... plus the average voltage across the inductance Vi ..

Vave = VR ave + VL ave

The average voltage across the inductance is zero and can be shown by integrating

the instantaneous voltage across the inductance v;.

UL:LZ

Hence,

T), T T

«

£ £
VL ave lj BUL dt = LJ Bdl‘ = £[Z([B) - l'(toz)]
l(’.

where T'is the period, #(z,) is the load current at o, and #(#s) is the current at 8. Since
the current at o or B is zero, the average voltage across the inductive element of the
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FIGURE 3.11
Waveforms of inductive load in a switching circuit

A

*****

load is zero. Hence, the average voltage across the entire load must equal the aver-
age voltage across its resistive element alone.

V

ave

= Viave = Rl (3.44)

Figure 3.11 shows four waveforms: the source voltage, the voltage across the
load, the voltage across the resistive component, and the voltage across the induc-
tive component. The conduction started at « and stopped at B. The voltage wave-
form across the load is identical to the waveform of the source voltage during the
conduction period. Note that the load voltage becomes negative because, due to
the presence of the inductance, the current is in conduction beyond 180°. The volt-
age across the resistive component of the load must have the same exact shape as
the current. Hence, it is also unidirectional. The voltage across the inductive com-
ponent of the load is the difference between the total voltage across the load and
the voltage across the resistive element. The inductive voltage is bidirectional (has
positive and negative values) where the positive area must equal the negative area
by the end of the conduction period wz = B.

3.3.2 AVERAGE POWER OF INDUCTANCE

As shown in Figure 3.8, the inductance cannot store energy and the average power
of the inductance P; is zero. This is evident when you integrate the instantaneous
power of the inductive load.

fe [
L—; apL wt =0
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where p; is the instantaneous power of the inductive load. This can be proven by
the following analysis:
di

P = ULZ'=L$Z‘

Hence, the average power of the inductive load is

1 [ . L _. .
P, = TJ Lidi = T [zz(tB) = 72(2)]
lﬂ

Since the current at « or B is zero, the average power of the inductance is zero.

3.3.3 RMS VOLTAGE

To calculate the rms voltage across the load, repeat the process described in Equa-
tion (3.6). Notice that the integration limits should be between a and B.

1 2w , 1 B . S
Ve = = | vion?dot = [ | [V sin(os) ] dot
2n 0 27 o

- V?n& g _ Vinax — Sil’l(ZB)—SiI](ZOL):I
Vrms - \/ . J'u [1 COS(2(x)t):| dot = 2\/; l}y P (3.45)

where the conduction period y = 8 — a.

In the case of inductive or capacitive load, the rms current cannot be assumed
equal to the rms voltage divided by the load impedance at the steady-state fre-
quency, because the current is composed of various harmonics and the impedance
is frequency-dependent. In this case, the rms current should be computed using the
instantaneous current in Equation (3.41). The rms power is still equal to the square
of the rms current multiplied by the load resistance.

A half-wave SCR ac/dc converter is powering an inductive load. The resistance of
the load is 10 Q, and the inductance is 30 mH. The ac source is 100 V(rms) at 60 Hz.
The SCR is triggered at 60°. Calculate the conduction period.

SOLUTION
To compute the conduction period, we need to compute B using equation (3.42).

iB) = V;L [sin(B — &) + [sin(d — )] e LB70w] = 0

sin (¢ — B) = [sin(d — a)] o LB~ w/w]
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where
w = 27 X 60 = 377 rad/sec
L 0.0
= R = - 103 = 0.003 sec
_ -1 wL) _ o
= — 1 = 48.52
& = tan ( ) =485
Thus,

$in(48.52 — B) = [sin(48.52 ~ 60)] ¢~ (B~ 60 (m/180/677x0.003)]

This equation can be solved using an iterative technique,
B ~ 230°
The conduction period v is
y=PB — a=230— 60 = 170°

Note that the conduction period is less than 180°, which is an indication that the
current is discontinuous.
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3.4 SINGLE-PHASE, HALF-WAVE, ac/dc¢
CONVERSION FOR INDUCTIVE LOADS
WITH FREEWHEELING DIODE

The freewheeling diode is a rectifier connected across the inductive load in oppo-
site polarities to the SCR as shown in Figure 3.12. When the SCR is forward biased
and triggered, the current 7, flows from the source to the load impedance; 7, does
not go through the freewheeling diode. Since the load is inductive, the current must
continue to flow beyond the zero crossing of the source voltage. However, when the
terminal voltage of the load tends to reverse its polarity after 180° as shown in Fig-
ure 3.11, the diode becomes forward biased and starts conducting. Thus, the diode
prevents the terminal voltage of the load from becoming negative (reversed). Once
the diode starts conducting, the current z, falls to zero, and the SCR is commutated
(turned off). Beyond 180°, the current of the load is z;, which flows in the
diode-load loop until the inductor energy is totally dissipated.

Because of the presence of the diode, the voltage across the load cannot be neg-
ative, Any stored energy inside the inductor during the SCR conduction will be dis-
sipated in the resistive component of the load when the diode conducts.
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FIGURE 3.12
Inductive circuit with freewheeling diode
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FIGURE 3.13

Analysis of the circuit in Figure 3.12

>F

z; R R
@UI L L

The analysis of this freewheeling circuit can be divided into two steps, as shown
in Figure 3.13. In the first, the source current Z for the period from a to  is com-
puted. In the second, the current of the freewheeling diode during the period from
7 to P is calculated. The waveforms are shown in Figure 3.14.

The instantaneous value of 7, is calculated by Equation (3.41) up to . The
value of the current at 7 can be computed from Equation (3.41) by replacing ¢ by
. The general form should include the initial condition of the current at the trig-
gering angle a.

i(m) = ~ Voax [sin(d) + sin(d — a)e ™ VO] + (o)  (3.46)
VR? + (wL)?

The current #(w) is the load current when the SCR is about to commutate. This
value is also the initial condition of the freewheeling diode current 7,. I{a) is the cur-
rent at a, which is the initial condition when the SCR starts conducting. If the cur-
rent is discontinuous, I{a) is zero. The diode current 7, flows in an R-L circuit.
Thus, its instantaneous values must be exponentially decaying.
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FIGURE 3.14
Waveforms of the circuit in Figure 3.13

A
i
7 rd
N
o n B g
US/
iy = i(w)e L@ ™/om y(wr — ) (3.47)

where #{w# — ) is a unit step function activated at 7. The time constant of the cir-
cuit 7 is

The average current of the load can be calculated by adding the averages of 7, and 7.

V v
max J [sin(wt — &) + sin(d — a)e L@ ~@/0T] Jyy +

Iave =
2mVR? + (wL)?

Bz_ ® I +

B
Vnax : [sin(d) + sin(d — 0L)e*[(ﬂ'r—ot)/un]]J e lwt—m/w] g (3.48)

27VR? + (wl) ™

The solution of Equation (3.48) is very involved and requires the value of B. However,
because the average voltage across the inductor is always equal to zero for any complete
cycle, the computation of the average current is a relatively simple task. Start by calcu-
lating the average voltage across the entire load.

2m w

1 (™ \%
Ve = J V ax SiD(002) dot = % (1 + cos a) (3.49)

Note that Equation (3.49) does not include the voltage beyond 1, because the
diode is conducting after w and the voltage across the entire load is equal to zero.
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Since the average voltage across the inductor is zero, Equation (3.49) is also
valid for the average voltage across the resistive component of the load. Hence, the
average current can be calculated as given in Equation (3.50),

V
I — ave .
ave R (3 50)

The power can be calculated by the method described in Equation (3.17). The com-
putation requires the rms value of the fundamental component of the current.

EXAMPLE 3.7

An inductive circuit with freewheeling diode similar to that shown in Figure 3.12
has the following data:

Vs =110V L =20mH R =100

The triggering angle of the SCR is adjusted to 60°. Calculate the following:

a. Conduction period

b. Maximum diode current

c. Average current of the diode
d. Average load current

e. Average current of the SCR

SOLUTION

a. Tocompute the conduction period, we must find . To do this, we need to make
a simple assumption that when the diode current 7, reaches 5% of its maximum
value, the diode circuit is practically open. From Equation (3.47), we can write

Z.d — ~lwr—m)/wr]

p—m

T

In(0.05) = —

0.02
B=m— orln(0.05) =7 - 377(10> 1n(0.05) = 309°

The conduction period v is

=B — a=309 - 60 =249°

Note that the conduction period is more than 180° due to the presence of the

diode.
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b. The maximum current of the diode occurs at the initial time of the diode con-
duction, when wz = . This value is the same as that for the SCR current at 1.
Using Equation (3.46), we get

Vinas [sin(d) + sin(p — a)e [T~ 0/o]

R e

I{a) in Equation (3.46) is equal to zero since the conduction period is less than
360°. Now let us compute the parameters of the previous equation.

Z=VR + (0L)? = V10% + (7.54)2 = 1252 Q

ol
=" = 0754
oT R

b= tan—l(%) = 37°

Substituting these parameters in the current equation yields

V2110

i) = i(w) = [sin(37) + sin(37 — 60)6_[‘”—60(“/180”/0‘754]]=7.18 A

If you compute the contribution of the exponential term, you will find it very

small due to its fast decaying effect. The first term alone is 7.48 A.

c.  The average current of the diode can be computed from Equation (3.47).

iy = i(w)e lwr=mlotl s — )

. B .
Idave = Z;%) J“T 6—[@[—“)/(”1-] dwt = % (_(.OT)[€_[(BAW’/“’T]_ 1]
7.18 _ L
Le = ,27(_0'754)[6 [(309(m/180) m/o.754]_1] =081 A

d.  The average load current can be computed using Equation (3.50), but first let
us calculate the average voltage of the load as given in Equation (3.49).

1% V2110

Ve = 322%(1 + cos o) = (1 + cos60) = 37.14V
2T 2T

Then

V 37.14
= Jave _ 200 39944
ave R 10 37 4
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e. The average current of the SCR is the average current of the load minus the av-
erage current of the diode.

Iscr = e = Lje = 3.714 — 0.81 = 2,904 A

3.5 THREE-PHASE, HALF-WAVE, ac/dc
CONVERSION FOR RESISTIVE LOADS

A single load can be energized by a three-phase system through power electronic
switches. Such an arrangement is common for loads with high power demands. Fig-
ure 3.15 shows a simple three-phase, half-wave, ac/dc converter. The converter
consists of a three-phase supply, an SCR for
each phase, and a resistive load. The anode

FIGURE 3.15

Three-phase, half-wave, ac/dc converter

of each SCR is connected to one of the
phases of the ac source. The cathodes are
commonly connected to the load. The sec-

ond terminal of the load is connected to the
neutral point of the three-phase source.
The operation of the circuit can be ex-
plained by the waveforms in Figure 3.16.
The figure shows the three-phase voltages
(v,, v, and v.) and the load current. As ex-
plained earlier, the SCR conducts when the
voltage across its terminals (anode to cath-
/ R ode) is positive and the SCR receives a trig-

gering pulse. The SCR commutates when
the current falls below its holding value.
Let us start by assuming that the circuit

starts its operation when the voltage of
phase 4 is in the positive cycle. Assume that
the triggering signal of the SCR of phase a is
applied at . The SCR closes and the current 7, flows to the load for the remain-
der of this half-cycle. The SCR of phase « commutates when the voltage v, reaches
zero. The voltage of phase & is now positive. If the SCR of phase 5 is triggered at
a, the current 7, flows into the load until the voltage of phase 4 is zero. Then the
voltage of phase c becomes positive. If the SCR of phase cis triggered at «,., the cur-
rent 7, flows into the load. This process is repeated every cycle.

In this case, the triggering angles of the three phases are separated by 120°. In
summary, the current of each phase flows starting at its corresponding o and con-
tinues for the remainder of the positive part of the phase voltage. The SCR of the
corresponding phase will be commutated naturally when its current falls below its
holding value.
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FIGURE 3.16
Waveforms of the circuit in Figure 3.15

l

FIGURE 3.17
Waveforms for advanced triggering

The load current in Figure 3.16 is discontinuous because of the delayed trig-
gering angle. If the triggering is advanced, the current tends to increase in magni-
tude and duration. If the current duration is = 120°, the load current is continuous,
as shown in Figure 3.17. The condition for continuous current is e, = 60°. Keep in
mind that when the load is inductive, the current tends to be continuous even for
delayed triggering.

To compute the average voltage across the load, we need to integrate the source
voltage during the conduction period. The method is similar to the one described
in Equation (3.4) for single-phase systems. The difference here is that we must take
into account the three-phase quantities. Each phase contributes to the total current
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only once per cycle—the load current is composed of three, equal-current pulses.
Therefore, the total average voltage across the load is the sum of the average volt-
ages contributed by each phase. Nevertheless, since we are assuming that the three-
phase system is balanced, we can compute the average voltage of one phase only
and multiply it by 3.

g B Vv
Ve = 3J v dot = ij Vinax Sin(0?) dot = & 8% (cos a0 — cos B) (3.51)
27 ), 2w ), 2w

where V,,,. is the peak value of the phase voltage (phase-to-neutral). If we are us-
ing SCRs as switches and the current is continuous, B = 120° + a. If these switches
are transistors, B is determined by the time the base current is turned off. The av-
erage current in this circuit can still be computed by using the average voltage
across the load resistance and the resistance itself.

Vv,

I — ave

ave R

The average power can also be calculated similar to the single-phase circuits, but
here we must take into account the three-phase quantities.

3 [Bop? 3 J [V sin(w8)
P= P L R dot = o TR dot (3.52)
svfnax J’ anaX . :
AnR [1 — cos2wt)] dwt = SR [2(B — a) + sin(2a) — sin(2B)]

o

EXAMPLE 3.8

The balanced, three-phase, ac/dc converter shown in Figure 3.15 has the following
parameters:

V, =208V R=10Q

Calculate the power delivered to the load when the triggering angle is 80° and 30°.

SOLUTION
At o, = 80°, the current is discontinuous. Thus, B, = 180°.
3V2
P="2%DB - a) + sin(2a) — sin(2B)]
8mR

_ 3(V2208/V53)? [

™
180 TS — s = 132k
8 (10) 200 sin(160) sm<360)] 132 kW

180
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At a, = 30° the current is continuous, and § = a, + 120.

3V}znalx 1 i
P = 7f7‘[2([3 —a) + sinQa) — Slﬂ(zﬁ)]
8wR

p_ 3(V2208/V3)2 [
- 180

8m(10) 240 7+ sin(60) — sin(som] = 2.042 kW
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3.6 THREE-PHASE, HALF-WAVE, ac/dc
CONVERSION FOR INDUCTIVE LOADS

We have explained earlier that inductive loads make currents flow beyond the zero
crossing of their corresponding phase voltage. In a three-phase switching circuit,
similar to that shown in Figure 3.18, the current of the load could be continuous or
pulsating (discontinuous), depending on the triggering angle and the size of the in-
ductive element. If an inductive load causes the current to flow for less than 120°
in each phase, the load current is pulsating; that is, the conduction period of each
phase vy is

y=B—a<120°

The current expression is similar to that given in Equation (3.41), but is modified
for three-phase circuits with discontinuous currents.

(o) = Vo {[sin(wz — &) + sin(d — a)e Loty ug) +

VR? + (oL)?

[sin(wt — 120 — ) + sin(d — a)e (@77 120-@/wl] 4 (Uot120 = Upt120) T

[sin(wz — 240 — &) + sin(d — a)e_[‘w7'240—°‘)/“’71] (te 1240 — ”B+240)} (3.53)

where u, 150 is a step function defined as #[(w? — (a + 120)].

Figure 3.19 shows the waveforms of the inductive circuit in Figure 3.18. In Fig-
ure 3.19, the conduction period is assumed to be < 120°. Unlike the current of a
resistive load, the current in an inductive circuit does not swiftly change at the trig-
gering angle. When the conduction period of each phase is 120°, the current is con-
tinuous, as shown in Figure 3.20.
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FIGURE 3.18
Three-phase, half-wave, ac/dc converter for inductive load

23

VR

FIGURE 3.19
Pulsating load current

A
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FIGURE 3.20
Continuous load current
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3.7 THREE-PHASE, FULL-WAVE, ac/dc
CONVERSION

The three-phase, full-wave converter shown in Figure 3.21 is very popular in heavy-
load applications. With this circuit, the three-phase ac is converted to a dc using six
switches (S; through S¢). Each ac line is connected to the middle of one IGBT leg.
On one side, the load is connected to the emitters of the IGBTs, and the other side
is connected to the collectors.

The conductions of the IGBTs occur when their forward voltage drops are pos-
itive and the triggering signals are present. For example, when v,, = v,, — v,, > 0,
S; and S¢ are ready to be triggered. However, when v,, < 0, §5 and S, are ready
to be triggered. This rule also applies to the other two line-to-line voltages (v,
and v_,).

The triggering of the IGBTs is synchronized with the source voltage, as shown
in Figure 3.22. The conduction period of each IGBT is shown at the top section of
the figure. One complete cycle is divided into six segments; each is 60° long. Thus,
the conduction period of each IGBT is 120°.

Let us assume that we initiate the triggering of Sy, S5, and S5 when v, , v, ,
and v,,, , respectively, are at their peaks. In addition, the triggering of S,, S,, and S
are initiated when v, = 0, v, = 0, and v, = 0, respectively. Note that at any mo-
ment only one switch from the top IGBTs and one from the bottom are closed; no
two switches on the same leg are closed.

Now let us examine each interval. In the one starting at the peak of v, , v, is
positive. Thus, S, and S are triggered, and the load voltage is v,, . At the begin-
ning of the next interval (v,. > 0), S, is triggered, and S; remains closed. After S,
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FIGURE 3.21
Three-phase, full-wave, ac/dc converter
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is triggered, S, is commutated instantly since v,, < 0. Repeating this triggering
logic for all other intervals, we can generate the waveforms of the load voltage
shown at the bottom of Figure 3.22.
Assume that the phase voltages are expressed by
v, =V,

max

Vpy = Vinay sin(wz — 120)

max

sin w?

v, =V

cn max

sin(wf + 120)
The average voltage of the load V.. is

ave

Vive = 6 Ve

where V., is the average voltage of any 60° segment. The average voltage of the seg-
ment when S, and S are closed is

1 [90+60 1 [10
Vg = = J v, dot = ’J Ve Lsin(ws) — sin(wt — 120)] dwt
& 2’“’ 90 21T 90
V3V,
Vseg =T
41
V3V
Vave =6 Vseg = AL s
2

We can write the equation in a more general form by assuming that each IGBT is trig-
gered at an angle o This angle is measured from the time the phase voltage is equal
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Waveforms of the converter in Figure 3.21
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to zero, as shown in Figure 3.22. Thus, when S, is triggered at the peak voltage of v,,, ,
a = 90°. The triggering of S5 occurs at o + 120°, S5 at & + 240°, and so on.

6 ot+60 a+60
J v dwt = — J Vinax [sin (@) — sin(ws — 120)] dot
o w

ave =
2w o

V

ave

a+60
= % J sin(w? + 30) dwt (3.54)

Ve = M cos(a — 30)

3\,

ave —:_ ¢

In Equation (3.54), we are assuming that the transistors are conducting during
the entire switching segment (60°). Under this condition, the range of a is ~30° =
a = 90° If o > 90°, the triggering of the corresponding switches (such as S; and
Se) is not for a complete 60°, and Equation (3.54) does not apply. Keep in mind that
when o > 150°, the line-to-line voltage v, across S; and S, is negative, and the
switches cannot be conducting current.

Figure 3.23 shows the average voltage across the load for any given o. From
Equation (3.54) and Figure 3.23, the maximum average voltage occurs when the
triggering angle is 30°,

V3v
1% = 2V3 Vinax (3.55)

ave max
m

Figure 3.24 shows the waveforms for a = 30°. Compare the waveform of the load
voltage in this case to the one in Figure 3.22 (for a = 90°). Note that the load volt-
age in Figure 3.24 does not reach zero and the ripples are smoothed out. The har-
monic contents at & = 30° are much reduced.

FIGURE 3.23
Load average voltage

Vave 4

3 ﬁVmax
n

.

-30° 30° 90° o
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FIGURE 3.24

Waveforms of the converter in Figure 3.21 for o = 60°
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A three-phase, full wave, ac/dc converter has a balanced source voltage of 208 V
(line-to-line). Compute the following:

a. Maximum average voltage across the load

Triggering angle at which the average voltage of the load equals the peak phase
voltage of the source

c. Load voltage when the triggering angle is —30°.

SOLUTION
a. The maximum average load voltage occurs when the triggering angle is 30°.
Using Equation (3.55),

X
Vave max = 3V3 Vi, = 3V3[V2 X 208/V3 | =281V

™ v

b. From Equation (3.54), the average voltage of the load can be made equal to the
peak of the phase voltage of the source if

3V3

[cos(a + 30) + sina] =1
a = 82°

Note that the average voltage of the load, for any value of a, cannot exceed the
peak of the line-to-line voltage of the source.

c. Atoa = —30° the average voltage is

3V3 VY

— max
Vave - o

v 3V3[V2 X 208/V3 ]

ave 2 T

=1405V

Since the magnitude of the average voltage is a sinusoidal waveform as
shown in Figure 3.23, the average voltage at @ = —30°is V, /2.

ave max
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3.8 d¢/dec CONVERSION

Direct-current-to-direct-current converters are normally designed to provide out-
put dc waveforms at adjustable voltage levels. These converters, also known as
choppers, can be designed to produce fixed output voltage for variable input volt-
age or variable output voltage for fixed input voltage. Generally, there are three ba-
sic types of dc/dc converters:

1. Step-down (Buck) converter, where the output voltage of the converter is lower
than the input voltage

2. Step-up (Boost) converter, where the output voltage is higher than the input
voltage

3. Step-down/step-up (Buck—Boost) converter, where the output voltage can be
made either lower or higher than the input voltage

In most electric drive applications, the dc/dc converter is a step-down type. The
other types are normally used in applications such as power supplies and uninter-
ruptible power supplies.

To understand the fundamentals of the dc/dc buck converter, examine the sim-
ple circuit shown in Figure 3.25. The figure shows a bipolar transistor whose emitter
is connected to a load, and its collector is connected to the positive side of a dc source.

FIGURE 3.25
Simple chopper circuit
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The potential of the voltage source is fixed. The figure also shows the corresponding
waveforms. The top waveform is for the base current I,. Since the base current is pres-
ent for the period #,,, the transistor is in conduction. While conducting, the load volt-
age v, is equal to the source voltage V. When the base current is not present, the
transistor is open and the load voltage is zero. The switching period is labeled 7. If the
switching action is repeated in a fixed timing pattern (fixed 1), the average voltage of
the load and the load power can be controlled by adjusting ¢,,,.

Assume that the transistor is an ideal device. The average voltage across the

load V. is the integration of the source voltage over the period 7.
1 fon ton
Voe=- | vdr="eny =gy, (3.56)
T Jo T

where K = 7, /7 is called the duty ratio. The maximum value of K is equal to 1 when
the on time ¢, is equal to the period 7. Hence, the maximum output voltage of this
converter is equal to the source voltage, which is why it is called a step-down converter.

The output voltage of the converter can be controlled by using one of two
methods:

1. By fixing the period 7 and adjusting the on time #,,,. This method is known as
pulse-width modulation or P’WM. Since 7 is constant, the switching frequency
is constant.

2. By fixing the on time ¢,, and adjusting the period 7. This is called frequency
modulation (FM).

Note that the load voltage fluctuates between zero and V in any cycle. The cur-
rent also fluctuates between zero and the maximum value. These fluctuations may
not be acceptable in drive applications because they may result in damaging pul-
sating torque.

To solve this problem, we can use the circuit shown in Figure 3.26. In this fig-
ure, the switch is in series with a reversed connected diode. In addition, the circuit
has a low-pass filter between the switching device and the load resistance. The fil-
ter consists of an inductor and a capacitor. The function of the inductor is to main-
tain the current fairly constant between the switching segments. The capacitor is
normally selected large enough to maintain the voltage reasonably constant across
the load.

The waveforms of this circuit are shown in Figure 3.27. When the IGBT
switch is closed (during ¢.,), the current 7, flows from the source to the inductor.
The inductor current 7 is equal to the source current z, since the diode is reverse
bias. 7, is divided into two components: one small component charges the capac-
itor, and the other 7 flows to the load. In the waveforms, we are ignoring the charg-
ing current.

When the IGBT is open, the inductor current 7; continues to flow to the
load through the diode. The diode during this period is freewheeling and its cur-
rent 7, equals the inductor current 7;. During this time, the capacitor also dis-
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FIGURE 3.26
Chopper circuit with filter

i

charges into the load. The waveforms in the figure ignore the discharging cur-
rent. If we maintain high enough switching frequency, the ripples in the induc-
tor current (and load current) as well as the ripples in the load voltage are
minimized.

The switching frequency of the chopper shown in Figure 3.26 is 2 KHz. The source
voltage is 80 V, and the duty ratio is 30%. The load resistance is 4 (). Assume that
the inductor and capacitor are ideal and large enough to sustain the load current
and load voltage with little ripple. Calculate the following:

a.  On time and switching period

b. Average voltage across the load

c.  Average voltage across the diode

d. Average current of the load

e. Load power

SOLUTION

a. The period can be computed using the switching frequency.

1
7= — = 0.5 msec

o f

ton = KT = 0.15 msec

1



72 CHAPTER 3

FIGURE 3.27
Waveforms of chopper circuit

4 Vs \

vd

Time

Time

- T L



INTRODUCTION TO SOLID-STATE SWITCHING CIRCUITS

b. Use Equation (3.56) to compute the average voltage across the load.

Ve =KV, =03 (80) =24V

ave

c. The average voltage across the diode V; ... is the complement of the average
voltage across the load.

=0.7(80) =56V

s

1 (7
Vdave__-i J V\‘dt: (1 =KV,
T

V; e can also be computed by subtracting V,,. from the source voltage V.

d. The average load current is

e. Since we assume that the current is ripple-free (no harmonics), and the load
voltage is also ripple-free, the load power can be computed as

P=V, .1l,.=144W

ave ~ave
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3.9 dc/ac CONVERSION

This type of converter is also known as an inverter. Here, the input is a dc wave-
form and the output is an ac waveform. The inverter is widely used in uninterrupt-
ible power supplies, variable speed ac motors, and dc transmission lines.

Keep in mind that the term ac does not mean a perfect sinusoidal waveform;
rather, it refers to a waveform that has positive and negative portions in each cycle.
Furthermore, the ac waveform may have a small dc component; that is, the average
value is not necessarily zero.

3.9.1 SINGLE-PHASE, dc¢/ac CONVERTER

Figure 3.28 shows a simple dc/ac inverter known as H-bridge. It consists of a dc
source, four transistors, and a load. For simplicity, we shall assume that the load is
resistive. At any period, only two transistors in opposite legs are turned on. To pre-
vent short-circuiting the supply, any two transistors on the same leg cannot be
turned on at the same time (either Q, and Q,, or Q; and Q,, are turned on simul-
taneously). Figure 3.28 also shows the voltage across the load. When QQ; and QQ, are
closed, the current I, flows to the load. When Q; and Q, are closed, the current I,
flows in the reverse direction to I;. The load current in this case is alternating be-
tween positive and negative values. If the switching periods of all transistors are
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FIGURE 3.28
dc/ac H-bridge and its ideal waveform
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Q3 and Q4 are on

equal, the average component of the current is zero, and the waveform of the cur-
rent or voltage is symmetrical around the time axis.

Notice that the waveform of Figure 3.28 is not sinusoidal. Nevertheless, it is an
ac waveform. Reducing or prolonging the closing time of all transistors adjusts the
frequency of the load voltage. The smaller the on time is, the higher is the frequency.

3.9.2 THREE-PHASE dc/ac CONVERTER

Three-phase waveforms can be obtained by using a relatively more elaborate dc/ac
inverter similar to the one shown in Figure 3.29. The inverter is composed of six
switches and six diodes. The diodes are used to allow the energy to flow back to the
source. This is a requirement in most electric drive systems where the motor deliv-
ers energy back to the source under certain drive conditions. As discussed at the
end of Chapter 2, when inductive load is interrupted, a large voltage builds up
across the switch terminals to allow the energy stored in the inductive elements to
return back to the source. The diodes in the figure provide a safe path for the flow
of this energy back to the source, thus protecting the transistors from being dam-
aged. The midpoint of each leg of the inverter is connected to the correspondingly-
labeled load terminal. The load is shown separately on the right side of the figure.
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FIGURE 3.29
Three-phase dc/ac inverter
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Before we continue any further, let us define the following terminology:

A period is the time of one complete cycle.
A conduction period is the time during which a transistor is closed.

A switching interval is one time segment. A conduction period can have more
than one time segment,

The transistors of the three-phase dc/ac converter are switched in a specific se-
quence to generate three-phase waveforms and to prevent any two transistors on
the same leg from being triggered—thus preventing the short-circuiting of the sup-
ply voltage. The switching sequence is shown in the top part of Figure 3.30. The
figure also shows the line-to-line waveforms across the load terminals. Each cycle
is divided into six time segments. Each segment is 60° long (electrical degrees), and
each transistor is turned on for three time segments (180°). The switching of the
transistors is based on their ascending order. For example, if transistor Q, is turfied
on, then after one time segment (60°) transistor Q, is turned on, and so on. Note
that at any time segment, three transistors are closed, but only one transistor per leg
is turned on.

Consider the first switching interval, where transistors Qq, Qs, and Qg are
turned on. Because of this switching, the potentials of terminals ¢ and ¢ are posi-
tive, and the potential of terminal 4 is negative. Hence, the line-to-line voltages
across the load during the first switching interval can be computed as follows:

= Ub —v.= _Vdc (357)

Load
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FIGURE 3.30
Waveforms of the circuit in Figure 3.29
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where V. is the voltage of the dc source. The line-to-line voltages for all other
switching intervals can be computed using the same procedure. The waveforms are
shown in the bottom part of Figure 3.30. Note that v, is leading v, by two time
segments (120°), and v,, is also leading v,, by two time segments. The maximum
voltage of any line-to-line voltage is equal to V.. Hence, the output of the inverter
is a balanced, three-phase voltage.

The frequency of the load voltage can be adjusted by changing the period of
the switching interval. The smaller the switching interval 7., the higher the fre-
quency. If the time of one switching interval is 2 psec, the frequency of the load
voltage is

1
f= =1, = B3k

seg

The waveforms of the phase voltages (phase-to-neutral) are shown in Figure 3.31.
These waveforms can be obtained by examining the switching status of the tran-
sistors in each switching interval. Assume that the load is connected in wye.
The connection of the load to the source is changing every switching interval.
Figure 3.32 shows the configuration of the load windings during the first three
switching intervals. The load connection on the left side of the figure is for the
first switching interval, when Q, Qs, and Qg are closed and the rest of the tran-
sistors are in the open state. The middle part of the figure is for the load con-
nection during the second interval (Q;, Q,, and Qg are closed). The third
interval connection, when Q,, Q,, and Q5 are closed, is shown on the right side
of the figure.

As shown in Figure 3.32, during the first interval, when Q;, Qs, and Qq are
closed, the potentials of terminals 4 and ¢ are positive and that of terminal 4 is neg-
ative. If you assume that the load is balanced and the impedance Z is equal for each
phase, then the potentials of phase 4, 4, and ¢ are

B _ 0572 Vdg

Vo = U = Vdc 157 - 3 (358)
. Z 2 Vie

U = "Vae15,° 7 3 (3.59)

The minus sign in Equation (3.59) is due to the direction of the current inside phase b
as compared to that for phases 4 and ¢. In the second interval, phase 4 is positive po-
tential, and 4 and ¢ are negative potentials. The load voltages in this case are

o 052 Vg
Vhy = Uy = — Vo 1sz° " 3 (3.60)
_ Z 2V
Uan = Vdc 15 Z == 3 (361)
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FIGURE 3.31
Line-to-neutral voltage waveforms
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FIGURE 3.32
Connections of stator windings of an induction motor during the
first three time intervals
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Similarly, during the third interval, the potentials of phases a and 4 are positive and
that of ¢ is negative. The winding potentials are

052 'V,
Uan:v!m:Vdclsz:';liC (3.62)
Z 2V,
S Vg = ke .

If you continue this process for the rest of the intervals, you can generate the wave-
forms in Figure 3.31. Note that the peak value of the phase voltage is equal to 2/3
of the supply voltage V.. Now examine the phase shift between the phase voltages.
The shift is equal to two intervals. Since a complete cycle is six intervals, the phase
shift is 2/6 X 360° = 120° . Also note that the voltage of phase 4 leads that of phase
b by 120° and lags that of phase ¢ by 120°. These are the main features of a balanced
three-phase system.

The waveforms in Figure 3.31 contain several harmonic components. The fun-
damental component depends on the length of the switching interval. If you assume
that the load is connected in wye, the harmonic components can be written as a
Fourier expansion:

2V 1 1
v, = dC(sin ot + gsin 3wt + gsin Swt + .. ) (3.64)
T
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2V . 1. 1
Vpn = sin(w# — 120) + gsm3(wt - 120) + 75-51115(03; = 120) +...]| (3.65)

Z)Ci’l

2V 1 1 :
= dc[sin(wt + 120) + 3 sin 3(wf + 120) + 5 sin 5 (wf + 120) + .. ] (3.66)
T

The phase voltage has no even harmonics. In addition, the line-to-line voltages are
given by

2V 1 1
vy = V3 dc[sin(mt + 30) — 5 sin 5(w? + 30) — 7 sin 7(wt + 30). . :l (3.67)
o

2V 1 1
Vpe = V3 dc[sin(wt - 90) — 5 sin 5 (wt — 90) — 5 sin 7 (wz — 90). . ] (3.68)
T

ca

2V 1 1
v, =V3 dC[sin(oot + 150) — 5 sin 5(w¢ + 150) — ;sin 7(wt + 150).. .](3.69)
™
Note that the third harmonic does not exist in the line-to-line voltage.

Compute the rms voltage of the load for the circuit in Figure 3.29. The frequency
of the fundamental component of the load voltage is 100 Hz.

SOLUTION
First, let us compute the period of the cycle T and the period of one switching in-
terval ¢,.
L 10
T =~ = 10 msec
f
Since the cycle has six switching intervals,
T
t, = 6" 1.67 msec
The general expression of the rms voltage is
17,
VrmS = ; JOU dt

Divide the period into six switching intervals. The first interval ends at #,, the sec-
ond interval ends at #,, and so on. Note that £, = 2 ¢, £, = 3 ¢,, and so on.

A t A 3 1) 5]
:\/2 U v2d¢+J v? dr +J M;}:\/ZU (‘@)241; +J (zvdc)deJ (ﬁﬂ—‘)%ﬁ]
T Lo 4 4 TlJg\ 3 o\ 3 n\ 3

2V3, 2V3 2V3,
Vims = \/ 9: Bh+6—31) = \/ 97"C 61) = \/Tod (10) = 0.47 V.
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Note that the rms value of the output voltage depends on the magnitude of the
source voltage, and the fundamental component of the output frequency depends
on the period of the switching interval.

3.9.3 VOLTAGE, FREQUENCY, AND SEQUENCE CONTROL

The switching of the transistors in the circuit of Figure 3.29 can be controlled to
adjust the frequency, magnitude, or sequence of the load voltage. The control of
these variables is essential for ac motor drives and many other applications. Many
commerecial triggering modules for the dc/ac converters have a built-in control cir-
cuit that allows adjustment of these variables.

3.9.3.1 FREQUENCY ADJUSTMENT
When a three-phase load is connected to a dc source via an inverter, adjusting the
time of the switching interval can change the frequency of the load voltage.

/= 1 (3.70)
T

where fis the frequency of the load voltage and 7 is the period for one ac cycle. If
7 is reduced, the frequency of the voltage waveform increases, and the reverse of
this rule is also true.

A six-step inverter is used to supply a three-phase load using a dc voltage source. If
the frequency at the load side is desired to be 500 Hz, calculate the conduction pe-
riod of each transistor.

SOLUTION
The time for one cycle is

The time of the switching segment £, is

lieg = % = 0.33 msec

The conduction period of each transistor ¢, is three segments,

feon = Blsey = 1 msec
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3.9.3.2 VOLTAGE ADJUSTMENT

The magnitude of the voltage across the terminals of the load can be adjusted by
several techniques; one of them is fixed width modulation (FWM). A simple
form of FWM is shown in Figure 3.33, where the conduction period of one tran-
sistor is shown. The rest of the transistors have similar conduction periods, but
shifted as discussed earlier. Without the FWM, the transistor is continuously
closed for the duration of its conduction period. By the FWM technique, the
transistor is switched several times during its conduction period as shown in the
lower part of the figure. The switching periods of the FWM techniques are
called subintervals. Let us assume that the load voltage is at full value when the
transistor is closed without the F'WM technique. Hence, if the sum of the subin-
tervals is less than the conduction period, the voltage across the load is less than
the full voltage.

If the transistors in Figure 3.29 are switched without the FWM technique, the
line-to-line voltage across the load will have the waveform shown in Figure 3.34.
Examine the waveform in conjunction with the one shown in Figure 3.30. Notice
that the line-to-line voltage across the load has a positive or negative duration of
two switching intervals. The gap between the positive and negative durations is one
switching interval. One cycle is equal to six switching intervals. The rms voltage
across the motor terminals can be calculated by

1 6
vV, = g»fovﬁbdx (3.71)

2
Vap = \ﬂ Ve (3.72)

where V, is the rms line-to-line voltage, v, is the instantaneous line-to-line volt-
age, and «x is the interval. The integration is based on the duration rather than the

FIGURE 3.33
FWM of a single conduction period
Without FWM
Q1
| | |
<+— (Conduction period—>| Time
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Subinterval
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FIGURE 3.34

Line-to-line voltage without FWM
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FIGURE 3.35
Line-to-line voltage with FWM
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electrical angle. Since the time of all switching intervals is equal, for Equation (3.71)

we use the number of intervals.

Now let us assume that due to the FWM, the load voltage will have the wave-
form shown in Figure 3.35. Identify the duty ratio 4 as

_ 2 subintervals of one conduction period

d

conduction period

83
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For example, a 20% duty ratio means that the transistor is closed for 20% of the
conduction period. This duty ratio can be added to Equation (3.71) as follows:

6
V= Zjouﬁbdx (3.73)

24
Vab = \/: Vdc (3.74)

The voltage reduction ratio VR can be computed by dividing the voltage of Equa-
tion (3.74) by the voltage with 100% duty ratio {no FWM).

or

VR = voltage with FWM NG

B voltage without FWM - (3.75)

An FWM with a duty ratio of 25% is used to reduce the voltage of the system de-
scribed in Example 3.12. If the source voltage is 150 V, calculate the rms voltage
applied to the motor windings with and without FWM.

SOLUTION

2 12 X 0.2
de(With FWM) = ?d Vdc = % X 150 = 61.24 V
61.24

V p(without FWM) = W = 12248V

3.9.3.3 SEQUENCE ADJUSTMENT

By altering the succession of the transistor switching, the phase sequence of the
load voltage can be reversed. Note that the phase sequence of the switching pattern
in Figures 3.30 and 3.31 is abc. This sequence can be changed to ach simply by
swapping the switching pattern of transistors Q; and Qs, and also Q, and Q,.

3.9.4 PULSE-WIDTH MODULATION (PWM)

Pulse-width modulation (PWM) is used to control the frequency and the magni-
tude of the ac voltage across the load and to reduce the harmonic contents in the
output voltage or current. There are a number of PWM techniques, but the most
common type is the sinusoidal PWM.
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FIGURE 3.36
Control signals for PWM
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Figure 3.36 shows the basic idea of PWM for a voltage source inverter. Two
control signals are used: a reference sinusoidal wave Urerand a triangular carrier v,
A control circuit at low voltage levels generates these two signals. They are used
solely to create the triggering signals for two transistors on the same leg in the cir-
cuit shown in Figure 3.29. That is to say, they are for the terminal of one phase only.
The control signals of the other two legs have the same triangular carrier, but their
sinusoidal reference waves have the proper 120° shift associated with the balanced
three-phase system. Thus, v,.; of phase 4 lags v, of phase 4 by 120°, and Vpes OF
phase ¢ leads v, of phase « by 120°,

With the PWM technique, several parameters can be adjusted to generate the
desired voltage and frequency at the load side. The basic parameters are the fre-
quency and magnitude of the reference signal Vet The magnitude of the triangular
carrier is usually kept constant, but its frequency can also vary. The upper limit of
the frequency of the carrier is determined by the maximum switching frequency of
the transistors. This frequency can be as high as 20 kHz.

Now let us see how the PWM works by examining Figure 3.36. We will assume
that the figure is for the control signals of phase 4 only. Looking back at the circuit
in Figure 3.29, you find that Q; and Q, are the two transistors switching in the leg
of phase a. If Q, is closed and Q, is open, v, is positive. (v, is the potential of phase
a with respect to point 0.) Point o is just a reference point selected here to be the
negative terminal of the input source V.. If Qis open and Q, is closed, v,, is zero,
With PWM, the switching of Q, and Q4 is based on the difference between the ref-
erence and carrier waveforms Ay:

Av = Vref = Vcar

The switching conditions for any two transistors in one leg (say, for phase «)
are as follows:

Av,> 0, Qq is closed and Q, is open

Av,< 0, Q is closed and Q, is open
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FIGURE 3.37
Potentials of phases a and b due to PWM
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where
Ava = Vrefg — Vcar

V.o  is the reference signal of phase 4.

The reference signals for two phases are shown at the top of Figure 3.37. Us-
ing the rule stated in the previous paragraph, we can generate v,, and vy, shown in
the figure. Note that these voltages have unequal switching intervals.

Figure 3.38 shows the line-to-line voltage v,; , which is obtained by subtract-
ing the potential of phase 4 from that of phase a:

Usph ™ Va0 — Vo (3.76)

The line-to-line voltage consists of rectangular segments with different widths. It
also has symmetrical positive and negative parts. Thus, it has a dominant compo-
nent at the fundamental frequency. Using a harmonic analysis technique, the gen-
eral expression of such a waveform can be written as

Vdc

vt = m, sin(2f, ) + Bessel harmonic terms (3.77)
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FIGURE 3.38
Line-to-line voltage and its fundamental component due to PWM
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where f; is the frequency of the reference signal and 7z, is called the amplitude
modulation, which is the ratio of the peak values of the reference signal to the
carrier,

_ Vet
" =1 (3.78)

car

By examining Equation (3.77), one can conclude that by adjusting the magni-
tude and frequency of the reference signal, the magnitude and frequency of the load
voltage can be controlled. Assume that the carrier frequency and its magnitude are
unchanged. When the magnitude of the reference signal increases, 7z, increases,
and so does the magnitude of the fundamental component of the load voltage v, .
Also, since the frequency of the fundamental voltage across the load is the same as
the frequency of the reference signal f;, the frequency of the load voltage can be
changed by changing the reference frequency. These are the major advantages of
the PWM technique.
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3.10 ENERGY RECOVERY SYSTEMS

In a number of applications, a two-way energy exchange between a source and a
load is needed. This is particularly important for electric drive systems. The ma-
chine used in electric drives consumes electric energy when running as a motor, but
it returns some energy back to the source when running as a generator. This process
enhances the operation of the machine and improves the overall efficiency of the
system. In later chapters, we will discuss this aspect in more detail.

Figure 3.39 shows an energy recovery circuit, where two sources are connected
via two IGBT circuits in bridge configurations. Switches S; through S, are used to
charge the battery. S5 through Sg are used for discharging. The charging and dis-
charging operations are discussed in the following subsections.
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FIGURE 3.39

Energy recovery circuit
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FIGURE 3.40

Waveforms of charging operation
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3.10.1 CHARGING OPERATION

When v45 > Vo, S; and S, can be triggered because their collector-to-emitter for-
ward voltage is positive. The current loop in this case is 4, S,, C, D, S., and back to
B. When point B is of higher potential than A, and v4 > V4, S, and S; can be trig-
gered. The current loop for this interval is B, S5, C, D, S,, and back to A.

Figure 3.40(a) shows the key waveforms of the system; Figure 3.40(b) shows
the switching sequence and duration of the transistors. Only when v, > V. can the
battery be charged. The shaded areas represent the maximum possible period for

charging the battery.
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FIGURE 3.41
Simplified equivalent circuit for charging and discharging

The fundamental equations for the charging operation can be obtained by
considering the simplified equivalent circuit shown in Figure 3.41(a). In the fig-
ure, the resistance R represents the augmented value of the internal resistance of
the battery, the forward resistance of the IGBTs while conducting, and the re-
sistance of the cables. The diode is used to indicate the direction of the charging
current z,.

The instantaneous voltage drop across the resistance can be written as
(3.79)

v = v, — Vg

At B,
v, = Vo sin B = Vy, (3.80)

where B > . The average voltage across the resistance can be expressed by

1 (P . Ve _
Vi = 'n',[ [Vinax sin(wt) = Vg ldwt = "M 00— o Bl — V. B—a 381
o v

ko

The average value of the charging current I is

Note that the minimum value of the triggering angle of the IGBTs (S; and S,), as
shown in Figure 3.40(a), is

Anin = 6
If the triggering angle is less than o, the collector-emitter voltage across these
IGBTs is negative, and the transistors cannot close until w# = 0.
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For the circuit in Figure 3.39, assume that the voltage source is 110 V (rms) and
the dc battery pack is 150 V. The value of the resistance between the battery and
the ac source, including the internal resistance of the battery, is 1 (). Calculate the
rms current and the power delivered to the battery during charging. Assume that
o is 90°.

SOLUTION

Before we attempt to solve this problem, note that during charging, the triggering
angle must be larger than the cross angle (when v, = V). The cross angle can be
computed as

-1 Vae o 150

Vo V2110

Q

0 = sin

Any triggering angle less than 75° will result in no conduction. B is the first angle
after o at which v, = V.

B =180 — 0 = 105°
The conduction period v is then

y=B—a=105— 90 = 15°
To compute the power delivered to the battery, we need to compute the rms cur-
rent, the rms of the fundamental component of the current, and the phase shift of
its fundamental component as given in Equations (3.15) through (3.25). The sim-

plest way to compute the rms current is to compute the rms voltage across the re-
sistance and divide it by the resistance itself.

1 (B 1 (P
VR tms = \ﬂ'rj vfgdu)tz \/TTJ (v, — Vdc)2 dwt

1 B B
Viims = \/’n(Vﬁc'y + J vf dot — 2 Vch v, du)t)

g V2 in(2B) — sin(2 2
VR tms = \/Yﬁﬁf‘F o [V _ sin2P) = sin OL)] _ 2Vac Vinay (cosa — cos By (3.82)

T 27 2 ™

A direct substitution of the parameters into Equation (3.82) yields

Vers =12 V
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The total rms current during charging I, ..., which includes all the harmonics, is

Icrms = l/];{ﬁ =124

As explained in Section 3.1.2.3, the power can only be computed by using cur-
rents and voltages of the same frequency. We cannot multiply by I, ... by V..
However, we can multiply the dc component of the current I, by V.. Another
method is to use the formula in Equation (3.17) to compute the power at the ac
source side, then subtract the losses of the resistance R. The power at the ac
source side is

P,s‘ = Vllcrms COos d)l

where [}, s is the rms value of the fundamental component of the charging current.

To calculate the power delivered by the ac source, we need to compute the
phase shift of the fundamental component of the current with respect to the volt-
age of the ac source as given in Equation (3.20):

— 1%
d)l tan (b1>

1 (°m 2 (B 2 [B
a = jo i(w¢) cos(wt) dwt = R J vg cos(wt) dwt = R J (v, — Vo) cos(w?) dot

B B B
a, = sz’n_ [ J V nax SID(w?) cos(w?) dot — J V4 cos(w?) dwt]

Vdc

2 (sin B — sina) = —0.063
T

a; = —™%(5in? B — sin

R

a) —

mo 2 (P 2 (P .
L #{w?) sin(w?) dwt = R L vg sin(w?) dwt = R L‘ (v, — Vg sin(w?) dwt

B B
by = RZTT [ J V a SINZ (002) doot — Ve J sin(w¢) dwt]

e

; [’Y + sin(2a) — sm(ZB)] _2 Vdc(cos o — cos B) = 0.628

by = 7{_1? R
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The rms value of the fundamental component of the charging current I ; 1 is given
by Equation (3.18)

24 52 V(=0063)% + (0.628)
o= V@ + 5 _ V(0063 + (0628)° _ 0446 A
V2 V2 V2

As given in Equation (3.17), the power of the ac source P; is

Ps = VIlc rms CO8 d)l
= 110 X 0.446 X cos(5.73) = 48.85 W
The power losses in the resistance P is

P = Pims R =122 X 1 =144W

c rms
Note that the losses in the resistance are due to all harmonic components of the

current. The power delivered to the battery pack Pparge is then
P

charge

=P, — P =4741W

3.10.2 DISCHARGING OPERATION

The battery can return energy back to the ac source if Vac > vap and the proper
IGBTS are triggered. The current in this case will flow in the opposite direction of
the charging current as shown in Figure 3.41(b). The diode is used to indicate the
direction of the discharging current Z;. The waveforms of the discharging operation
are shown in Figure 3.42(a), and the triggering sequence is shown in Figure 3 A42(b).

FIGURE 3.42
Waveforms of discharging operation
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When V. > 45, Ss and Sg can be triggered, and the current loop is C, Ss, 4, B, S,
and back to D. When Vg, > vpy, S and S; can be triggered, and the current loop
is C, S7, B, A, Sg, and back to D. The equations of the system during discharging are
similar to Equations (3.79) to (3.81). The main difference is that the voltage drop
across the resistance is reversed.

VR = Vdc U

Let us analyze the first half of the cycle in Figure 3.42. In this period, vy, is
negative (point A has positive potential and B has negative) and is always less than
Ve Thus, S¢ and S; are closed. The current will flow in the IGBTs until 1. After
, point A turns positive with respect to B. Then, S5 and Sg are closed. The average
component of the discharging current can be computed by using the average volt-
age across the resistance at any triggering angle a:

v
2 D2 (cos o + 1)(3.83)
™

1 (™ —
VR = J [Vdc - Vmax Sin(wt)] dwl = Vdc L——
13 o i

The minimum triggering angle ;. is achieved when o = 0. The conduction
period in this case is 7, and the commutation angle is B = . The average dis-
charging current I, is

The rms quantities of the discharging circuit are computed in the following
example.

For the circuit in Example 3.14, calculate the rms current and the power delivered
to the ac source during discharging. Assume that « is a minimum.

SOLUTION
The general expression for the rms voltage across the resistance while discharging is

V, —\/ljﬁzd t = lJB(V - v)? dwt
R rms T (xUR w ], de Ux) @

1 8 B
= (Vdcz('y) + J v? dewt — 2 Vdcf v, du)t)
™ o o
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% V2. sin(2B) — sin(2a 2V Vo
Vers:\/dC( )+’ a[V“ (B) ( )]_ d

o Py > — (cos a — cos B)

where
Qmin = 0°
B = 180°

Y= B — Qpin — 180°

V2 4V, .V,
VR tms = \/dec + r;ax - 4d:_r e

VR tms = \/1502 + 1107 - 4(150) (V2 110) _ 20V
o

The total rms current (including all harmonics) during discharging I . is

V,
Idrms = RK;mS =70A

To calculate the power delivered to the ac source, we need to compute the rms
value of the fundamental component of the current, and the phase shift as given in
Equations (3.16) through (3.25).

1 (2" 2 (B 2 (B
a; = = J i(wt) cos(w?) dwt = R J vg cos(wt) dwt = R J (Ve — v,) cos(wt) dot
0 o a

2V
R

(sin B — sin a) Vinax
— sina) — —
S R

2

a; = (sin® B — sin® @)

a =20

Since a, is zero, there is no phase shift between the ac source voltage and the fun-
damental component of the current.

2 ) B
b = J /(o) sin(w?) dot = —— J vg sin (o) dot =

B
. R |, R L (Vye — v,) sin (0¢) dot

2V V in(2a) — sin(2
by = R"n('k (cosa—COSB)—T;;X ['y-f-’———'sm( a)zsm( B)}
4 Vy \%
_ ¢ _ Tmax — 3542
2 Rm R 354

= —wlﬂ = (0°
b, = tan <b1> 0
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The rms value of the fundamental component of the current is given by

I, :_i:Va%+b%:35.42:25A
MmN V2 V2

As given in Equation (3.17), the power delivered to the ac source P,_ can be
computed by

P = VI 4 mscos &y = 110 X 25 X cos(0) = 2.75 kW
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3.11 THREE-PHASE ENERGY RECOVERY SYSTEMS

In three-phase systems, the energy recovery circuit is similar to the circuit of the
three-phase ac/dc converter in Figure 3.21. However, the switches are oriented to
allow the current to flow from the dc source to the ac source. A typical circuit is
shown in Figure 3.43. It consists of six IGBTs, a dc source, and an ac source. The
current I can flow from the dec side to the ac side under the following conditions:

When v,, < Vg, and S, and S, are triggered
When v, < Vg, and S, and S; are triggered
When v, < Vg, and S, and S are triggered

Figure 3.44 shows the waveforms of the circuit and a switching pattern, The
bottom part of the figure shows the voltage difference between the ac and dc
sources. Note that this switching sequence provides a balanced energy recovery for
all three phases. The triggering sequence of the IGBTs does not result in a wave-
form at the ac side similar to those in Figures 3.30 or 3.31, because the ac side is al-
ready a voltage source and its waveforms cannot be altered.

FIGURE 3.43
Energy recovery circuit
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FIGURE 3.44
Waveforms of switching patterns for energy recovery
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The single-phase equivalent circuit is similar to that given in Figure 3.41. The
equations governing the discharging of the battery can be expressed by

vr = Vi = Vap

Several triggering patterns can be used. The maximum conduction period of
any transistor is y = 120°. In the following analysis, o, = 0, whereby the voltage
of the battery pack equals the voltage of the line-to-line ac source.

B can be computed at the moment when the line-to-line waveform equals the
dc voltage. Assume that the line-to-line voltage is

v, = V3V,

nax SID(®F)

where V., is the peak value of the phase voltage.
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Hence,

V3V, sin(®) = V

max

B = 180° — sin‘1<\/yéc ) (3.84)

max

6 =p — 120°

v,
9 = 60° — sin~ L—=9—
V3V,

The average voltage across the resistance during discharging is

B
Vg = % J [V — V3V, sin(of)] (3.85)

cos B — cos a)

ooy 2 3%ﬁmx
R dC2 2

The three-phase circuit shown in Figure 3.43 is used to discharge a battery bank of
250 V. The line-to-line ac voltage is 208 V. The system resistance between the bat-
tery bank and the source during conduction is 3 (). Calculate the following:

a.  Minimum triggering angle and the associated conduction period

b. Average charging current for the minimum triggering angle

SOLUTION
a. The minimum triggering angle

\%
O, = 0 = 60° — sin Sl Zde g

V3V

max

Y =B — oy, = 120°

b. To compute the average charging current, we need to compute the voltage
across the system resistance.

3y L 3V3 Vo,
= -+ == —
Ve = Ve o o (cos B — cosa)

9V,
Ve = Vg + 2:” cos(a + 150)
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16
Vp =250 + 9T9COS(152) = 3626V
T

Ve

Ipoe = 5 = 1209A

3.12 CURRENT SOURCE INVERTER

The current source inverter (CSI) has several advantages over the voltage source in-
verters; among these advantages are the following:

1. The load current is constant, even when the load impedance changes.

2. When misfiring occurs and two switches on the same leg conduct, the supply
of the voltage source inverter is shorted and the switches are damaged. How-
ever, for the CSI, the current through these switches is controlled to stay below
the damage level.

3. When a commutation circuit is needed, the current source inverter demands a
much simpler commutation than the voltage source inverter.

During the conduction period, the current source inverter (CSI) is designed to
maintain the current of the load constant, while the voltage is allowed to fluctuate. To
explain the operation of the CSI, consider the dc/ac inverter shown in Figure 3.45.
The figure shows a variable dc source, which could be the output of an ac/dc
converter. The magnitude of the source voltage v, is continually adjusted to main-
tain the current in the inductor L constant. A large enough inductance is chosen

FIGURE 3.45
Current source inverter
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so as to reduce current fluctuations. The dc/ac bridge circuit is similar to that shown
in Figure 3.28, except for the four additional diodes D; to D,,. The function of these
diodes will become apparent after we discuss the operation of this circuit. The four
switches (Q; to Q,) could be GTO, bipolar transistors, IGBT, or any other switch-
ing device.

Since the current is maintained constant, two transistors must be in conduc-
tion at any time. When Q; and Q, are conducting, the current flows in the direc-
tion shown in Figure 3.45. The load current reverses its direction when Q; and Q,
are conducting.

The voltage equation of the circuit can be written as

di
Vg = v, — LZ (3.86)
Also,
vy = o, + R+ L% (3.87)

dt

where R;and L, are the resistance and inductance of the load, respectively. v,,, is the
voltage drop across the switches in conduction, including the conducting diodes.
Note that in Equation (3.86), we used di/dt, and in Equation (3.87), we used di,/dt.
Although the currents in the load and inductor L are the same during the steady
state, they can have different values for di/dz. When two of the switches are in the
process of closing, the other two must be in the process of opening. This opening
and closing normally happens very rapidly, so the load current reverses its direc-

tion, while the inductor current remains relatively unchanged.
The rapid reversal of the load current results in a high &/,/d¢. For a highly in-
ductive load with small resistance, Equations (3.86) and (3.87) can be rewritten as
di; di di

wa:Z)d_L/* UX_L*"_L[ y

7 g2 ‘dlj (3.88)

If the load inductance is large enough and the switches are high-speed devices,
L; (dy/dt) during the current reversal could become much larger than . De-
pending on the sign of the d/dt, v,,, could become negative. As we know from
the property of transistors, an excessive reverse voltage can damage the transis-
tors. Therefore, by inserting a diode, with good reverse-voltage property, in se-
ries with the switches, most of the negative voltage of v,,, will be on the diodes,
and the switches are saved.

Figure 3.46 shows a simple dc/ac current source inverter with a commutation
circuit. It has four diodes (D; to D), four SCRs (Q, to Q,), an inductor (L) and
two capacitors (C; and C,). The four SCRs are switched in pairs; Q, and Q, are
closed during one half-cycle, and Q; and Q, are closed during the other half. This
circuit is similar to that in Figure 3.28, but has more components and its switches
are SCRs instead of transistors.
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FIGURE 3.46
Commutation of current source inverter
L
Fa22 8
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FIGURE 3.47
Waveform of current source circuit
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Q3 and Q4 are on

For now, ignore the capacitors and diodes and assume that the bridge has only
four SCRs. When Q, and Q, are switched on, the current flows in the load in one
direction. When these switches are turned off, and Q; and Q, are turned on, the
current flows in the opposite direction. If we ignore the transition period between
the turn-off and turn-on of the switches, one would expect the load current to have
the waveform shown in Figure 3.47. If the load changes during a conduction pe-
riod (180°), the current of the load is maintained constant due to the presence of
the inductor L.

As you know, the SCR cannot be commutated unless its current falls below its
holding value, which can happen when the terminal voltage of the SCRis reversed.
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This circuit can be commutated by using the capacitors and diodes. When Q, and
Q, are switched on, the source current flows in three paths:

(=1 1, to,

The loop of the capacitor current 7, is from the source through Q,, C;, Dy, D,, Q,,
and back to the source. Similarly, the 7, loop is through Q;, Dy, D3, C;, and Q.. The
loop of the load current is Qy, Dy, Dy, and Q,. The curtents 7, and 7, flow until
the capacitors are fully charged. The capacitance of C; and C, are selected suffi-
ciently large so as to fully charge them in less than 180°. (The maximum conduc-
tion period of any pair of the SCRs is 180°.) After the capacitors are fully charged,
only 7; continues to flow. Now let us assume that Q; and Q, are to be turned off,
and Q; and Q, turned on. All we have to do is to trigger Q5 and Q,. By doing this,
C; becomes in parallel with QQ,, and the voltage across Q, is negative. Hence, Q, is
turned off. Similarly, C; becomes in parallel with Q,, and it turns Q, off. This
process is repeated for the second half of the cycle.

One other function for the diodes is to isolate the capacitors from the Joad. In
this case, when the load voltage varies, the capacitors remain at constant voltage af-
ter they are charged. Thus, the capacitor voltage will be available and ready for
commutation when needed. The waveform of this circuit is shown in Figure 3.47
and is similar to that in Figure 3.28. The only difference is that the waveform here
is for current instead of voltage.

CHAPTER 3 PROBLEMS

3.1 A half-wave, single-phase ac-to-dc converter is loaded by an impedance of
10 mH inductance in series with 10  resistance. The ac voltage is 110 V
(rms). For a equal to 30° and 90°, calculate the following:
a. Conduction period
b. Average current of the load
c. Average voltage of the load
d. dc power

32  Repeat Problem 3.1 for « = 10°, assuming that a freewheeling diode is used.

3.3 Assume that an additional inductance can be inserted in series with the load.
Also assume that the converter has no freewheeling diodes. Calculate the
added inductance that leads to a conduction period of 180° when o = 30°,

3.4 Calculate the average current, average voltage, and the power of the load for
the case described in Problem 3.3.

3.5 A single-phase, half-wave SCR circuit is used to control the power con-
sumption of an inductive load. The resistive component of the load is 5 €.
The source voltage is 120 V (rms). When the triggering angle is adjusted to
60°, the average current of the load is 6 A. Calculate the following:
a. Average voltage across the load
b. Conduction period in degrees
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36 A dc/dc converter consists of a 100 V dc source in series with a 10 €2 load
resistance and a bipolar transistor. Assume that the transistor is an ideal
switch. In each cycle, the transistor is turned on for 100 ws and turned off
for 300 us. Calculate the following:
a. Switching frequency of the converter
b. Average voltage across the load
c. Average load current
d. rms voltage across the load
e. rms current
f. rms power consumed by the load
37 A 120V (rms), 60 Hz source is connected to a full-wave bridge as shown in
Figure 3.48. The load is an arc welding machine that can be represented by a
resistance of 1 ) in series with an inductive reactance of 3 (). At a triggering
angle of 60°, the current of the load is continuous. Calculate the following:
a. Average voltage across the load
b. Average voltage across the resistive element of the load
c. Average current of the load
FIGURE 3.48
AV AN
L R
Y AAN— @
7N
3.8  An inductive load consists of a resistance and an inductive reactance con-
nected in series. The circuit is excited by a full-wave, ac/dc SCR converter.
The ac voltage (input to the converter) is 120 V (rms), and the circuit re-
sistance is 5 €). At a triggering angle of 30°, the load current is continuous.
Calculate the following:
a. Average voltage across the Joad
b. Average load current
c. rms voltage across the load
3.9 A purely inductive load of 10 €} is connected to an ac source of 120 V (rms)

through a half-wave SCR circuit.
a. If the SCR is triggered at 90°, calculate the angle at the maximum
instantaneous current.
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b. If the triggering angle is changed to 120°, calculate the angle at the
maximum instantaneous current.
¢. Calculate the conduction period for the case in (b).

3.10 A resistive load of 5 Q) is connected to an ac source of 120 V (rms) through

3.11

3.12

an SCR circuit.
a. If the SCR circuit consists of a single SCR, and if the triggering angle
is adjusted to 30°, calculate the power consumption of the load.
b. If the SCR circuit consists of two back-to-back SCRs, calculate the
power consumption of the load assuming that the triggering angle is
kept at 30°.

An inductive load that has a resistive component of 4 () is connected to an
ac source of 120 V (rms) through a half-wave SCR circuit. When the trig-
gering angle of the SCR is 50°, the conduction period is 160°. Calculate the
following:

Average voltage across the load

Average voltage across the resistive element of the load

rms voltage across the load

Average current of the load

If a freewheeling diode is connected across the load, calculate the
load rms voltage. Assume that the current of the diode flows for a
complete half-cycle.

o oo T

The full-wave, ac/dc converter shown in Figure 3.49 is operating under con-
tinuous current (conduction period = 180°). The source voltage is 120 V
(rms), and the load resistance is 2 . For an average load current of 40 A,
calculate the triggering angle of the SCRs.

FIGURE 3.49

3.13

3.14

W
A 7AN A

Draw the waveforms of the load voltage for the circuit in Figure 3.21, as-
suming that the triggering angle is —30°.

A three-phase, ac/dc converter is excited by a three-phase source of 480 V
(rms and line-to-line). Compute the following:
a. The rms voltage across the load when the triggering angle is 30°
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b. The average voltage across the load when the triggering angle is 140°.
Keep in mind that the conduction is incomplete when the triggering
angle is greater than 140°.

3.15 The three-phase circuit shown in Figure 3.43 is used to discharge a battery
bank of 250 V. The line-to-line ac voltage is 208 V. The system resistance be-
tween the battery bank and the source during conduction is 3 (). Compute
the triggering angle of the IGBTs that limits the average current to 5 A.



Joint Speed-Torgue
Characteristics of
Electric Motors and
Mechanical Loads

Electric motors exhibit a variety of speed—torque characteristics that are suitable
for a wide range of load demands. A single motor can exhibit different
speed-torque characteristics based on its winding configuration or the characteris-
tics of the electric supply. As seen in Chapter 1, loads also have a wide range of
speed—torque characteristics depending on their mechanical properties.

When an electric motor is connected to a mechanical load, the system operates
at a speed—torque status that matches the characteristic of the motor as well as the
mechanical load. Let us explain this by examining Figure 4.1. The figure shows
three speed-torque characteristics of an electric motor (CC;, CC,, and CC;). As-
sume that these characteristics can be obtained by adjusting the voltage across the
terminals of the motor where CC, requires higher voltage as compared to CC, or
CC;. Assume also that the motor is driving an elevator (hoist). As we explained in
Chapter 1, the load torque of a hoist is independent of speed. Let us assume that
the motor voltage is adjusted so that its speed—torque characteristic is CC,. The sys-
tem operating point in this case is H;—the coordinates of point H; determine the
speed and torque of the system. Now assume that the motor voltage is reduced to
the level of characteristic CC,. The new system operating condition in this case is
H,, and so on. Note that the torque of the system is unchanged because of the
hoist’s characteristic.

Now we assume that the same motor is loaded by a blower (fan), and the fan
characteristic is the one shown in Figure 4.1. The operating points of the system
with the fan are F,, F,, and F5, depending on the motor voltage. Note that the speed
and torque of the system are changing for the fan load.

From the preceding assumptions, we conclude that the speed of the system is
not determined by the motor only, but is also heavily dependent on the load char-
acteristics. Hence, the characteristics of the load cannot be ignored when design-
ing an effective electric drive system.
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FIGURE 4.1
Speed-torque characteristics of a motor and mechanical loads
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4.1 BIDIRECTIONAL ELECTRIC DRIVE SYSTEMS

One of the basic laws of physics is the theory of equilibrium developed by Isaac
Newton in 1686. The essence of Newton’s third law of motion is that whenever one
body exerts a force on another, the second exerts a force on the first that is equal in
magnitude, opposite in direction, and has the same line of action. This is also known
as the action—reaction theory.

Now consider the case of an electric motor driving a mechanical load in a
steady-state operation. A force exerted by either part of the drive system (load or
motor) is opposed by a force equal in magnitude and opposite in direction from the
other. If a frictional force is present, it is a part of the load force; this is true for any
drive system even in standstill.

In drive applications, classifying the action and reaction forces is not always self-
evident. Either part of the drive system can produce an action force depending on
the nature of the operation. It is imperative to know the part of the drive system (mo-
tor or load) that produces the action force before any worthwhile analysis can start.

Consider the two examples given in Figures 4.2 and 4.3. The first, shown in
Figure 4.2, represents an electric bus driven uphill, then downhill. To simplify the
system, assume that the electric motor is directly mounted on the front wheels of
the bus. Let us first study the system motion in the uphill direction. The force of
the load is divided into two components: one is perpendicular to the road, F, pro-
ducing the frictional force, and the other, F;, is parallel to the road and represents
the load torque exerted on the motor. The direction of F, depends on the orienta-
tion of the road with respect to the gravitational force. F; always pulls the bus to-
ward the base of the hill. If frictional forces are ignored, the load torque seen by the
motor is F, multiplied by the radius of the wheel. This load torque must be matched
by a motor torque F,, in the opposite direction to F,
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FIGURE 4.2
Bidirectional load torque

FIGURE 4.3
Bidirectional speed
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Now let us assume that the bus is in the downhill direction. Because of the grav-
itational force, F, still pulls the bus toward the bottom of the hill. However, as seen
by the motor, the load force is reversed. The motor torque #zust then change its di-
rection to counterbalance the torques of the load as described by Newton’s laws.

Note that the motor speed is unidirectional in the uphill and downhill motions.
Only the torques of the system are reversed.

The second example is shown in Figure 4.3. An elevator is moving passengers
in both directions (up and down). For simplicity, let us assume that the elevator
does not have a counterweight. In the upward and downward directions, the mo-
tor sees the load force F,, which is a function of the weight of the passengers plus
elevator cabin, cables, and so on. Since the weight and F; are unidirectional, the
motor force F,, is also unidirectional. The speed of the motor in this operation is
bidirectional.
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4.2 FOUR-QUADRANT ELECTRIC DRIVE SYSTEMS

The following conventions govern the power flow analysis of electric drive systems.

1. When the torque of an electric machine is in the same direction as the system
speed, the machine consumes electric power from the electric source and de-
livers mechanical power to the load. The electric machine is then operating as
a motot.

2. Tf the speed and torque of the machine are in opposite directions, the machine
is consuming mechanical power from the load and delivering electric power to
the source. In this case, the electric machine is acting as a generator.

Figure 4.4 shows the four quadrants of the speed—torque characteristic that cover
all possible combinations of any electric drive system. Let us define the first quad-
rant as the reference. In this quadrant, the torque of the electric machine is in the

FIGURE 4.4
Four-quadrant drives
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same direction as the speed. The load
torque, of course, is opposite to the
machine torque. The electric machine
in this case is operating as a motor.
The flow of power is from the ma-
chine to the mechanical load.

In the second quadrant, the speed
direction of the system is unchanged,
while the torque of the load and the
motor torque are reversed. Since the
load torque is in the same direction as
the speed, the mechanical load is de-
livering power to the machine. The
machine then receives this mechanical
energy, converting it to electric energy
and returning it back to the electric
source. The electric machine in this
case is acting as a generator.

Note that the example of Figure
4.2 represents the operation of the
drive system in the first and second
quadrants. The first quadrant repre-
sents the bus going uphill, whereas the
second quadrant represents the bus
going downhill.

Compared to the first quadrant, the system speed and torque are reversed in
the third quadrant. Since the machine torque and speed are in the same direction,
the flow of power is from the machine to the load. The machine is therefore acting
as a motor rotating in the reverse direction to the speed of the first quadrant.
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A bidirectional grinding machine is a good example of the first and third quad-
rant operation. The direction of the load torque of a grinding load is reversed when
the speed is reversed (third quadrant). A horizontal conveyor belt is another ex-
ample of this type of operation.

In the fourth quadrant, the torques remain unchanged as compared to the first
quadrant. The speed, however, changes direction. From the load perspective, the
load torque and the speed are in the same direction. Hence, the electric power flow
is from the load to the machine. The machine in this case is operating as a genera-
tor delivering the electric power to the source. An example of the first and fourth
quadrant operation is shown in Figure 4.3. The first quadrant may represent an el-
evator in the upward direction. When the elevator is going in the downward direc-
tion, the speed of the motor is reversed, but the torques are still unidirectional
(fourth quadrant).

Any electric drive system operates in more than one quadrant. In fact, most
versatile systems operate in all four quadrants. The converters of these systems must
be designed to allow the electric power to flow in both directions.

Keep in mind that when an electric machine operates as a generator, it delivers
electric power to the source. A large amount of power for a short period can be de-
livered to the source, but such energy must be fully absorbed by the source for a
drive system to be efficient. If the source is composed of batteries, the rate by which
they can absorb the energy is often slow due to the chemical process. The energy
of the generator in this case is often wasted in resistive elements, which is why elec-
tric cars cannot, so far, utilize this energy to its fullest.

The mass of the electric bus in Figure 4.2 is 5000 kg, including the passengers. A
single motor mounted on the front wheels drives the bus. The wheel diameter is
1 m. The bus is going uphill at a speed of 50 km/hr. The slope of the hill is 30°.
The friction coeffiecient of the road surface at a given weather condition is 0.4.
Ignore the motor losses, and compute the power consumed by the motor.

SOLUTION

To compute the electric power consumed by the motor, you must first calculate
the total force exerted by the system on the motor. Consider the system forces
in Figure 4.5. When the bus is moving uphill, the weight of the bus is divided
into two components: one perpendicular to the road surface, which is respon-
sible for the friction force, F,, and the other, F;, which pulls the bus toward the
bottom of the hill. The direction of the friction force is always opposite to the
direction of motion of the bus. The motor force must equal all forces in the op-
posite direction.

Fm:FZ+Fr
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FIGURE 4.5
Forces acting on an electric bus moving uphill

All these forces are dependent on the gravitational force F,. Consider the force di-
agram on the right side of the figure. The normal force F and the load-pulling force

F, can be computed by

F=F,cos9

F[ = Fg sin 6
where 0 is the slope of the hill.

The gravitational force F, is
Fg = mg
where 7z is the total mass of the bus and passengers and g is the gravitational
acceleration.
Fg = 5000 X 9.8 = 49,000 N

Hence,

F= Fg cos B = 49,000 X cos 30 = 42,435.25 N
Fy=F,sinf = 24500 N

The friction force is

where W is the coefficient of friction.

F,=nF =04 X4243525 = 16974 N
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The total force seen by the motor is
F,=F +F,= 24500 + 16974 = 41474 N

The torque seen by the motor is equal to the total force multiplied by the radius of
the wheel:

T,=F,r=41474 X 0.5 = 20,737 Nm

The power of the motor is the torque multiplied by the angular speed:

P =T, 0=T,%=20737 22 = 20737 kW
r 05

CHAPTER 4 PROBLEMS

4.1 The mass of an electric car is 900 kg including the passengers. A single mo-
tor mounted on the front wheels drives the car, and the radius of the wheel
is 0.3 m. The car is going downhill at a speed of 50 km/hr, and the slope of
the hill is 30°. The friction coefficient of the road surface at a given weather
condition is 0.8. Ignore the motor losses and compute the power generated
by the electric machine.

42 Assume that the electric car in Problem 4.1 is moving at a constant speed. It
takes the car 1 min to reach the bottom of the hill. Calculate the energy gener-
ated by the electric machine.

4.3 If the energy generated by the electric machine in Problem 4.2 is totally con-
sumed by the batteries of the car, compute the charging rate of the batteries. Is
it possible to charge a battery pack at this rate?

4.4 The electric drive system shown in Figure 4.6 consists of a motor, a pulley, a rigid
belt, and a stage. The motor moves the stage in either direction. Explain the mo-
tion of system and the power flow using the four-quadrant drive concept.

FIGURE 4.6

Motion

% L

Belt

S
@uey
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Speed-Torque
Characteristics of Electric
Motors

Electric motors have a variety of speed—-torque characteristics during steady-state
and transient operations. For a given drive application, engineers often selected
motors with characteristics matching the needed operation, which could be driven
by existing power sources. Due to advances in power electronic devices and cir-
cuits, such stringent restrictions no longer exist. The characteristics of most motors
can now be altered to match the desired performance when external power con-
verters are used and advanced control strategies are employed.

In this chapter, the speed—torque characteristics of major types of electric mo-
tors are presented. Models and formulas of speed equations as related to the torque
are explained from the electric drive perspective. These characteristics form the ba-
sis for the speed control and braking of electric motors that are discussed in fol-
lowing chapters. Three types of electric motors are discussed here: dc, induction,
and synchronous. Although there are several other types of motors, such as the
brushless, reluctance, linear, and stepper motors, they all share common features
with the three presented here. For example, the brushless machine can be consid-
ered a special form of a synchronous machine switched to imitate a dc motor. The
linear induction motor is also considered a special form of the induction motor.

112

5.1 dc MOTORS

The de machine is popular in a number of drive applications due to its simple op-
eration and control. The starting torque of dc machines is large, which is the main
reason for using it in several traction applications. A special form of dec machine can
also be used with either ac or dc supply. A large number of appliances and power
tools used at home, such as circular saws and blenders, are dc machines.

Figure 5.1 shows the main components of the dc machine: field circuit, arma-
ture circuit, commutator, and brushes. The field is normally an electric magnet fed
by a dc power source. In small machines, the field is often a permanent magnet.

The armature circuit is composed of the windings, commutator, and brushes.
The windings and the commutator are mounted on the rotor shaft and therefore
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FIGURE 5.2
Operation of a typical dc machine

. Armature

windings

from the brush and is disconnected from the external source. The next coil moves
under the brush and carries the current I. This produces a continuous force F and
continuous rotation. Note that the function of the commutator and brushes is to
switch the coils mechanically.

The rotation of the machine is dependent on the magnetomotive force MMF
of the field circuit, which is described by

MMF = NI

where N is the number of turns and I is the field current. The desired MMF can be
achieved by the design of the field windings. There are basically two types of field
windings: the first has a large number of turns and low current, and the second type
has a small N and high current. Both types achieve the desired range of MMF. Ac-
tually, any two different windings can produce identical amounts of MMF if their
current ratio is inversely proportional to their turns ratio. The first type of winding
can handle higher voltage than the second type. Moreover, the cross section of the
wire is smaller for the first type since it carries a smaller current.

Direct current motors can be classified into four groups based on the arrange-
ment of their field windings. Motors in each group exhibit distinct speed—torque
characteristics and are controlled by different means. These four groups are:

1. Separately excited machines. The field winding is composed of a large num-
ber of turns with small cross-section wire. This type of field winding is de-
signed to withstand the rated voltage of the motor. The field and armature
circuits are excited by separate sources.
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2. Shunt machines.
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The field circuit is the same as that for separately excited

machines, but the field winding is connected in parallel with the armature cir-
cuit. A common source is used for the field and armature windings.

3. Series machines.

The field winding is composed of a small number of turns

with a large cross-section wire. This type is designed to carry large currents and

is connected in series with the armature winding.

4.  Compound machines.

5.1.1 SEPARATELY EXCITED MOTORS

This type uses the shunt and series windings.

The equivalent circuit of a separately excited motor is shown in Figure 5.3. The mo-
tor consists of two circuits: field and armature. The field circuit is mounted on the
stator of the motor and is energized by a separate dc source of voltage V}. The field
has a resistance Ryand a high inductance L,. The field inductance has no impact in
the steady-state analysis, since the source is a dc type. The field current I;can then

be represented by

I,= -1
A Rf

6.1

For small motors (up to a few hundred watts), the field circuit is a permanent mag-
net. In such a case, the flux of the field is constant and cannot be adjusted.

The armature circuit, mounted on the rotor, is composed of a
rotor winding and commutator segments. An external source of
voltage V, is connected across the armature to provide the electric
energy needed to drive the load. The source is connected to the ar-
mature circuit via the commutator segments and brushes. The di-
rection of the current in the armature winding is dependent on the
location of the winding with respect to the field poles.

Relative to the field circuit, the armature carries a much higher
current. Therefore, the wire cross section of the armature winding is
much larger than that for the field circuit. The armature resistance R,
is, therefore, much smaller than the field resistance Ry. R, is in the
range of a few ohms and is smaller for larger horsepower motors. The
field resistance is a hundred times larger than the armature resist-
ance. The field current is usually in the neighborhood of 1% to 10%
of the rated armature current. The field voltage is usually in the same
order of magnitude as the armature voltage.

The back electromagnetic force E, shown in Figure 5.3 is equal
to the voltage of the source minus the voltage drop due to the ar-
mature resistance. The armature current I, can then be expressed by

_&-Ea
I, = R

a

FIGURE 5.3

Equivalent circuit of a dc
motor in steady-state
operation
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The multiplication of I, by E, represents the developed power P,. In mechanical
representation, the developed power is also equal to the developed torque multi-
plied by the angular speed.

Pd - EaIa - Td(x) (53)

The developed power P, is equal to the output power consumed by the mechani-
cal load plus rotational losses (frictional and windage). Similarly, the developed
torque T is equal to the load torque plus the rotational torque. The angular speed
 in Equation (5.3) is in radians/second.

Using Faraday’s law and the Lorentz force expressions, the relationships that
govern the electromechanical motion are

e = Blv
F =Bl

where B is the flux density, /is the length of a conductor carrying the armature cur-
rent, v is the speed of the conductor relative to the speed of the field, and 7 is the
conductor current. F and e are the force and the induced voltage on the conductor,
respectively. If we generalize these equations by including all conductors, using the
torque expression instead of the force F, and using the angular speed instead of ¢,
we can rewrite E, and T, as

E,~e

E, = Kbo (5.4)
T,~F

T,=Kdl, (5.5)

where & is the flux, which is almost proportional to I, for separately excited mo-
tors. The constant K is dependent on design parameters such as the number of
poles, number of conductors, and number of parallel paths.

The speed-torque equation can be obtained by first substituting I, of Equa-
tion (5.2) into Equation (5.5).

V, - E

a

T, =Ko

4 (5.6)

Then, by substituting E, of Equation (5.4) into Equation (5.6), we get

or
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vV, R
=—t . —d4_T 8
Ko (K¢ ¢ oY
. N ¥ . .
The speed—current equation can be obtained if de) of Equation (5.8) is replaced by I,
_ Vi R,
® = K Kb (5.9

If we ignore the rotational losses, the developed torque T} is equal to the shaft
torque, and the no-load armature current is equal to zero. Hence, the no-load speed
can be calculated from Equation (5.8) or (5.9) by setting the armature current and
load torque equal to zero.

V,

=t
= Xo (5.10)

®q

In reality, the mass of the drive system and the rotational losses are the base load
of the motor. The no-load speed wy, is therefore slightly smaller than the value
computed in Equation (5.10). Nevertheless, Equation (5.10) is an acceptable
approximation.

In the steady state, the developed torque T is equal to the load torque T,,. At
a given value of load torque T,,, the speed of the motor drops by an amount of Aw
that is equal to the second term on the right side of Equation (5.8).

Aw = uiﬁ)z T, (5.11)

The speed of the motor can then be expressed by using the no-load and speed drop.
0 =0, - Aw (5.12)

Figures 5.4 and 5.5 show the speed—torque and speed—current characteristics when
the field and armature voltages are kept constant.

For large motors (greater than 10 hp), the armature resistance R, is very small,
because the armature carries higher currents, and the cross section of the wire must
then be larger. For these motors, the speed drop Aw is small, and the motors can
be considered constant-speed machines,

The developed torque at starting Ty, and the starting armature current I, can
be calculated from Equations (5.8) and (5.9) by setting the motor speed to zero.

v
T, = K(bR*’ (5.13)

da

I

st

_ Y
TR, (5.14)
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FIGURE 5.4 FIGURE 5.5
Speed-torque characteristics of dc,  Speed-current characteristics of
separately excited motor dc, separately excited motor
Speed Speed
A Load A
o, o,
; ’ \
Operating M Operating T
point otor point Motor
T, Torque I, Current

Equations (5.13) and (5.14) provide important information about the starting
behavior of the de, separately excited motor. As we stated earlier, R, is usually
small. Hence, the starting torque of the motor is very large when the source volt-
age is equal to the rated value. This is an advantageous feature, and is highly
desirable when motors start under heavy loading conditions. A problem, how-
ever, will arise from the fact that the starting current is also very large, as seen
in Equation (5.14). Large currents at starting might have a damaging effect on
the motor windings. Excessive currents flowing inside a winding will result in
large losses due to the winding resistance. These losses, when accumulated over
a period of time, may result in excessive heat that could melt the insulations
of the winding, causing an eventual short circuit. This is illustrated by the next
example.

A dc, separately excited motor has the following data:

Kd = 3.0V sec (volt second)

V, =6000V
R, =208
I, = 5.0 A (armature current at full load)

Calculate the rated torque, starting torque, and starting current at full voltage.
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SOLUTION
Rated torque = T; = Kb, = 3 X 5 = 15 Nm

Ko 3.0

Starting torque = T, - = 600.0 20" 900.0 Nm

st tR
a

V,
Starting current = [, = th =300.0A

a

As seen from these results, the starting torque is 60 times the rated torque, and the
starting current is also 60 times the rated current. Such a high current over a period
of time is damaging to the motor winding.

One important parameter missing in this example is the inductance of the ar-
mature winding. This inductance reduces the value of the current during transient
conditions such as starting or braking. Nevertheless, the starting current under full
voltage conditions is excessively large, and methods must be implemented to bring
this current to a lower and safer value.

By examining Equation (5.14), the starting current can be reduced by lower-
ing the terminal voltage or inserting a resistance in the armature circuit.

Let us assume that the starting current must be limited to six times the rated
value. This can be achieved by reducing the terminal voltage at starting to

v

st

=I,R,=6X50X20=600V

Figure 5.6 illustrates the effect of reducing the terminal voltage during starting.

When the voltage is reduced from V, to V,,, the slope of the speed—current char-
acteristic remains unchanged, whereas the no-load speed is reduced. Note that the

starting current I, is less than I,

FIGURE 5.6
Effect of reducing source voltage at starting
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FIGURE 5.7 FIGURE 5.8
Effect of inserting a resistance in Equivalent circuit of a d¢
the armature circuit at starting shunt motor

of L

R,+R Ra

/ 3

}StZ /Istl

Another method to reduce the starting current is to add a resistance R to the
armature circuit.

R+R,= Y
ISI
1% 600.0
R=-t—-R =—"—-20=18Q
I, ¢ 300

Figure 5.7 illustrates the effect of reducing the starting current by adding a resis-
tance to the armature circuit. The resistance increases the slope of the speed—current
characteristic but keeps the no-load speed unchanged.

5.1.2 SHUNT MOTORS

A shunt motor has its field winding connected across the same voltage source used
for the armature circuit, as shown in Figure 5.8. The current of the source I is equal
to the sum of the armature current I, and the field current I The shunt motor ex-
hibits characteristics identical to those of the separately excited motor.

5.1.3 SERIES MOTORS

The field winding of a series motor is connected in series with the armature circuit,
as shown in Figure 5.9. There are several distinct differences between the field
winding of a series machine and that of a shunt machine; among them are

1. The series field winding is composed of a small number of turns as compared
to the shunt field winding.

> The current of the series winding is equal to the armature current, whereas the
current of the shunt field is equal to the supply voltage divided by the field re-
sistance. Hence, the series field winding carries a much larger current than the
shunt field winding.
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FIGURE 5.9 FIGURE 5.10
Equivalent circuit Saturation curve
of dc series motor

ot

Y

3. The field current of the shunt machine is constant regardless of loading con-
ditions (armature current). The series machine, on the other hand, has a field
current varying with the loading of the motor—the heavier the load, the
stronger the field. At light or no-load conditions, the field of the series motor
is very small.

When analyzing series machines, one should keep in mind the effect of flux
saturation due to high field currents. A flux saturation curve is shown in Figure
5.10. The field coil is wound around the metal core of the stator. The current of
the field winding produces the flux inside the core. When the current increases,
the flux increases in a linear proportion unless the core is saturated. At saturation,
the flux tends to increase at a progressively diminishing rate when the field cur-
rent increases.

The series motor has the same basic equations used for shunt motors: Equa-
tions (5.4) and (5.5). The armature current is calculated by using the loop equation
of the armature circuit.

V,— E
=24 = 15
“ R,+R 5.15)
Note that Ry is present in Equation (5.15). A similar process to the one used in
Equation (5.7) can compute the torque of the machine.

V,— E
T,=K¢  +—= 5.16
a = RO Ry 5-16)
V, — Kdw

Ta=Ke g + Ry

(5.17)
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or
V, R, +R
=T 2 Td
Ko (Kd)

(5.18)

w

Let us assume that the motor operates in the linear region of the saturation
curve; that is,

b = CI, (5.19)

where C s a proportionality constant. The developed torque in this case can be rep-
resented by

T, = KéI, = KCE, (5.20)

Substituting Equations (5.19) and (5.20) into Equation (5.18) yields

vV, R, + Ry 5.21
®TKC,  KC 2D
Equation (5.21) can also be obtained as a function of the developed torque.
V R,+R
- (5.22)

VKCT, KC

Equations (5.21) and (5.22) show that the speed at no load or light loads is ex-
cessively high. Such a high speed may be damaging due to excessive centrifugal
forces exerted on the rotor. For this reason, series motors must always be connected
to a mechanical load.

The speed—torque characteristic of a series motor is shown in Figure 5.11. Note
that the speed of the motor is rapidly decreasing when the load torque increases.
This can be explained by Equation (5.22), where the motor speed is inversely pro-
portional to the square root of the load torque.

The starting current of a series motor is calculated by setting E, equal to zero
in Equation (5.15), since w is equal to zero.

FIGURE 5.11
Speed-torque characteristic of dc series motor

(D“

Torql;e
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Vv
I, =—"1— (5.23)
st Ra + Rf
Compare Equation (5.23) to Equation (5.14). Note that, for the same terminal volt-
age, the starting current of a series motor is smaller than the starting current of the
shunt motor due to the presence of R,in Equation (5.23).
If we ignore the core saturation, the starting torque of the series motor is

Vv 2
T, = Kél, = KCB, = KC (’) (5.24)
' ! ! R, +R;

To compare the starting torque of a series motor to that of a shunt motor, let us
rewrite Equation (5.13), assuming that the flux is proportional to the field current.

1% v, V 1%
T =KLt = Y SR S ¢ 2
st shunt d) Ra ke Rfshunt Ra ke RaRfshunt 5-25)

where Ry g, is the resistance of the shunt field winding and is usually a few hun-
dred times larger than the resistance of the series field Ry If we assume that KC in
Equations (5.24) and (5.25) are of comparable value, one can conclude that the
starting torque of a series motor is much larger than that for a shunt motor. Also,
keep in mind that the starting current of a series motor is lower than that for a shunt
motor. These features make the series motor a popular machine in such applica-
tions as traction and transportation. A trolley bus, for example, requires a high
starting torque, especially when loaded with passengers.

Another great feature of series motors is their ability to be directly driven by ac
supplies. To explain this, let us examine Figure 5.9, where E, is equal to the source
voltage minus the voltage drop across the armature and field resistances. When the
source voltage reverses its polarity, E, follows. Since the field and armature induc-
tances of series motors are small, E, reverses its polarity without any tangible delay.
Hence, E, is always in phase with the supply voltage, and the field current is also in
phase with the supply voltage. Since

_ E.
Ko

w

the speed of the motor remains unchanged when both E, and ¢ reverse their po-
larities. Because of this important feature, we can find dc series motors used in
household appliances and tools such as blenders, food processors, washing ma-
chines, drills, and circular saws. Note that high starting torque—another good fea-
ture of series motors—is also needed in all these applications.

5.1.4 COMPOUND MOTORS

A compound motor is composed of shunt and series windings. Two types of com-
pound configurations can be used. One is called a cumulative compound, where
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FIGURE 5.12
Equivalent circuit of a compound motor

Rfshunte C | Iy

the airgap flux is the sum of the flux of the two field windings. The second is a sub-
tractive compound, where the airgap flux is the difference between the flux of the
two field windings. The subtractive compound may result in a very low flux in the
airgap, leading to excessive speeds. This type is therefore considered unstable in
operation and is not widely used.

The cumulative compound motor (hereafter called the compound motor) has
the schematic shown in Figure 5.12. The direction of the currents with respect to
the windings’ dots represents flux polarities that are cumulative.

Equations (5.4) and (5.5) are also valid for compound motors. The flux in these
equations can represent the compound machine by setting

d) = d)series + d)shunt

The speed equation of a compound machine is similar to that given in Equation (5.9),
but the resistive term and the flux are modified to reflect the parameters of the com-
pound machine.

R, + Ryl
v K(cbseriesvi Puhune) K(gsezes + im 620
Assuming that the terminal voltage and dgp,, are constant, and
Deries = Cl,
then the speed—current equation can be modified as follows:
" Vi R+ Xl (5.27)

- KCIa + Kd)shunt - KCIa + Kd)shunt



SPEED-TORQUE CHARACTERISTICS OF ELECTRIC MOTORS 125

FIGURE 5.13
Characteristics of compound, series, and shunt motors

Compound

. 7
Series

Torque

Also, since the motor torque is a function of the armature current and the total flux,
it can be represented by

Td = K(d)series + d)shunt)la (5.28)
v, (R, + R)T,

W = -

K(d)series + (bshunt) [K<¢series + (bshunt)]z

Note that at no load (T; = 0), the armature current is zero, and ..., is also zero.
In this case, the no-load speed of the compound motor is

Vt
= ~ (5.29)
Kd)shunt

which is the same as the no-load speed of the shunt machine. By using the com-
pound connection, the excessive no-load speed of the series motor is avoided.

The speed-torque characteristic of the compound motor is shown in Figure 5.13.
For comparison purposes, the figure also shows the characteristics of the shunt and se-
ries motors. The starting current of the armature circuit of the compound machine can
be calculated using the circuit in Figure 5.12.

)

v,

Iy = ﬁ&Rj (5.30)

The starting current of the compound motor is the same as that for the series mo-
tor. The starting torque of the compound motor is

Tst = K((bseries + d)shunt)Ist

e VY V)
= KC(Ra n Rf) + Kd)shunt(Ra + Rf (5.31)

which is higher than the starting torque of the series motor, given in Equation (5.24).
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Before we explain how the induction machine rotates, FIGURE 5.16
we need to understand the concept of rotating fields. The '
three-phase stator windings are excited by a three-phase
source with sinusoidal waveforms separated by 120°. The A
currents of the three phases produce a three-phase flux, as
shown in Figure 5.16. Because of the arrangements of the
stator windings, the flux of each phase travels along the
windings’ axes, as shown in Figure 5.17. The airgap flux is
the resultant of all flux produced by the three windings.

Now let us consider any three time instances such as
those given in Figure 5.16 (¢, £,, and 15). At #,, the flux of
phase  is ({3/2) ® .y, the flux of phase b is —(/3/2) b
and the flux of phase ¢ is zero. These flux phases are de-
picted in Figure 5.18. The resultant airgap flux is the pha-
sor sum of all flux present in the airgap. Hence, at #,,

Three-phase fields

L o,

_ 4 _ _ V3 V3 3
d)(tl) = (ba(tl) + ¢b(tl) + d)c(tl) = Td)max 40 + Td)max £60°+ 0 = Ed)max 4300

At £,, the flux of phase @ s (y3/2) dpax the flux of phase & is zero, and the flux of phase
cis —(y3/2) bpnay. The total airgap flux at £, is

. - - _ V3 V3 3
d)(tZ) = d)a(tZ) + d)b(tZ) + ¢c(f2) = Td)max £Z0+0 + T(bmax £ —60° 25 (bmaXZ._BOO

Similarly, at #;, the flux of phase a is zero, the flux of phase b is (j3/2) ..., and the
flux of phase cis —(y3/2) G pax- The total airgap flux at 5 is

_ _ - . V3 V3 3
¢(t3) - d)a(t}) + d)b(t}) + d)c(l‘}) =0 +7 d)max £-120 +7¢max £—60° :Ed)max £ =90°

FIGURE 5.17
Direction of the airgap field of each phase
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FIGURE 5.18 FIGURE 5.19
Rotation of the airgap field Two-pole arrangement
v 3
2 e ? q)max
Aty > Omax One ac cycle
= 180° mechanical
Aty E‘Dmax
2
3
_\/gq)max 2 ¢max
_\/qu)max

These three equations show that the airgap flux has a constant magnitude of (3/2) &paxs
but its angle is changing. The airgap flux is then rotating in the clockwise direction.
This rotating flux is one of the main advantages of the three-phase systems used in
power distribution.

The speed of the airgap flux is one revolution per ac cycle. The time of one ac
cycle T = 1/f, where fis the frequency of the supply voltage. Thus, the speed of the
airgap 7, 1s

n, = f rev/sec
or
n, = 60f rev/min

1, is known as the synchronous speed because its magnitude is synchronized with
the supply frequency.

The arrangement in Figure 5.17 is for a two-pole machine. (Every coil has two
poles, one north and the other south.) If each phase has two coils, the machine is
four-pole, as shown in Figure 5.19. In this arrangement, the rotor moves 180° me-
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chanical for every one complete ac cycle. Hence, the mechanical speed of the air-
gap flux is

n, = o = 120§rpm (5.32)

pp

where pp is the number of pole-pairs, and p is the number of poles (p = 2 pp).

The rotation of the induction motor can be explained using Faraday’s law and
the Lorentz force equations. Assuming that a conductor is carrying current in a uni-
form magnetic field, the relationships that govern the electromechanical motion are
depicted in the following equations:

e = Bl
F =Bl

where B is the flux density, /is the length of the current-carrying conductor, v is the
speed of the conductor relative to the speed of the field, and 7 is the conductor cur-
rent. F and e are the force and the induced voltage on the conductor, respectively.
If we generalize these equations for the rotating field, we can rewrite them in the
following form:

e = f(db,An) (5.33)

T = fld,i) (5.34)

where f (+) is a function notation, ¢ is the flux, T is the torque developed by the cur-
rent-carrying conductors, and Az is the relative speed between the conductor and the
airgap flux. Now, let us assume that the rotor is at standstill. When a three-phase volt-
age is applied to the stator windings, a rotating flux is generated in the airgap. The
speed of this flux is the synchronous speed #,. The relative speed A7 is equal to the syn-
chronous speed (the rotor is stationary). A voltage e is then induced in the rotor wind-
ings according to Equation (5.33). Since the rotor windings are shorted, a rotor current
¢ flows. This current produces a Lorentz force F and torque T that spins the rotor.

The steady-state operation is achieved when the motor, on a continuous basis,
provides the torque needed by the load. Assuming that the flux has a fixed magni-
tude, the rotor current is adjusted so that the Lorentz force and torque given in
Equation (5.34) meet the load torque demand. The magnitude of the rotor current
requires an induced voltage e in the rotor windings that is equal to the rotor cur-
rent multiplied by the rotor impedance. This voltage in turn requires a certain
speed deviation A# as given in Equation (5.33). Hence, the steady-state speed of the
rotor must always be slightly less than the synchronous speed to maintain the de-
sired magnitude of the developed torque. If the rotor speed is equal to the syn-
chronous speed (Az = 0), the rotor current is dropped to zero, and so is the
developed torque. Thus, the rotor cannot sustain the synchronous speed and the
machine slows down to lower speed.
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The difference between the rotor speed (7 or w) and the synchronous speed
(n, or w,) is known as the slip s,

A _bo_nmmn om0 (5.35)

g o n, ®

§

where @ = 27 (#/60), 7 is in revolutions/minute (rpm), and o is in radians/second.
Note that the slip at starting, when the motor speed is zero, is equal to one. At no
load, when the motor speed is very close to synchronous speed, the slip is about zero.

5.2.1 EQUIVALENT CIRCUIT

A single-phase equivalent circuit can be developed for the induction motor by first
separating the stator and rotor circuits. The equivalent circuit of the stator is shown
in Figure 5.20. The stator is a set of windings made of copper material mounted on
the core. The windings have a resistance R; and inductive reactance X;. The core,
which is made of steel alloy, can be represented by a linear combination of a paral-
lel resistance and a reactance (R,,, and X,,,). This core representation approximately
models the hysteresis and eddy current effects. The sum of currents in R,, and X,,,
is called the magnetizing current I,,.. R, and X,,, are each of a high ohmic value. The
number of turns of the stator windings is Ny, and its effective voltage drop E; is
equal to the source voltage V minus the drop across the winding impedance.

E, =V-LR +/X) (5.36)

The magnetizing current I, is a small fraction of I, and can be ignored for heavily
loaded motors.

The rotor circuit needs a special analysis. First, let us assume that the rotor is
at standstill. In this case, the induction machine is behaving similarly to the trans-
former. The rotor can be represented by a winding impedance composed of a re-

FIGURE 5.20
Equivalent circuit of the stator

R Xy I
_/\/\/\/__Nm s ;
Iy
I
1% Ey
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FIGURE 5.21
Equivalent circuit of the rotor at standstill

sistance R, and an inductive reactance X5, as shown in Figure 5.21. The number of
turns of the rotor windings is N,, and its terminals are shorted. The induced volt-
age across the rotor windings at standstill E; is

E_ N,

E N, (5.37)

Now let us assume that the rotor is spinning at speed 7. In this case, the in-
duced voltage across the rotor E, is proportional to the relative speed Az between
the rotor and the field as given in Equation (5.33). Keep in mind that the induced
voltage at standstill E, is proportional to the synchronous speed (A = 7).

EZ T
E,~n, ~n (5.38)

Hence, the rotor voltage E, , at any speed 7, is

E, _n—n
EZ Ry
E = sE, (5.39)

The frequency of the rotor current is also dependent on Az. At standstill (Az = #),
the frequency of E, or I is the same as the stator’s supply frequency /. At any other
speed, the frequency of the rotor current depends on the rate by which the rotor
windings cut through the field. Hence, it depends on the relative speed An. At
standstill, the rotor frequency f,; is

fou~ An, An = n
fu=Ff (5.40)
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At any other speed, the rotor frequency /, is

fi~An, An=mn,—n (5.41)
Hence,
fy _f_n—n
fs  f o
fi=s (5.42)

Equations (5.39) and (5.42) change the equivalent circuit of the rotor to that shown
in Figure 5.22, which is a more general circuit for any rotor speed. The rotor in-
ductive reactance in this circuit is

X, =2wf L, =2msfL, = s2mufL,) = sX, (5.43)

where L, is the inductance of the rotor windings, and X, is the inductive reactance
of the rotor at standstill. The rotor current of the induction motor I, at any speed
can be represented by

_ SE‘27 B
which can be modified to
- E
I, = R—Z — (5.45)
fz + /X,

A

Equation (5.45) can lead to the modified rotor circuit shown in Figure 5.23. Now, let
us put the stator and rotor equivalent circuits together, as shown in Figure 5.24(a).
The equivalent circuit can be simplified by eliminating the turns ratio by means of re-
ferring all the parameters and variables to the stator, as shown in Figure 5.24(b).

FIGURE 5.22 FIGURE 5.23
Equivalent circuit of the rotor at Modified equivalent circuit of the
any speed rotor at any speed
Xr:X Xz Rz X2 Rz /s
_NW\_\/\/\/\__
A
—_—
I
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FIGURE 5.24
Development of approximate equivalent circuit for an induction motor
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The resistance R', and inductive reactance X', of the rotor winding referred to
the stator circuit are computed as follows:

' N1 2
) N] 2

where N and N, are the number of turns of the stator and rotor windings, respec-
tively. The rotor current referred to the stator circuit I', can be computed as

P Z\]2>
12—L<N1

. . .., Ry,
To conveniently analyze the rotor circuit, let us divide ~2 into two components:
s

&:R'2+~2(1—s)
§ N
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FIGURE 5.25
Another equivalent circuit for the induction motor
Rl Xl Xlz R‘z
LAY AANA—
VWY — T
Il Im 1'2
Qf> E =E" &(1—:)
N
R,, X,

With the rotor resistance components divided this way, we can compute the losses
of the rotor windings separately from the developed power, as will be explained
later. The equivalent circuit can now be represented by Figure 5.25.

We can further modify the equivalent circuit by assuming that I,, << I;. This
makes I, = I';, and we can assume that the impedances of the stator and rotor wind-
ings are in series, as shown in Figure 5.26(a).

R,,and X, of Figure 5.26(b) are defined as

Req = Rl + RlZ
X, =X, + X,

The resistive element (R',/s) (1—s) represents the load of the motor, which includes
the mechanical and rotational loads. Rotational loads include the friction and
windage. Note that the value of the load resistance is dependent on the motor
speed. At no load, when the slip is close to zero, the load resistance is very large. At
starting, when the slip is unity, the load resistance is zero.

5.2.2 POWER FLOW

The diagram in Figure 5.27 represents the power flow of the induction motor. Part
of the input power to the motor P, is consumed in the stator circuit in the form of
winding losses P,, ; and core losses P,,,. The rest of the power P, passes through
the airgap to the rotor circuit. This power is called the airgap power. P, enters the
rotor circuit, where part of it is consumed in the rotor resistance as copper losses
P.,,. The rest is called the developed power P,. Part of the developed power is ro-
tational 10sses Poogariona due to friction, windage, and so on. The rest is the output
power P, consumed by the load.
The input power can be computed as

Pin - 3VII COS 91 (546)
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FIGURE 5.26
More equivalent circuits for the induction motor

)

FIGURE 5.27
Power flow of the induction motor

Input power (P, )
3
Stator losses: Airgap
Copper losses (P, ;)  power (P,)
Core losses (P,,,,) I

Y

Rotor copper Developed
losses (P, ) power (Py)

Y

Rotational Output
losses (Protational ) power (Poye)
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where Vis the phase voltage of the source and 6, is the phase angle of the current.
The stator copper losses P,,; and the core losses P,,,,, can be computed using the
equivalent circuit of Figure 5.25 or 5.26(a).

Pcul = BI%RI

Piron =3
R?ﬂ
The airgap power can be computed by
P, =3 E',I'; cos b, (5.48)

where 0, is the phase angle between E', and I',. The airgap power can also be com-
puted as

P, =3(I',)? B}'l (5.49)
The rotor losses are
P, =3(I',)?R, = sPg (5.50)
The developed power is
P;=P,—P,, =3I’ RS'Z (1—35) =P~ (5.51)

The developed power of the motor is the shaft power consumed by the mechanical
load plus the rotational losses.

The powers of the induction motor can be represented by mechanical terms
such as torque and speed. The first form of mechanical power is airgap power,
which is equal to the developed torque T, exerted by the flux (Lorentz force) times
the speed of the flux w,.

Pg = way (552)
The second form of mechanical power is the developed power,
Pd = Pg(l - S) = Td(,l)j(l - S) = wa (553)

where w is the rotor speed, as given in Equation (5.35). The rotational losses reduce
the torque; hence, the output power is

P,=Tw, T<T, (5.54)

Based on these analyses, the power flow diagram of the induction motor can now
be represented in more detail, as shown in Figure 5.28.
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FIGURE 5.28
Detailed power flow of the induction motor

P, =3V I cos6,
|
v Y

P, =312R, Pe=3(1?R2=T, 0,
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wron R”Z
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Po2=3 2P Ry=5P, Py=3I2 ¢ (1-y)
“P(1-5)=Ty0

|
Y Y

Protational Pow = Tw

A 50 hp, 60 Hz, three-phase, Y-connected induction motor operates at full load at
a speed of 1764 rpm. The rotational losses of the motor are 950 W, the stator cop-
per losses are 1.6 kW, and the iron losses are 1.2 k'W. Compute the motor efficiency.

SOLUTION
The output power at full load is 50 hp.

50
P =7 =3713kW
o134 373

Py= Py + Protational = 37.3 + 0.95 = 3825 kW

We need to calculate the slip before we can proceed. We have the actual motor
speed, but the synchronous speed and the number of poles are not given. Never-
theless, we know from the principal of operation that the motor speed at full load
is just slightly less than the synchronous speed. Since the number of poles is always
even, this machine must be four-pole with a synchronous speed of 1800 rpm (see
Equation (5.23)). Hence,

n,—n 1800 — 1764
= = - = 0.02
g 1800

Then,
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P, = P, + Py + Pogre = 39 + 1.6 + 12 = 41.8kW

The motor efficiency m is

P 373
—tou _ ~L7 g o
M P 418 0.89 or 89%

5.2.3 TORQUE CHARACTERISTICS

To establish the speed—torque relationship, let us use the equivalent circuit in Fig-
ure 5.26(b) to compute the rotor current.

1%
[ A—— (5.55)

, :
' \2
\/(Rl + RZ) + X3,
5

The developed torque of the motor is computed by dividing the developed power
by the rotor speed:

P R' V2R'y(1 — s
T, = ‘(f = % (I'y)? ?2 (1—73s) = ~—3—*£(, Tj)—* (5.56)
sw[(Rl + J) + ng]
s
From Equation (5.35), w = w,(1 — 5). Hence,
P V2R
Ty="%= 2R (5.57)

S e —
xw{(Rl + Ri) + ng]
5

V is the phase voltage and Equation (5.57) represents the motor torque due to the
three phases.

The slip-torque (or speed-torque) characteristic of the induction motor using
Equation (5.57) is shown in Figure 5.29. At starting, when the motor speed is zero (slip
is unity), the rotor current produces a starting torque T.,. If the starting torque is greater
than the entire load torque, including inertia torques, the motor shaft spins. When the
speed of the motor increases, so does the motor torque. The maximum torque T, Oc-
curs at slip §,.,. Since in normal steady-state operation the rotor speed is close to syn-
chronous speed (the slip is about 2% to 7%), the motor speed continues to increase
until it reaches a steady-state value in the linear region of the characteristic.

The speed—torque characteristic can be divided into three major regions, as
shown in Figure 5.30: large slip, small slip and maximum torque. In the large slip
region, which is also known as the starting region, the torque equation of the mo-
tor can be approximated by assuming that

R';\?
(Rl + -J> << X,

R
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FIGURE 5.29
Speed-torque characteristics of the induction motor
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FIGURE 5.30
Main regions of the speed-torque characteristic
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Hence,

_3VPR,

2
sw X p

d (5.58)

By setting s = 1 in the large slip approximation, we can compute the starting torque:

T~ 3VPR),
* (J)XX?q

(5.59)

For the small slip region, when the rotor speed is close to synchronous, the motor
torque can be approximated, assuming that

RZ
R, << > Xey
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Hence,

3V
Ty~ 5.60
d (1)3. R‘z ( )
To compute the maximum torque and the slip at maximum torque s,,,., the first
derivative of Equation (5.57) with respect to slip must be set equal to zero. Doing
that results in the following equations:

R'z
max .« /o5 (561)
' VRI + X2,
372
T = = (5.62)
20,[R; + VR] + X2 ]

Note that the slip at maximum torque s,,,, is linearly proportional to the rotor re-
sistance, whereas the magnitude of the maximum torque is independent of the ro-
tor resistance. For motors with large rotor resistance, the maximum torque occurs
at low speeds.

A 50 hp, 440V, 60 Hz, three-phase, four-pole induction motor develops a maxi-

“mum torque of 250% at slip of 10%. Ignore the stator resistance and rotational

losses. Calculate the following:

a.  Speed of the motor at full load
b. Copper losses of the rotor

¢.  Starting torque of the motor

SOLUTION
a.  Motor speed. Using the small slip approximation of Equation (5.60), we can
write the motor torque at full load as

~_3V2y

T
[ON R’z

The maximum-torque equation is given by (5.62). The equation can be rewrit-
ten to ignore the effect of R, by assuming R, << X,
o 3V?
max 2(0S ng

Then
T R',

max

T - 25X€,q
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Now let us modify Equation (5.61) by ignoring the effect of the stator resistance.

R
Smax — }7(‘
eq
Then
Tmax Smax
T 2s
» T & 1 01

The motor speed at full load is

n=mn(l—3s5 = 120;:(1 —35) = 120% (1 —0.02) = 1764 rpm

Copper losses of the rotor. Since the rotational losses are ignored, the developed
power is equal to the output power.

0
Pi= 2 575kw

T 134
Since
P, = Pl -y
and
P2 5P,
then
P, s
P, 1-5

Ky 0.02
= P _—] = Sy = O
P, d(l—x) 3730.98 760 W

Starting torque. The starting torque can be obtained by the large slip approxi-
mation when s = 1.

T 3V2R,

st 2
wxXeq

The full load torque represented by the small slip approximation is

_ 3V2%
('OIR'Z

T
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Hence,
T -~ (Rlz)2 - Sgnax
T xng s
T izmﬂTz Sha Pour _ (017 37300 _ 101 Nm
st 5 s ) 0.02 1764
27
60

5.2.4 STARTING PROCEDURE

In many cases, induction motors do not need a special starting procedure because
the starting current is generally limited to tolerable values by the winding imped-
ance. However, for large motors with small winding resistance, the starting current
could be excessive and a starting mechanism must be used.

If we ignore the magnetizing current at starting, the starting current [';., can be
computed using Equation (5.55). In this equation, the slip is set equal to one.

%
r (5.63)

sty \[(R1+R|2)2 + XZEq

To reduce the starting current of an induction motor, several methods can be used.
The common ones are based on reducing the terminal voltage or inserting a resis-
tance in the rotor circuit.

Figure 5.31 shows the speed-torque characteristics of the induction motor
under different voltage levels. Voltage reduction results in a linearly propor-
tional reduction of the starting current. However, the starting torque and the

maximum torque of the motor will also be re-

FIGURE 5.31

Speed-torque characteristics at different
voltage levels

7oA

i

Smax |~

duced. Note that the torque is proportional to
the square of the voltage. Hence, a 20% re-
duction in the voltage reduces the starting
current by 20%, but also reduces the starting
torque and the maximum torque by 36%
Va<Vy v, each. If the motor is heavily loaded, the start-
ing torque may not be adequate to spin the
shaft.

The other starting method is based on
adding a resistance to the rotor circuit, as
shown in Figure 5.32. Notice that according to
Equations (5.59) and (5.61), when a resistance
is added to the rotor circuit, the starting torque
and the slip at maximum torque increase. In

Tgr, Te, Tinax Torque fact, if the added resistance makes Equation
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(5.61) equal to one,.th'e maximum torque oc- FIGURE 532

curs at starting. This is a very good starting Speed-torque characteristics when a

method for heavily-loaded machines. resistance is added to the rotor circuit
The insertion of rotor resistance is only

possible if the rotor is accessible through A R+ R4,

brushes and a slip ring arrangement. For squir- R+ R,

rel-cage motors, adding a resistance is not pos- 7 S RY
sible since the rotor is fully enclosed. However,

some types of squirrel cage motors have rotor 5
windings made of alloys that exhibit skin ef- :
fects at 60 Hz. Since the rotor frequency at
starting is 60 Hz, the starting rotor resistance is
high due to the skin effect. Once the speed of
the motor increases, the rotor frequency is re-

duced, and the skin effect is diminished. The Tst; Tsty Tsty=Tmax Torque
rotor resistance is then reduced.

bR, > Rldd

An induction motor has a stator resistance of 3 €}, and the rotor resistance referred
to the stator is 2 ). The equivalent inductive reactance X, = 10 £). Calculate the
change in the starting torque if the voltage is reduced by 10%. Also, compute the
resistance that should be added to the rotor circuit to achieve the maximum torque
at starting.

SOLUTION
Using the large slip approximation of Equation (5.59), we can compute the start-
ing torque by setting s = 1.

3V2R,
B o,

If T 4 is the starting torque at full voltage and T is the starting torque at the reduced

voltage, then
LG
T, \09V

TB = 0.81 TA

Hence, the reduction of the starting torque is 19%.
To compute the value of the inserted resistance in the rotor circuit for maximum
torque at starting, we can use Equation (5.61). s,,,, must then be set equal to one.
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_ B_‘Z,_’_ R'add

VR; + X2,
Rladd:\/R%_’_ng»R'z:m_z27549

=1

max

5.3 SYNCHRONOUS MOTORS

The synchronous machine is used mainly for power generation. Over 97% of all
electric power generated worldwide is produced by synchronous generators. This
is due to the ability of synchronous generators to produce ac power directly with-
out a need for conversion, and the effective and simple control of its voltage and
power flow. The frequency of the generated power is directly proportional to the
speed of the machine. Hence, the speed of the generator must be maintained con-
stant at synchronous speed at all times.

The synchronous machine is also used as a motor. Several applications that de-
mand fixed speeds regardless of load changes employ synchronous machines. The
motor can also be used as an effective tool for reactive power and voltage controls.

A synchronous machine, as the name implies, operates at the synchronous
speed #,. The machine, as shown in Figures 5.33 and 5.34, is composed of a stator
and a rotor. The stator of a synchronous machine is similar to that of an induction
motor. The stator has three phase windings connected to a three-phase source. The
stator windings generate a rotating magnetic field ¢, in the airgap, as shown in Fig-
ure 5.18. The speed of &, is the synchronous speed, which is a function of the sup-
ply frequency as given in Equation (5.32). For small machines, the rotor could be a
permanent magnet. For larger machines, the rotor is an electrical magnet excited
externally by a dc source known as the exciter. The winding of the rotor circuit is
connected to slip rings mounted on the rotor shaft. Brushes are used to connect the
rotor circuit to the exciter. Because of the slip ring arrangement, the rotor winding
does not reverse its polarities. Hence, the rotor magnetic field ¢ is stationary rela-
tive to the rotor shaft.

The airgap of the synchronous machine has two fields: one is ¢, rotating at a
synchronous speed due to the stator excitation, and the other ¢is due to the rotor
excitation and is stationary with respect to the rotor. These two fields must be
aligned at all times (provided that the fields are strong enough). Therefore, the ro-
tor field &, must also rotate at the synchronous speed of ¢,. Since the rotor field is
stationary with respect to the rotor, the rotor will also rotate at the synchronous
speed #,.

Using the schematic of Figure 5.35, the equivalent circuit of the synchronous
machine can be developed. The figure shows the rotor circuit excited by a dc source
V. The excitation current I; produces a field ¢, that is stationary with respect to
the rotor. Now let us look at the windings of one phase in the stator circuit. Assume
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FIGURE 5.33
Synchronous machine components

Stator Permanent magnet rotor

s

Electric magnet rotor with slip rings

FIGURE 5.34 FIGURE 5.35
Conceptual representation of a Simplified diagram of a singly-
synchronous machine excited synchronous machine
at no load
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that we are rotating the machine externally at a synchronous speed w,. The field
then cuts the stator windings and induces a voltage E,.

FIGURE 5.36

Simplified diagram of a synchro-

nous machine at no load

o7 4
Lﬂh !

=+
S
JATATATATATATAN
EEEEEN
IS ERE

-
e

dd
~ &
B~ (5.64)

E,is known as the no-load equivalent excitation volt-
age. If the saturation of the rotor circuit is ignored, Ef
is directly proportional to the excitation current I. The
frequency of E, is proportional to the synchronous
speed w, given in Equation (5.32).

Now let us discuss the case in which the synchro-
nous machine is running as a motor. Consider the dia-
gram of Figure 5.36. In this case, the terminals of the
stator are connected to an ac source V,. The rotor is also
connected to a dc source V. The rotor circuit produces
a magnetic field &, The current in the stator windings I,
(armature current) also produces a magnetic field &, that
is rotating at the synchronous speed. The net magnetic
field in the airgap &, is the phasor sum of both fields.

b, = df + by (5.65)

Since the rotor field is generated by a dc circuit, we do not have to worry about the
hysteresis and eddy current of the rotor.

We can simplify the equivalent circuit of the synchronous machine to that
shown in Figure 5.37. The reactance X, is known as the synchronous reactance. It
is the reactance of the stator windings plus the equivalent reactance associated with
the armature reaction. R is the resistance of the armature windings.

The equivalent circuit of Figure 5.37 can be simplified further by ignoring the
resistance of the armature circuit. This is justified for large machines where the sta-
tor windings carry large current, and therefore the wire cross section is large. The
simplified circuit is shown in Figure 5.38.

FIGURE 5.37

FIGURE 5.38

Equivalent circuit of a synchro- Simplified equivalent circuit of a

nous machine

synchronous machine
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5.3.1 REACTIVE POWER

Equation (5.66) is the main equation for the synchronous motor. Both V, and E,
are independent variables; V, is adjusted by controlling the supply voltage and E,
is adjusted by controlling the magnitude of the dc current in the rotor circuit (field
current).

‘7[ = Ef + jaXs (566)

The armature current is then a dependent variable, with its magnitude and phase
shift dependent on the adjustments of V, and E,. Moreover, the equivalent field volt-
age E,always lags the terminal voltage V, when the machine is running as a motor.
Three phasor diagrams of Equation (5.66) are shown in Figure 5.39. In Fig-
ure 5.39(a), Ey is adjusted so that E; cos 8 > V. In this case, the angle of the volt-
age drop I, X, must be greater than 90°. Since I, lags the voltage drop I, X, by 90°,
I,leads V,, and the power factor measured at the terminals of the motor (cos 0) is

FIGURE 5.39
Phasor diagram of a synchronous motor

(c) Lagging current
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leading. In Figure 5.39(b), E; is reduced so that E; cos 3 = V,. In this case, the an-
gle of the voltage drop I, X, is exactly 90°. Hence, I, is in phase with V, and the
power factor measured at the terminals of the motor is unity. In Figure 5.39(c), Eyis
further reduced so that Eycos 8 < V. In this case, the angle of the voltage drop I, X,
is less than 90°, I, lags V,, and the power factor measured at the terminals of the mo-
tor is lagging. The reactive power Q at the terminal of the motor can be computed:

Q =3V, sin 0 (5.67)

V, is a phase quantity. By examining the phasor diagrams of Figure 5.39(a), we
can show that

I,X,sin® = Efcosd — V, (5.68)
Substituting the current of Equation (5.68) into (5.67) yields

3V,

X

£

Q= (Efcos & — V) (5.69)

The reactive power at the terminals of the motor is leading when the magnitude of
O in Equation (5.69) is positive. When Q is negative, the reactive power is lagging.

The load of an industrial plant is 40 MW at 0.85 power factor lagging. A2 MW syn-
chronous motor is used to improve the overall power factor of the plant. The mo-
tor is rated at 5 kV and has a synchronous reactance of 5 Q. The equivalent phase
value of the equivalent field voltage can be expressed by

where I, is the dc excitation current. Assume that the motor is unloaded, and com-
pute the excitation current to improve the overall power factor of the plant to 0.95

lagging.

SOLUTION
The power factor angle of the load is

8 = cos 10.85 = 31.8°
The load reactive power is
Q) = Ptan § = 40 tan 31.8 = 248 kVAR
The total reactive power for 0.95 power factor lagging is

Q,,; = Ptan(cos 1 0.95) = 40 tan 182 = 13.15 kVAR
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FIGURE 5.40
Phasor diagram of a synchronous motor running at no load

The reactive power to be generated by the synchronous motor is
Qm = Qlot - Q/ = (—13.15) — (—24.8) = 11.65 kVAR

The negative sign implies a lagging reactive power. Since the motor is running at no
load, the power factor angle at the terminals of the motor must be 90° (I, leads V,
by 90°). In this case, E; is in phase with V,. The phasor diagram is shown in Figure
5.40. The excitation voltage E; must be greater than V, for leading current.

Using Equation (5.69), the magnitude of E; can be computed.

Vv
Q= % (Efcosd — V)

;)

3 5000
V3 ( 5000)
11650 = E, —
s V7 W3
Hence,

To achieve the desired level of reactive power, the excitation current must be ad-
justed to
E

I =—_=1445A
57200 >

5.3.2 POWER FLOW

The input power to the synchronous motor is from the armature circuit only. If we
ignore losses in the rotor windings, there is no power consumed in the field circuit.
Hence, the input power is

P=3V,I, cos9 (5.70)
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V, is a phase quantity. By examining the phasor diagrams of Figure 5.39, we can

show that
I,X,cos 0 = Efsind (6.71)
Substituting I, of Equation (5.71) into Equation (5.70) yields
P=3 V)’(Ef sin & (5.72)

5

Since the synchronous machine rotates at a synchronous speed, we can write the
developed torque equation as

P 3 VE
T=-— = t=f
o, X

('o_f 5 s

sin ® (5.73)

8 is known as the power angle. Figure 5.41 shows the

FIGURE 5.41 torque curve representing Equation (5.73). If the excita-
Torque curve of a synchronous i, cyrrent, terminal voltage, and supply frequency are all
motor maintained constant, changes in the load torque T} result in
TA changes in the power angles. As the figure shows, the load
torque must always be limited to below the maximum
Tinax torque Tiax at & = 90°. If the load torque exceeds Ty, the
. \ motor cannot support the load torque and stops spinning.

I

A 2300V, 60 Hz, six-pole synchronous motor is driving a con-
stant-torque load of 5000 Nm. The synchronous reactance of

5 90° s the motor is 6 (2. Compute the minimum excitation that the
machine must maintain to provide the needed torque.

SOLUTION
First, let us compute the synchronous speed of the motor.

60
ng = 120;)[ = IZOZ = 1200 rpm

The minimum excitation occurs when the load torque equals the maximum devel-

oped torque by the motor.
P 3 VE
T,=T = — = —
! max o, ®, X;
2300
—=E
5000 = > \/5 !
1200 6
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Then
E =946V

Note that Eyis a phase quantity. For any reduction of the excitation voltage below
this value, the motor torque will be less than the load torque.

5.3.3 TORQUE CHARACTERISTICS

As mentioned eatlier, the synchronous machine must spin at the synchronous speed
of the rotating field generated by the stator windings. Hence, the speed of the mo-
tor at any loading condition is

The speed of the machine is only changed when the number of poles or the supply
frequency is changed. Figure 5.42 shows the speed—torque characteristics of a syn-
chronous motor.

If the load torque increases to a level at which the fields in the airgap can no
longer be aligned, the motor stops spinning. In this case, the load torque exceeds the
maximum delivered torque of the motor, as explained in Example 5.6.

5.3.4 STARTING PROCEDURE

For heavily loaded motors with large inertia, the fields in the airgap at starting may
not be strong enough to increase the rotor speed from standstill to synchronous. In
this case, a starting circuit may be needed. The most common method is to install
damper windings in the rotor circuit, similar to the rotor windings of a squirrel cage
induction motor shown in Figure 5.43. At starting, the damper windings cause the
synchronous motor to start as an induction machine. When the speed of the rotor

FIGURE 5.42 FIGURE 5.43
Speed-torque characteristics of Damper windings

a synchronous machine
Shorted turns

[

L

Torqu:
W
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is close enough to the synchronous speed, the rotor field ¢ aligns with, and locks
itself to, the synchronous field ¢,. Once the motor is running at the synchronous
speed, the current inside the damper windings is zero (no relative speed between
the damper windings and the rotating field). Remember that the rotor voltage of
the induction motor when running at synchronous speed is zero.

5.4 DAMAGE TO ELECTRIC MACHINES

Overvoltage or overcurrent can damage electric motors. Excessive voltage can
cause damage to the insulation of the windings that may lead to a permanent short
circuit. Overcurrent produces excessive heat due to the energy dissipated in the
windings’ resistance and may result in melting down the winding’s insulation, even-
tually causing a short circuit. For permanent magnet motors, large armature cur-
rents may also demagnetize the permanent magnet.

Damage due to overvoltage is usually rapid—so as a rule, motor voltage should
not exceed the rated value by more than 10%. However, motors may tolerate high
currents for a very short period of time.

In addition to the electrical constraints, one should keep in mind the mechan-
ical limitation and integrity of the complete system. Excessive speed may result in
a damage to bearings or to rotor windings, due to excessive centrifugal forces.

For most electric drive applications, several performance properties should be
maintained to avoid premature fatality of the hardware, especially for large systems.
Among these properties are the following:

1. The system should be able to achieve soft transition; for example, soft starting,
soft speed change, and soft braking. Abrupt, large changes in speed may even-
tually result in ruinous effects on the mechanical integrity of the motor or load
and unnecessary electrical stresses on the motor or converter. A soft transition,
however, does not necessarily mean a slow transition.

2. The system should have a sufficient damping for speed oscillation at all times,
including the equilibrium state (holding state).

3. Large, abrupt changes in the supply voltage should be avoided. Voltage must
not exceed the tolerable limit of the system components.

4. The magnitude of the inrush current should be kept under control at all times.
Overshoots of inrush current should be limited to some tolerated value.

5. Natural electromechanical oscillations should be avoided. These usually occur
at low speeds when the electrical modes of the system correspond to the natu-
ral frequencies of the load and supporting structure.

CHAPTER 5 PROBLEMS

5.1 A 600V, dc shunt motor has armature and field resistance of 1.5 £} and 600 Q,
respectively. When the motor runs unloaded, the line current is 3 A, and the
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speed is 1000 rpm. Calculate the developed torque at a full load armature cur-
rent of 50 A.

5.2 A dc, separately excited motor has the following parameters and ratings:
K =3 Vsec R,=20
Terminal voltage = 600 V. Full load torque = 21 Nm

a. Calculate the armature current at full load torque.
b. Calculate the starting current. Show how you can reduce the starting
current by 80%.

5.3 A dc, separately excited motor has a load torque of 140 Nm and a frictional
torque of 10 Nm. The motor is rated at 240 V. The armature resistance of the
motor is 1 ). The motor speed at the given load is 600 rpm. Ignore the field
losses and calculate the motor efficiency.

5.4 A dc series motor has an armature current of 10 A at full load. The motor ter-
minal voltage is 300 V. The armature and field resistances are 2 Q and 3 ), re-
spectively. The motor speed at full load is 250 rpm. Calculate the starting
torque of the motor.

5.5 A 1000V, 50 hp compound motor runs at a speed of 750 rpm at full load. The
armature, series, and shunt field resistances are 0.5 0, 1 ), and 200 €2, respec-
tively. The motor efficiency at this condition is 80%. Calculate the motor’s
starting current.

5.6 A 15 hp, 209V, three-phase, six-pole, Y-connected induction motor has the fol-
lowing parameter values per phase:

Ry =0128Q R, =00935Q X, =X +X,=0490Q

The motor slip at full load is 3%, and the efficiency is 90%.
Calculate the starting current. (Ignore the magnetizing current.)

. Determine the starting torque.
Determine the maximum torque.

. Calculate the value of the resistance that should be added to the rotor
circuit to reduce the starting current by 50%.
What is the starting torque in part (d)?
Calculate the value of the resistance that should be added to the rotor
circuit to increase the starting torque to maximum.

g. What is the starting current in part (f)?

oo oo

oo

5.7 Show how the starting current of the following machines can be reduced. Dis-
cuss the effect of your methods on the starting torque.
a. dc shunt motor (not a separately excited motor)
b. dc series motor
¢. Induction motor
Use circuit diagrams and motor characteristics to explain your answer.
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5.8

59

5.10

5.11

5.12

The shaft output of a three-phase, 60 Hz induction motor is 100 hp. The friction
and windage losses are 900 W, the stator core loss is 4200 W, and the stator cop-
per loss is 2700 Wi If the slip is 3.75 %, what is the efficiency of the motor?

A 500 hp, three-phase, 2200V, 60 Hz, 12-pole, Y-connected, wound-rotor in-
duction motor has the following parameters:

R, =02250 R,=0250 X,=1430Q
X, =380 R,=7800Q

Calculate the following:

Slip at maximum torque

Input current and power factor at maximum torque

Maximum torque

Resistance that must be added to the rotor windings (per phase) to
achieve maximum torque at starting

Ao T

A four-pole, 60 Hz, Y-connected, squirrel cage induction motor has the fol-
lowing parameters:

R, =020 X, =035Q R,=0250 X,=030
X,=120 R,>>X,

The motor is connected to a 220 V supply through a cable of 1.30 Q induc-
tive reactance per phase. At a speed of 1710 rpm, calculate the following:

a. Motor current and input power

b. Terminal voltage

¢. Developed torque
Also calculate the terminal voltage at starting. What is the percent change of the
terminal voltage? Can you explain the change in the terminal voltage at starting?

A 15 hp (output power), 208 V, three-phase, six-pole, Y-connected induction
motor has the following parameters:

R,=01Q R,=010Q X, =05Q

a. A fan-type load is connected to the motor. The slip of the motor in
this case is 2%. If the terminal voltage of the motor is reduced by
20%, calculate the speed of the motor (you may use the small-slip
approximation).
b. What is the percentage change of the maximum torque for case (a)?
A 500 hp, three-phase, 2200V, 60 Hz, 12-pole, Y-connected, wound-rotor in-
duction motor has the following parameters:

R, =02250 R,=02350 X, +X;=1430
X,=318Q R,=7800Q
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The motor is driving a constant-torque load at a speed of 570 rpm.
a. Calculate the load torque.
b. Calculate the motor speed when the source frequency is increased
to 70 Hz.

c. Calculate the change in starting torque due to the frequency change.

A synchronous motor is rated at 100 kVA. The motor is connected to an infinite
bus of 5 kV. The synchronous reactance of the motor is 0.1 €. The motor is run-
ning at a no-load condition (real power output is zero). All losses can be ignored.
Calculate the equivalent field voltage E; that operates the motor as a synchro-
nous condenser delivering 100 kVAR to the infinite bus. Draw the phasor dia-
gram. (A synchronous condenser produces reactive power and no real power.)

A three-phase synchronous motor is connected to an infinite bus of 416 V.
The synchronous reactance of the motor is 1 Q. The motor is driving a con-
stant torque load. Ignore all losses. Calculate the change in power delivered
to the load when the equivalent field voltage increases by 20%.

A four-pole synchronous motor is connected to an infinite bus of 5 kV through
a cable. The synchronous reactance of the motor is 0.1 , and the inductive re-
actance of the cable is 0.9 (). The reactive power at the motor terminals is zero
when E/is 4.8 kV (line-to-line). Calculate the following:

a. Terminal voltage of the motor

b. Developed torque

c. Output power

A six-pole synchronous motor is connected to an infinite bus of 480 V. The

synchronous reactance of the motor is 0.5 Q. The field current is adjusted so
that the equivalent field voltage E/ is 500 V. Calculate the following:

a. Maximum torque

b. Power factor at maximum torque

c. Output power at maximum torque
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Speed Control of Direct
Current Motors

Direct current (dc) motors have several intrinsic properties, such as the ease by
which they can be controlled, their ability to deliver high starting torque, and their
near-linear performance. Direct current motors are widely used in applications
such as actuation, manipulation, and traction.

Direct current motors have drawbacks that may restrict their use in some ap-
plications. For example, they are relatively high-maintenance machines due to their
commutation mechanisms, and they are large and expensive compared to other
motors, such as the induction. They may not be suitable for high-speed applications
due to the presence of the commutator and brushes. Also, because of the electrical
discharging between the commutator segments and brushes, dc machines cannot
be used in clean or explosive environments unless they are encapsulated. Never-
theless, dc motors still hold a large share of the ASD (adjustable speed drive) mar-
ket. Newer designs of dc motors have emerged that eliminate the mechanical
commutator. The brushless motor, for example, is a dc motor that has the armature
mounted on the stator and the field in the rotor. Like the conventional de motor,
the brushless motor switches the armature windings based on motor position. The
switching, however, is done electronically, thereby eliminating the mechanical
switching of the conventional dc motor.

156

6.1 SPEED CONTROL OF SHUNT OR SEPARATELY
EXCITED MOTORS

As seen in Chapter 5, the speed—torque characteristics of a dc, separately excited
(or shunt) motor can be expressed by the formula

V, R,

= —& — T, =wy — Aw (6.1)
Ko (Kg? 4 7°
or
Ve R,
©= Ry Kol TR .
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where wy is the no-load speed and Aw is the speed drop. The no-load speed is
computed when the torque and current are equal to zero. The speed drop is
a function of the load torque. The load torque and rotational torques (such as
friction) determine the magnitude of the motor’s developed torque at steady
state. For a given torque, the motor speed is a function of the following three
quantities:

1. Resistance in armature civcuit. When a resistance is inserted in the armature cir-
cuit, the speed drop Aw increases and the motor speed decreases.

2. Terminal voltage (armature voltage). Reducing the armature voltage V, of the
motor reduces the motor speed.

3. Field flux (or field voltage). Reducing the field voltage reduces the flux ¢, and
the motor speed increases.

As explained in Chapter 5, we cannot operate electric motors with voltages higher
than the rated value. Therefore, we cannot control the motor speed by increasing
the armature or field voltages beyond the rated values. Only voltage reduction can
be implemented. Hence, the second method of speed control (armature voltage) is
only suitable for speed reduction, whereas the third method (field voltage) is suit-
able for speed increase. For a full range of speed control, more than one of the
three methods must be employed.

6.1.1 CONTROLLING SPEED BY ADDING RESISTANCE

Figure 6.1 shows a dc motor setup with resistance added in the armature circuit.
Figure 6.2 shows the corresponding speed-torque characteristics. Let us assume
that the load torque is unidirectional and constant. A good example of this type of

FIGURE 6.1 FIGURE 6.2

A setup for speed change by Effect of adding an armature resistance on speed
adding an armature resistance

. v

o b

Raddy < Raddy < Rodds
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torque is an elevator. Also assume that the field and armature voltages are con-
stant. At point 1, no external resistance is in the armature circuit. If a resistance
R4, is added to the armature circuit, the motor operates at point 2, where the
motor speed v, is

0y = = T = gy~ Aw, (6.3)
or

vy = ot BT Ratt e (6:4)
2~ Ko Kd 2= W 2 :
Note that the no-load speed w, is unchanged regardless of the value of resistance
in the armature circuit. The second term of the speed equation is the speed drop
Ao, which increases in magnitude when R4, increases. Consequently, the motor

speed is reduced.

If the added resistance keeps increasing, the motor speed decreases until the
system operates at point 4, where the speed of the motor is zero. The operation of
the drive system at point 4 is known as “holding.” It is quite common to operate
the motor under electrical holding conditions in applications such as robotics and
actuation. An electrical drive system under holding may jiggle unless a feedback
control circuit is used to stabilize the system.

When the motor is operating under a holding condition, the speed drop Aw,
is equal in magnitude to the no-load speed wy.

B Vi Rt Ry
The resistance Rad,,l3 in this case is
KoV
Radd3 = "%_t — Ra (66)
or
\%
Radd; - Tt - Ra (67)

Keep in mind that operating a dc motor for a period of time with a resistance
inserted in the armature circuit is a very inefficient method. The use of resistance is
acceptable only when the heat produced by the resistance is utilized as a by-prod-
uct or when the resistance is used for a very short period of time.
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A 150V, dc shunt motor drives a constant-torque load at a speed of 1200 rpm. The
armature and field resistances are 1 () and 150 (), respectively. The motor draws a
line current of 10 A at the given load.

a. Calculate the resistance that should be added to the armature circuit to reduce
the speed by 50%.

b. Assume the rotational losses to be 100 W. Calculate the efficiency of the motor
without and with the added resistance.

c. Calculate the resistance that must be added to the armature circuit to operate
the motor at the holding condition.

SOLUTION

a. Let us use Figure 6.2 to help in solving this problem. Assume that operating
point 1 represents the motor without any added resistance, and point 2 is for
the operating point at 50% speed reduction. Since the motor is a shunt ma-
chine, the line current is equal to the armature current plus the field current.

150
I =1-L=10—-—=9A
4 / 150 >

Also, the speed equations at these two operating points are

E, = Kbo, = V - LR,
Eaz = Kd)wZ =V- Iaz(Ra + Radd1>

The armature current is constant regardless of the value of the added resis-
T
tance, because [, = Fi and T, and ¢ are constants. Hence, I, = I,,.

Eal Wy ny V‘_ IaRa

E, o, n, V-—L{R, + R4,

a

1200 150 — 9 X 1
0.5 X 1200 150 — 9 X (1 + R,y)

Raddl = 7.83 Q

b. To calculate the motor efficiency, first calculate the input power

P, = VI =150 X 10 = 1500 W
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Next, calculate the motor losses.

Losses = field losses + armature losses + rotational losses

=R+ R, + rotational losses
Losses before adding armature resistance = 150 + 81 + 100 = 331 W

Losses after adding armature resistance = 150 + 81 (1 + 7.83) + 100 = 965.23 W

1500 — 331
Efficiency without resistance = 1500 = 331 100 = 77.93%
1500
1500 — 965.2
Efficiency after adding resistance = *5475090’52 100 = 35.66%

Note how low the motor efficiency is when a resistance is added to the arma-
ture circuit.

¢ To calculate the resistance to be added to the armature for the holding opera-
tion, set the motor speed equal to zero.

Kéw =V — LR, + Ry =0

R, = R :'7—1=15.67Q

a

v 150
Iﬂ

6.1.2 CONTROLLING SPEED BY ADJUSTING ARMATURE
VOLTAGE

A common method of controlling speed is to adjust the armature voltage. This
method is highly efficient and stable and is simple to implement. The circuit of Figure
6.3 shows the basic concept of this method. The only
controlled variable is the armature voltage of the motor,

FIGURE 6.3 which is depicted as an adjustable-voltage source. Based
A setup for changing speed by on Equation (6.1), when the armature voltage is re-
adjusting the armature voltage duced, the no-load speed w, is also reduced. Moreover,

for the same value of load torque and field flux, the ar-
mature voltage does not affect the speed drop Aw. The
slope of the speed-torque characteristic is R,/(KbY,
which is independent of the armature voltage. Hence,
the characteristics are parallel lines as shown in Figure
L 6.4. Note that we are assuming the field voltage is un-
v, /r changed when the armature voltage varies.

Electric holding can be done if the armature volt-
age is reduced until Aw is equal to . This operating
point is shown in Figure 6.4 at an armature voltage
equal to V.

Iy I,
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FIGURE 6.4
Motor characteristics when armature voltage changes
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Wy = = i T,=0 (6.8)
YU Kd (K
or
R
V4 = ‘k‘(;? Td (69)

6.1.3 CONTROLLING SPEED BY ADJUSTING FIELD
VOLTAGE

Equations (6.1) and (6.2) show the dependency of motor speed on the field flux. The
no-load speed is inversely proportional to the flux, and the slope of Equation (6.1)
is inversely proportional to the square of the flux. Therefore, as explained next in
Example 6.2, the speed is more sensitive to flux variations than to variations in the
armature voltage.

For a20% increase in the armature voltage, calculate the percentage change in the
no-load speed. Assume that the load torque is unchanged. Repeat the calculations
for a 20% reduction in the field flux.
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SOLUTION

Let us assume that wy;, &, and V; are the variables for the initial condition. From
Equation (6.1), the ratio of the no-load speeds, assuming that the armature voltage
changes and the field is kept constant, is

wo _ Vi
wp Vi

where wo, and V, are the new speed and voltage, respectively. Since V, = 1.2 V3,
then wy, = 1.2 w,. Because the speed drop in Equation (6.1) is independent of the
armature voltage for the same load torque, the speed drop will remain unchanged.
Hence, the speed increase is also 20%.

Let us now repeat the calculation, assuming that the armature voltage is con-
stant and the field is reduced by 20%. The variables ¢, and w,, represent the new
field and speed, respectively.

oy _ b2
we  $
If b, = 0.8 ¢y, then wg, = 1.25 0. The increase in no-load speed is 25% as com-

pared to the 20% of the previous case. Similarly, the ratio of the speed drop using
Equation (6.1) is

Awy _ (&)2
Aw, b,

Then for &, = 0.8 &, Aw, = 15625 Aw;. The speed drop is increased
by 56.25%.

FIGURE 6.5
Setup for controlling speed by
adjusting field voltage

Iy

Figure 6.5 shows a setup for controlling speed by ad-
justing the field flux. If we reduce the field voltage, the
field current and consequently the flux are reduced.
Figure 6.6 shows a set of speed-torque characteristics
for three values of field voltages. When the field flux

V7

is reduced, the no-load speed w, is increased in in-
verse proportion to the flux, and the speed drop Aw is
also increased. The characteristics show that
because of the change in speed drops, the lines are
not parallel. Unless the motor is excessively loaded,
the motor speed increases when the field is reduced.
When motor speed is controlled by adjusting the field
current, the following considerations should be kept
in mind:
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FIGURE 6.6
Effect of field voltage on motor speed

Torque

1. The field voltage must not exceed the absolute maximum rating.

2. Since dc motors are relatively sensitive to variations in field voltage, large re-
ductions in field current may result in excessive speed.

3. Because the armature current is inversely proportional to the field flux
(I, = T,;/Kd), reducing the field results in an increase in the armature current
(assuming that the load torque is unchanged).

Because of (2) and (3), field voltage control should be done with special care to
prevent mechanical and electrical damage to the motor. Furthermore, the field
current should not be interrupted while the motor is running. If an interruption
occurs, the residual magnetism will maintain a small amount of flux in the air-
gap. Consequently, the motor current will be excessively large, and the motor
will accelerate to unsafe speeds. Although the system may have overcurrent
breakers, special care should be given to this type of control to avoid an un-
pleasant experience!

A 150V, de shunt motor drives a constant-torque load at a speed of 1200 rpm. The
armature and field resistances are 2 ) and 150 , respectively. The motor draws a
line current of 10 A. Assume that a resistance is added in the field circuit to reduce
the field current by 20%. Calculate the armature current, motor speed, value of the
added resistance, and extra field losses.
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SOLUTION
The armature current before inserting a resistance in the field circuit is

150
Iﬂ1:I_If1:10~BT:9A

Since the load torque is constant,
Td = Kd)lldl = K(bz[az
_&

Ly = ¢, o
Assume that the flux is linearly proportional to the field current.
I =£I =i9= 11.25 A
2] i 0.8

Notice that the armature current is increased by 25%. To calculate the speed, con-
sider the two equations

Eal = Kojw =V - IalRa
E, = Kby, =V~ R,
or

by m V- IalRa

b, ;2 V- IazRa

11200 150 =9 X2
0.8 7, 150 —11.25 X 2

1y, = 1448.86 rpm

The result is a 20.73 % increase in speed.
The value of the resistance that should be inserted in the field circuit can be
calculated using Ohm’s law:

Vf =V, = IflRf = Ifz(Rf + Radd)
Radd =375 Q
The losses due to R ;; are
P=1}R, ;= (0.8)* X37.5=24W

Note that the additional losses are small when a resistance is added to the field
circuit. This is why the technique is acceptable in industry even when solid-state
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field control devices are available. Compare the losses in this case with the losses
in Example 6.1.

6.1.4 SOLID-STATE CONTROL

Solid-state control is used for enhanced efficiency and for versatile operation of
electric drive systems. For de machines, converters are often used in the armature
circuit to control the terminal voltage of the motor. In some cases, the converter is
also used to control the field voltage. When a converter is used, the power source
can be either dc or ac, which makes the selection of the machine independent of
the available power source at the site.

In this section, we will analyze the dc separately excited {(or shunt) motors
when energized by two types of power sources: ac (single- or multi-phase) and de.

6.1.4.1 SINGLE-PHASE, HALF-WAVE DRIVES

The circuit in Figure 6.7 shows an example of a dc motor with converter. The ar-
mature circuit of the motor is connected to the converter, which is fed from an ac
source. The field circuit of the motor is excited from the ac source through a full-
wave rectifier circuit, which may contain filters.

The circuit of Figure 6.8 shows the armature loop. The converter in this case
is a simple SCR triggered by a control circuit not shown in the figure. The wave-
forms of the circuit are shown in Figure 6.9. Before the triggering of the SCR at «,
the instantaneous voltage across the motor terminals #, is equal to E,. During the
SCR conduction, v, is equal to the instantaneous source voltage v,. The voltage

FIGURE 6.7 FIGURE 6.8
Basic configuration of dc motor A single-phase, half-wave SCR
with a converter drive

Converter
g Field
@ ouree Rectifier
and
Motor filter
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FIGURE 6.9
Waveforms of circuit in Figure 6.8
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across the resistive component of the armature winding is identical in shape to the
instantaneous armature current. The instantaneous voltage across the inductive el-
ement of the armature impedance v, is

v,=v,—~E, - iR, (6.10)
The instantaneous terminal voltage can be expressed mathematically by
v, = vilty — ug) T E,[1 — (4, — up)]
v = Viax sin(o2) (4 — ug) + E,[1 — (4, — up)] (6.11)
where #, and ug are step functions

_ Uy = Lot =a
Uy, = u(wt — o) 0 =0 wf < a

ug =l 0t =

and B is the angle at which the instantaneous current reaches its zero crossing. As-
sume that the speed of the motor is fairly constant during the steady-state opera-
tion, and the field voltage is kept constant. Hence, E, is also constant. The load
current can then be computed by dividing the voltage across the impedance of the

armature winding by the impedance itself.
== h (6.12)

R, + /X,

Since the terminal voltage contains step functions and the load impedance has
imaginary components, the computation of the instantaneous armature current can
be simplified by using the Laplace transformations as given in Chapter 3. The cur-



SPEED CONTROL OF DIRECT CURRENT MOTORS
rent equation during the conduction period (between a and B) can be expressed
by Equation (6.13).
i) = L7V(s)

\% E E V (wiza)
() = 2sin(wt — ¢) — =2 + (—“ — 2% gin(o — d)))e' ot (6.13)
zZ R, R, V4

where Z is the impedance of the armature winding, & is the phase angle of Z, and 7
is the time constant of Z.

L oL
R

a

b = tan™

L,
T= "7
R,

Z=VR; + (oL,)?
o = 27f

fis the frequency of the ac source.

For a given a, the conduction period can be determined by using Equation
(6.13). At B, the instantaneous armature current #(¢g) is equal to zero.
E [ E (B-a)

|4 \% L)
i(tg) = ‘;ax sin(B — ¢) — Eﬂ + ﬁ - %’isin(a - d))}e* wr =0 (6.14)

where 73 = B/w is the time at B. Solving Equation (6.14) yields the value of B.
Note that the equation is nonlinear in terms of B and that iterative methods may
be used.

The average voltage across the terminals of the motor V, . can be computed
using the armature loop. First write the instantaneous-voltage equation of the ar-
mature loop as

v,=E, + v, + iR, (6.15)
Then compute the average values

V

t ave

= Ea + VLave + IaveRa (616)

where V, .. is the average voltage across the inductive element of the armature im-
pedance. As we discussed earlier in Chapter 3 (Section 3.3.1), V} .. must be equal
to zero. Hence,

V

t ave

= Ea + Iave Ra

or
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1 2w R 2w
AJ vtdwt=Ea+—£j 7 dwt
27 0 21 0

1 B o+2m R 2w
—— v, dot + vdot| =E, + =% | idot
27T d ) d 4 2

During the interval from « to B, v, is equal to the source voltage, and between 8
and the triggering angle of the next cycle (a + 21r), v, is equal to E,..

B
1[J v, dot + E,27 + o — B)] =E,+ R,
2w ),
Then
1 (B . 8
— | Voasin(wf) dot = ——E, + R 1, (6.17)
2w [ 2w
where 7 is the conduction period
Yy=B -«
Equation (6.17) can also be expressed as
\%
mex [eos(a) — cos(B)]) = —— E, + R, L., (6.18)
2 2w
Replacing E, with Kdbw yields
Vinax Y
[cos(a) — cos(B)] = =— Kdw + R, I, (6.19)
27 2w

EXAMPLE 6.4

A 1 hp, dc shunt motor is loaded by a constant torque of 10 Nm. The armature re-
sistance of the motor is 5 {2, and the field constant Kb = 2.5 V sec. The motor is
driven by a half-wave SCR converter. The power source is 120 V, 60 Hz. The trig-
gering angle of the converter is 60°, and the conduction period is 150°. Calculate
the motor speed and the developed power.

SOLUTION
The average armature current is determined by the load torque and motor
excitation.

T 10
I = — = —— = A
Ve T Ke 25 4
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Direct substitution in Equation (6.19) yields

V2 x 12 150
Zio[cos(éO) — cos(60 + 150)] = EZ—O X25Xw+5X%X4

o = 1622 rad/sec
n = 154.88 rpm
The developed power is

P,=E,L, = Kbl =25 X 1622 X 4 =162 W

Ve

which is about 21% of the motor rating.

6.1.4.2 SINGLE-PHASE, FULL-WAVE DRIVES

A full-wave drive can be realized by using one of the two circuits shown in Fig-
ures 6.10 and 6.11. The circuit in Figure 6.10 consists of four SCRs connected in
a full-wave bridge. The switching of the SCRs is dependent on the polarity of the
source voltage v,. The current 7; (solid lines) flows when the ac waveform of the
source voltage is in the positive half-cycle, and SCRs S, and S, are triggered. Sim-
ilarly, current z, (dashed lines) flows when the waveform of the source voltage is
in the negative half, and S; and S, are triggered. In either half of the cycle, the
current will flow in the same direction inside the motor.

FIGURE 6.10 FIGURE 6.11
Full-wave drive using four-SCR Full-wave drive using two SCRs and a center-tap
bridge transformer

7

7y
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FIGURE 6.12
Waveforms of circuit in Figure 6.11

A

~. -

Angle

The circuit in Figure 6.11 shows another alternative where two SCRs and a
center-tap transformer are used. The secondary of the transformer should have
double the voltage rating of the motor; that is,

V, = V, = rated armature voltage

When the source voltage v, is in the positive half of its cycle and S, is triggered, 7,
flows in the upper half of the transformer’s secondary windings. When the source
voltage is in the negative part and S, is closed, 7, flows in the lower half of the sec-
ondary windings. Again, in either half of the source waveform, the armature cur-
rent of the machine is unidirectional.

The waveforms of the circuit in Figure 6.11 are shown in Figure 6.12. The fig-
ure shows v, and », in reference to the center point of the transformer. When v, is
in the positive part of its cycle and S, is triggered at «, the terminal voltage of the
motor v, is equal to v, and the motor current is 7,. Because 7; flows beyond 180°,
the terminal voltage of the motor v, becomes negative. When 7, reaches zero at B,
v, is equal to E, until S, is triggered. Similarly, during the positive half of v,, 7, flows
and the terminal voltage of the motor equals ;.

The average terminal voltage of the motor is calculated by

v R,

! ave

—E +1

ave

or

2 7 2R, [T
j v, dot = E, + "J 7 dot
24T 0 27 0

1 B ot R B
[J v, dot + J v, dwt} =E, + ”J 7 dwt
ky @ B ™ Ja

Using the same procedure explained in Equations (6.16) to (6.18), the equation of
the armature circuit is
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h?ﬁ [COS(O‘) - COS(B)] = lEa + RaIave (6.20)
v n

Replacing E, with Kdw yields

Vinas [cos (a) — cos(B)] = ¥ Kéw + R, I,
™ T

ave

{6.21)

For the motor in Example 6.4, assume that the converter is a full-wave type. The
triggering angle of the converter is 60°, and the conduction period is 150°. Calcu-
late the motor speed and the developed power delivered to the load.

SOLUTION

The load torque and the excitation determine the average armature current of the
motor. The average current is not affected by whether we are using a half-wave or
a full-wave converter.

T 10

1‘27: — =
Kb 25

4 A

This average current is produced in a half-cycle for half-wave converters. For full-
wave converters, the current is produced by the two halves of the cycle.
Direct substitution in Equation (6.21) yields

V2 X 120 150
————[cos(60) — cos(60 + 150)] = 180 X25Xw+5X%X4
T

o = 25.82 rad/sec
n = 246.56 rpm

Note that the speed in this case is higher than that in Example 6.4. This is because
full-wave converters allow more power to be transmitted to the motor.
The developed power can be calculated by

P, = Kol =25 X 2582 X 4 = 2582 W

which is about a 56% increase in power as compared to the half-wave converter of
Example 6.4.

6.1.4.3 CONTINUOUS ARMATURE CURRENT

For heavily loaded motors with high armature inductance, the conduction period
may equal or exceed 180°. This may result in an overlap of 7; and 2, which results
in continuous motor current. Figure 6.13 shows the armature current for several
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FIGURE 6.13
Current waveforms of several loads

}ad;
........... Load,
Load; S

load cases, where load; < load, < load. In the figure, the triggering angle a is the
same for all loads. When the load increases, the conduction period and the peak
current increase. When the conduction period equals 180°, the current is said to be
continuous.

For continuous current, Equations (6.20) and (6.21) can be simplified by re-
placing y with 180°,

a-ave

\%
%[cos(a) — cos(a + 180)] = E, + R

2V
— % cos(a) = E, + R, (6.22)

a-ave
v

Replacing E, with Kdw yields
2V,

— % cos(a) = Kdw + R [ (6.23)
™
or
~ ~ max COS(OL)
™ R,
w = TiA - @IHVC (6.24)

Equation (6.23) is similar to (6.2)—the terminal voltage in Equation (6.2) is re-
placed by (2V,,,,./m)cos(a) in Equation (6.24).
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EXAMPLE 6.6

A dc, separately excited motor has a constant torque load of 60 Nm. The motor is
driven by a full-wave converter connected to a 120 V, ac supply. The field constant
of the motor K¢ = 2.5 and the armature resistance is 2 ). Calculate the triggering
angle a for the motor to operate at 200 rpm. The motor current is continuous.

SOLUTION
From Equation (6.24),

o = cos [2‘/ (Ralave+Kd>w)]

max

a = cosl{z;- (Ra K]:b + Kd)m)}

max

Hence,

L P 60 zooﬂ .
= — (2 p2s5x2m— )| =217
* T [2\6 X 120( 25 60

The speed—torque characteristics of the dc motor under solid-state control are de-
picted in Figure 6.14. Since the armature current can be either discontinuous or
continuous, the speed—torque characteristics are dependent on the magnitude of
the load torque. Because of the nonlinearity in Equation (6.13) in terms of 8, the
speed—torque characteristics for discontinuous armature current are nonlinear.

FIGURE 6.14
Speed-torque characteristics of a dc motor driven by solid-state converter

Discontinuous
current

O] )
_  Continuous current

05} o <0 <03 <0y

/ & Torque
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Equation (6.24), however, is not a function of B(B = 180°). Then the speed—torque
characteristics for continuous current are linear and similar to those represented by
Equation (6.2).

6.1.4.4 EFFECT OF FREEWHEELING DIODE
As seen in Figure 6.12, the terminal voltage of the motor may become negative due
to the energy stored in the inductance of the armature winding. As we explained in
Chapter 3, a freewheeling diode can be used to dissipate this energy in the load it-
self, thus preventing the terminal voltage from becoming negative. The circuit with
the freewheeling diode is shown in Figure 6.15. The polarities of the diodes are op-
posite to those of the SCRs.

The operation of the circuit can be explained by the waveforms in Figure 6.16.
During the period from a to 180°, S; is closed and the current 7; flows in the

FIGURE 6.15
Full-wave converter with freewheeling diode

FIGURE 6.16
Waveforms for full-wave converter with freewheeling diode

Angle
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FIGURE 6.17
Armature current with freewheeling diode

i k

S S

motor. Just after 180°, v, reverses its polarity and S; opens. Consequently, the
freewheeling diode conducts, and the motor current is 7, which flows from 180°
until S, is turned on in the second half of the cycle. This process is repeated
every half-cycle. The voltage across the motor is equal to the source voltage
while the SCRs are conducting, and is equal to zero when the freewheeling diode
is conducting.

Figure 6.17 shows the armature current of the motor 7, and the freewheeling
current 7,. The armature current can be divided into two regions. The first is from
a to r, in which the freewheeling diode has no effect, and 7, = 7;. The second is
from m to B, where the diode is conducting (7, = 7,), and no current is flowing
from the source.

For the first region, the instantaneous current is given by Equation (6.13). Dur-
ing the diode conduction, the armature current 7, flows in the armature-diode
loop, which is composed of the armature impedance and the back emf E_. We can
ignore the impedance of the diode during conduction. The current 7; can then be
expressed by

4
E, =R i, + Lﬂ—’j (6.25)
The solution of the differential equation (6.25) for the period from m to B is
R - (wt—n)/wT Ea ~ (w¢—m/ 0T
i;=I(m)e — RA[I —e ] (6.26)

a

where I(m) is the initial condition at w# = 1, which can be computed using Equa-
tion (6.13). Equation (6.26) shows that, mathematically, 7, is zero when wz = <.
Practically, we can assume that 7, is almost zero when it reaches about 5% of its
maximum value. In fact, because of the freewheeling diode, the armature current
is likely to be continuous.

175



176

CHAPTER 6

6.2 SPEED CONTROL OF SERIES MOTOR

The concept of speed control of series machines is almost identical to that for the
shunt machines. The basic types of control used for shunt machines can also be im-
plemented for series machines. The implementation, however, requires special con-
sideration of the fact that the field and armature currents are directly correlated.

Equation (5.18) describes the speed-torque characteristics of the series motor.
The equation is repeated here.

_ V., R, + R
Kb (Kd)®

After examining this equation, one concludes that three methods can be used to
control the motor speed:

®

T, (6.27)

1. Adding a resistance in the armature circuit
2. Adjusting the armature voltage

3. Adjusting the field current

6.2.1 CONTROLLING SPEED BY ADDING RESISTANCE TO
THE ARMATURE CIRCUIT

Consider Equation (6.28) for the series motor. In this equation, we are assuming
that the flux is linearly proportional to the armature current (b = CI,).

T = Kél, ~ KC(I)? (6.28)

The equation shows that, for a given load torque, the armature current of the mo-
tor is constant. The change in armature current is only proportional to the change
in the load torque. This is also true even if the flux—current characteristic is in the
nonlinear region.

Let us approximate Equation (6.27) by assuming that ¢ = CI,.

_V, R, *R
~ KCI, KC

[O))

Now let us assume that a resistance R, is inserted in series with the armature cit-
cuit as shown in Figure 6.18. Equation {6.29) can then be modified to

v, R, + Ry + R,y
KCI KC B

a

w =

If we assume that the load torque is unchanged, then the armature current is con-
stant. In addition, if the supply voltage is unchanged, then the motor speed is re-
duced when a resistance is added to the armature circuit. This is due to the increase
in the speed drop Aw.
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FIGURE 6.18
Controlling speed of series motor by adding a resistance in the armature
circuit

—_—
I, R,
vV, ____
Ry
Ruad

FIGURE 6.19
Speed-torque characteristics of series motor due to the insertion of a re-
sistance in the armature circuit

Speed

Roday > Reday

AmzRL+Rﬂdd+Rf
KC

The motor characteristics in this case are shown in Figure 6.19. The shapes of the
characteristics are similar when a resistance is added, but the speed drop increases
when the value of the added resistance increases.
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FIGURE 6.20 FIGURE 6.21
Circuit for controlling speed of se- Speed-torque characteristics of series motor un-
ries motor by varying terminal der voltage control
voltage
Speed N
_—

I R,

v, :Z_A
Ry

Torque

6.2.2 CONTROLLING SPEED BY ADJUSTING
ARMATURE VOLTAGE

The change in armature voltage has a similar effect on the series motor as the
insertion of an armature resistance. For a constant torque, the motor current is
constant, and the first term, w, in Equation (6.29) decreases with the decrease
of voltage. The second term, Aw, remains unchanged. This results in a decrease
in motor speed. The circuit and the characteristics of the motor with this type of
control are shown in Figures 6.20 and 6.21. Note that the voltage control can be
done by any technique described for the shunt motor drive. Since the voltage
must be kept at or below the rated value, this type of control is suitable for speed
reduction below rated speed.

6.2.3 CONTROLLING SPEED BY ADJUSTING
FIELD CURRENT

Two simple methods can be used to control the field current. One of them is to add
a shunt resistance to the series field circuit and the other is to use a solid-state
switching device across the field windings to regulate the field current. These two
methods provide similar performance.

If a resistance R4, is inserted in shunt with the series field winding, as shown
in Figure 6.22, the field current is reduced by the following ratio:

Rpa
[ = Ruda

B CT W | (6:31)
" Ruut R A

a
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FIGURE 6.22
Simple circuit for controlling speed of series motor by varying field current

where Ap is a resistance ratio. If we assume that the field flux is proportional to the
field current—that is, ¢ = CI,—then

Kd = KCAlL (6.32)
and the load torque equation is
T, = KéI, = KCAR (6.33)

Modify Equation (6.27) to include the new added resistance

R 4+ R
wzl/t,_ a Rf+RfaddI=)i_Ra+ARRfI (6.34)
Ko K¢ . K¢ '

Substituting Equations (6.32) and (6.33) into (6.34) yields

_V, R+ AR,
KCARl, KCAg

(6.35)

w

A reduction of Ry, results in current reduction of the field windings, which leads
to an increase in motor speed. The characteristics of the series motor under this
type of control are shown in Figure 6.23. Note that since the technique results in a
field reduction, it is suitable for speed increase. This type of speed control must be
performed with care so the current of the motor is not excessive. This can be seen
by examining Equation (6.33); if you assume that the torque is constant, the arma-
ture current will increase if R, is reduced.

Solid-state devices can also implement the field reduction. An example is
shown in Figure 6.24. In this figure, a transistor and a diode shunt the field circuit.
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FIGURE 6.23
Series motor characteristics by varying field current

Speed, Rpuddy > Rpday > Rpaddy

Rydd,

Rpzdd,

FIGURE 6.24

Solid-state circuit for controlling speed of a series motor by varying
field current

The diode is connected in the reverse direction of the armature current, and acts as
a freewheeling diode that prevents the field circuit from being abruptly opened,
which hence eliminates the surge in voltage across the transistor. When the transis-
tor is closed, it carries the armature current. When it is open, the armature current
flows through the field windings creating the flux of the motor. By controlling the
switching of the transistor, the field current can be regulated: the higher the duty
ratio of the transistor, the lower the field current.
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EXAMPLE 6.7

A dc series motor has an armature resistance of 2 ) and a series field resistance of
3 ). At a terminal voltage of 320 V and full load torque of 60 Nm, the motor speed
is 600 rpm.

a. Calculate the field current.

Assuming that the load torque is constant, calculate the motor voltage required
to reduce the speed to 400 rpm.

c¢.  If at full voltage the field circuit is shunted by a 6 Q) resistance, calculate the
motor speed.

SOLUTION
a. Assuming that the field flux is linearly proportional to the field current, then

V,= IR, + Ry + E, = LR, + R) + Ko = LR, + R} + KCLw
V, = LR, + R, + KCo)

320 = Id<2 +3 + KC(ZW %%0»

and the torque equation is
T = KCB
60 = KCP
Solving these two equations results in two values for KC:

KC = 0.0256 or 0.248

The armature currents for these two values of KC are

60 60
I = —_— = . = —_— = .
. ,0.0256 48.44 A or I, '0.248 1555 A

Which of these answers is correct? Obviously, it is the one close to the expected
value of the armature current for the given load. You can find the expected cur-
rent by using the torque and speed to compute the output power. Then com-
pute the expected current by dividing the power by the voltage. Of course, the
actual current is larger than this value because of the presence of the armature
and field resistance. However, we are using this calculation to get an idea of the
neighborhood of the armature current. The expected current in this example
is close to 12 A. Then the correct value of KC is the one that results in the next
higher value. Hence, KC = 0.248.



182

CHAPTER 6

b. For a constant load torque, the armature voltage is kept at 15.55 A. The arma-
ture voltage for 400 rpm is calculated by

V,= 15.55(2 + 3+ 0.248(217 %)) = 23928V

c. When a resistance is added in shunt with the series field, the armature current
will increase if the load torque is unchanged. According to Equation (6.33), the
new current can be computed from

T = KCAR2
where
R, 2
gy =2
Rf + Rfadd 3
Hence,

| 60 X3
L=\o2sx2" 19.05 A

Now we can use Equation (6.35) to compute the new speed.

V, R, +AgRs

® T RCARl, KCAg
2
320 2+373
w = - = 77.4 rad/sec

2
0.248 X 3 X 19.05 0.248 X 3

n = 739.18 rpm

CHAPTER 6 PROBLEMS

6.1 A 220V, 1500 rpm, 11.6A (armature current) separately excited motor is con-
trolled by a single-phase, full-wave SCR converter. The armature resistance of
the motor is 2 Q. The ac source voltage is 230 V (rms) 60 Hz. Enough filtering
inductance is added to ensure continuous conduction for any torque greater
than 25% of the rated value. You may ignore the rotational losses. What should
be the value of the firing angle (triggering angle) to drive a mechanical load of
rated torque at 1000 rpm?
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A 600 V, dc shunt motor has armature and field resistances of 1.5 Q and 600
Q, respectively. When the motor runs unloaded, the line currentis 3 A, and the
speed is 1000 rpm.
a. Calculate motor speed when the load draws an armature current of
30 A.
b. If the load is constant-torque type, what is the motor speed when 3 Q
resistance is added to the armature circuit?
c. Calculate the motor speed if the field is reduced by 10%.

A dc shunt motor drives a centrifugal pump at a speed of 1000 rpm when the
terminal voltage and line currents are 200 V and 50 A, respectively. The arma-
ture and field resistances are 0.1 () and 100 (), respectively.
a. Design a starting resistance for a maximum starting current of 120 A
in the armature circuit.
b. What resistance should be added to the armature circuit to reduce
the speed to 800 rpm?
c. If the terminal voltage is reduced by 25%, what is the speed of the
motor?

A dc, separately excited motor has an armature resistance of 1 (2. When a dc
supply of 100 volts is applied to the motor, the armature current is 4 A and the
motor speed is 300 rpm. A half-wave SCR converter is designed to control the
motor speed. The supply voltage is 120 volts (rms), and the triggering angle of
the converter is adjusted to 60°. When the motor is loaded with a constant-load
torque of 10 Nm, the conduction angle is 175°. Assume that the field current
is constant.

a. Calculate the average speed of the motor.

b. If the triggering angle is 35° and the average speed is 300 rpm, what
is the conduction period of the motor?

c. A full-wave SCR converter is designed for the same motor. If the
triggering angle is 50° and the conduction period is 120°, what is the
speed of the motor?

d. A sufficiently large inductance is added in series with the armature
circuit of the motor described in (c). Calculate the minimum
triggering angle of the SCR in order to run the motor at a speed of
100 rpm with continuous armature current.

A dc shunt motor is driving a constant-torque load at the rated speed and rated
terminal voltage. The motor has the following rated data:

Terminal voltage = 115V
Speed = 312 rpm
Field constant {(Kd) = 3 V sec

If the terminal voltage of the motor is reduced by 10%, what is the motor
speed? Assume that the field voltage is also reduced by the same ratio.
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6.6 A dc, separately excited motor is connected to a fan-type load. The arma-

6.7

6.8

6.9

ture circuit of the motor is connected to a full-wave, ac/dc SCR converter.
The input voltage to the converter is 200 V (rms). The triggering angle of
the converter is adjusted for a motor speed of 500 rpm. The armature cut-
rent in this case is 16 A. The armature resistance of the motor is 0.5 £, and
the field constant (K&) is 2.5 V sec. Assume that the armature current is al-
ways continuous.

a. Calculate the triggering angle to run the motor at 500 rpm.

b. If the motor speed is to be reduced to 100 rpm, what is the triggering

angle?

A 220V, 1500 rpm, 11.6 A (armature current), separately excited motor is con-
trolled by a single-phase, full-wave SCR converter. The armature resistance of
the motor is 2 Q. The ac source voltage is 230 V (rms) 60 Hz. Enough induc-
tance is added to ensure continuous conduction for any torque greater than
25% of rated value. (Ignore the rotational losses.)

a. Calculate the triggering angle for a speed of 1000 rpm at rated torque.

b. Assuming that the torque is a fan-type, calculate the triggering angle

for a motor speed of 900 rpm.
c. Sketch the speed—torque characteristics showing the operating points

of cases (a) and (b).

A dc, separately excited motor is used to drive a constant-torque load. The
field circuit is excited by a full-wave, ac/dc SCR converter. The armature cir-
cuit of the motor is connected to a constant dc voltage source of 160 V. The
inductance of the field circuit is large and the field current is continuous.
The ac voltage (input to the converter) is 120 V (rms), and the field resist-
ance is 100 Q. The armature resistance is 2 (0. When the triggering angle of
the SCRs is adjusted to zero, the motor speed is 1200 rpm, and the armature
current is 10 A.

a. Calculate the average current and dc power of the field circuit when
the triggering angle is equal to 20°.

b. Calculate the rms voltage across the field windings for the condition
given in (a). Explain how the rms voltage is dependent on the
triggering angle.

¢. Calculate the no-load speed of the motor. Ignore the friction and
windage losses.

d. Calculate the triggering angle to operate the motor at a speed of
1400 rpm.

e. Can you use the field converter to reduce the motor speed to
1000 rpm? How?

A dc, separately excited motor is driving a hoist. The motor has an armature
resistance of 1.5 (), and a field constant (Kd) equal to 3.5 V sec. The termi-
nals of the armature circuit are connected directly across a 240 V, dc source.
The field circuit is connected to an ac/dc, full-wave, solid-state converter.
The control circuit of the converter is designed to maintain the speed of the
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motor constant. At full load, when the field current is at its rated value, the
motor speed is 600 rpm. One day while the motor was operating at full-load
conditions, a failure in the dc source caused the armature voltage to change
suddenly. The control circuit of the field converter acted rapidly to main-
tain the motor speed at 600 rpm. Due to the action of the control circuit,
the field flux was reduced by 25%. What was the percentage change in the
armature voltage? Indicate whether the change was a voltage increase
or decrease.

A dc, separately excited motor drives a constant-torque load.
a. If a resistance is added in series with the armature circuit, does the
armature current change? Explain why.
b. How does the speed change in case (a)?

A separately excited, dc motor has the following name plate ratings:

Terminal voltage = 400 V
Speed = 1250 rpm
Developed torque'at full load = 90 Nm

Full-load armature current = 30 A

A single-phase, full-wave, ac/dc converter is connected between a 480 V
(rms) ac source and the armature terminals. A fan-type load is connected to
the motor. When the triggering angle is adjusted to 40°, the motor speed is
1050 rpm. Calculate the triggering angle required to operate the motor at
1200 rpm. Assume that the armature current is always continuous.

A robot manipulator with a dc, separately excited motor on the driving end
has ratings similar to those given in Problem 6.11. The motor is running at
full load and is used to drill holes in solid material. If the field current is de-
creased to 80% of the rated value by using a solid-state converter in the field
circuit, what is the percentage change in its speed?

A dc, separately excited motor has the following ratings:

Armature voltage = 200 V
Field constant (Kd) = 3 V sec

Armature resistance = 1 ()

The motor is used in a drilling operation. When the armature voltage of the
loaded motor is 200 V, the motor speed is 500 rpm. Calculate the following:
a. Armature current when the motor speed is 500 rpm
b. Load torque when the motor speed is 500 rpm
¢. Motor speed when the armature voltage is reduced by 10%
d. Armature current at the condition described in (c)
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6.14 A dc, separately excited motor has the following data:

6.15

6.16

6.17

6.18

Rated field voltage = 300 V
Field constant (K) = 3 V sec
Armature resistance = 2 {}
Field resistance = 150 £}

The motor is used to drive an assembly line consisting of a conveyor belt mov-
ing horizontally. The load on the belt varies depending on the amount of
goods being moved. The load torque seen by the motor varies from a maxi-
mum of 24 Nm to a minimum of 3 Nm. At all loading conditions, the speed
of the motor must be maintained constant and equal to 200 rpm.

a. To achieve the required operation, the armature voltage of the motor
is adjusted by a single-phase, full-wave, ac/dc converter. The input to
the converter is 240 V (rms). Calculate the range of the triggering
angle (minimum and maximum) required to maintain the motor
speed at the specified value at all loading conditions. Assume that the
armature current is always continuous.

b. Another method to achieve the desired operation is to adjust the field
voltage. In this case, the armature voltage can be kept constant at
some value. Calculate the range of the field voltage (minimum and
maximum). Hizts: Assume that the maximum value of the field
voltage is equal to its rated value (i.e., 300 V). Also assume that the
field constant (Kd) is linearly proportional to the field voltage.

A 1000V, 50 hp, dc series motor is used as a hoist. The motor runs at a speed
of 750 rpm at full load. The armature and field resistances are 0.5 €2 and 2.0
Q, respectively.
a. Calculate the motor speed and line current when the load torque is
reduced by 50%.
b. For the load condition in part (a), assume that a resistance of 5 ) is
added in series with the field windings. Calculate the motor speed
and line current.

A dc series motor drives a fan-type load. At rated current, the motor speed is
600 rpm. If a resistance equal to 0.25 of the field resistance shunts the field
winding, what is the approximate motor speed?

A dc series motor runs a constant-torque load. The terminal voltage of the
motor is 200 V, the speed is 500 rpm, the armature current is 25 A, the ar-
mature resistance is 0.2 Q, and the field resistance is 0.6 €. If the armature is
shunted by a 10 Q resistance, what is the speed of the motor?

A dc, separately excited motor has an armature resistance of 1 () and an in-
ductive reactance of 2 Q. The motor is powered by an ac/dc converter. The
average torque of the motor is 12 Nm. The field constant K¢ is 3 V sec, and
the average terminal voltage is 100 V. Calculate the motor speed.
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6.19 Explain the basic methods for speed control of a dc shunt motor. Use circuit

6.20

6.21

6.22

6.23

diagrams and motor characteristics in your answer. Comment on the follow-
ing issues:
a. Suitability of the method for speed increase or speed reduction
relative to the no-load speed
b. Effect of the method on the overall efficiency of the system

A dc, separately excited motor is used to hoist a constant-weight load. The mo-
tor is driven by a full-wave, ac/dc converter. The voltage on the ac side is 110 V
(rms). The field constant of the motor K¢ is 3 V sec, and the armature resistance
is 1 ). The armature current is continuous under loaded conditions. When the
triggering angle is 30°, the motor speed is 60 rpm. Calculate the following;

a. Load torque

b. Load power

c¢. Armature current when the triggering angle is adjusted to 45°

d. Motor speed when the triggering angle is reduced to 30° and the field

current is reduced by 10%

A dc, separately excited motor is driving a load torque composed of two
components as given in the equation.

T=25+0.1w

The armature circuit of the motor is connected to a full-wave, ac/de SCR con-
verter. The input voltage to the converter is 300 V (rms). The armature re-
sistance of the motor is 0.5 (), and the field constant (Ké) is 2.5 V sec. Assume
that the armature current is always continuous. Calculate the range of the
triggering angle to operate the motor at a speed range of 0 to 600 rpm.

A dc, separately excited motor is driven by a full-wave, ac/dc SCR con-
verter. The voltage on the ac side is 240 V (rms). The armature resistance of
the motor is 5 ). The armature current is continuous when a full-load
torque of 400 Nm is applied. The motor speed under full-load torque is 100
rad/sec, the motor efficiency is 95%, and the rotational losses are 105 W,
Ignore the field losses. Calculate the following:

a. Output power of the motor

b. rms voltage across the motor terminals

¢. Input power to the motor

d. Losses in the armature resistance

e. Ims armature current

A dc series motor is driving a fan-type load. The armature and field resist-
ances of the motor are 2 () and 3 ), respectively. When the terminal voltage
of the motor is 200 V, the motor speed is 250 rpm and the armature current
is 10 A. Assume that the motor operates at the linear region of the field-
current characteristic. Calculate the terminal voltage needed to reduce the
motor speed to 100 rpm. Also sketch the speed—torque characteristics and
show all operating conditions.

187



CHAPTER 6

6.24

6.25

6.26

A dc, separately excited motor drives a conveyor belt (constant torque). The ter-
minal voltage of the motor is 120 V. When the conveyor belt is fully loaded, the
armature current of the motor is 15 A and the speed of the motor is 180 rpm.
The armature resistance of the motor is 2 {}.
a. Calculate the steady-state speed of the motor if the field voltage is
reversed.
b. Calculate the motor speed if after the field voltage is reversed, the
field voltage is reduced by 10%.
¢. Sketch the speed—torque characteristics and show all operating points.

Hint: Assume that the field MMF is linearly proportional to the field voltage.

A 300 V, dc, separately excited motor drives a conveyor belt (constant
torque). The armature resistance of the motor is 1 {1. When the conveyor
belt is loaded at 150 Nm, the motor speed is 800 rpm. The field constant K
of the motor is always greater than 2 V sec. The motor is controlled by a full-
wave, ac/dc converter. At 150 Nm, the triggering angle is adjusted so that the
speed of the motor is 400 rpm. The armature current of the motor is con-
tinuous. Calculate the triggering angle and the average terminal voltage of
the motor.

A dc, separately excited motor drives a conveyor belt (constant torque). The
terminal voltage of the motor is controlled by a full-wave, ac/ dc converter.
When the conveyor belt is fully loaded, the triggering angle is adjusted so
that the average armature voltage is 150 V, the average armature current is
15 A, and the speed of the motor is 400 rpm. The armature resistance of the
motor is 1 €. The armature current of the motor is continuous. Calculate the
following:

a. Load torque

b. Triggering angle if the voltage on the ac side is 240 V (rms).

c. Steady-state speed of the motor if the triggering angle is changed to 60°.



Speed Control of Induction
Motors

Until recently, induction machines were used in applications for which adjustable
speed is not required. Compared to dc motors, changing the speed of an induction
motor demands elaborate and complex schemes. Before the power electronics era,
and the pulse width modulation in particular, the speed control of induction ma-
chines was limited to highly inefficient methods with a narrow range of speed.

With the advances in solid-state devices and variable-frequency power con-
verters, different approaches to induction motor drive systems have emerged and
developed that result in more sophisticated operations. Induction machines can
now be used in high-performance applications where precise movement is re-
quired. Several models of robots, actuators, and guided manipulators are now
equipped with induction machines that operate under precise control techniques.

The efficiency of the induction machine can also be improved when a proper
solid-state converter is used. Depending on loading conditions, the efficiency at
the rated voltage ranges from about 75% to 90%. High efficiency can be
achieved when the sum of the copper losses of the windings and the core losses
is minimized. This is achievable at a particular loading condition. However, when
the load deviates, the efficiency is reduced. Since most industrial loads are vary-
ing, high-efficiency operation is not always achievable. However, with solid-state
converters, efficiency can be improved at all loading conditions. For example, a
40% reduction in losses can be achieved at 25% load throughout the speed
range. This reduction in losses translates into substantial annual savings that jus-
tify the use of solid-state converters even when speed control is not needed.

In this chapter, we will discuss several fundamental methods for speed control
and efficiency enhancement. The reader should be familiar with the material in
Chapters 2, 3, and 5 before reading this chapter.

7.1 BASIC PRINCIPLES OF SPEED CONTROL

The speed control of an induction motor requires more elaborate techniques than the
speed control of dc machines. First, however, let us analyze the basic relationship for
the speed-torque characteristics of an induction motor given in Equation (5.57).
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P 2R
T, = f = VR, (7.1)

R'S5\2
Su){(Rl + T2> + Xﬁq]

By examining this equation, one can conclude that the speed o (or slip ) can be
controlled if at least one of the following variables or parameters is altered:

1. armature or rotor resistance

2. armature or rotor inductance
3. magnitude of terminal voltage
4

frequency of terminal voltage

As discussed later in this chapter, each of the above techniques by itself is not suf-
ficient. However, when more than one are combined, the control of the induction
motor becomes more effective.

Although it is not evident by examining Equation (7.1), there are other useful
and effective techniques for speed control. Among them are:

5. rotor voltage injection
6. slip energy recovery

7. voltage/frequency control

These seven techniques are described in this chapter, although in a different order
so the information flow from one method to the other is logical.

7.2 CONTROLLING SPEED USING ROTOR
RESISTANCE

Due to the complexity of equation (7.1), it is difficult to show the impact of rotor
resistance on motor speed. However, if we are to study steady-state operation, we
can use the small-slip approximation described in Equation (5.60). This is justifi-
able since at steady state, the speed of the motor is near the synchronous speed.

V2s
(J.): R'z

Keep in mind that Vis a line-to-line quantity. If the voltage, frequency, and torque
are kept constant, the increase in R', results in an increase in the slip. Hence, the
motor speed is reduced.

Figure 7.1 shows the motor characteristics for the case when a resistance R .4,
is added to the rotor circuit. As we explained in Chapter 5, the increase in rotor
resistance does not change the synchronous speed or the magnitude of the maxi-
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FIGURE 7.1
Effect of rotor resistance on motor speed

Speed
y

Torque

T, T,

mum torque; it only skews the characteristics so the maximum torque occurs at a
lower speed.

Adding a resistance to the rotor circuit does not cause the motor speed to change
by any appreciable value at light loading conditions. The difference in speed between
points 1 and 2 in Figure 7.1 is rather small. Although at heavy loading conditions, T,
the motor speed may change by a wider range—from point 3 to point 4—the speed
range s still narrow. Therefore, controlling the motor speed by changing the rotor (or
stator) resistance is not considered a realistic option. In addition, this method in-
creases the motor losses substantially as illustrated in the next example.

A three-phase, Y-connected, 30 hp (rated output), 480 V, six-pole, 60 Hz, slip ring in-
duction motor has a stator resistance R, = 0.5 Q) and a rotor resistance referred to sta-
tor R’y = 0.5 (2. The rotational losses are 500 W and the core losses are 600 W, Assume
that the change in the rotational losses due to the change in speed is minor. The motor
load is a constant-torque type. At full-load torque, calculate the speed of the motor, Cal-
culate the added resistance to the rotor circuit needed to reduce the speed by 20%. Cal-
culate the motor efficiency without and with the added resistance. If the cost of energy
is $0.05/kWh, compute the annual cost of operating the motor continuously with the
added resistance. Assume that the motor operates 100 hours a week.

SOLUTION
Consider the power flow of the induction machine given in Chapter 5, which is also
shown in Figure 7.2. First, let us compute the rated developed power.
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FIGURE 7.2
Power flow of induction motors
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Developed power = output power + rotational losses

P, = Py + Progationa = 30(746) + (500) = 22.88kW

out

To compute the motor speed, we can use Equation (7.1) or the small-slip approxi-
mation of Equation (7.2).

V3
T, =~
Vs V2s(1 —5)
P = T == = —
d d(’.) wS Rlz (’.) R'z
2 -
22,880 = M._Q
0.4

This equation has two solutions; one of them yields a large slip and should be ig-
nored since the motor speed at full load is always near synchronous.

s = 0.0417

0
n=mnl(l —s5) = (120 %‘)(1 — 0.0417) = 1150 rpm

To compute the winding losses, we first need to calculate the motor current. The
casiest way is to use the developed power equation.
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Rl
P, = 3(1'2)2T2 (1 -7y
0.4
22,880 = 3(I',)2 1 — 0.041
2,880 = 3(I',) 0'0417( 0.0417)
Ilz = 28.8A

Losses of motor winding = losses of rotor resistance + losses of stator resistance

These losses can be approximated by using the equivalent circuit in Figure 5.26(b).

Pwinding = Pcul + Pcuz = 3([‘2)2(1{1 + R'z) = 2488W

Input power = developed power + winding losses + core losses
P, = 22,880 + 2488 + 600 = 25.97 kW

The motor efficiency without added resistance 7 is

P,.. 30 X 746

=ow - 222D goy
T p T 25970 °

Now let us calculate the speed and efficiency after a rotor resistance is added. The
resistance is added to reduce the rotor speed by 20%, so the new rotor speed is

Apew = 0.8(1150) = 920 rpm

new

Spew = 2 = 0233

g

Pa' new _ Td new 9d new
Pd Tdu)

since the load torque is constant.

Pdnew — Tdnew O pew - DOf new
P T,w ®
d d

Pyoew = 183 kW

Now we need to calculate the size of the added resistance. Let us use the small-slip
approximation given in Equation (7.2) to create a ratio between the original and
new torque.

Ty _ | SR+ Ry
Tdnew Shew R'Z

Radd = 23 Q
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The new current can be calculated by using the developed power equation

(R'; + Ruia)

Pdnew = 3(1'2 new)2 5

(1 - snew)
new

I'yew = 2573 A
The new winding losses are
P =~ 3(I'y o) (R; + R'5 + R,y = 6552 kW

winding new

Input power = 18,300 + 6552 + 600 = 25.452 kW

Output power = new developed power — rotational losses = 18,300 — 500 = 17.8 kW

The new efficiency with added resistance My, is

P

Mnew = —Ifu—t = . =70%

in
Note that the new efficiency is much lower when a resistance is added to the rotor cir-
cuit. In this example, a 20% reduction in motor speed resulted in about a 20% re-
duction in efficiency. If the motor operates with this added resistance for an extended
time, the energy loss will be costly. This is the main drawback of this type of control.

Now let us calculate the cost of energy when an added resistance controls the
speed of the motor. The losses due to the added resistance are

Pois =3Iy new)*Rogs = 4568 kW
The total hours of operation ¢ in one year are
t = 100(52) = 5200 hr
The cost of energy Cis
C =P, (0.05) ~ $1,188

Keep in mind that this is the cost of one machine. If the plant has more machines
operating by this method, the cost of speed control accumulates to an unacceptable
level.

7.3 ROTOR VOLTAGE INJECTION

If the induction machine is a slip-ring type, we can access its rotor circuit, which
would allow us to insert a resistance or connect the rotor to an external source. The
latter is a more efficient method of speed control.
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Consider the equivalent circuit of the induction motor in Figure 7.3(a). Ignore
the magnetizing branch and concentrate on the windings’ impedances. In this cir-
cuit, instead of shorting the terminals of the slip rings, we are connecting the slip
rings to an external voltage source V,. The magnitude of this voltage source is ad-
justable, and its frequency £, always tracks the frequency of the rotor-induced volt-
age (s E,). Keep in mind that E, is the standstill voltage across the rotor windings.

FIGURE 7.3
Equivalent circuit of induction motor with voltage injection
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The frequency of E, is equal to the frequency of the supply voltage V.. The fre-
quency £, is dependent on the motor speed 7 and the stator frequency f,.

n,— n n
= = = 1— )
[, = s/, " /s 120/ /s (7.3)
p
_
=4 120

As shown in Figure 5.24, we can modify the equivalent circuit of the rotor to that
in Figure 7.3(b) by dividing the voltage and impedances by the slip s. The new rep-
resentation of the induction motor keeps the rotor current unchanged. The model
is merely a more convenient representation for induction machines.

The equivalent circuit in Figure 7.3(c) is a modification of that in Figure 7.3(b).
All variables and parameters are referred to the stator side using the windings ratio
N/N,. Assume that the motor is Y-connected, and V and V, are phase-to-neutral
quantities. The rotor current referred to stator I'; can be computed by

v, -
r, = o (7.4)
(Rl + f) + /X,
As shown in Equation (5.52), the equation of the developed torque T, is
P,
Td = (75)
)

5

where P, is the airgap power (three-phase power). Using Figure 7.3 (b), the airgap
power can be computed as

R' V'
2222 4 3211 cos(9,)
s

Pg = 3(.['2)

s

where 0, is the angle between V, and I',. P, is divided into three components: one
is converted to mechanical power driving the load, the second is losses in the rotor
resistance, and the third is power delivered to the source connected across the slip
rings. The sum of the last two components is known as slip power or sP,.

sP, = 3(I',)2 R, + 3 V', I'; cos(6,) (7.6)

Substituting P, of Equation (7.6) into (7.5) yields

. 3
Ty= —[I')? Ry + VI cos6,)] @.7)
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Equations (7.4) and (7.7) are the foundations for speed control of the induction mo-
tor using voltage injection. Normally, the load torque T (or the range of the load
torque) is known. Thus, you need to compute the voltage that must be injected in the
rotor circuit to drive the machine at a certain speed. With this scenario, you will have
three unknown variables in Equations (7.4) and (7.7): the rotor current, the magnitude
of the injected voltage, and the angle of the injected voltage with respect to the source
voltage. We can simplify the calculations if the injected voltage is in phase with the
source voltage. In this case, the magnitude of the rotor current can be expressed by
V',
V. .

R';\?

which leaves us with two nonlinear equations and two unknowns. The magnitude
of the injected voltage can then be computed. Substituting Equation (7.8) into
Equation (7.7) leads to the equation of the speed—torque characteristics

r,= (7.8)

|. 2 .,
3 (Vj - %) R'Z <Vj‘ - %) V‘l' COS(O,)
' (R1 + —Xl) + X2, \/(Rl + —;l> + X2,

Note that the no-load speed of the motor with injected voltage is no longer equal
to the synchronous speed.

Figure 7.4 is a graphical representation of Equation (7.9). The figure shows a
tamily of characteristics for various values of injected voltage v, <v;, <v;. Asseen

FIGURE 7.4
Speed-torque characteristics of induction motor with rotor-injected voltage
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in the figure, the injected voltage tends to reduce the maximum torque of the mo-
tor and the speed at maximum torque. The figure also shows that a wide range of
speed control can be achieved by this method.

A three-phase, 480 V, four-pole, 60 Hz induction motor is driving a constant-torque
load of 60 Nm. The parameters of the motor are

Ri=040 R=010 X, =40 '=

Calculate the magnitude of the injected voltage that would reduce the motor
speed to 1000 rpm. Also calculate the power received by the source of the in-
jected voltage.

SOLUTION
The synchronous speed of the motor is

n, = 120% = 1800 rpm

The slip at the new speed is

n,— n _ 1800 — 1000
n 1800

s

5= = 0.44

We are assuming that the injected voltage is in phase with the supply voltage.
Hence, the motor current is
480 _ Vi

_— V3 044

f2= 0.1(2%)\?
\/(0.4 + 9129 )) + (4%
0.44

2 -V,
— LZ__VJ_Z_erA
1.85

Z-6,A (7.10)

Since the injected voltage V; is in phase with V, then the phase angle 8, is the an-
gle of the windings impedance.

X
0, = tan" ! 4“11—{,? =71.9°
s
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Using Equation (7.7) for the torque yields

60 = ﬁ[(['z)zo.zt + V', T', cos(71.9)] (7.11)
0.44(211 W)

04(I';)? + 031 V', I', = 16587

By substituting the magnitude of I'; of Equation (7.10) into (7.11), we get

- V' 2-Vv,
0.4(—1%) + 031 V'lvgl'?—’ = 1658.7
0.05(V')2 +8V', — 80.74 = 0
which yields
Vi=95V or V',= —1695V

The negative value of the voltage is not applicable for normal motor operation.
Hence, the injected voltage is

The line-to-line injected voltage is
V3475 =822V

Note that the speed of the induction motor is changed by 44% when only 822V
is injected in the rotor circuit. This change in speed is a very desirable feature. The
drawback, however, is that this method requires the tracking of the frequency of
the rotor circuit and the phase angle of the supply voltage. Such requirements make
this technique more involved.

The power received by the injected source P, is

P, =3V".T, cos(0,)

122 - 95

P, =3(95) o

cos(71.9) = 5384 W

For the motor in Example 7.2, compute the starting current and the starting torque
when no voltage is injected in the rotor circuit. Repeat the solution for the injected
voltage computed in Example 7.2.
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SOLUTION
Without injected voltage. The starting current can be obtained using Equation (7.8)

when V';=0ands = 1.

II — VS
2t T oy 2 v2

" VIR, + R+ X2,

480
= V3 = 68 A
V0.4 + 0.12%) P + 49

Similarly, the starting torque can be obtained from Equation (7.7).
_3)*RY

w

Ty
3

T, =——"—(68)204 = 294N

g ( 180())(6)04 29.4Nm
- 1800

60

With injected voliage
Iu _ VX - V‘l‘
2% VR, + R+ XP,

480
— 95

V3
Iy = =656 A
2% V04 + 0125 + (49

3 1 1 ' 1
Tst = Z)— [(IZSt)Z RZ +V z'IZst COS(G,)]

At starting, 8, = tan”~ ! ( X"L) ~ 787°
g’ r Rl +R|2 .

3
Te = so0t [(65.6)20.4 + 65.6(9.5) cos(78.7)] = 29.34 Nm
(“60)
Note that for a small voltage injection, the speed of the motor changes substantially.

However, the starting current and torque do not significantly change.

7.4 SLIP ENERGY RECOVERY

Consider the power flow of the induction motor given in Chapter 5 and also shown
in Figure 7.2. Most of the input electric power Py, is converted to mechanical power
P, to support the load. However, part of Py, is lost in the resistive element of the
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stator circuit P,, ;. The rest is power transmitted to the rotor via the airgap P, At
high speeds, most of P, is converted to mechanical developed power P, = (1— s)P
The rest is known as the slip power P, = sP,. Slip power is an electrical power dIS-
sipated in the rotor resistance in the form of rotor copper losses P, 5

Slip power P, can be substantial at low speeds. Example 7.1 shows that when
a resistance in the rotor circuit is used to reduce the motor speed, the efficiency of
the motor is substantially reduced. The speed reduction is due to the extra power
dissipated in the rotor circuit, which results in less mechanical power for the load.
We can still use this principle to reduce the motor speed, but instead of dissipating
the extra power in the rotor resistance, we send it back to the source.

Aslip energy recovery (SER) circuit, also known as the static Scherbius circuit,
is shown in Figure 7.5. The rotor in this circuit is linked back to the stator windings
via two converters: three-phase ac/dc and three-phase dc/ac. The ac/dc converter
is often a simple full-wave diode rectifier circuit. The output of the converter is con-
nected to a dc/ac converter through an inductive element. The output of the dc/ac
converter is a three-phase system connected to the same source feeding the induc-
tion motor. This SER circuit divides the slip power into two parts: the losses in the
rotor resistance and the power returned back to the source.

To simplify the analysis, let us assume that the copper losses in the rotor re-
sistance are small compared to the energy that returns back to the source. This as-
sumption is depicted in Figure 7.5. The entire slip power is flowing through the
converters back to the source.

Let us describe the flow of power at a given moment. First we assume that the
voltage e,;, of the rotor terminals is in phase with v, of the supply. Moreover, we as-
sume that e, is positive and large enough to allow diodes D, and Dy, to conduct.
Point 1 will have the potential of phase 4, and point 2 the potential of phase . Hence,
v, = e, The airgap power and the current can flow from D; to the inductor L. If we
trigger S; and S, point 3 will have the potential of phase 4 and point 2 the potential

FIGURE 7.5
Slip energy recovery circuit
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of phase . In this case, v, + v, + vy = 0, where v is the voltage drop across the in-
ductance L,. Hence, the current loop will be closed through Dy, S5, S, and Dy, and
the current (and power) will flow back to the source.

7.4.1 CONTROLLING SPEED BY THE SLIP ENERGY
RECOVERY METHOD

Since the three-phase supply is a constant voltage source, v, is sinusoidal with fixed
peak value. Hence, a change in the triggering angle of the SCRs changes the average
value of v;. Because the balance between v, and v, is always maintained in the loop
of the dc link, v, must also change. When v, changes, the rotor voltage e, on the in-
put side of the diode will change accordingly. ¢, is a function of the motor speed.

e, = sk,

where E, is the rotor voltage at standstill, which is constant. If we ignore the volt-
age drop of the stator windings, £ is constant when the stator voltage is maintained
constant.

N,

1

where N, and N, are the number of turns of the stator and rotor windings, respec-
tively. If the rms voltage v, is maintained constant, any change in ¢, changes the mo-
tor slip in a linear relation.

s =1 (7.13)
E,
The new speed of the motor is dependent on the value of e,, which is a function of the
triggering angle of the SCRs as shown in the following analyses. We will assume that
the motor is Y-connected and that all voltages on the ac sides are phase quantities.
The output voltage of the ac/dc converter is v,. Its average value at standstill can
be computed as shown in Chapter 3, Equation (3.55), assuming full conduction.

V3E)
VZ ave <7ﬂ:7'

(7.14)
where E, .., is the peak value of E,. This is the rotor voltage at standstill. We can
rewrite Equation (7.14) to a more general form for a rotating machine using e, in-
stead of E,. Accordingly, the average voltage of V5 is

3V3E, ey _ 3V3

VZ ave 4; s Ez max (7.15)

w
where E, ..., is the peak value of the rotor voltage when the machine is rotating at
slip s.

Now let us analyze the second half of the circuit shown in Figure 7.5. Keep in
mind that the equations used for the dc/ac converter discussed in Section 3.9 are
not applicable here. Tn Section 3.9, the ac side is a load with rectangular voltage
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waveforms. However, in the circuit of Figure 7.5, the ac side is a source voltage with
sinusoidal waveforms. The more accurate relationship between the input and out-
put of the dc/ac converter can be represented by Equation (3.55).

It is justifiable to assume that the voltage drop across the inductor in the dc link
is small. Note that the orientations of the diodes and SCRs make v, = —v,. Hence,
the average voltage at the input of the dc/ac converter V, .. = =V e

The average voltage across the SCR circuit can be computed using the ac/dc
conversion formula similar to Equation (3.54), but modified for the ac voltage v,
and including the triggering angle as shown in Section 3.7.

V3V,

Viwe = — ;*wax os(at) (7.16)

where a is the triggering angle of the dc/ac converter, measured from the zero
crossing of the line-to-line voltage. In the dc link, we can write the loop voltage as

Vl ave + VZ ave 0

Substituting the values of V, .. and V, . of Equations (7.15) and (7.16), we get

_ _ “smax ) — AY&
s 7]52 o cos(a E, cos(a)
VS Nl
= — cos(a) = —— cos(a) (7.17)
& \% NZ
Ny
Since
n=mn(l—7%)
then
= [1 + Ny ( )} (7.18)
n=n N, cos(a .

Equation (7.18) shows that adjusting the triggering angle of the dc/ac converter can
control the speed of the machine. The range of « is from 7/2 to . In this range,
the induction machine operates as 2 motor where the speed is less than the syn-
chronous speed. The motor cannot operate at « < 90°, because the motor speed
exceeds the synchronous speed. This is not possible for the circuit in Figure 7.5,
since it requires the current to flow in the opposite direction in the dc link—the
diodes do not allow it.

7.4.2 TORQUE-CURRENT RELATIONSHIP

According to Equation (7.18), the speed of the motor is independent of the load
torque, because we assumed that the motor is ideal and the impedance of the stator
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windings is negligible. Nevertheless, the speed computed this way is very close to the
actual speed under loading conditions.

In this section, we shall study the effect of the load torque on the motor cur-
rent. It is intuitive that an increase in load torque is expected to result in an increase
in current everywhere in the circuit. This can be shown by first substituting Equa-
tion (7.12) into (7.15).

V3 N
A w3 ;Xi V. (7.19)

where V, ... is the peak value of the phase voltage of the source. To use the rms

line-to-line voltage V,, we can rewrite Equation (7.19) as

Vy,n=——s—=V =KsV 20

2 ave o s Z\]1 5 Ks B (7.20)
2N
where K= ii
T N

The slip power sP, is also equal to the power at the input of the dc/ac converter. If
we ignore the ripples in the current 7 and voltage v,, we can write the slip power as

P, = 1V, e = KsV, I (7.21)
Hence,
P, =KV, (722)
The developed mechanical power P, is
Py=Tiw = (1 - 5)p, (7.23)
where o is the shaft speed of the motor defined by
w=uwl(l-13
Substituting Equation (7.22) into (7.23) yields
[= %/"i (7.24)

b

Note that the current here is dependent on the load torque, but independent of the
motor speed, because of the assumption we made that the induction machine is an
ideal motor.

7.4.3 EFFICIENCY

To understand the improvements made to motor efficiency, let us develop the
power flow chart for the induction motor with slip-energy recovery. This flow chart
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FIGURE 7.6
Power flow chart of induction motor under energy recovery

PSOUI'CS

r\’v
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-
<—OQ'U R

g 1

P, 5Pg P;=P,= (I—X)Pg
L, P cu?2 P rotational P out

is given in Figure 7.6. Compare it to the chart in Figure 7.2. With SER, the slip
power is divided into the copper losses of the rotor and the recovery power P,. The
recovery power is injected back to the source. Thus, the actual power delivered by
the source is the input power required by the motor minus P,.

The output power is the shaft torque multiplied by the shaft speed. If we add
the rotational losses to the output power, we get the developed mechanical power
P;. The rotor copper losses P,,, , in the rotor resistance can be computed as

P,,=312R, (7.25)
Similarly, the stator losses of the motor can be expressed by
P, =3IR, (7.26)

where I, and I, are the rotor and stator currents, respectively, including all har-
monics. R, and R, are the rotor and stator resistances, respectively. Remember that
all harmonic components of the current produce losses in the resistance.

Let us assume that the inductor in the dc link is large enough to allow the cur-
rent to be continuous without ripples. Although »; contains harmonics, the recovery
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power, P, , is due to current and voltage of the same frequency as explained in Sec-
tion 3.1.2.3. Hence, the recovery power is due to the dc components.

Pr = VZ aveI = Vl aveI (727)

Using the power flow of Figure 7.6, we can define two efficiencies: the efficiency of
the motor without SER system m,, and the efficiency of the system with SER msgr-

Pout
P
MSER = out (7.28)

source

Let us assume that we have two identical motors running at the same speed and
driving equal load torques. Under this assumption, it is fair to assume that the ro-
tational losses of both motors are equal. Now assume that the first motor has its ro-
tor windings shorted, and the second motor has an SER system. Since both motors
provide identical output power at identical speeds, the airgap powers of the ma-
chines are equal, because

Also, the slip powers (sP,) of both machines are equal. For the first machine, the
slip power is equal to the rotor copper losses. However, for the second machine it
is equal to the rotor copper losses plus the recovery power returned back to the
source. Hence, the rotor copper losses of the machine with SER are less than those
for the machine without SER.

The increase in system efficiency due to SER is illustrated by the following
example.

O

A three-phase, six-pole, Y-connected, 480 V induction motor is driving a 300 Nm
constant-torque load. The motor has the following parameters:

N
=1 P

N rotational
2

1kW

The motor is driven by a slip energy recovery system. The triggering angle of the
dc/ac converter is adjusted to 120°. Ignore all core and copper losses and calculate
the following:

a. Motor speed
b. Current in the dc link
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Rotor rms current
Stator rms current
Power returned back to the source

Assume that the motor is not driven by an SER system. If a resistance is added
in the rotor circuit to reduce the speed to that calculated in part a., compute
the additional losses.

SOLUTION

a.

The speed of the motor can be computed using equation (7.18)
n, = 120 6—60 = 1200 rpm
N,
n=n|l+ ﬁcosa = 1200 {1 + cos(120)] = 600 rpm
2

1200 — 600

1200 %

To compute the current in the dc link, you need to compute the output power
P, and developed power P,

P =T,,0= 300(217 8”6) = 18.85 kW

where T, is the shaft torque.

Pd:Pout+Protanonal 18.85 + 1.0 = 19.85 kW

The developed power P, is also equal to
P 4= Td (O]
where T} is the developed torque and w is the speed in rad/sec. The current in

the dc link is given in equation (7.24)

P, 19850
_was_&_l‘S_ - 05

KV. KV, KV, 3\f

=61.2A

(480)

An approximate value for the rms current of the rotor I, can be computed by
assuming that the current in the dc link is free from harmonics. Taking into
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account that the dc/ac converter is a three-phase, full-wave type, each diode
is conducting for 120° only.

2n/3 2
L= /H Izdwt=\/;lz0.82(61.2)=50A
0

If we ignore the core losses, the rms current of the stator I, can be computed as

The power returned back to the source P, is

P, =P,;=1985kW

Note that P, = P, since the slip is equal to 0.5 and the copper losses of the ro-
tor are ignored.

Let us first compute the inserted resistance R',;. This can be simply done by
using the small-slip approximation of Equation (7.2). But first, we need to
compute the developed torque.

o _Pa_ 19850

d
) 600
2 —_—
™60

= 316 Nm

Now, let us use Equation (7.2)

_ V2s
Ti= g
W, K504

4807 X 0.5

1200 _,
2 _604 R add

316 =

Rladd =29 Q

The rotor current is
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Note that this current is almost the same as that computed for the system with
SER. The difference is due to the assumption that the current in the dc link is
harmonic-free.

The additional losses are

Pus=3I')2R = 3(47.77)2 2.9 = 19.85 kW

These losses are very high, and equal to the developed power since the slip is 0.5.
Note that the losses here are equal to the power returned back to the source P,
when the SER technique is used. It is now obvious that with SER technique, the
drive system is highly efficient.
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7.5 CONTROLLING SPEED USING INDUCTANCE

Adding inductance to the motor windings is an unrealistic option for the following
reasons:

1. The physical size of the inductance required to make a sizable change in speed
is likely to be larger than the motor itself.

2. Unlike variable resistance, variable inductance requires expensive and elabo-
rate design.

The insertion of inductance reduces the starting torque.

The insertion of inductance consumes reactive power that further lowers the
already low power factor of induction motors.

7.6 CONTROLLING SPEED BY ADJUSTING THE
STATOR VOLTAGE

Several techniques can be used to change the stator voltage of the motor. Among
them are fixed pulse modulation (FPM), explained in Chapter 3, or the phase
control shown in Figure 7.7. The circuit configuration of phase control is a full-
wave, three-phase SCR converter similar to the ones discussed in Chapter 3. In
this circuit, the induction motor is connected to a three-phase supply voltage via
back-to-back SCR pairs. For each phase, one SCR conducts the current in one di-
rection (from the source to the motor), and the other SCR conducts the current
in the second half of the cycle (from motor to source). If the triggering of these
SCRs is controlled, the voltage across the stator terminals can change from zero
to almost full voltage.

As seen in Equation (7.1), the torque of the motor is proportional to the
square of its stator voltage. For the same slip and frequency, a small change in
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FIGURE 7.7 FIGURE 7.8
Phase control of induction motor Impact of voltage on motor speed
Speed

v, N i Load Vo< Vi

i
Vi ,' D] - M i

;
V., !

Torque

motor voltage results in a relatively large change in torque. A 10% reduction in
voltage causes a 19% reduction in developed torque as well as the starting and
maximum torques.

The characteristics of the motor under voltage control are shown in Figure 7.8.
The figure is based on Equation (7.1) and shows two curves for two different val-
ues of the stator voltage. Note that the slip at the maximum torque remains un-
changed since it is not a function of voltage. For normal operation in the linear
region, the figure shows that the motor speed can be modestly changed when the
voltage is altered. However, a wide range of speed control cannot be accom-
plished by this technique. Nevertheless, it is an excellent method for reducing
starting current and increasing efficiency during light loading conditions. The
starting current is reduced since it is directly proportional to the stator voltage.
The losses are reduced, particularly core losses, which are proportional to the
square of the voltage.

Keep in mind that the terminal voltage cannot exceed the rated value to pre-
vent the damage of the windings’ insulation. Thus, this technique is only suitable
for speed reduction below the rated speed.

For the motor given in Example 7.1, assume that the load torque is constant and
equal to 120 Nm. Ignore the rotational losses and calculate the motor speed at full
voltage. Repeat the computation if the voltage is reduced by 20%.

SOLUTION
First calculate the motor speed at the given load torque. The small-slip approxi-
mation can be used.
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Vs
(")_\‘R'Z

Td =

48075

1200
m 05
760

120 =

s = 0.0327
Thus, the speed at full voltage is
n=mn(l —ys) = 1161 rpm

Now calculate the new motor speed when the voltage is reduced.

Tdnew =1= Vﬁew Snew
Td V2 A
Spew = 0.0511

The new speed of the motor is
Hoew = 1200(1 — 0.0511) = 1139 rpm

In this example, note that a 20% reduction in voltage yields about 5% reduction
in speed.
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7.7 CONTROLLING SPEED BY ADJUSTING THE
SUPPLY FREQUENCY

In steady state, the induction motor operates in the small-slip region, where the
speed of the motor is always close to the synchronous speed of the rotating flux.

n, =120 / (7.29)
P

where fis the frequency of the stator voltage and p is the number of poles. Since the
synchronous speed is directly proportional to the frequency of the stator voltage,
any change in frequency results in an equivalent change in motor speed.

If you plot the motor characteristics of Equations (7.1) for different values of sup-
ply frequencies, you can obtain a family of characteristics similar to the ones shown in
Figure 7.9. The effect of frequency on motor current is given by Equation (7.30),
which is the same as Equation (5.55). The current characteristics of the motor are
shown in Figure 7.10.



212 CHAPTER 7

FIGURE 7.9 FIGURE 7.10
Impact of frequency on motor Impact of frequency on motor
speed current
S}aeed Speed
3
h h>h>f i AL h>h>h
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“ Current
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I, = (7.30)

2
R';\? 2
\/(R1+T> +Xez,7

Frequency manipulation appears to be an effective method for speed control that
requires a simple dc/ac converter with variable switching intervals similar to the ones
shown in Figure 3.29. However, there are severe limitations to this method: very low
frequencies may cause motor damage due to excessive currents, and large frequencies
may stall the motor. These limitations are discussed in the following sections.

7.7.1 EFFECT OF EXCESSIVELY HIGH FREQUENCY

As shown in Figures 7.9 and 7.10, the increase in supply frequency results in the
following five changes:

1. Awnincrease in the no-load speed (synchronous speed). This increase is due to the
increase in frequency as given by Equation (7.29).

2. Adecrease in the maximum torgue. The maximum torque is described in Chap-
ter 5 and its equation is given by (5.62). The maximum torque equation is
rewritten for a single phase in (7.31). The voltage V is a phase-to-neutral value.
It shows that the maximum torque is inversely proportional to both the syn-
chronous speed w, and the equivalent reactance of the windings X,,. Each of
these quantities increases by increasing the frequency. Hence, the maximum
torque decreases when the frequency of the supply voltage increases.

V2
Toax =
™ 20, [R; + VR + X2

(731
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3. A decrease in the starting torque. The starting torque of the induction motor,
T, is computed by Equation (5.59) for a three-phase system or Equation
(7.32) for a single phase system.

V2R,
st 2
W Xeq

(7.32)

As seen in this equation, the starting torque decreases when the synchronous
speed and equivalent reactance increase. This is due to the increase in frequency.

4. Anincrease in speed at the maximum torque. Due to the increase in frequency,
the slip at maximum torque s,,,, decreases when the equivalent reactance in-
creases, as shown in Equation (5.61). Also, the speed at maximum torque #
given by Equation (7.33) increases.

max

Popax = 15(1 = $..) (7.33)

max

5. A decrease in the starting current. This can be seen from Equation (5.63).

\%
I, = (7.34)
VR, + R + X2,

When the frequency increases, the equivalent reactance increases and the start-
ing current decreases. At high frequencies, the resistance of the motor wind-
ings may also increase due to the skin effect.

Now let us examine the case when the increase in FIGURE 7 11

frequency is excessive. Figure 7.11 shows two character- Effect of excessively high

istics for two different values of stator frequency. Assume frequency

that the load torque is constant, and the motor operates

initially at frequency f,. The steady-state operation is rep- Speed 5

resented by point 1. Now assume that the frequency of A y ™ oad

the stator voltage increases to a higher value, £, where the
new maximum torque of the motor is less than the load
torque. In this case, no steady-state operating point can
be achieved, and the motor eventually stalls or even op-
erates under braking. One solution to this problem is to
increase the supply voltage when the frequency increases.
This will be discussed in a later section.

A 480 V, two-pole, 60 Hz, Y-connected induction motor has an inductive reactance
of 4 Q) and a stator resistance of 0.2 Q. The rotor resistance referred to the stator is
0.3 Q. The motor is driving a constant-torque load of 60 Nm at a speed of 3500 rpm.
Assume that this torque includes the rotational components.
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a. Compute the maximum frequency of the supply voltage that would not result
in stalling the motor.

b. Calculate the motor current at 60 Hz, and at the maximum frequency.

c. Calculate the power delivered to the load at 60 Hz, and at the maximum fre-
quency.

SOLUTION
a. Let us look at the maximum torque equation

VZ
Tmax =
20,(R, + VR} + X2

If V is the line-to-line value, the maximum torque is due to the three phases.
Based on the values of R, and X, R << Xzeq, the maximum torque equation
can be approximated by

2
T \4

=~ 7.
max 2(9: Xeq ( 35)

The upper limit of the supply frequency is determined by the maximum
torque; the developed torque, at most, must be equal to the maximum
torque—so let us modify the maximum torque of Equation (7.35), and make it
more general for any frequency.

T, = v
" oG

Now set this equation equal to the developed torque and solve for the frequency.

4802
f 3600><i>
2(602" o0 Neo?

f=~677Hz

T,

max

Thus, the increase in frequency should not exceed 67.7 Hz.

b. The motor current can be calculated using the current represented by Equa-

tion (7.30).

\%

R|2 2 2
\/<R1 + T) + Xeq

I,=
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At 60 Hz, the slip is

n, —n _ 3600 — 3500
3600

s = = 0.0277

7y

and the current is

480

. v

, =
03 \2

0.2 + + 42

\/ ( 0.0277) 4

Now let us compute the current at the new frequency. Since the load torque is
equal to the maximum torque, the slip can be computed using Equation (5.61).

=23.62A

— R'Z
max \/Rg + ng

Note that the equivalent reactance of the motor increases due to the increase
in frequency. The new equivalent reactance is

M

67.7
=204 =451
w= g 4 =45
R, 0.3
VR + X2 V022 + 4512
1 eq

= 0.0665

Smax
The new motor speed is

7
n= 120677 (1 — 0.0665) = 3792 rpm

The current at the new frequency is

480

V3

0-3 2 2
2+ + 4.
\/(O 2 0.0665) 41

The current at 67.7 Hz is higher than the current at 60 Hz—about an 80% in-
crease. The load torque is constant and the speed increases, so the load power
increases. In this current equation, you can also attribute the increase in cur-
rent to the increase in slip.

r,= =425A

215
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c. The developed power at 60 Hz is

Pd:wa=60X2ﬂﬂ”22kW
60
At 67.7 Hz,
92
Pd = Td(,l) = 60 X ZTT%(T = 23.83 kW

This is an increase of 8.3 %; it is imperative that the drive system be able to handle
this increase in current and power demands.

7.7.2 EFFECT OF EXCESSIVELY LOW FREQUENCY

Reducing the supply frequency reduces the speed of the motor. However, frequency
reduction may result in an increase in motor current as given in Equation (7.30) and
Figure 7.10. At very low frequencies, the equivalent reactance of the motor X, is
very low. Since X, is the limiting parameter for motor current at starting, its large
reduction could lead to an excessive current beyond the ratings of the machine. The
following example explains this effect.

For the motor described in Example 7.6, compute the motor speed and starting
current if the frequency is decreased to 50 Hz.

SOLUTION
Let us first compute the new synchronous speed.
50
n, = 120 5= 3000 rpm
3000
w, = 2w —— = 314.16 rad/sec

60
To compute the slip, let us use the small-slip approximation of Equation (7.2).

Vs
t
W R 2

sz

480°%s

60 = 314.16(03)

s = 0.0245
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The new speed at 50 Hz is
n = 3000(1 — 0.0245) = 2926.5 rpm

which is about a 19% reduction in speed. The starting current is given in Equa-
tion (7.34).

1%
VIR, + R)? + X2,

U —
IZst_

The starting current at 60 Hz is

480
V3

Iy, = T\/T:‘; = 68.75 A
At 50 Hz,
480
Iy, = V3 o 8221 A
(0.5)% + <@ 4)

which is about a 20% increase in the starting current. Note that the frequency re-
duction leads to a reduction in speed, and an increase in starting currents.

7.8 VOLTAGE/FREQUENCY CONTROL

As seen in Figure 7.11, the increase in the supply frequency increases the motor
speed and also reduces the maximum torque of the motor. Furthermore, in Figure
7.8, we see that the increase in voltage results in an increase in the maximum torque
of the motor. If we combine these two features, we can achieve a control design by
which the speed increases and the torque is kept the same. This is known as voltage/
frequency control, v/f.

Figure 7.12 shows three characteristics; one is used as our reference at voltage
V, and frequency f;. For the arbitrary fan-type load in the figure, the reference op-
erating point is 1. If we increase the frequency of the supply to £, while keeping the
voltage V; unchanged, the speed of the motor increases and the maximum torque
decreases. The load torque in this case is higher than the maximum torque pro-
vided by the motor. Thus, no steady-state operating point can be achieved and the
motor eventually stalls,

Now let us keep the supply frequency to the new value at £,, but increase the
magnitude of the voltage to V,. The motor characteristics in this case stretch and
the maximum torque increases. The motor operates at point 2, and a new steady-
state point is achieved.

217
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FIGURE 7.12

Impact of change in frequency

and voltage

Speed

The change in voltage and frequency is a powerful
method for speed control. Note that both frequency and
voltage can change simultaneously by the pulse-width
modulation technique described in Section 3.9.4. This

£and Vs type of control is common for induction motors. There

are several variations where the v/f ratio is also adjusted
to provide a special operating performance. The most
common method, though, is the fixed v/f ratio.

An induction motor operating under constant v/f

control exhibits the characteristics shown in Figures 7.13
and 7.14. Note that the changes in the maximum torque
are not substantial. This can be explained by examining

Equation (7.36), which is the same as equation (5.62).
Keep in mind that V in Equation (7.3 6) is a line-to-line
quantity. If we assume that the equivalent inductive reactance X, at frequencies near
the rated value, is much larger than the armature resistance, then Equation (7.36) can
be approximated by Equation (7.37).

VZ
T =— (7.36)
20fR, + VRI + X2, ]
V? V? V\2
T . ~<,) (737)

z(l)SXEq 2(%][) (waqu) f

where p is the number of poles and L., is the equivalent inductance of the motor
windings. It is clear that when the v/f ratio is constant, the maximum torque is un-
changed. Keep in mind that this approximation may not be valid at very low fre-
quencies when X, is not much larger than R;.

Another feature of the constant v/f control is that the magnitude of the start-
ing current is almost constant. Examine Equation (7.34), and assume that
X2, >> (R, + R ,)2. This assumption is valid for frequencies close to the rated fre-
quency. The starting current can then be approximated by Equation (7.38).

v 1V

Ihe=w =57 7
X, 2wl f

(7.38)

Equation (7.38) shows that when v/ 'fis kept constant, the starting current remains
unchanged; this is another advantage of v/, 'f control.

When the change in voltage is used to control the induction machine,
whether it is a voltage control or v/f control, one must be careful not to increase
the voltage magnitude beyond the ratings of the motor. Excessive voltage can
cause instant damage to the insulation of the motor’s windings, leading to shorts
and internal faults. Usually the voltage should be kept below 110% of the rated
value.
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FIGURE 7.13 FIGURE 7.14
Speed-torque characteristics for Speed-current characteristics for
fixed v/f ratio fixed v/f ratio
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EXAMPLE 7.8

Repeat Example 7.7 for a constant v/f control.

SOLUTION
The voltage frequency ratio is 480/60 = 8. When the frequency of the supply is re-
duced to 50 Hz, the supply voltage should also be reduced to

Voew = 50(8) = 400 V

Since it depends on the supply frequency alone, the synchronous speed at 50 Hz is
the same as that calculated in Example 7.7. However, the slip is dependent on the
supply voltage as given in the small-slip approximation of Equation (7.2).

sz“
('OSR|2

Td*

_ 400%s
314.16(0.3)

s = 0.0353
This slip is higher than the one calculated in Example 7.7. The new speed at 50 Hz is
n = 3000(1 — 0.0353) = 2894 rpm
o = 303 rad/sec

The starting current at 60 Hz, 480 V is
480
fy= V3 g5

V(0.5) + 42
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and at 50 Hz, 400 V it is

400

I, = V3 = 685A

2, (20 )2
05) +<604

Note that the starting current is almost unchanged due to the v/f control.

7.9 CURRENT SOURCE SPEED CONTROL

A current source inverter (CSI), as discussed in Section 3.12, can drive the induc-
tion machine. The model of Figure 7.15(a) represents the induction motor with
CSI. In this circuit, we include the magnetizing branch in the stator circuit because
it has a greater impact in the CSI drive. Figure 7.15(b) shows another equivalent
circuit, discussed in Chapter 5. In this circuit, the effect of speed is transferred from
the rotor-induced voltage sE, and the rotor reactance to the rotor resistance. The
rotor current in both circuits is the same. Figure 7.15(c) shows the equivalent cir-
cuit referred to the stator by using the turns ratio.

When the induction motor is driven by a CSI, the stator current I; is equal to
the current source I, which is constant.

IS

L =I,+1, (7.39)

Since I, is constant, changes in I';, due to changes in mechanical load will result in
changes in the magnetizing current I,,. Changes in I, should be analyzed carefully.
The magnetizing circuit of the induction machine has an iron alloy core that satu-
rates with flux at large magnetizing currents. When the core saturates, the flux does
not noticeably increase when the magnetizing current increases. This phenomenon
changes the magnitude of the magnetizing inductance X, in a nonlinear manner. A
good approximation for X,, can be obtained using Figure 7.16. The figure shows
the relationship between the flux density and flux intensity. The voltage across the
magnetizing reactance E; is directly related to the flux density, while the current I,,
represents the flux intensity. The slope of the solid curve is the magnetizing reac-
tance X,,. The value of X,, changes according to the relationship between the flux
intensity and density. With voltage source drive VSD, when the terminal voltage of
the motor is maintained constant, the magnetizing current is also constant, and ac-
cordingly X, is constant. However, with CSI, the magnetizing current is changing
and so is the magnetizing reactance. Analyzing the machine under this condition is
very involved and may require numerical computations. An approximate method
can be used where the magnetizing curve is divided into regions, as shown in Fig-
ure 7.16. Based on two operating regions, two values for the magnetizing reactance
are assumed: the unsaturated reactance X, and the saturated reactance X,,,,. Of
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FIGURE 7.15
Equivalent circuits of an induction motor with current source inverter
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FIGURE7.16
Effect of saturation on the magnetizing inductive reactance
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course, one could divide the curve into more regions to improve the accuracy, but
in most cases, two divisions are quite adequate.

To obtain the speed—torque characteristics of the motor operating under CSI,
let us write the basic equations for airgap power P,:

R
P, = Ty, =31, Tz (7.40)

The rotor current I', can be computed by using the impedance ratio of the parallel
branches shown in Figure 7.15(c).

\/(RT'ZY + (X', + X,)°

The value of X,, depends on the operating region in Figure 7.16. Substituting I'; of
Equation (7.41) into (7.40) yields

312 X2 R,
sw [(Kl)z + (X, + X )2]
) s 2 m

The CSI can be designed for fixed or variable frequency. Distinctive characteristics
can be obtained in either method as seen in the following subsections.

Td = (7 42)

7.9.1 INDUCTION MOTOR WITH CONSTANT-FREQUENCY CSi

The speed-torque characteristics of the induction motor operating under CSI with
fixed-supply frequency are shown in Figure 7.17. Equation (7.42) is used to con-
struct these characteristics for two values of I,.. In addition, the figure shows the char-
acteristics of the induction motor operating by a voltage source inverter (VSI) drive.
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When a CSI is used, the induction motor exhibits dif-

LS FIGURE 7.17
f'erent charac.terlstlcs as corppared to the VSI Tl'le most no- Speed-torque characteristics
ticeable one is the low starting torque. This is primarily due of an induction motor with CSI
to the high rotor current I', at starting, which reduces the and VSI
magnetizing current [, , as shown in Equation (7.39). Re-
member that the current I; is constant! The low magnetiz- n

ing current at starting reduces the flux of the motor; hence,
it reduces the starting torque.

The other noticeable difference is that the speed of the
motor in the normal operating region with CSI is stiffer (has
a flatter slope) than that of a VSI motor. This is because the
core of the motor is saturated with flux in this region. If the
core saturates, small changes in the magnetizing current
tend to have little or no effect on the flux. When the load
torque increases, the rotor current tends to increase, which
reduces the magnetizing current (I, is constant). When re-

ductions of the magnetizing current do not reduce the flux
(in the saturation region), the speed of the motor remains al-
most unchanged.

Let us assume that the voltage and flux of the VSI motor are at their rated val-
ues. Hence, the intersection point of the VSI and CSI (point 1), represents the op-
eration of the motor at the rated flux and voltage. This point is in the unstable
region of the induction machine. Now we assume that we want to operate the mo-
tor at point 2, where the torque is the same as that at point 1, and the speed is
slightly higher. At point 2, the slip is smaller and the rotor current is accordingly
smaller. This tends to increase the magnetizing current I,,. Normally, 1,, at point 1
is at the rated value, which is normally close to the saturation region. Hence, I, at
point 2 is higher than the rated value, and the core of the motor is saturated.

In Figure 7.15, we represented the core of the machine as an ideal inductor.
In reality, it includes a resistive component representing the core losses. Since at
point 2 the magnetizing current increases, the core losses also increase. Hence, the
overall efficiency of the motor is decreased. Therefore, point 1 is a preferable op-
erating point because of the higher efficiency and the unsaturated core. However,
because it is in the unstable region, a feedback control mechanism is needed to en-
sure the stability of the drive system.

EXAMPLE 7.9

A 480V, six pole, 60 Hz, Y-connected induction motor has a stator inductive reac-
tance of 3 () and a stator resistance of 0.2 Q. The rotor inductive reactance and re-
sistance referred to the stator are 2  and 0.1 Q, respectively. The magnetizing
reactance is 120 () in the linear region and 40 () in the saturation region. The mo-
tor is driven by CSI, and its load is a constant torque of 100 Nm. The input current
of the CSI is adjusted to run the machine at 900 rpm. Compute the input current.
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SOLUTION
Let us first compute the slip.

n,—n 1200 — 900

n 1200

5

S

=025

5§ =

If the machine is in the linear region
312 X2 R,

Td = ] 2
szK&) + (X', + Xm)z]

A
3 12(120%)(0.1)

0.1)2 R
0.25(125.66) (E) + (2 + 120)

100 =

Then
I=104A

Let us compare this current to the rated current of the machine. Since the power rat-
ing of the machine is not given, we can assume that the following equation applies:

V3 V.1 g cos 8 = Tyo,

In this equation, we are ignoring the stator losses. Nevertheless, it is a good approx-
imation for the current. We can further assume that the power factor cos 6 =~ 0.7,
which is a typical value. Based on these assumptions,

L Tye, 100012560
Lrated =\ 31 050 V3480 (0.7)

5

=216A

Note that the source current, I, is about 4.8 times larger than the rated current,
I, ..ceq. This excessive current will be damaging to the machine. Hence, the machine
cannot operate under this condition.

If the machine is in the saturation region. Let us examine whether the machine
can operate in the saturation region of the magnetizing curve.

312 X2 R,
RIZ 2 1 2

s

sz

3 12(120%)(0.1)

100 =

0.1\2 ,
0.25(125.66) (65 + (2 +42)
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Then
I,=375A

Even in the saturation region, the current I, is about 1.73 times larger than the rated
current Iy ,..q. This excessive current will also be damaging to the machine. To re-
duce the current, the frequency of the source must be adjusted as seen in the next
section,

7.9.2 INDUCTION MOTOR WITH ADJUSTABLE
FREQUENCY CSI

As we have seen in the previous example, the induction motor operating under con-
stant frequency cannot provide a good range of speed control. To correct this draw-
back, the frequency of the supply must change. The change of the supply frequency
results in the following changes:

1. The synchronous speed is changed by £./f,, where the subscript 1 indicated the
original value and 2 the new value.

w=wé

52 5 fl
2. Thesslip is changed according to the form

7’2:2 - n nj.l
5 = 51 -
nSl — R T’ISZ

3. All reactances are changed by £,/f;.

_v b
X’”z - X’”lfvl
Substituting the new parameters and variables into Equation (7.42) yields
2
3 If(x,,, ff) R,
T, = L (7.43)

o[l e

Equation (7.43) is represented in Figure 7.18. Note that the reduction of the sup-
ply frequency reduces the motor speed by a wide range and also increases the start-
ing torque—both desirable features.
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FIGURE 7.18
Induction motor with variable-frequency CS!
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For the machine in Example 7.9, compute the frequency of the CSI to drive the ma-
chine at 900 rpm without exceeding the rated current.

SOLUTION

If the current is to be limited by the ratings of the motor, we can assume that the
machine is operating in the linear region of the magnetizing curve. The torque
equations can be modified for the new frequency as given next.

312 X2, R,
RI2 2 (] 2

N

Td=

3 (21 6)2<120 i>2 0.1
. w) ©

T TR P
60 (120 p 900) [((120 7ip — o001/ (120/7p)) TP T 10 g0

The solution of this equation could be very involved. However, with simple and
valid assumptions, we can simplify the equation. For example, the magnetizing
reactance X, in the linear region is much larger than R',/s, even for small slips.
Also, X,,>> X',. Hence,

100 =
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_ IR,
S

T,

5

3(21.6)20.1

2m f

100 =
— (120 == 900)
P

60
The frequency of the CSI is then
f=45.67Hz

Note that the torque equation given here is independent of the core reactance when
the machine operates in the linear region.

CHAPTER 7 PROBLEMS

7.1 A 209 V, three-phase, six-pole, Y-connected induction motor has the fol-
lowing parameters:

R, =0128Q0 R, =009350 X, =0490Q

The motor slip at full load is 2%. Calculate the following:
a. Starting current (ignore the magnetizing current)
b. Full load current
¢. Starting torque
d. Maximum torque
e. Motor efficiency (ignore rotational and core losses)

7.2 For the motor in Problem 7.1, assume that the motor load is fan-type. If an
external resistance equal to the rotor resistance is added to the rotor circuit,
calculate the following:

a. Motor speed

b. Starting torque

c. Starting current

d. Motor efficiency (ignore rotational and core losses)

7.3 For the motor in Problem 7.1 and for a fan-type load, calculate the value of
the resistance that should be added to the rotor circuit to reduce the speed
at full load by 20%. What is the motor efficiency in this case?

7.4  For the motor in Problem 7.1 and for a fan-type load, calculate the follow-
ing if the voltage is reduced by 20%:
a. Motor speed
b. Starting torque
c. Starting current
d. Motor efficiency (ignore rotational and core losses)
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7.5

7.6

7.7

7.8

7.9

7.10

For the motor in Problem 7.1 and for a fan-type load, calculate the follow-
ing, assuming that the supply frequency is reduced by 20%:

a. Motor speed

b. Starting torque

¢. Starting current

d. Motor efficiency (ignore rotational and core losses)

For the motor in Problem 7.1 and for a constant-load torque equal to half
the full-load torque, calculate the minimum supply frequency that will not
allow the motor current to exceed the full-load current. Calculate the motor
speed.

For the motor in Problem 7.1 and for a fan-type load, calculate the follow-
ing, assuming that the supply frequency is increased by 20%:

a. Motor speed

b. Starting torque

c. Starting current

d. Motor efficiency (ignore rotational and core losses)

For the motor in Problem 7.1 and for a constant-load torque, calculate the
maximum increase in supply frequency and the motor speed.

For the motor in Problem 7.1 and for a fan-type load, calculate the follow-
ing, assuming that the supply frequency is reduced by 20% and the v/f ratio
is kept constant:

a. Motor speed

b. Starting torque

c. Starting current

d. Motor efficiency (ignore rotational and core losses)

A three-phase, 480 V, six-pole, Y-connected, 60 Hz, 10 kW, 1150 rpm in-
duction motor is driving a constant-torque load of 60 Nm. The parameters
of the motor are

Calculate the following:
a. motor torque
b. motor current
¢. starting torque
d. starting current

A voltage is injected in the rotor circuit to reduce the motor speed by 40%.
e. Calculate the magnitude of the injected voltage.
f. Repeat (a) to (d) for the motor with injected voltage.
g. Calculate the power delivered to the source of injected voltage.
h. Determine the overall efficiency of the motor (ignore rotational and
core losses).
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A three-phase, six-pole, Y-connected, 60 Hz, 480 V induction motor is driv-
ing a 300 Nm constant-torque load. The motor has rotational losses of 1 kW'

The motor is driven by a slip energy recovery system. The triggering angle of
the dc/ac converter is adjusted to 100°. Calculate the following:

a. Motor speed

b. Current in the dc link

c. Rotor rms current

d. Stator rms current

e. Power returned back to the source

A 480V, four-pole, 60 Hz, Y-connected induction motor has a stator induc-
tive reactance of 4 () and stator resistance of 0.2 ). The rotor inductive re-
actance and resistance referred to the stator are 4 {) and 0.2 (), respectively.
The magnetizing reactance is 150 £} in the linear region and 50  in the sat-
uration region. The motor is driving a constant-torque load of 120 Nm and
is driven by a CSI. The frequency of the CSI is adjustable. Calculate the fre-
quency of the CSI for the needed speed without exceeding the ratings of the
motor, and compute the starting torque.

A three-phase, 480 V, six-pole, 60 Hz induction motor is driving a constant-
torque load of 80 Nm. The parameters of the motor are

R1=05Q RZZOBQ X€q=4Q NZ_
a. Calculate the magnitude of the injected voltage that would reduce the
motor speed to 800 rpm.
b. Calculate the power received by the injected voltage source.

c. Compute the starting current and the starting torque with the injected
voltage.

A three-phase, four-pole, Y-connected, 480 V induction motor is driving a
400 Nm constant-torque load. The motor has the following parameters:

=1 Protational = 1kW

The motor is driven by a slip energy-recovery system. The triggering angle
of the dc/ac converter is adjusted to 120°, Calculate the following:

Motor speed

Current in the dc link

Average voltage at the input of the dc/ac converter

Rotor rms current

Stator rms current

Power returned back to the source

e oo o

A three-phase, 60 Hz, Y-connected, 480 V induction motor rotates at 3500 rpm
at full load. The motor is driven by a slip energy-recovery system. Calculate the
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7.16

triggering angle for a motor speed of 2800 rpm. Assume the turns ratio is
equal to 1.

A three-phase, 60 Hz, six-pole, Y-connected, 480 V induction motor has the
following parameters:
Ry =024, R, =014, Xy =50

The load of the motor is a drilling machine. At 1150 rpm, the load torque is
150 Nm. The motor is driven by a constant v/f technique. When the fre-
quency of the supply voltage is reduced to 50 Hz, calculate the following:

a. Motor speed

b. Maximum torque at 60 Hz and 50 Hz

¢. Motor current at 50 Hz



Braking of Electric Motors

Braking is a generic term used to describe a set of operating conditions for electric
drive systems. It includes rapid stopping of the electric motor, holding the motor
shaft to a specific position, maintaining the speed to a desired value, or preventing
the motor from overspeeding. All these aspects of braking are done electrically
without any need for mechanical brakes. During the braking process, the energy
can change its flow between the electric source and mechanical load. The mechan-
ical load or the rotating mass can become the source of energy driving the machine
as a generator, which pumps the energy back to the electrical supply. The utiliza-
tion of this braking energy enhances overall system efficiency.

The complete operational cycle of an electric drive system is highly dependent
on which braking method is used. The quickness and accuracy of braking tech-
niques often determine the productivity and quality of the manufactured goods. A
robot in an assembly line must be able to stop, hold its position, and reverse its mo-
tion with a high degree of accuracy. These functions can be achieved by electric
braking.

Compared to the mechanical braking methods, electric braking is a highly ef-
ficient and low-maintenance technique. Nevertheless, braking can result in stress-
ful electrical and mechanical transients. Therefore, the braking system must be
designed to ensure effective and safe operation.

There are several forms of braking applicable to virtually all types of motors. Gen-
erally, we can group all braking methods into three types: regenerative, dynamic, and
countercurrent braking. The next two chapters discuss the braking systems in more
detail.

8.1 REGENERATIVE BRAKING

An electric motor is in regenerative braking when the load torque reverses its di-
rection and causes the machine to run at a speed higher than its no-load speed but
without changing the direction of rotation. An example of regenerative braking is
given in Figure 8.1, where an electric motor is driving a trolley bus in the uphill and
downbhill directions. In the uphill direction, the gravity force can be resolved into
two components: one perpendicular to the road surface F and the other parallel to
the road surface F,. The parallel force pulls the motor toward the bottom of the hill.
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FIGURE 8.1
Example of regenerative braking

FIGURE 8.2
Regenerative braking in second quadrant

Regenerative braking

Downhill @ Uphill

Speed
Power flow 4 Power tlow
N
T
® Tm ® !
Load Load
T/ T’”
Torque

If we ignore the rotational losses, the motor must produce a force F,, opposite to F,
to move the bus in the uphill direction. This case is also depicted in Figure 8.2 in
the first quadrant. Note that the motor torque and speed are in the same direction,
and the load torque T is opposite to the motor torque T,,. The power flow is from
the motor to the mechanical load.

Now assume that the same bus is traveling downhill. Since the gravitational force
does not change its direction, the load torque pushes the motor toward the bottom
of the hill. The direction of the motor torque is always opposite to the direction of the
load torque, so the motor produces a torque in the reverse direction. Note that the
rotation of the motor is still in the same direction on both sides of the hill. The down-
hill operation is shown in Figure 8.2 in the second quadrant. This is known as re-
generative braking.
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The energy exchange under regenerative braking is from the mechanical load
to the electrical source. Hence, the load is driving the machine, and the machine
is generating electric power that is returned back to the supply.
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8.2 DYNAMIC BRAKING

When an electric motor spins, a kinetic energy is stored in its rotating mass. If the
motor is disconnected from the power source, it continues to rotate for a period of
time until the stored kinetic energy is totally dissipated in the form of rotational
losses. The faster the dissipation of the kinetic energy, the more rapid is the braking.

With dynamic braking, the kinetic energy of the mo-
tor is transformed into electrical energy and dissipated in

resistive elements. The rate of energy dissipation can be FIGURE 8.3
increased by the design of the braking resistance. A cir- Dynamic braking
cuit for dynamic braking is shown in Figure 8.3. When

the machine is connected to terminal A, it runs as a mo- ——>

tor. While the motor is rotating, it acquires kinetic energy

stored in its rotating mass. The current I, flows into the
machine. If the terminals of the motor are switched to po-
sition B, the energy stored in the rotating mass is dissi-
pated in the braking resistance Rg. This is possible when

the machine maintains its field. The braking current I

flows out of the machine. The smaller the resistor is, the
faster the energy is dissipated, and the faster the motor
brakes.

When the machine is operating in a dynamic braking mode, it acts as a gener-
ator. The speed of the machine does not change its direction of rotation during
braking, but the machine torque reverses its direction (I is opposite to I4). Thus,
the motor is also in the second quadrant as depicted in Figure 8.2.

8.3 COUNTERCURRENT BRAKING

The direction of rotation of an electric motor is dependent on several variables.
Among them are the phase sequence of the stator windings (for ac machines), and
the polarities of the field or armature voltage (for dc machines).

For ac machines, the shaft of the machine rotates in the same direction as the
magnetic field. If the phase sequence of the stator windings is reversed, the airgap
field reverses its rotation, as shown in Figure 8.4. If we reverse the sequence while
the motor is rotating, the rotor shaft decelerates until it stops; then it starts to ac-
celerate in the reverse direction. If the power source is disconnected when the mo-
tor reaches standstill (zero speed), the motor is stopped by the countercurrent
braking method. Countercurrent braking is also used to slow down the motor or
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FIGURE 8.4
Reversing the phase sequence of an ac machine reverses the rotation of
the magnetic field

A A

B C

C B
ABC sequence ACB sequence

FIGURE 8.5
Steady-state operation of countercurrent braking

Speed ABC sequence
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T,
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(0]
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reverse its direction of rotation. Figure 8.5 shows two quadrants for the steady-state
operation of two sequences (ABC and ACB). In each case, the machine is running
as a motor.

Direct current machines can also utilize countercurrent braking. The braking
occurs when the terminal voltage reverses its polarities, which eventually leads to
the reversal of the motor’s rotation. While the machine is decelerating, it operates
temporarily in the second quadrant, where it acts as a generator. The machine set-
tles in the third quadrant.
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CHAPTER 8 PROBLEMS

8.1

82
8.3

8.4

8.5

8.6

An elevator consists of the cabin, motor, counterweight, cables, and pulleys.
The elevator cabin is full and is moving downward. The mass of the cabin plus
people is greater than the mass of the counterweight. Explain the operation of
the motor in terms of energy transfer, and indicate the speed-torque quadrant
for this motion.

Repeat Problem 8.1 for the elevator going upward.

Repeat Problems 8.1 and 8.2 where the mass of the counterweight is more than
the mass of the cabin plus people.

If an electric car is moving downhill with its motor disconnected from the elec-
trical source, the acceleration of the car increases according to Newton’s laws
of motion. Explain this motion in terms of energy.

Repeat Problem 8.4 where the motor is connected to the electrical source while
moving downhill.

A windmill consists of a motor, rotating blades, and structure. Explain the op-
eration of the system when wind speed rotates the shaft of the motor at a speed
higher than its no-load speed. In which quadrant does the machine operate?
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Braking of dc Motors

Braking of direct current machines can be done relatively easily by the three ba-
sic methods discussed in Chapter 8. Since dc machines have several field con-
nections, braking circuits and methods can differ for different field connections.
In this chapter, we shall discuss the braking of the separately excited, shunt, and
series motors. Braking of the compound motor is very similar to that of the mo-
tors presented here.

In any of these braking methods, adequate safeguards should be imple-
mented to limit the thermal and voltage levels to tolerable amounts. Braking
tends to permit high transient cutrents to flow in the machine’s windings that
could be much higher than the starting currents. If excessive, the current during
braking can result in permanent damage to the windings as well as to the power
converter. In addition, mechanical stresses due to rapid stopping or starting of a
motor, and the excessive torque that must be developed by the motor, can cause
mechanical damage to the bearings, coupling, and the rotor itself. A drive system
with repeated braking operations must have adequate mechanical coupling to
withstand the sudden shear force. Large machines with braking operations are
normally mounted on strong concrete slabs to prevent the movement of the sta-
tor frame.
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9.1 REGENERATIVE BRAKING OF dc
SHUNT MOTORS

Under given operating conditions, when the speed of the dc machine exceeds its
no-load speed, the machine is in the regenerative braking mode. An example of this
type of braking is given in Figure 8.1 for an electric bus going in the uphill and
downhill directions. In the downward direction, the speed of the bus may exceed
its no-load speed, and hence generate electric power that can be pumped back to
the source.

As we saw earlier in Figure 5.4, the speed—torque characteristic of a dc motor
(separately or shunt) is linear. The basic equations of the motor are repeated here.

R,
Vo= B+ R L = Ko + o T, (9.1)
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_ V. _ R
w = d) (Kd))z Tl (92)
I _Vi-E _ L (9.3)

¢ R, Ko
Let us analyze these three equations under the regenerative braking condition for
the bus in Figure 8.1. The electric bus travels uphill, then downhill. In the uphill
direction, the dc machine acts as a motor represented by Equations (9.1) to (9.3).
The load torque in this case is opposite to the direction of the bus motion, and the
drive system is in the first quadrant as shown in Figure 8.2. The equivalent circuit
of the system is shown in Figure 9.1. Under this condition, the back emf voltage E,
is less than the terminal voltage V, due to the voltage drop across the armature re-
sistance K.

Figure 9.2 shows the speed—torque characteristics of the dc machine. The fig-
ure is obtained by using Equation (9.2). The load torque in this figure is assumed
to be bidirectional, which is the case for the electric bus we are discussing. In the
first quadrant, the machine operates as a motor as described by the circuit in Fig-
ure 9.1. Let us assume that operating point 1 represents this case. When the bus
reaches the peak of the hill, the load torque seen by the motor is zero, assuming that
the frictional torque is ignored. This is because the gravitational torque at the top
of the hill is perpendicular to the road surface and is not pulling the motor in either
direction of motion. The subscript 2 is used here to represent the operation of the
motor at the top of the hill, where the load torque seen by the motor is zero, and
the motor speed is

V
FIGURE 9.1 FIGURE 9.2
Motor operation Speed-torque characteristics un-
der regenerative braking
Speed A
. |
RS | I v, I R
| i
Ty Iy TorqueV

(downhill) (uphill)
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Because the load torque at the top of the hill is zero, the armature current must also
be zero.

_ V~E, i

L= g Tk O 9.5)

Since the current is zero, the voltage drop across the armature resistance is also
zero. Hence,

V,=E, (9.6)

Equations (9.4) to (9.6) are represented by operating point 2 in Figure 9.2. This op-
erating point is the no-load operating point of a dc machine.

Now assume that the electric bus is traveling in the downhill direction. Rela-
tive to the load torque at point 1, the load torque in the downhill motion is reversed
and in the same direction as the speed. Note that the motor speed will not change
its direction, and the motor moves to operating point 3 in Figure 9.2.

In the downhill operation, the load torque changes its direction while the field
current remains in its original direction. The magnitude of the field current is constant
because the terminal voltage is constant. Hence, the armature current at point 3 must
reverse its direction, because

LT
ds_Kd)

This case is depicted in Figure 9.3. If the armature current is larger than the field
current, the current I = I, — I, flows into the source. Note that E,, does not
change its direction since w and K& are in the same direction as at point 1. The mo-
tor is now generating electric power and delivering it to the source.

The speed and current of the machine at point 3 can be represented by the fol-
lowing equations:

FIGURE 9.3
Motor operation at point 3 of Figure 9.2
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9.7)

(9.8)

Note that T}, is negative. If you wish, you can use the magnitude of T}, and intro-

duce a negative sign in Equations (9.7) and (9.8) as follows:

V, R,
=L+
%= %o T Ke?
_ Vt-E@ _ _Tl3

L, = R, Ko

Since I,, is negative, as seen in Equation (9.10), E,,
must be larger than V,. Thus, the motor is operating as
a generator,

Figure 9.4 shows the motor speed versus E,. The

(9.9)

(9.10)

FIGURE 9.4
Back emf during regenerative
braking

figure shows all three operating points discussed in this Speed
section. As you can see, the machine acts as a motor ) P
when E, < V,, and the machine is a generator when ©s
E,>V, W=
A summary of the changes in the machine variables
is given in Table 9.1. The arrows in the table represent di- [\ RS E=V
rections. Arrows of operating point number 1 are con- e
sidered to be the reference arrows. Examine the table »
. . . Motor Generator E,
against the cases just described. . .
operatlon Operatlon
TABLE 9.1
Summary of regenerative braking
Operating Load Terminal Armature
Point Torque Voltage Current Speed Field E, Comments
- - - - -
1 Ty, w; < wy E, <V, Motor
- - -
2 0 0 W, = 0y E,=V, No load
«— - « - - -
3 le ;> g Ea3 >V, Generator
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A 440V, dc shunt motor has a rated armature current of 76 A at a speed of 1000 rpm.
The armature resistance of the motor is 0.377 €}, the field resistance is 110 £}, and
the rotational losses are 1 kW. The load of the motor is bidirectional. Calculate the
following:

a. No-load speed of the motor
b. Motor speed, where the armature current is 60 A during regenerative braking
c. Developed torque during regenerative braking
d. E, during regenerative braking
e. Power delivered by the source under normal motor operation
f.  Terminal current under regenerative braking
g. Generated power during regenerative braking
h. Total losses under regenerative braking
i.  Power delivered to the source under regenerative braking
SOLUTION

The speed-torque characteristic of this example is shown in Figure 9.5. Point 1 in
the figure represents the motor operation at rated current and 1000 rpm. During
motor operation, ‘

E,=V,~R,I, =440 — 0377 X 76 = 41135V

The field constant K, which remains unchanged during regenerative braking, can
be computed as

Ko =

E E, = 3.93 V sec
®

n
2 —_—
™60

FIGURE 9.5
Speed-torque characteristic of the motor in Example 9.1

Speed 4
3

1000
oy

T (braking) T (motor) Torque
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a. The no-load speed of the motor is equal to the terminal voltage divided by
the field constant.

V, 440

= -KE =303 = 111.96 rad/sec

Wy

ny = 1069.1 rpm

b. During regenerative braking (point 3), the speed of the motor can be com-

puted by Equation (9.9).
V, R, T Vl_RaIa3 440 + 0.377 X 60 1772 rad/
UKo (Ko ThT Ko 3.93 rad/sec

ny = 1124.1 rpm
c. The developed torque at point 3 is
T, = Kb 1, = 3.93 X 60 = 235.8 Nm
d. The back emf at point 3 is
Eﬂ; = Kb w; =393 X 117.72 = 462.64 V

e. To calculate the terminal power, you must calculate the terminal current.
When the motor operates at point 1, the terminal current is

44
11=1a1+1f=76+£=80A

The total power delivered by the source P, is
P.=1,V, =80 X 440 = 352 kW

f. While the motor is in the regenerative region at point 3, the terminal current
of the motor is

440
I =1,~Iy=60-17- = 56 A

g. The generated power P, is
P,=E, I, =462.64 X 60 = 27.76 kW
3 3

h. The total losses P, are the sum of the losses in the armature resistance, the
losses in the field resistance, and the rotational losses.

2

1% 4407
P =R, 17 + F; + rotational losses = 0.377 X 60° + 1o 1000 =4.12 kW
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i. The power delivered to the source P, is the generated power minus the losses.

P;=27.76 — 4.12 = 23.64 kW

9.2 REGENERATIVE BRAKING OF dc
SERIES MOTORS

Regenerative braking occurs when the motor speed exceeds the no-load speed (at
zero torque). For a series motor, at zero torque, the no-load speed is theoretically
infinity. Hence, one might conclude that the series motor could not operate under
regenerative braking. Actually, the circuit of the series motor can be altered during
regenerative braking to allow the machine to generate electric power that can be re-
turned to the source. Consider the circuits in Figure 9.6. The circuit on the right
side of the figure shows the normal motor operation of the series machine. The cir-
cuit on the left shows a configuration for regenerative braking. In this case, the field
circuit is excited by a separate source. The voltage of the separate source must be
low enough to prevent the field current from becoming excessive. This is because
the field resistance of the series motor is small: The field coil is composed of a small
number of turns with a large cross section.

Switching from the circuit on the right side to that on the left side is best done
using solid-state switches. The switching should not allow the current in the field
circuit to be interrupted. Uninterruptible field current reduces current transients
and prevents the machine from overspeeding. A simple circuit for this operation
is shown in Figure 9.7. In the figure, S, to S; are solid-state switches. During mo-
tor operation, S, is closed, and S, and S; are open as shown in Figure 9.7(a).
When the machine operates under regenerative braking, S; is opened, and S, and
S; are closed. This occurs in steps. In the first step, S, is opened and S; is closed
as shown in Figure 9.7(b). In this case, the armature circuit is separated from the

FIGURE 9.6
Regenerative braking of dc series motor

=

)
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FIGURE 9.7
Regenerative braking circuit for series motor

(a) Normal
motor operation

o
!

(b) Freewheeling current
during transition

field winding. To prevent the collapse of the field current during the interval be-
tween opening S; and closing S,, the freewheeling diode is used. The freewheel-
ing current I, keeps the field current continuous. In the second step, S, is closed
and the field current is provided by the separate source V, as shown in Figure
9.7(c). The machine now operates under regenerative braking similar to that of
the shunt machine.
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9.3 DYNAMIC BRAKING OF dc SHUNT MOTORS

Dynamic braking is used to stop the motor by dissipating its stored kinetic energy
into a resistive load. Once the kinetic energy is totally dissipated, the motor stops
rotating if no external torque is exerted. The normal operation of the dc shunt mo-
tor is depicted in Figure 9.1 and described by Equations (9.1) to (9.3).

The dynamic braking is explained here using Figure 9.8. Assume that the ma-
chine is running at a speed @ when dynamic braking is applied. The terminals of
the armature circuit are disconnected from the power source and connected across
a braking resistance R,. The field circuit is also disconnected from the armature cir-
cuit but is still excited by the source. Under this condition, the back emf E, is the
voltage source of the armature circuit. The braking current in this case is

E Kbw

Ibz— a = —
R, + R, R, + R,

(9.11)

The negative sign in Equation (9.11) indicates that the braking current is in the re-
verse direction of the armature current of Figure 9.1. The power dissipated during
the dynamic braking is composed of two major components. The first is mechani-
cal losses (or rotational losses), which are due to friction and windage losses. The
second component is electrical losses Py in the armature and braking resistances.
The electrical loss is mainly responsible for dissipating the motor’s kinetic energy.
The larger are the electric losses, the shorter is the braking time. These losses can
be calculated as

E2  (Kéw)

Po= R +R, R +R,

(9.12)

FIGURE 9.8
Dynamic braking

\
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Equation (9.12) indicates that more electric power is dissipated if the braking re-

sistance R, is small and the field ¢ is strong.

Equation (9.11) is represented by the graph in Figure 9.9. The first quadrant of
the graph is for normal motor operation, where the motor is operating at point A.

Since the speed direction is unchanged and the current di-
rection is reversed, the motor during dynamic braking is
in the second quadrant,

During dynamic braking, the speed-current charac-
teristics are all straight lines with negative slopes that in-
tercept at the point of origin. The figure shows the
characteristics for three different values of braking resis-
tance, where (R, <R,, < Ry,). The smaller the braking
resistance is, the larger is the braking current, and the
higher is the rate by which the kinetic energy is dissipat-
ing. This situation results in faster braking.

The circuit for dynamic braking is shown in Figure
9.10. When the switch is in position A, the motor oper-
ates at point A in Figure 9.9. The armature current [,
tlows from the source to the motor. By connecting the
switch in Figure 9.9 to terminal B, the voltage source is

FIGURE 9.9
Speed-current characteristics
under dynamic braking

sz Speedﬂ Rbl < sz < Rb}
A

>

Current

disconnected and the resistance R, is inserted across the motor terminals. The op-
erating point is shown in Figure 9.9 and labeled B for R, = Ry, If the switching
from A to B is done quickly enough, one can assume that the motor speed during
the switching interval is unchanged. After switching to B, the operating point of the
motor moves horizontally to point B. At this point the armature current is [ »y» Which
flows in the opposite direction to I,. This current is flowing from the machine to the

FIGURE 9.10
Circuit for dynamic braking
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braking resistance. Depending on the loading condition of the motor, the operating
point may not stay at point B. For example, if the load torque is frictional, the speed
slows down until the motor stops. In this case, the operating point moves from B to
the origin along the speed—current characteristics.

Another interesting case is shown in Figure 9.11, where the load torque is as-
sumed constant and gravitational. The load force is equal to the load mass multiplied
by the acceleration of gravity. Such a torque is constant regardless of the motor speed.
Let us assume that the original operating point is A under normal motor operation.

FIGURE .11
Dynamic braking of gravitational
torque load

Speed{u

Just after dynamic braking is applied, the motor operating
point moves to B. The final destination of the operating
point is when the motor torque meets the load torque,
which occurs only in the fourth quadrant at point C.
Hence, the operating point of the motor moves from B to
the point of origin, then continues to point C. The motor
stops momentarily when the operating point reaches the
origin. If the load is disconnected or a mechanical brake is
applied at the origin, the motor stops. Otherwise, the mo-
tor speed reverses its direction until the machine reaches
point C. The operation at point C is a typical generator op-
eration in which the motor is driven mechanically by a uni-
directional torque. The motor under this condition
delivers electric power to the electrical load resistance Ky,

Table 9.2 summarizes the general operation of the
dynamic braking in the case just discussed for a gravita-
tional load.

TABLE 9.2
Summary of dynamic braking

Operating Motor Terminal Armature
Point Torque Voltage Current Speed Field E, Comments
- - - - - -
A T, W, E,, <V, Motor
« « - - -
B T, 0 Wp = Wy E,=E, Generator
» o
Origin 0 0 0 0 0 No load
| - - | - - «
C T, 0 wc E,. Generator
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For the dc motor given in Example 9.1, assume that the load torque is gravitational.
The current of the motor is 40 A at the steady-state condition. A dynamic braking
technique employing a braking resistance of 2 Q) is used. Calculate the speed at the
new steady-state operating point.

SOLUTION

With dynamic braking, the terminal voltage of the motor is zero. The braking cur-
rent at point C in Figure 9.11 is equal to the steady-state current at point A because
the load is gravitational. Hence,

I = Kéw
b~ R, +R,
393 w
40 = (0.377 + 2)
n = —231 rpm
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9.4 DYNAMIC BRAKING OF dc SERIES MOTORS

Dynamic braking requires a strong magnetic field to convert the mechanical energy
into electrical energy, and to allow the kinetic energy to be dissipated at a higher
rate. In series machines, the field is proportional to the armature current. At the be-
ginning of dynamic braking, the field is strong, but gradually weakens because of
the reduction in armature current, which may prolong the braking time. To brake
the motor faster, the series field can be separated from the armature circuit and ex-
cited by a different voltage source, as shown in the schematic of Figure 9.12. Keep
in mind that the voltage applied to the separated field circuit must be reduced to

FIGURE 9.12
Dynamic braking of series motor




248 CHAPTER 9

prevent the field current from exceeding its limits. Also, the braking resistance
should be selected to limit the braking current in the armature circuit. Under this
form of braking, and by using the circuit described in

FIGURE 9.13

Dynamic braking characteristics

of series motor

Speed)

Figure 9.12, the motor behaves as a separately excited
motor.

The characteristics of the motor are shown in Fig-
ure 9.13. The original operating point of the motor is at
1. When dynamic braking is applied and the field circuit
is separately excited, the motor moves to point 2. Note
that the motor characteristic is linear under dynamic
braking because the field is constant. The motor speed
starts to slow down until it is fully stopped at point 3. If
the load torque is unidirectional and the motor is not
disconnected at 3, the motor operating point moves to

point 4, where the load torque and the machine torque
are equal. At point 4, the machine is a generator with in-
put mechanical power from the load, and the output
electric power is dissipated in the braking resistance.
The motor equation at points 2 and 4 are given here:

_Ra + R,
Ko,

_Ra + R,

Ko,

wy; = W) —

Iﬂ
2

Wy =

I,

9.5 COUNTERCURRENT BRAKING OF dc
SHUNT MOTORS

Countercurrent braking of the dc shunt motor is done by two methods known as
plugging and terminal voltage reversal (TVR). The plugging method is suitable for
the gravitational-type load where the motor stops, reverses its direction of rotation,
or operates under holding conditions. The TVR is also a method that can stop the
motor rather rapidly or reverse its rotation. It cannot hold the motor at zero speed
if the load is gravitational.

9.5.1 PLUGGING

Consider the example of the simple elevators shown in Figure 9.14. The elevator on
the left side of the figure is moving upward, and the one on the right side is moving
downward. In both cases, the load force is unidirectional, and so is the motor torque.
The speed of the motor reverses its direction depending on the motion of the eleva-
tor cabin.
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FIGURE 9.14
Bidirectional speed

F, F,

Motion

Motion

FIGURE 9.15
Plugging of dc, separately excited motor

Speedd

Figure 9.15 shows the characteristics of the motor operating under plugging.
Let operating point 1 represent the upward motion of the elevator. The load
torque is T}, and the voltage applied to the armature of the motor is V;. One way
to achieve the downward operation is to reduce the armature voltage to V,. The
characteristics of the motor are shown in Figure 9.15 as parallel lines. If the
change in the armature voltage is done quickly, the operating point of the motor
moves rapidly from 1 to 2 without any change in the speed due to system inertia.
The motor does not settle at point 2 since the load torque and the motor charac-
teristic do not meet at point 2. Hence, the motor operating point moves from 2 to
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5. While traveling from 2 to 5, the motor passes through points 3 and 4. Note that
while the operating point is moving from 2 to 3, the motor is in the regenerative
braking region. At point 3, the motor speed is equal to the no-load speed for the
given value of V.

Vs

= Ed’) (9.13)

W3

The operating point does not settle at point 3, but continues toward 4. At point 4,
the motor stops and its speed is zero. If the braking technique is designed to stop
the motor, the motor should be disconnected electrically at this point, and me-
chanical brakes should be applied to keep the motor at standstill.

The motor torque at point 4 is labeled T in the figure. Let us assume that the mo-
tor does not have external mechanical brakes to hold its shaft at point 4. In this case,
the motor moves to point 5, where the load torque and motor characteristics intersect.

In this example, the motor operates in three quadrants: first, second, and fourth.
In the first quadrant, the machine operates as a motor. In the second and fourth quad-
rants, the machine is a generator. The operation in the second quadrant is explained
earlier, in Section 9.1. In the fourth quadrant, the operation of the motor can be de-
scribed by a set of equations for points 4 and 5. At point 4, the speed equation is

v, R

w4_?¢‘ (Kdz)z T,=0 9.14)
TABLE 9.3
Plugging
Operating Motor Terminal Armature
Point Torgue Voltage Current Speed Field E, Comments
- - - - - -
1 T, Vi 0F Motor
o B : 7—) o <—77 N - B —>7 o - -
2 V,<V,; w; = Wy Generator
LS s s
3 0 V,<V, 0 w3 No load
— S L5 LS s
4 T,. V, <V, 0 0 Holding
L S S e PO

5 T, V,<V, s Generator
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Hence,

T _Ke 'V,

s R (9.15)

a

Since the torque at point 5 is larger than the torque at 4, the speed of the motor is
negative at 5.
VZ Ra
Ws = 7~ 2
Ko (Kd)

T;<0 (9.16)

Table 9.3 summarizes the general operation of plugging for the example dis-
cussed in this section.

A dc motor has an armature resistance of 0.5 €2, and K¢ of 3 V sec. The motor is
driven by an SCR, full-wave, ac/dc converter. The input to the converter is an ac
source of 277 V. The motor is used as a prime mover of a forklift. In the upward di-
rection, the mechanical load is 100 Nm, and the triggering angle of the converter is
20°. In the downward direction, the load torque is 200 Nm. Calculate the trigger-
ing angle required to keep the downward speed equal in magnitude to the upward
speed. Assume that the motor current is always continuous.

SOLUTION

The operation of the system is depicted in Figure 9.16. Operating point 1 is for the
upward motion and 2 is for the downward motion. The nonlinear shape of the char-
acteristics is due to the presence of the converter, as explained in Section 6.1.4.3.
Since the downward torque is higher than the upward torque, the voltage in the
downward direction must be less than that in the upward direction to maintain the
same magnitude of speed.

The equation for operating point 1 is

Tu
Vi = B, + R,1, = Kby + R, Xe

where V., is given in Equation (6.22).

— 2 Vmax

\%

e, cos(20) = 23435V

cos oy =

2V2 % 277
v

The motor speed at point 1 is

23435 0.5 X 100
W, = -
1 3 (3)2

= 72.56 rad/sec

ny = 693 rpm
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I

FIGURE 9.16
Characteristics of motor in Example 9.3

Speed 4

oy

Wy = -0

For operating point 2,

2V Tdown
Ve, = 'rrma cosa, = Ep + R, I, =—Kbdw + R, I(é(:;;

2V2 x 27 05 X 200
—1T——7cos(a2) = -3 X 7256+ %—ﬂ

ay = 137.7°

» EXAMPLE 9.4

For the motor in Example 9.3, the operator during the upward motion changes the
triggering angle to keep the motor at holding position. Calculate the triggering angle.

SOLUTION

Point 1 in Figure 9.17 represents the normal pperation of the motor. The holding
operation is represented by point 3. The holding position is reached when the load
torque is equal to the motor torque and the speed of the motor is zero. In this case,

E‘,B = 0, and
Ra Tup
Veq; = Ra Ia3 = Kd)

2V R, T,
\'% cos a3 = P

&qs Kd)
2V2 x 277 05 X 100
— cosaz =T

a3 = 86.2°
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FIGURE 9.17
Holding characteristics for the motor in Example 9.4

Speed 4

9.5.2 BRAKING BY TERMINAL VOLTAGE REVERSAL (TVR)

The TVR braking scheme is a method based on reversing the motor terminal voltage.
In doing so, the motor speed stops abruptly, then reverses its rotation—but only if the
field current of a dc motor is not reversed. Figure 9.18 shows a schematic of a TVR
braking circuit. Examine the circuit of Figure 9.18(a). Note the direction of the ar-
mature current and the polarities of the armature voltage. During the steady-state op-
eration, the polarities of E, are the same as the polarities of the terminal voltage.

Now examine Figure 9.18(b). In this circuit, the polarities of the terminal volt-
age are reversed. Also, the polarities of E, are reversed, and the current I, flows in
the opposite direction. Keep in mind that the field current is kept in its original di-
rection. In the steady state, since E, reverses its polarities while ¢ is unchanged, the
speed of the motor reverses its direction.

The characteristics of the motor with different polarities are shown in Fig-
ure 9.19. If the motor in Figure 9.18(a) operates in the first quadrant, the motor
in Figure 9.18(b) operates in the third quadrant.

Now assume that the motor is originally running at steady state and is connected as

253

shown in Figure 9.18(a). Also, assume that the load
torque is bidirectional. The motor in this case oper- ~ FIGURE 9.18

ates at point 1, shown in Figure 9.20. When the mo- ~ Armature circuit for TVR braking

tor’s terminal voltage is reversed, the motor
eventually operates at point 4 in the steady state. If the
reversal of the voltage is sudden, the operating point
moves first from point 1 to point 2. The speed of the
motor does not change during this time due to the in-
ertia of the system. The motor does not settle at point
2 because the load torque and the motor torque are
not equal. The motor continues to move until it
reaches point 4, which is the new steady-state point.
While traveling, the motor passes through
point 3, where the speed of the motor is zero. If
the objective of the TVR is to stop the motor, the (a)




254

CHAPTER 9

FIGURE 9.19
Motor characteristics for the circuits in Figure 9.18

Speed ﬁ\
a
\

Torque i

—

FIGURE 9.20
TVR braking

current

I
1
|
! Torque or
':
|
1

motor should be disconnected electrically at this point and mechanical brakes
should be applied. While traveling from 2 to 3, the motor operates in the plugging

mode. To realize this, turn Figure 9.20 upside down.
The equations describing operating point 1 are

T
Vl = Kd) (1)1 + R“T{i
VI—Eal
R

a

I =
When the motor voltage is reversed, the equations at point 2 are

T
Vz'—— —V1:K¢(1)1+RaE§;

(9.17)

(9.18)

(9.19)
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P (9.20)
2 Ra .
Keep in mind that T, is a negative value. Note that while E, Eaz, I, is much

larger than I, (almost double the starting current) and is ﬂowmg in the opposite
direction to I;. This high magnitude of I, can have a damaging effect and must be
controlled.

At point 3, the speed is zero and so is E,,. The equations of the system at
point 3 are

— T3
V) =R, Ko (9.21)
—_ V
I =— :
35 R (9.22)

a

The current I is less than the current in Equation (9.20). However, it is still very
large and equal to the starting current of the motor without starters. Remember
that the starting current without starter could be damaging to the motor.

The motor operating point at 4 is described by

-V, = Kbw, +R, de (9.23)
- Vl—Ea
I =—1 .
4 R, (9.24)
Ed4 = Kd) (1)4

where w4 and E,, are negative. Table 9.4 summarizes the
general operation of TVR. It is assumed in this table that FIGURE 9.21
the load torque is bidirectional. TVR braking current for selected
The current I, is equivalent in magnitude to the nor- operating points
mal operating current. Figure 9.21 is a conceptual graph
that shows the armature current of the motor at all four
operating points. All currents are per unit with I; the
base value. As explained earlier, the current at operating
point 2 is excessively large and can cause permanent
damage to the motor; it must be kept within safe limits.
One way to do this is to simultaneously insert a resistance
(braking resistance) in the armature circuit when the ar-
mature voltage is reversed. The schematic¢ of such a cir-
cuit is shown in Figure 9.22,
Assume that the contacts of switch S are in the A po- 1 2 3 4
sition while the motor operates at point 1. When the Operating points

Armature current
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TABLE 9.4
Terminal voltage reversal

Operating Motor Terminal Armature
Point Torque Voltage Current Speed Field E, Comments

- - - - - -

1 ®; Motor
— — “— - - -

2 Wy = W Generator
- - = -

3 0 0 Holding
« = — — - —

4 Wy Motor
FIGURE 9.22 switch moves to position B, the terminal voltage of the motor
Reduction of armature current is reversed and a braking resistance R, is inserted. Figure 9.23
during TVR braking shows three characteristics that describe the operation of the

circuit in Figure 9.22. The first is for normal operation when
the switch contacts are in position A. The second, which has
operating point 3, is for the case when a braking resistance is
inserted and the switch contacts are in position B. The third
is for the case when the switch contacts are in position B but
no braking resistance is inserted. Note that point 2 in this fig-
ure is the same as point 2 in Figure 9.20.

When the braking resistance is applied, the slope of the
motor characteristic is steeper, and the current at point 3 is
smaller than at point 2. The equations of the motor at point

3 are
-V, =Kbw + (R, + R L (9.25)
1 W a }7) K(b .
= 17 P (9.26)
H R, + R, '

A dc motor has an armature resistance of 1 Q, and K = 3 V sec. When the mo-
tor’s terminal voltage is adjusted to 320 V, the motor speed is 1000 rpm. A TVR
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FIGURE 9.23
Effect of braking resistance during TVR braking
\
Speed‘
R;, >0
Normal
Qperation
Torque
or current
T
T

braking is applied. Calculate the value of the braking resistance that would reduce
the maximum braking current to twice the rated current.

SOLUTION
First, let us find normal operating current.
Vl _Ed
=5 " =6A

The maximum braking current occurs at point 3 in Figure 9.23. The braking cur-
rent is twice the rated current,

L=1=2=12A

At point 3,
2w
b~ R,+R, R, +R, 1+R, a
Rb=518Q

Another common method for current reduction during TVR braking is to re-
duce the terminal voltage. Figure 9.24 shows the basic concept. Assume that the not-
mal operating point is 1. When the terminal voltage of the motor is reversed and the
voltage magnitude is unchanged, the operating point moves rapidly to point 2, which
results in an excessive braking current. However, when the voltage is reversed and re-
duced, the operating point is 3. The braking current at 3 is smaller than at point 2. If
the voltage remains unchanged, the new steady-state operating point is 4.
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FIGURE 9.24
Effect of voltage reduction during TVR braking

Speed {
Vi<V Normal
/ operation
<2 3 / 1 v,
\\ ¥
‘\/ \\4.\ Torque or
2 T current
~ 1/
_T[

FIGURE 9.25
TVR braking circuit with dc source

Qs

Q;

Figure 9.25 shows one schematic that can be used to achieve this type of brak-
ing. When transistors Q; and Q, are triggered, the terminal voltage of the motor
has the positive polarity at the emitter side of Q;. If Qs and Q, are triggered, and
Q, and Q, are turned off, the voltage across the motor has its polarities reversed.
The diodes in the figure are for freewheeling. To reduce the braking current due to
the TVR, transistors Q, and Q, must be pulse-width modulated to reduce the volt-
age across the motor terminals.

For an ac source, a TVR braking circuit can be constructed from solid-state
switches such as SCRs. Such a circuit is shown in Figure 9.26. The SCRs labeled 1 and
2 are used in normal operation. SCRs 1 are triggered when terminal 4 is positive with
respect to B. SCRs 2 are triggered when terminal B is positive with respect to A. This
makes terminal C of the motor positive regardless of the polarity of the source volt-
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FIGURE 9.26
TVR braking circuit with ac source

i Pl
WA
3 ;L\zrz 1 ;1\79

age. There is no need here for freewheeling diodes because the SCRs are naturally

commutated, and the circuit is a full-wave bridge.

To do the TVR braking, SCRs 3 are turned on when
terminal A is positive with respect to B. Also, SCRs 4 are
triggered when B is positive with respect to A. This
switching sequence reverses the polarities of the motor (D
is positive with respect to C). Keep in mind that the trig-
gering angle of SCRs 3 and 4 must be adjusted to reduce
the voltage across the motor during the TVR braking,

The motor characteristics for the TVR braking cir-
cuit of Figure 9.26 are shown in Figure 9.27. Here we are
assuming that the load torque is bidirectional. The origi-
nal motor operating point is point 1. After SCRs 1 and 2
are commutated and SCRs 3 and 4 are triggered, the mo-
tor moves to point 2. The motor characteristic is mainly
in the third quadrant, but because of the reduction in the
terminal voltage, the characteristics tend to extend to the
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FIGURE 9.27

TVR braking characteristics using

the circuit in Figure 9.26

Speed 1
2 I
e ’ -
T 1 g
\ t Torque
-T T

second quadrant. The motor settles at an operating point where the load and mo-

tor characteristics meet.

EXAMPLE 9.6

Consider the circuit in Figure 9.26. Assume that the dc, separately excited motor has

an armature resistance of 1 {) and a field constant K =

3 V sec. The ac voltage

source of the circuit is 480 V. Assume that the load torque is bidirectional and equal
to 120 Nm in either direction of rotation. The triggering angle of SCRs 1 and 2 is

30° and the current is continuous. A TVR braking is used.

Calculate the triggering
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angle of SCRs 3 and 4 to reduce the maximum braking current to three times the
current before the TVR braking is applied. Also assume that the current is continu-
ous during normal and braking operations.

SOLUTION
Let point 1 in Figure 9.27 represent the operating point at which SCRs 1 and 2 are
triggered. At this point, the motor speed can be obtained from Equation (6.23).

2V,
*% cosa; = Kb oy + Ry Iper (9.27)
T, 120
- = —— = A
Iavel Kd) 3 40

Substituting I 1 in Equation (9.27) yields

2V2 % 480
— cos(30) =3 w; + 40

w; = 111.418 rad/sec
n; = 1,063.96 rpm

At point 2, when SCRs 3 and 4 are triggered, the motor speed is unchanged mo-
mentarily. The terminal voltage and the motor current are reversed. The speed
equation in this case can be written as follows:

Vb = Kd)(,v.) + Rth

where V,, is the braking voltage and I, is the braking current at point 2. The braking
voltage and current are negative in magnitude as compared to the voltage and current
at point 1. Equation (9.27) can then be modified to reflect these changes as follows:

2V,
Trmax cos o, = Kbwy + R, 1, (9.28)

Forl, = =3 Lwe
2V2 X 480
_2VE XA oslay) =3 X 111418 — 120
kN

a, = 119.72°

Assume that it is necessary to keep the motor at holding after TVR braking is ap-
plied. Calculate the triggering angle of SCRs 3 and 4.
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FIGURE 9.28
Holding by TVR braking

SOLUTION

To keep the motor at holding, the motor torque must be equal to the load torque
at the point where the speed is zero. This is shown in Figure 9.28 as point 3. In this
case, Equation (9.27) can be modified so that the speed is equal to zero, the load
current is equal to the normal current in magnitude but opposite in sign, and the
terminal voltage is negative.

2V

P2 cos(az) = Kb wy + R, L3 (9.29)
™
2V2 480
—————cos(az) = —40
1T
o, = 84.69°

When TVR braking is used with a gravitational load or any other unidirectional load
torque, the new steady-state operating point is in the fourth quadrant. Examine Fig-
ure 9.29. Assume that the original operating point before TVR is point 1. If the ter-
minal voltage of the motor is reversed, the operating point moves to point 2 without
substantial change in speed. Since the motor torque and the load torque at point 2
are not equal, the operating point continues moving to 3. At point 3, the motor is
momentarily at zero speed. The motor continues moving to point 4 due to the mis-
match between the Joad and motor torques. At point 4, the motor torque is equal to
zero, and the speed of the motor is equivalent to the no-load speed expressed by

V2
R

Wy =
a

where V), is the terminal voltage after TVR is applied, which is a negative value. The
motor does not settle at point 4, but continues moving to the new steady-state point
5, where the load and motor torques are equal. At point 5, the motor speed exceeds
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FIGURE 9.29
TVR braking of unidirectional load

Speed 1

Torq;e

the no-load speed; this corresponds to regenerative braking when the motor oper-
ates at a reversed voltage. The motor equations at point 5 are

T.
V,= -V, =Kbas + Ra~K—;)

(9.30)
_Vl—Kd) W5

I = R

a

Table 9.5 shows the machine variables for the five operating points. Note that dur-
ing this TVR braking, the motor passes through all four quadrants.

EXAMPLE 9.8

A dc, separately excited motor has an armature resistance of 0.5 £ and a field con-
stant K¢ = 3 V sec. The dc voltage source of the circuit is 200 V. The motor is driv-
ing a forklift whose torque is 180 Nm. A TVR braking is applied by switching the
terminal voltage of the motor to a 30 V reversed-polarity dc supply. Calculate the
new steady-state speed and the armature current at the new speed.

SOLUTION
Since the load torque is constant, the new operating point is in the fourth quadrant
at point 5, as shown in Figure 9.29.

VZ Ra T
ws = = —
> Kd (K
=30 05
= — — e— —_ _2
s 3 9 180 0 rad/sec

ns = —190.98 rpm
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The current at point 5 is

V, — Kbows  —30 — 3(—20)
Is = = =60 A
> R, 0.5
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9.6 COUNTERCURRENT BRAKING OF dc
SERIES MOTORS

The two basic methods for countercurrent braking can also be applied to the series
motor. The reversal of E, can be achieved by simply adding resistance to the arma-
ture circuit, as shown in Figure 9.30. The left side of the figure shows the normal
operation, and the right side shows the countercurrent braking by reversing E,. The
equation of the series motor under this type of braking is

Ea = Vt - (Ra + Rb)Ib (931)

where [, is the steady-state armature current after braking, which can be computed
by Equation (5.20).

T
= ke

TABLE 9.5
TVR braking for the case in Figure 9.29

Operating Morzor Terminal Armature
Point Torque Voltage Current Speed Field E, Comments
- - - - - -
1 Vi , Motor
R « « "<— —~>" - - -
2 V,=-V, W, = W Generator
- « - «— «— - - -
3 v, 0 0 Holding
<; « - « - N
4 0 V, 0 w, No load
- « - o — - «
5 V, s > wy Generator
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If the terminal voltage and load torque are constant, E, in Equation (9.31) can be-
come negative when the braking resistance R,, is large enough. The characteristics
of this type of braking are given in Figure 9.31. Let point 1 be the original operat-
ing point and point 2 be the new steady-state operating point under countercurrent
braking. At point 2, the motor operation is described by Equation (9.31).

TVR braking can also be implemented for the series motor. The idea of the
TVR braking is to reverse the source voltage while maintaining the field in its orig-
inal direction. For a series motor, however, the reversal of the supply voltage leads
to the reversal of the armature current, which in turn reverses the field. To prevent
the field from being reversed, the circuit in Figure 9.32 can be implemented. In nor-
mal operation, the switch S is at position 4, and transistors Q; and Q, are closed.
Diode D, is not conducting and diode D, is conducting. D, shorts the braking re-

FIGURE 9.30
Countercurrent braking by reversing E, for series motor

Ry
aA%%

=

FIGURE .31
Characteristics of countercurrent braking of series motor by reversing E,

Speed i
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sistance during normal motor operation. To apply TVR braking, the switch S
changes its position to B. At the same time, Q, and Q, are turned off, and transis-
tors Qs and Q, are turned on, which allows the field current to remain in its origi-
nal direction, and the armature current to reverse its flow. Diode D; does not allow
the current in the field circuit to be interrupted while the transistors are switching.
Diode D, is now in its reverse conduction and allows the braking current to flow
in the braking resistance.

The characteristics of the circuit in Figure 9.32 are shown in Figure 9.33. As-
sume that the original operating point of the motor is point 1. When the TVR is im-
plemented as we have described, the operating point moves to 2. Note that the
original characteristic is in the first quadrant only, while the TVR characteristic is
in the third and second. This is because of the presence of the braking resistance
during the TVR braking.

After the motor reaches point 2, it moves to point 3, which is at zero speed. The
motor should be disconnected electrically at this point. If the load torque is unidi-
rectional, the motor cannot produce a torque that meets the load demand. There is
no operating point at which the motor torque matches the load torque.

FIGURE 9.32
TVR braking circuit for series motor

N
‘m
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FIGURE 9.33
Characteristics of TVR braking for series motor

Speed f

CHAPTER 9 PROBLEMS

9.1

9.2

93

A 23 hp, dc shunt motor is running at 1000 rpm when the armature voltage
is 600 V. The armature resistance of the motor is 0.8 , and the field resist-
ance is 900 Q. The efficiency of the motor at full load is 92%.
a. Calculate the value of the resistance of the dynamic braking at full load.
The armature current should be limited to 150% of the rated value.
b. If the motor operates in regenerative braking at a speed of 1100 rpm,
calculate the line current.
c. Design a circuit for countercurrent braking (by reversing the supply
voltage) so that the line current will not exceed 120% of the rated
value,

A 16 kW, 220 V, dc series motor has its armature current equal to 86 A
when the motor speed is 600 rpm. The armature resistance of the motor is
0.198 Q, and the field resistance is 0.1 Q. The motor voltage can be ad-
justed by means of solid-state devices. The motor is to be used to lower a
load by countercurrent braking (reversing E,) at an armature current of
double the rated value, and at a speed of 10 rpm. Determine the terminal
voltage required for this operation.

A 220V, de series motor has an armature current of 86 A, armature resistance
of 0.2 Q), and a field resistance of 0.1 ). The terminal voltage of the motor can
be adjusted by means of solid-state devices. Ignore the field saturation.

a. When the motor runs at 600 rpm, the armature current is 20 A. A 0.1
Q) resistance is added in shunt to the field windings. If the load torque
remains constant, calculate the speed of the motor.

b. The resistance in shunt of the field windings is removed. The motor is
used to lower the same mechanical torque described in (a) by a
countercurrent braking method. The desired speed in the
countercurrent braking is 10 rpm. The braking current is twice the
rated value. Calculate the armature voltage of the motor.
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9.6

9.7

9.8

BRAKING OF DC MOTORS

A dc, separately excited motor is driving an elevator. At a load torque of
300 Nm, the motor speed is 100 rpm. The motor terminal voltage is 210V,
and the field constant Ké is 3 V sec.
a. If the terminal voltage is reversed and reduced to 90 V, calculate the
steady-state speed of the motor.
b. Calculate the terminal voltage required to block (stop) the rotor.
c. Sketch the speed—torque characteristics and show all operating
conditions.

A dc, separately excited motor is used in a forklift. The motor is driven by a
full-wave, ac/dc converter. The voltage on the ac side is 120 V (rms). The
field constant of the motor K& = 3 V sec. The armature current is continu-
ous under loading conditions. At a load torque of 300 Nm and triggering an-
gle of 40°, the motor speed is 100 rpm.
a. Calculate the triggering angle required to block (stop) the motor.
b. Calculate the average voltage across the motor terminals if the
triggering angle increases to 120°.
c. Calculate the new speed of the motor at the condition described in
part (b).
d. Sketch the speed-torque characteristics and show all the operating
conditions.

A 150V, dc, separately excited motor is used to lift material. The motor has
an armature resistance of 1 Q, and K¢ = 3 V sec. The load torque is 9 Nm.
The armature voltage of the motor is controlled by a single-phase, full-
wave, ac/dc solid-state converter employing SCRs. The voltage on the ac
side of the converter is 120 V (rms). The triggering angle of the SCRs is 30°
when the motor is lifting up the load. Calculate the motor speed. Also cal-
culate the triggering angle required to lower the same load at the same
speed.

A 250V, 500 rpm, dc, separately excited motor is driving a constant-load
torque. The motor has a field constant Kb = 4 V sec and an armature re-
sistance of 1 (). Ignore the frictional losses.

a. Calculate the full-load torque.

b. Determine the terminal voltage required to block (stop) the motor.

c. Determine the terminal voltage needed to rotate the motor at 100 rpm
in the reverse direction.

d. Calculate the motor speed while the motor is operating at the
conditions of part (c), and the polarities of the terminal voltage are
reversed.

e. Sketch the speed-torque characteristics and show all the operating
conditions.

A 240V, 70 rad/sec, dc, separately excited motor has a field constant Kb = 3 V
sec and an armature resistance of 1 ().
a. Calculate the dynamic braking resistance that will not allow the
braking current to be larger than twice the rated value.
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9.9

9.10

b. If the motor drives a constant-torque load of 60 Nm, determine the
new steady-state speed and the current after the dynamic braking is
applied.

A dc, separately excited motor is driven by a full-wave, SCR, ac/dc con-
verter. The voltage on the ac side is 120 V (rms). The field constant of the
motor K¢ = 3 V sec. At aload torque of 300 Nm and triggering angle of 40°,
the motor speed is 100 rpm, and the armature current is continuous.

a. The polarities of the terminal voltage of the motor (armature voltage)
are reversed, and the triggering angle is simultaneously changed.
Assume that the load torque is also reversed and is equal to 300 Nm.
Calculate the triggering angle that stops the motor and keeps it at the
holding position. Assume that the current is still continuous.

b. Sketch the speed-torque characteristics and indicate the steady-state
operating points before and after polarity reversal.

A dc, separately excited motor has an armature resistance of 1 {} and field
constant K¢ = 3 V sec. The motor is driven by a full-wave, ac/dc, SCR cir-
cuit. The triggering angle of the SCRs is 30°. The voltage on the ac side is
277V (rms). The motor load is bidirectional and equals 120 Nm at steady
state, regardless of the direction of rotation. A countercurrent braking is im-
plemented by reversing the polarities of the motor terminals. The triggering
angle of the SCRs is adjusted so that the maximum braking current is twice
the steady-state value. Calculate the new steady-state speed.



Braking of Induction
Motors

Electrical braking is used to maintain the speed of the motor at a certain range with-
out overspeeding, to stop the motor, or to hold the motor at a specific rotor posi-
tion. If no form of braking is applied, the motor stops only when the kinetic energy
stored in its rotating mass is dissipated due to friction and windage losses. For
larger motors with good bearing systems, this could take a long time. If faster brak-
ing is needed, the kinetic energy must be dissipated much faster through other
means, as described in Chapters 8 and 9.

The basic types of braking discussed in Chapter 9 for dc motors are also ap-
plicable to induction motors. The principles are the same for regenerative, dy-
namic, or countercurrent braking, but the implementation is different due to the
difference in topology and the principles of rotation. Although more involved, the
braking of the induction motor is less stressful than that of dc motors in terms of
transients.

10.1 REGENERATIVE BRAKING

Regenerative braking occurs when the motor speed exceeds the synchronous
speed. This may happen when the load torque drives the electric motor beyond its
synchronous speed. In this case, the load is the source of energy and the induction
machine is converting the mechanical power into electrical power, which is deliv-
ered back to the electrical system.

Wind generators using induction machines are good examples of regenerative
braking. These wind-generating machines are very popular and widely used in
wind farms. The photo in Figure 10.1 shows a wind farm located at Tehachapi near
Los Angeles, California. Induction machines are popular in wind applications be-
cause they are ideally suited for variable-power-profile applications. Unlike the
synchronous or dc machines, induction machines become automatically synchro-
nized with the external power system.

The basic components of a wind generator system are shown in Figure 10.2,
There are several design variations for the wind machine, but the horizontal de-
sign in the figure is common. It consists of a housing box mounted on top of a
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yond the cutoff speed, the induction machine rotates at a speed higher than its
synchronous speed. This is the regenerative braking operation. The housing box
can swivel at the top of the tower to point the blades at the direction of maximum
wind effects. When the wind speed becomes excessive, the blades can be locked
to prevent any mechanical damage to the system.

Regenerative braking can be explained using Figure 10.3 and the torque equa-
tion (5.57) given in Chapter 5.

V2R,

' \2
sw{(Rl + 52) + ng]
A

The voltage Vis a line-to-line quantity and T, is the developed torque for the three
phases. Figure 10.3 is a graph representing Equation (10.1) but is expanded to in-
clude negative slip, which yields an electric torque in the second quadrant. The
negative slip occurs when the speed of the machine exceeds the synchronous
speed.

T, = (10.1)

Since the torque of the machine is negative during re- FIGURE 10.3
generative braking, but the direction of rotation of the

of power is reversed. The mechanical power is the source
of energy and is converted to electrical power by the ma- Speed
chine. This electrical power is delivered to the electrical s<0 '
system, and the machine is acting as generator.

ative - : Regenerative braking of
machine is the same as that in the first quadrant, the flow  jhduetion machines

The induction machine of the wind system is designed /

to operate at regenerative braking only (second quadrant).
When the wind speed is low so that the rotor speed is near
or below the synchronous speed, the blades are locked and
the motor is disconnected from the electrical supply to
prevent the machine from running as a motor.

When used in wind applications, induction ma-
chines demand a significant amount of reactive power
from the utility system, mainly because they do not have
their own field circuit. When used in the regenerative mode, the induction machine
consumes reactive power from the system while delivering real power. In some
cases, the amount of reactive power consumed exceeds the amount of real power
generated. This reactive power is also dependent on the speed of the machine,
which can be explained by using the equivalent circuit of Figure 5.26(b). The in-
ductive reactive power Q is consumed in the magnetizing inductive reactance X,
and the equivalent winding reactance X,,.

Torque
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V2 ,
Q= X +3(I')% X,
1 X
Q=V’|—+ “ (10.2)

t\2
Xon (R1+R2) +X2,
h)

where V is the line-to-line voltage. The reactive power in Equation (10.2) is plot-
ted in Figure 10.4. Q is at its minimum value at synchronous speed, but is almost
linearly proportional to speed when # > 7. In a wind farm when a large number

of induction machines are producing en-

FIGURE 10.4
Reactive power of induction machine in
regenerative braking

Reactive power

Qmin

[

A

ergy, the reactive power demand is ex-
cessive and could lead to poor voltage
regulations, especially when the ma-
chines are installed in remote areas. An-
other problem arises from the fact that
the wind’s speed is continually changing,
which changes the speeds of all induc-

ﬁzgg;:eranve tion machines in the farm. This may re-

sult in a cyclic variation in reactive power

! \ demand, which leads to voltage flickers
e

i for nearby customers. One way to allevi-
ate this problem is to install a reactive
power controller at the wind farm site, as
shown in Figure 10.5. The controller
must be fast and adaptive to compensate

. for the cyclic variations of the reactive

1
i
)
1
1
i
1
1
i
|
i
|
1
i
|
1
i
i
+
i
1

: Speedr power of the induction machine. Such a

g controller is usually made out of several

capacitor banks switched by solid-state

devices. The cyclic inductive reactive power of the induction machine Q is

sensed and the controller produces a capacitive reactive power Q,, which is equal
in magnitude to Q.

ch _Q

The total reactive power seen by the system @, is the sum of these two reactive
powers.

Q=0 +0Q

With ideal compensation, the system delivers no reactive power to the induction
machine. This describes an ideal wind farm operation.

In more general drive systems, the induction machine may operate in the first
or second quadrant (as motor or generator). An example is shown in Figure 10.6. In
this example, the load torque is considered constant but reversible. The reference
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FIGURE 10.5
Reactive power compensation of wind-generating machines

. L Q
B P @ \/\/
0, Q Time
ch Q. &
Induction

Reactive /_> 7Z£ \/\/\ machine
power

controller

Time
FIGURE 10.6 FIGURE 10.7
Regenerative braking of Regenerative braking during
reversible loads speed control of a unidirectional

load torque
Speed

-

Tl Torque

operating point 1 represents a motor operation where the motor speed is less than
the synchronous speed. When the load torque changes its direction from T, to T,
the motor operates in the second quadrant and the speed of the motor exceeds its
synchronous speed. Keep in mind that the motor still rotates in its original direction.

Another example of regenerative braking is shown in Figure 10.7. The figure
shows two characteristics for two different values of v/ control. The v/f control is
used to regulate the speed of the motor, as discussed in Chapter 7. The load torque
is assumed to be constant and unidirectional, and the original operating point is 1.
It v/f control is applied to reduce the speed of the motor, the operating point moves
to 2, and eventually settles at point 3 in the first quadrant. However, during the
transition from point 2 to point 3, the motor operates in the second quadrant un-
der regenerative braking.
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A 208 V, six-pole, three-phase, wye-connected induction motor has the following
parameters:

R, =060 R,=040 X,=5Q

The motor is loaded by a 30 Nm bidirectional constant torque. If the load torque
is reversed, calculate the following:

a.  Motor speed
b. Power delivered to the electrical supply

SOLUTION
a.  When the torque is reversed, the motor operates in the second quadrant
at point 2 as shown in Figure 10.6. We can calculate the new speed by us-

ing the torque Equation (10.1) or the small-slip approximation given in
Equation (5.60).

Vs
T —_
d wSRIZ
2082
—30= 1(2)00X
2m 0.4
60
s = —0.035

The regenerative speed # is
n = n(l —s) =1200(1 + 0.035) = 1242 rpm

b. To calculate the electrical power, we need to subtract the winding losses
(electrical losses) from the developed power since the machine is operat-
ing as a generator.

1242
P;=T;w = (30)2n 0 = 3,902 kW

To calculate the winding losses, we need to compute the current at point 2.

R|
P, = 3(I')? ‘f (1—s)

0.4

—3902 = 3(I',)?
3 ) —0.035

(1 + 0.035)

I,=—105A
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The negative sign indicates that the current is in the reverse direction with re-
spect to the current at point 1.

The winding losses P, are
Py = 3(I')*(R; + R',) =330 W
The power delivered to the electrical source P, is

P, = 3902 — 330 = 3.572 kW
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10.2 DYNAMIC BRAKING

Dynamic braking of electric motors occurs when the energy stored in the rotating
mass is dissipated in an electrical resistance. This requires the motor to operate as
a generator to convert this mechanical energy into electrical.

For dc machines, dynamic braking requires a stationary magnetic field in the
airgap, which does not exist in induction motors. However, we can create a tem-
porary stationary field for the induction machine by applying a dc voltage to the sta-
tor terminals. When the rotor windings pass through this stationary field, voltages
and currents are induced in the rotor windings. The rotor current produces losses
in the rotor resistance. Since the rotor is spinning solely because of its stored kinetic
energy, the rotor losses reduce the overall kinetic energy of the motor, thus assist-
ing the motor to stop.

The stationary field for dynamic braking can be created using the circuit in
Figure 10.8, which is the same as the power electronic circuit given in Figure
3.29. Instead of switching the transistor

sequentially, here we close only three
transistors for the duration of the dy-
namic braking. Note that no two transis-
tors on the same leg can be closed. Now,

FIGURE 10.8
Six-pulse drive circuit

let us assume that S;, Ss5, and S are
closed. As seen in Figure 10.9(a), the S S;
terminals of phases @ and ¢ are positive
potentials and that for phase 4 is nega-
tive. The current in the stator winding is — V. a
dc and will produce a stationary field in
the airgap.

Keep in mind that the resistance of
the stator windings is usually very small
and the inductive reactance has no impact

on dc currents. Therefore, the current in
the stator windings could be excessive unless the terminal voltage during braking
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FIGURE 10.9
Winding arrangements during dynamic braking

terminals

————

1,

Rotor
windings

\\>

(a) Stator circuit (b) Rotor circuit

is small enough. To reduce the voltage across the stator windings, PWM or FWM
techniques can be used, as explained in Chapter 3.

To calculate the maximum braking voltage, let us examine the stator circuit in
Figure 10.9(a). Assume that the stator windings have only resistive elements. The
total dc current in this circuit can be calculated by

Ve

1. = =] 10.

d™q5R,  * (103)
where V), is the reduced voltage applied to the stator windings during dynamic
braking. R, is the resistance of single-phase windings. I, is the upper limit of the
stator current during braking. Depending on the size of the motor and the braking
time, I, could be selected as high as three times the rated current. Remember that
the shorter the braking time is, the higher is the braking current. A larger braking
current results in a stronger stationary field in the airgap, which induces larger cur-
rent and higher losses in the rotor circuit. If the motor is a slip-ring type, we can in-
sert an external resistance R, in the rotor circuit, as shown in Figure 10.9(b). The
function of this resistance is to control the rate at which the kinetic energy is dissi-
pated. It is also used to limit the current in the rotor circuit.

An induction motor is driven by a six-step converter similar to that shown in Fig-
ure 10.8. The voltage at the dc link, V., is 200 V. At normal full-load operation,
the motor current is 25 A. The stator resistance is 0.5 (. The FWM technique is
used during the dynamic braking. Calculate the duty ratio of the FWM.
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SOLUTION
To calculate the braking voltage V, of the stator, let us assume that the braking cur-
rent is three times the rated value.

Vi
I ==
b7 15R,
Vi
75 = '—
1.5(0.5)
V, =5625V

The FWM is shown in Figure 3.35. The duty ratio d is the ratio of the closing subin-
tervals to the conduction period. The equation of the duty ratio is given in Equa-

tion (3.74).
2d
v,= &
f 3 Ve

V, )2
= 15(S5) =011
d 15<Vdc) 0.119

Then the duty ratio 4 is

10.3 COUNTERCURRENT BRAKING

Countercurrent braking can be accomplished by reversing the direction of the
field. As shown in Figure 10.10, the direction of rotation of the field in the airgap
depends on the sequential connection of the stator windings. When the three-phase
stator windings are connected in the ABC sequence, the airgap field rotates in one
direction at synchronous speed. When the sequence of
the stator windings is changed, say, to ACB, the field re-
verses its rotation. The change in sequence can be imple-
mented by using the circuit of Figure 10.8. If you swap Effeci'.of voltage sequence on
L . . direction of rotation of airgap
the triggering of S; with S5, and S, with S,, the sequence field
of the applied voltage is reversed to ACB.

FIGURE 10.10

During steady state, assume that the operation of the A A
motor in the ABC sequence is in the first quadrant. Then B C
the motor in the reverse sequence operates in the third c B
quadrant. We can utilize this feature to perform counter-
current braking, as shown in Figure 10.11. The figure ABC sequence ACB sequence

shows the motor characteristics due to both sequences.
Assume that the operating point of the motor in the ABC sequence is point 1. When
the sequence of the stator voltage is reversed, the eventual steady-state operating
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FIGURE 10.11

Induction motor characteristics

point is located on the ACB characteristics where the
load torque and the developed torque of the motor are

during countercurrent braking equal. Before reaching this final operating point, how-
ever, the motor initially moves from point 1 to point 2

Speed without any appreciable change in speed due to system

A ABC sequence inertia. Point 2 is not a steady-state point because of the

inequality of the motor and load torques. The motor con-
tinues moving to point 3. At 3 the motor stops. If the mo-

________ et tor is not disconnected at 3, it moves toward point 4.

Point 4 is the new steady-state point if the load torque is
bidirectional. However, if the motor torque is unidirec-
tional, the motor continues moving toward the new
steady-state point. It will reach point 5, at which the mo-

ACB sequence

4

tor speed is equal to the synchronous speed. Then the op-
erating point moves toward point 6. At 6, the load and
developed torques are equal, and the new steady-state
operating point is achieved. Note that point 6 represents
regenerative braking for the ACB sequence.

The analysis of the induction motor at any of these
six points is dependent on the computation of the slip.
The slip at point 1 is less than one, but is very small since
the induction motor rotates at nearly synchronous speed. At point 2, the motor
speed is still the same as the speed at point 1, but the airgap field rotates at syn-
chronous speed in the reverse direction. Thus, the slip at point 2 is

—-n.—n n.+n
SZZ _Sn - = Sﬂ >1

§ 5

Slip s, is almost equal to two. At point 3, the speed of the motor is zero, but the
field is still rotating in the new direction, so the slip is equal to one. At point 4, the
motor reverses its rotation and is now in the same direction as the airgap field. The
slip in this case is

- nI - nS nS

Assuming symmetry, the slip at point 4 is equal to that at point 1. At point 5, the
slip of the motor is equal to zero, since the motor speed and the synchronous speed
are equal. At point 6, the motor speed exceeds the synchronous speed, so the op-
erating point at 6 is a regenerative braking (z > #,). The motor slip at 6 is

—n,— (—n) n,—n

56 = =2 <0

- nI nS

Table 10.1 shows the essential parameters and equations at each operating point.
Using either the small-slip or the large-slip approximations, we can derive the
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TABLE 10.1
Summary of countercurrent braking

Operating Motor Field Slip Approximation Motor Torque Motor
Point Speed Speed Method Current
- - - > -
Vs Vs
1 #, 0<s <1 Small sli 1 !
s 1 p o, R, V3 R,
- “— - < ?}
VR’
2 55> 1 Large sli 2
2 & P 52(—(1)3')ng \/gxeq
«— - T -
V2R |4
3 0 =1 Large sli ——2
5 arge sip 5}(_(1):)ch \/gxeq
«— “«— - « -
4 0<s,<1  Smallsli Vi -
54 mall slip ok, %R'z
«— «—
5 55=10 Small slip 0 0
- « - - 5
. 14 56 S6
6 56 <0 Small slip m V3 R,

torque and current equations. The operating point at 1 is considered to be the
reference point. The arrows indicate changes in the direction of rotation, direc-
tion of torque, or direction of current with respect to the reference operating
point 1.

A three-phase, wye-connected induction motor is loaded by a constant-torque load
and is rotating at 1150 rpm. A PWM power converter is used to drive the motor.
The line-to-line rms value of the fundamental component of voltage is 300 V, and
its frequency is 80 Hz. The rotor resistance of the motor is 0.5 €2, and the equiva-
lent inductive reactance is 3 Q at 80 Hz. A countercurrent braking is performed
without any change in the frequency or voltage. Calculate the slip, current, and
torque at all operating points.
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SOLUTION

Using the equations in Table 10.1, the slip, current, and torque can be directly com-
puted. However, before we attempt to solve this problem, we must first find the
synchronous speed. Note that the full-load speed is 1150 rpm. The synchronous
speed must be slightly higher than this. For 80 Hz, the machine must have eight
poles so that the synchronous speed is 1200 rpm.

o, = 2m % = 125.7 rad/sec

The results are tabulated in Table 10.2. The computation is straightforward substi-
tution in the formulas of Table 10.1.

The slip at point 6 can be computed using the torque equation at 6, where the
developed torque Ty is equal to the torque at point 1.

_ Vs _
6 (—wS)Rlz 1

T, is computed in Table 10.2.

60)0.5(—125.7
S¢ = (—% = —0.042

ng= —1200(1 + 0.042) = —1250 rpm

Note that unlike the current in the dc motor, the current of the induction motor
does not surge to high values when countercurrent braking is implemented. This is
because the inductance of the stator windings limits the magnitude of the braking
current.

CHAPTER 10 PROBLEMS

10.1 A 60Hz, 480V, three-phase, wye-connected, six-pole induction machine has
the following parameters:

Rl = 0.} Q R'z = 0.1 Q Xeq = IOQ

The machine operates in the regenerative braking mode as a wind energy
generator. A gearbox of 5:1 speed ratio is between the machine and the tur-
bine blades, with the high-speed side connected to the induction machine.
If the wind speed exerts 200 Nm on the shaft of the blades, calculate the
speed of the induction machine.

10.2 For Problem 10.1, calculate the mechanical power input to the induction
machine and the power delivered to the electrical system. Assume that the
rotational losses are 200 W.
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10.3

104

105

10.6

A 60 Hz, 480 V, three-phase, wye-connected induction machine has the fol-
lowing parameters:

Rl =0.2 Q R'z =0.2 Q Xeq =15 Q

At full-load torque, the motor speed is 580 rpm. A FWM converter drives
the motor. Calculate the duty ratio that limits the dynamic braking current
to twice the rated value.

Repeat Problem 10.3 for the case when only transistors S; and S, in Figure 10.8
are closed during the dynamic braking.

A 60 Hz, four-pole, 480 V, three-phase, wye-connected induction machine
has the following parameters:

R,=02Q R,=030 X, =120

The motor is loaded by a unidirectional constant-torque load of 40 NM. A

countercurrent braking is performed on the motor. Calculate the following:
a. Motor current before the countercurrent braking
b. Motor current just after the voltage sequence is reversed

Current at the moment when the motor stops

Motor torque at the condition of part (c)

Motor current at the new steady-state point

Motor torque at the new steady-state point

g. Motor speed at the new steady-state point

Do A

Repeat Problem 10.5 for the case when the motor frequency is reduced to
50 Hz and the voltage sequence is reversed. Assume that the converter is a
fixed v/f controller.




Dynamics of Electric
Drive Systems

In modern high performance drives (HPD), such as robotics, guided manipulation,
and supervised actuation, controlling the motor’s final speed is not the only goal. A
multirobot system performing complementing functions must have the end effec-
tors (moving terminals) proceed about the space of operation according to prese-
lected time-tagged trajectories. To achieve this, every motor in the robot arm must
follow a specific track so that the aggregated motion of all motors keeps the end ef-
fector on its trajectory at all times. This must be achieved even when the system
loads, inertia, and parameters are varying. To realize this level of performance, the
traveling time of the motor in a HPD system must be controlled during starting,
braking, and change of speed. Traveling time is defined here as the time required
to change the motor speed (or rotor position) from one steady-state operating point
to another. The traveling time is determined by the mechanical parameters of the
system, such as inertia and load torque, and by electrical quantities, such as motor
voltage and developed torque.

The general torque expression of an electromechanical system under dynamic
conditions is

Td_ TZZ Tz' (111)

where T, is the developed torque of the motor, T} is the load torque, and T, is the
inertia torque of the entire rotating mass (motor, load, and mechanical interface).
The inertia torque is only present during acceleration and is expressed by

T, = ]id(; (11.2)

where ] is the moment of inertia, and dw/dt is the angular acceleration. In linear mo-
tion, the inertia force F; is computed as

F,=m—

dt

where 2 is the mass, and dv/dt is the linear acceleration.
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11.1 MOMENT OF INERTIA

The moment of inertia of a rotating object is defined by

2 2
G 2 (113)

]:>4g 4

where G is the weight of the rotating mass in Newtons, g is the gravity acceleration,
D is the diameter of gyration, and 7 is the mass. The diameter of gyration is the di-
ameter of the rotating path of the object at which the mass of the body is concen-
trating. The moment of inertia of some commonly used objects in electric drives is
given in Table 11.1.

Depending on the system configuration and design, the moment of inertia can
vary during motion. However, there are several applications for which the moment
of inertia is constant, such as hoists and forklifts. A simple hoist system is shown in
Figure 11.1. In the figure, the motor motion is angular while the motion of the load
is translation (linear). The load torque is the load force multiplied by the radius of
the rotating wheel. The load force is the load mass times the acceleration of grav-
ity. The inertia of the load can be computed using the kinetic energy for both mo-
tions (angular and translation).

KE = %]oo2 = %mvz
where w is the angular velocity of the rotating wheel, » is the linear vertical velocity
of the load, and # is the load mass. The load inertia in this case can be computed as

ol

Since the ratio v/w is constant and equal to the radius of the wheel, the inertia of
the load J is constant.

TABLE 11.1
Moment of inertia for selected rotating mass

Object Moment of inertia
DZ
Thin-walled hollow cylinder with diameter D m e
AT . 1 Di+Dj
Hollow cylinder with inner diameter D; and outer diameter D, > m y
- - 1 D?
Solid cylinder with diameter D —m—
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FIGURE 11.1
A simple hoist system

FIGURE 11.2
A system with linear and rotating motion

Connecting

rod \ \

A variable moment of inertia can occur when the system configuration leads to
asymmetrical motions. Figure 11.2 shows a common drive system for a rotating mo-
tor that drives a piston-type load. The motor wheel is attached to the piston via a
connecting rod. The motion of the piston is linear, and its velocity changes de-
pending on the position of the motor wheel. Figure 11.3 shows the velocity vectors
of this system. The linear velocity of the piston v is in the direction shown in the fig-
ure during half of the rotating cycle; then it reverses its direction. The kinetic en-
ergy of the system can be calculated using the linear and rotating speed, as shown
in Equation (11.4).

1
KE = %mvz = ijz (11.4)
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FIGURE 11.3
Velocity vectors of the system in Figure 11.2

At the point where the connecting rod is mounted on the rotating wheel, the ve-
locity vectors are governed by the following equation:

vcos B = wrcos d = wrsin(a + B) (11.5)

Substituting (11.5) in (11.4) yields

J= m72<sin(o¢ + B))2

cos B

In this system, the inertia is dependent on B, which is a function of the wheel posi-
tion, so the system inertia varies during the motor rotation.

11.2 BASIC CONCEPT OF TRAVELING TIME

Let us examine the traveling time of an electric drive system by using the charac-
teristics shown in Figure 11.4. In the figure, an induction motor characteristic is
used. The motor torque is T, and the load torque is T;. The inertia torque T, at
any speed o, is the difference between the motor torque and the load torque at the
given speed. The inertia torque compensates for the total system inertia.

dw
=], =1a- T

For given motor and load torques, the higher the inertia torque, the higher the mo-
tor acceleration. Using the previous equation, when the motor speed changes from
®; to w,, the traveling time can be computed by

_ (]
I_L, Td—T/dw (11.6)

1
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FIGURE 11.4
Developed inertia torque for induction motor

Speed
A T

>

Torque

Equation (11.6) shows that the traveling time between two speeds can be reduced
if at least one of the following conditions is met:

1. The inertia torque increases.

2. The moment of inertia decreases.

The first condition can be met by adjusting the motor characteristics. For example,
an increase in the induction motor voltage increases T, as shown in Figure 11.5.
The motor characteristic labeled T, is for a motor voltage V;. The inertia torque at
an arbitrary speed is T, . If the motor voltage increases to V,, the motor character-
istic labeled T} stretches, and the inertia torque increases to T,

The second condition can be met by using gears or belt systems. These inter-
face systems alter the load inertia seen by the motor and are the subject of the next
section.

287

11.3 GEARS AND BELTS

A simple gear system is shown in Figure 11.6. It consists of a motor, a mechanical
load, and a gear. The gear ratio is defined as the ratio of its diameters or speeds.

”1_d2

ny dy

where # is the shaft speed and d is the gear diameter. Now let us assume that the

load inertia is ], and the motor inertia is J,,. Also assume that the gear inertia is J,;
\

\

N
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FIGURE 11.5
Change in inertia torque for induction motor due to changes in voltage

FIGURE 11.6
A simple gear system

J4
- .
Gear 7 \“2
4 \
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for one gear wheel and ], for the other. If a gear is not present, the inertia seen by
the motor is J, + ],,- With the gear in place, the moment of inertia seen by the mo-
tor can be computed using the kinetic energy (KE) for each component of the sys-
tem. The total kinetic energy seen by the motor is

Total KE = KE of motor + KE of gear + KE of load (11.7)

1
Total KE = - Jog of

where ], is the equivalent moment of inertia seen by the motor. Equation (11.7)
can be written in more detail as

1 1 1 1 1
51a w] = E]mw% + Efdlwf + 354 wj + 5]10)5

Hence,

Joo =t Ja 4 1ol 2+ (2
(11.8)
Joo = 0o+ U+ ()

Equation (11.8) shows that the gear ratio can change the inertia seen by the mo-
tor. Accordingly, the load torque seen by the motor changes. This can be verified
by computing the load power at either side of the gear, assuming that the gear is
lossless.

Tl w; = Teqwl

where T,, is the equivalent torque of the load seen at the motor side of the gear.
Thus, the load torque seen by the motor is

A
- n(2) - () 119

If the gear system is designed so that d,/d, is less than 1, the load inertia seen by the
motor is reduced, and the load torque seen by the motor is also reduced. Conse-
quently, the traveling time is reduced. (Examine Equation 11.6.)

A belt system can have an effect identical to that of a gear system. Figure 11.7
shows a simple system consisting of load, motor, and two wheels connected by a
belt. The equations just described for the gear system can be directly applied to
the belt system,
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FIGURE 11.7
A simple belt drive system

Low speed
J 4 P

2
Load
d
Belt J !
S
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11.4 TRAVELING TIME OF dc MOTORS

The traveling time of any electric motor can be computed using the electrical model
of the motor and the torque equation of the rotating mass. For dc machines, the
electrical equation is

, di, , di,
VtzEa+laRa+La_t:K¢w+laRa+La7 (11.10)
where V, is the terminal voltage of the motor, 7, is the armature current, R, is the
armature resistance, K¢ is the field constant, and L, is the inductance of the arma-
ture windings. The torque equation of the motor can be written as

Kbi, =T, +]i2‘—;’— (11.11)

where T, is the load torque. For a constant-load torque and constant field current,
the first derivative of the current in Equation (11.11) is

gy J P
it " Ko de? (11.12)
Substituting (11.11) and (11.12) into (11.10) yields
2 2 2
o | Ry do | (KO© Ko (11.13)

4 L, dr L, L, 7/
where w/is the final steady-state speed defined by

o= Yo R
K (Ko

T
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Solving the differential equation (11.13) yields

—&w,t —¢w,t
© = wf[l - \/‘)T_#?sin(wﬂ\m — &+ e)] + w(0) [g\/‘i{—_—gsin(w” 1 - gzt)] (11.14)
where
Ko
(.l)” =
VIL,
_ R ﬁ
€= 2KbV L,
6 = cos &

A dc shunt motor has the following parameters:
Ké =3.0Vsec R,=10Q L,=10mH

The rated voltage of the motor is 600 V. The voltage is reduced to 150 V at start-
ing. The load connected to the motor is a constant torque of 20 Nm. The total mo-
ment of inertia of the entire drive system is 6 Nm sec?. Calculate and plot the motor
speed versus time. Also calculate the motor speed after 5 seconds.

FIGURE 11.8
Speed of dc shunt motor during starting

Speed (rpm)
500

400 -
300 -
200 -
100

0 | 1 1
0 2 4 6 8

Time (sec)
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SOLUTION

The solution of this problem is by direct substitution in Equation (11.14). The ini-
tial speed in this case is zero since the motor is starting from rest. The plot in Fig-
ure 11.8 is the result obtained by a simulation software. After about 5 seconds, the
motor reaches the steady-state speed of

VR 150 20
w; = Kb (Kb)? 1= 5 = 47.78 rad/sec

np = 456 rpm

EXAMPLE 11.2

Ignore the armature reactance of the motor and repeat Example 11.1.

SOLUTION
An approximation of Equation (11.13) can be made by ignoring the armature in-
ductance. In this case the equation is modified to

do | (K§? (K7

ot IR, © =R (11.15)
This is a first-order differential equation, and its solution is
w=w(l =)+ w(0)e™ " (11.16)
where
R
(K)?

Equation (11.16) is used to simulate the speed of the dc motor. The result is shown
in Figure 11.9, which is almost identical to the result obtained in Figure 11.8. We
can then conclude that the starting time of the de motor is more dependent on the
system inertia than on the armature reactance.

By using Equation (11.16), we can understand how the starting time of a dc
motor is controlled, Rewrite the equation and assume that the initial condition of
the speed is zero. (The motor is starting from rest.)

w _
7___1_61/7
wy
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FIGURE 11.9
Traveling time of dc motor during starting when armature reactance is
ignored

Speed (rpm)
500

400
300 -
200 -
100

0 ! ! L
0 2 4 6 8

Time (sec)

Let us assume that the motor reaches its new steady-state operating point when the
speed of the motor is about 95% of the final speed.

095 =1—¢ /"
Hence,

_ 3R,

T Koy

(11.17)

Equation (11.17) shows that the starting time of the dc¢ machine is dependent on
the system inertia, armature resistance, and field current. It may look surprising
that the motor voltage has no effect on the starting time. This is true-—the motor
voltage controls the magnitude of the final speed, but not the starting time. To re-
duce the starting time, the system inertia must be reduced either by using a gear or
belt system or by increasing the field current.

A dc shunt machine is used in high-performance operation. The starting time of the
motor must be limited to 2 sec. The motor has a moment of inertia equal to 1 Nm
sec’. The load moment of inertia is 5 Nm sec”. The field constant of the motor K¢
is 3 V sec, and the armature resistance is 2 2. Show how we can achieve the desired
starting time.
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SOLUTION

The starting time of the motor based on the given data is

_3JR,  3(1+5)2
(K$)” 9

ty = 37 = 4 sec

which is higher than the desired starting time. Using a gear system can reduce the
system inertia. The equivalent moment of inertia ], must then be equal to

_ (Ko 2(9) 2
Jeg = 3R, 6 = 3 Nm sec

If we ignore the moment of inertia of the gear system, the ratio of the gear can be
computed using Equation (11.8).

Joo = (22

3=1+ 5(”2)2
an

Then the gear ratio must be

For the dc motor in Example 11.1, the motor operates at a steady-state speed when
the terminal voltage is at 500 V. To increase the motor speed, the terminal voltage
increases to 600 V, while the field remains constant. Calculate the time required to
change the motor speed.

SOLUTION
The first step is to calculate the initial and final speeds. The initial speed is
vV, R, 500 20
o(0) = Eé - (Kb)? T, = EE) = 164.44 rad/sec

and the final speed is

_ 600 20

5 = 197.78 rad/sec

0y

We can use Equation (11.16) to compute the traveling time, but first let us calculate .



DYNAMICS OF ELECTRIC DRIVE SYSTEMS

R
T = IR, = 0.67 sec

(Kd)?

The traveling time can be computed by assuming that the motor reaches the new
steady-state operating point when the motor speed is 95% of the final value.

o = wl - e ") + w(0)e "

—t/7

0.95 0 = wr(l — e /M + w(0)e
Then the traveling time is
t=-7 n[l} = 0.81 sec
w;— w(0)

For the dc motor in Example 11.1, the motor operates at a steady-state speed when
the terminal voltage is 500 V. Assume that the load torque is constant. Calculate the
terminal voltage that stops the motor and keeps it at holding. Also calculate the
traveling time during braking.

SOLUTION
To stop the motor, w/is set to zero.

_ Vs 20 _
(1)](—7_?—0
V, = 666V

The dynamic braking time can be computed by assuming that the motor reaches
the holding state when its speed is about 5% of the initial speed.

o= o/l - e + w()e "
0.05 w(0) = w(0)e™ "

t =31 = 2sec

295

11.5 TRAVELING TIME OF INDUCTION MOTORS

The torque and speed of the induction motor are related by a nonlinear func-
tion, which makes the solution of Equation (11.6) more involved. To simplify the
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calculations, let us consider the three basic equations for the induction motor
given in Chapter 5 and repeated here:
P V2R
T, = “d = r/%f“ (11.18)
w R 2 2
su)j\:<R1 + T) + Xeq}
Ry
Ty e (11.19)
V2
T = (11.20)
T 5w Ry + VR + X2,
Let us find the ratio of the developed torque to the maximum torque.
T, 2R,R, +VR+ X2)
=TT R o (11.21)
e s[(RI + T2> + ng]
Now insert the expression sy, of Equation (11.19) into (11.21).
R|
T 2 R'2<Rl + ’2>
5
TR 3-8 (11.22)
S ERCEE
S ax s s
It is reasonable to make the following assumption:
R, =R,
Then Equation (11.22) can be approximated by
2K T,
T,=———"¥— (11.23)
43; + :YM + 2 Snax
SmaX s
where K = 5.« + 1. The inertia torque equation used in the computation of the
traveling time can now be rewritten as
dw 2T.x K
T, = @ 1T = e = T, 11.24
i ]eq dt d / 5 s l ( )

max
+ 8 4 D ax

Smax s

Consider the derivative of s with respect to time,
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ds _d{o, -0\ -1do
dr dr (ws ) B o, dt (11.25)
Substituting Equation (11.25) into (11.24) yields
df _ 2K - SR TR
sz‘ = Se (11.26)
where
_ ]eqwj
T Tmax
5
= —— 4+ B 4
SR Smax ¢ Smax
T/
T, = —~1_
B T

7 is known as the system time constant. To compute the traveling time, we must
solve the differential equation given in (11.26),

_ 12 _TSR
t = f( 2K~ e Ty ds (11.27)

where s is the initial slip and s, is the final slip.

11.5.1 UNLOADED INDUCTION MOTOR

The traveling time of an unloaded induction machine (T, = 0) can be computed by
a simple closed-form solution, since Ty is zero. In Equation (11.27), if the motor
voltage, frequency, and rotor resistance are maintained constant, 7 and S, are
constant quantities.

T [ T [N s Smax
l‘:iﬁ (—SR)dx=i£ [g%—%ﬂ‘ZImades
1 2
, , (11.28)
;= i [%—2 + xmaxlnj—; + 2 S (51 — x2)]
max

EXAMPLETLS

A 480V, three-phase induction motor has a rated speed at full load of 1120 rpm,
stator resistance of 1 ), rotor resistance referred to stator of 1 Q, and equivalent
winding reactance of 5 ). The inertia of the motor is 4 Nm sec?, Compute the start-
ing time of the motor at no load and at full voltage and frequency.
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SOLUTION

Since the rated speed of the induction motor at steady state is very close to the syn-
chronous speed, this motor must be a six-pole type at 60 Hz with a synchronous
speed of 1200 rpm. To compute the starting time of the motor, we must first com-
pute Ty and S0 :

max

V? 02
T = S = 48 = 150 Nm

max CARZ 4 X2 2
20,(Ry + VR + X)) 2<2w 1680>(1 + V1 +25)

4(2 1200>
1200
Jeq 0 60 336
= = ———— =336se
T T 150 ¢
R, 1

= - — = 0.196

Smax =
VR{+ X, V1+25

The slip at starting is equal to 1. A good approximation is to assume that the final
slip at no load is about 2%. The starting time in this case is

T [1- s% 1
by = oK [ 5 Sma; + 5 lng + 2 Spax (1 — sz)]

T (0.25
l‘St = K )

— + 1S s T smax) = 5.2 sec

-Vmax

Assuming that the motor in Example 11.6 is unloaded and a starting resistance R,
of 1 Q is inserted in the rotor circuit, compute the starting time of the induction
machine.

SOLUTION
The starting resistance increases the magnitude of 5., but not T,

_Rp R 2 300

Smax —
VR + X2, V1+25
Although it is slightly higher, we can still assume that the slip at steady state is 2%.

: ~T[O—‘25+ 1.95(0.392) + 0392} = 434
«~ %1039 . . . 34 sec
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Note that the starting time is shorter when the starting resistance is added to the ro-
tor of the induction motor. This is due to the higher starting torque and the lower
final speed.

EXAMPLE 11.8

A countercurrent braking is applied to the induction motor in Example 11.6. Com-
pute the magnitude of the motor voltage that limits the traveling time (time taken
to stop the motor) for countercurrent braking to 15 sec.

SOLUTION

When the voltage sequence of the motor is reversed and the voltage magnitude is
reduced, the motor operates in the second and third quadrants, as shown in Fig-
ure 11.10. If we assume that the reversal of sequence and the change in voltage are
done simultaneously, the motor initial operating point moves from point 1 to point
2. The initial slip at point 2 is almost equal to 2 since the field reversed its rotation,
but the motor rotation is still in the same direction as it was before braking. Al-
though s,,,. remained unchanged, the magnitude of the maximum torque is re-
duced due to the reduction of the terminal voltage. The braking time #,, is then

B T[S% - 53

|
ty, = F S 1N F 2 5. (5] — xz)]
21 2 5y S *

71 4 -1
o=~ - 4+ 0.136 + 2(0.196)(2 — 1) | = 3.42
br 2[2(0.196) > ( A )] 2A2T

15
T= 340 4,39 sec

We can now use T to compute T,

4(2 1200)

P ettt

Jo, 60

T =4iS= 2 =114,

max . 439 4.5 Nm

Since the maximum torque is proportional to the square of the voltage,

1145 (\@)2
480

150
where V,_ is the motor voltage during braking.

Vbr = 419 V
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FIGURE 11.10
Countercurrent braking

Speed
A

ABC sequence

A%

5= 0.02

ACB sequence

A countercurrent braking is applied to stop the induction motor in Example 11.6 by
reversing the terminal voltage and simultaneously inserting a resistance in the rotor
circuit. Compute the value of the braking resistance that minimizes the braking time.

SOLUTION

When the voltage sequence of the motor is reversed and a resistance is added to the
rotor circuit, the motor operates in the second and third quadrants, as shown in
Figure 11.11. If we assume that the reversal of sequence and insertion of rotor re-
sistance are done at the same time, the motor initial operating point is point 2, and
the final operating point is point 3. The slip at point 2 is almost equal to 2, as ex-
plained in the previous example. The braking time #, is then

T [S%;S%

51
+ Smax lnx— + 2 500051 — 52)]

tyy = S 15
2K | 2 sk )

To minimize the braking time, the derivative of this equation must be set equal to zero.

d 2 2
ﬂ—i[u+lnﬁ+2(sl—:2)]=0

dxmax - 2K 2 s?nax $2
or
-3
42693 =0
25max
Sy = 0.75

max
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FIGURE 11.11
Countercurrent braking with resistance added to rotor circuit

With R,z

Speed
A

ABC sequence

ACB sequence

The value of the added resistance is computed using Equation (5.61).

R, + R
Smax =
VR? + X2,
1 + R'ﬂdd
0.75 = ——==4
V26
Radd = 28 Q

In this case, £, = 4.5 sec.

11.5.2 LOADED INDUCTION MOTOR

The solution of Equation (11.27) is more involved when the load torque is pres-
ent. If we assume that the load torque is independent of speed, the solution of
Equation (11.27) takes the following form:

5 Smax
t ffz L S jfz T(Smax s T2 Xmax)
= - Je =
. SR TR - 2K A

ds
R}
51 TR<— + max 5 smax> - 2K

5

Smax $

: 2, 2 2
. J (6% + S T 25008)
2K $pax §
RTst (52 452 4+ 252 ) ~ ——omass

Tr
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The solution for the starting time of the loaded induction motor in the previous
equation is

= Ti[1 (05 A — s2,,) (m AD + log(mB))] (11.29)
R

st

where

B=1+A+ Shu

_{1 ifB=0
=10 ifB<0

E_

Compute the starting time of the induction machine in Example 11.6, assuming
that the load torque is constant and equal to 60 Nm.

SOLUTION
The first step is to compute the constant Tr.
T
T = = =04
R Tmax
Ks 1.196 X 0.196
A =25k~ m“) =2(0.1 - /—1) = -1l
<Smax Tx % 0.4
Q= A? — 45k, = 1056
B=1+A+s%, = —00616
—2 + A
D =——=tan 2+ A) = 2.642
VQ 0
t, = -Tl[l — (05 A — 52,,) (mAD + log (mB))]
R
3.36

= W[l — (— 055 — 0.196%) (1.1 X 2,642 + log (0.0616)] = 16.8 sec
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Note that the starting time with load is more than twice the no-load case computed
in Example 11.6.
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11.6 TRAVELING TIME OF
SYNCHRONOUS MOTORS

The expression of a rotating mass is given in Equation (11.1). The expression is ex-
panded as shown in Equation (11.30) to include system damping D.

d
]eqj"; +Do=T,— T (11.30)

where ], is the equivalent inertia of the system including the load, the motor, and
any gear or belt system. D is the system damping due to friction, windage, or
damper windings that might be present in the rotor circuit. T, is the developed
torque of the motor, and T; is the load torque. The developed torque of the syn-
chronous machine is given by Equation (5.73). The equation is repeated here:

P E
T,=—-= E »Y;{—fsin d =Ksind (11.31)

wS ('05 ;)

where V; and Eare phase quantities, and 8 is known as the torque angle or power
angle. Substituting the torque equation in (11.31) into (11.30) yields

d
Jogy, + Do =Ksind = T, (11.32)

The relationship between & and ® can be explained by examining Figure 11.12. In
the figure, the synchronous motor is connected to a fixed-frequency system. The fre-
quency of the system is producing a field in the airgap rotating at the synchronous
speed w,. Meanwhile, the motor shaft is rotating at an angular speed w. Both speeds
are equal at the steady state, but during starting, braking, or speed control, the speed
of the shaft differs from the synchronous speed.

FIGURE 11.12
Synchronous motor connected to a fixed-frequency system

Ey V;

~

External system
at fixed frequency
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FIGURE 11.13 The phasor diagram of Figure 5.39 is modified in Figure 11.13 to
Rotating phasor show the effect of the speeds on 8. Keep in mind that the vector in any
diagram of phasor diagram rotates at its own frequency. The frequency is seldom
synchronous machines shown in phasor diagrams because all variables are assumed to have
the same frequency during steady state, which is not the case here. The

v, ﬁ(nj stator voltage, which is connected to the constant-frequency utility

5 > system, rotates at the frequency that corresponds to w,. The rotor

equivalent field voltage E is also rotating, but at the frequency of

Ey the rotor circuit w. Hence, § is a function of the difference between
o the two speeds.
o= f(u)S — W)
or, in an explicit form,
4
7 = (0, — ®) (11.33)
Hence,
= w,f— jwdt (11.34)

Equations (11.32) and (11.34) form a nonlinear model for the traveling time of the
synchronous motor. If we also assume that the load torque is speed dependent, we
can rewrite Equation (11.32) as

]Eq% + Dw = Ksin(th - Jm dt) — T)w) (11.35)

Even if we assume that the synchronous speed, load torque, and all voltages are
constant, Equation (11.35) cannot be solved easily without using numerical
methods.

For small changes in speed, we can approximate the solution of Equation (11.32)
by assuming that the variation in 8 is small. If this approximation is valid, we can ar-
rive at an approximate solution in a few steps.

Let us find the second derivative of Equation (11.32).

d’w do s 4T,

]"QP + D;; = (K cos ) *7 - —=

Substituting equation (11.33) into the above equation yields

Jeg 52 + D+ (Kcosd) w = (Kcosd) o, — —°
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Rewrite the equation as

o D do Kcosd =~ wKcosd 1 dI;

—_— + w =

2
dt ] eq dt ] eq ] eq ] eq dt
If the motor operates at a relatively small value of 3, a little variation in 8 does not
affect the value of (cos 8). Also, if we assume that the load torque is constant,

dT,/dt = 0.

(11.36)

d’0 D do Kcosd o K cos d
el o = N8O

+ +
dtz ]eq dt ]eq ]e(/

This equation can be written in the popular second-order form used often by con-
trol engineers:

where

The solution is in the form
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—Ew, ¢ —Ew, ¢t
© = mf[l - \;T_i?sm (0, V1 — &1+ e)] + W [\;14__52 sin (0,V1 — &1 + e)} (1137)

where
f = cos ‘&
w; = w(t = 0); initial speed

wp =t = 1) final speed

CHAPTER 11 PROBLEMS

11.1  The system in Figure 11.2 consists of a wheel driven by a dc motor. The wheel
is driving a piston pump. The system mass is 10 kg and the wheel radius is
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1 meter. The length of the piston rod is 3 meters. Compute the maximum and
minimum values of the system’s moment of inertia.

112 A dc, separately excited motor is rated at 10 hp and 300 V. The rotor re-
sistance of the motor is 1 €, with an inductance of 12 mH. The field con-
stant (Kd) of the motor is 4 V sec. The inertia of the entire system is 10
Nim sec?, and the load torque is constant and equal to 50 Nm. The motor
rotates at 1500 rpm. If the voltage of the motor is reduced to 200 V, com-
pute the new steady-state speed. Also, plot the speed of the motor as a
function of time during the transition.

113 A 500V, dc shunt motor has the following parameters:
Ko = 3.0V sec R,=10 L,=10mH

The load connected to the motor is a constant torque of 20 Nm. The total
moment of inertia of the entire drive system is 4 Nm sec’. The voltage of the
motor at starting is 150 V.

Calculate and plot the motor speed versus time.

Calculate the motor speed after 5 seconds.

Calculate the starting time.

The motor reaches the steady-state speed and the terminal voltage is at
full value. To decrease the motor speed, the terminal voltage is reduced
by 10% while the field remains constant. Calculate the traveling time.

114 A 480 V, 60 Hz, three-phase induction motor has a rated speed at full load
of 1720 rpm, stator resistance of 1 Q, rotor resistance of 1 £}, and equivalent
winding reactance of 4 (). Compute the starting time of the motor at no load
and at full voltage and frequency. The inertia of the motor is 3 Nm sec”.

115 A20hp, 480V, 60 Hz, three-phase induction motor has a rated speed at full
load of 3500 rpm, stator resistance of 1 Q, rotor resistance of 1 €, and equiv-
alent winding reactance of 5 (). Compute the starting time of the motor at
full Toad and at full voltage and frequency. Assume that the load torque is
constant. The inertia of the motor is 3 Nm sec’.

oo o e

11.6 Compute the countercurrent traveling time of the induction machine in
Problem 11.4, assuming that the motor is running at no load.

117 A four pole induction motor with the following parameters is running at no

load:
T —30Nm R, =020 R,=05Q

max

- - 2
X, =150 Jog = 1.4 Nm sec

a. At starting, a resistance equal to the rotor resistance is added to the ro-
tor circuit. Calculate the starting time.

b. At countercurrent braking, a resistance equal to half the rotor resist-
ance is inserted in the rotor circuit. Compute the braking time.






dynamic braking, 275-277
braking current, 276
PWM, 276
solid state, 275
stationary field, 275-276
windings arrangements, 276
regenerative braking, 269-275
induction generator, 270, 273
negative slip, 271, 273
v/f control, 273
wind machine, 270
Buck-boost converter, 69
Buck converter, 69

Carrier signal, 85
Center tap transformer, 169, 174
Charging a battery, 88-92
Chopper, 69-71
Components of electric drive
system, 5
Compound excited motor, 123-125
no load, 125
starting, 125
Conduction period, 50, 75
Continuous current, 59, 63,
171-172
Controllers, 10-11
Converters, 9-10, 31-104
ac/dc, 31-68
inductive load, 46-57
resistive load, 31-45
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dc¢/dce converter, 69-73
electric power, 3740
power factor, 4143
root mean squares {rms), 34-36
single-phase dc/ac converter,
73-74
three-phase ac/dc converter, 74-80
Core saturation, 220, 222
Current gain B, 14, 16, 22
Current source inverter, 98-101,
220-223
Cutoff region, 14-15

Darmage to electric machines, 152
Darlington transistor, 22
dc link, 10-11, 201
dc motor, 112-125
compound excited motor, 123-125
dynamics. See Dynamics of dc
motor
Lorentz force, 116
magnetomotive force, 116, 129
separately excited, 115-120
series excited motor, 120-123
shunt excited motor, 120
speed control. See Speed control of
dc motor
dc motor braking. See Braking of dc
motor
dc/ac converters, 73-87
dc/dc converters, 69-73
di/dt protection, 25-30
Discharging a battery, 92-95
Discontinuous current, 59
Displacement power factor, 42
dv/dt protection, 25-30
Dynamics of dc motor, 290-295
braking time, 295
starting time, 292
traveling time, 290-295
Dynamics of electric drives. See
Dynamics of specific machines
concept of traveling time, 286-287
gears and belts, 287-289
inertia torque, 286287
kinetic energy, 285
moment of inertia, 284-289
variable moment of inertia,
285-286
Dynamics of induction motor,
295-302
loaded motor, 301-303
starting, 302
unloaded motor, 297-301
braking, 299-301
starting, 298
Dynamics of synchronous motor,
303-305



Electric motors. See specific type (e.g.,
induction or synchronous)
damage due to operation, 152
dynamics. See Dynamics of specific
machines
Electric power, 3741
displacement power factor, 42
harmonics method, 3840
instantaneous power method,
37-38
rms method, 37
Energy recovery, 87-97
charging a battery, 88-92
discharging a battery, 92-95
three-phase, 95-97

Faraday’s law, 116, 129

Field effect transistor, 16~18

Field reversal, 278

Four-layer diode. See Thyristor
Four-quadrant drives, 108-109
Freewheeling diode, 53-57, 174-175

Gate current, 20
Gears and belts, 287-289
Gravitational load, 6, 246, 261, 262

Harmonics method for power
calculation, 3840

Induction generator, 270, 273
Induction motor, 126-143
airgap flux, 127-128
braking. See Braking of induction
motor
dynamics. See Dynamics of
induction motor
equivalent circuit at standstill,
130-131
equivalent circuits, 130-134
large slip approximation, 138-139
Lorentz force, 129
maximum torque, 140
number of poles, 129
power flow, 134-137

INDEX

rotating field, 127-128

slip, 130

slip ring rotor, 126, 143

small slip approximation, 139-140

speed control. See Speed control of

induction motor

speed-torque characteristics, 138

squirrel cage rotor, 126

starting, 142-143

synchronous speed, 128-129
Inductive load, 46-57

average power, 51-52

average voltage, 50-51
Inertia torque, 286-287
Instantaneous power, 37-38
Insulated gate bipolar transistor, 23-24
Inverter, 31-68

Junction-gate FET, 17
Junction temperature, 24

Kinetic energy, 233, 244, 285

Large slip approximation, 138-139
Linear region of transistor, 14-15
Line shaft drives, 2, 3

Load line, 15-16

Lorentz force, 116, 129

Magnetomotive force, 114, 116, 129
Maximum torque, 140
Mechanical load, 2-8
line shaft drives, 2, 3
multi-motor drives, 4
single-motor single-load drives, 3
torque independent of speed, 7
torque inversely proportional to
speed, 8
torque linearly dependent on
speed, 7
torque proportional to the square
of speed, 8
Metal-oxide FET, 17
Moment of inertia, 284-289
Multi-motor drives, 4
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Phase sequence, 278
Period, 75
conduction period, 50, 75
switching interval, 75
time segment, 75
Power, 3741
displacement power factor, 42
harmonics method, 38—40
instantaneous power method,
37-38
rms method, 37
Power factor, 41-43
Power sources, 9
Pulse-width modulation (PWM),
84-87

Quadrants of operation, 108, 232,
234 278

Rating of power electronic devices,
24-26
junction temperature, 24-25
maximum dz/dt, 25-30
maximum dv/dt, 25-30
steady-state ratings of PE devices, 24
surge current, 25
switching time, 25
Reactive power, 147-149
Recovery power, 205-206
Reference signal, 85
rms voltage of full-wave circuit,
44-45
rms voltage of half-wave circuit,
34-35
Root-mean squares, 34-35
Rotating field, 127-128

Saturation region of transistor, 14-15
Scherbius circuit, 201
Separately excited motor, 115-120
starting, 117-120
starting current, 117
starting torque, 117
Series excited motor, 120-123
starting, 122-123

Shunt excited motor, 120

Silicon-controlled rectifier. See
Thyristor

Single-motor single-load drives, 3

Slip, 130

negative slip, 271, 273

Slip energy recovery. See Speed
control of induction motor

Slip power, 204-205

Slip ring, 126, 143

Small slip approximation, 139140

Snubbing circuit, 26-28

Solid-state devices. See specific device
(such as transistor)

Speed control of dec motor. See Speed
control of separately excited or
speed control of series motor

separately excited, 156-175
series motor, 176-182
Speed control of induction motor,
189-230
current source, 220-227
characteristics, 223
core saturation, 220, 222
effect of saturation, 222-223
equivalent circuit, 221
fixed frequency, 222-225
magnetizing current, 220-221
magnetizing reactance, 222
variable frequency, 225-227
frequency, 190, 211-217
excessively high frequency,
212-216
excessively low frequency,
216-217
maximum torque, 212
no-load speed, 211-212
speed at maximum
torque, 213
starting current, 213
starting torque, 213
inductance, 190, 209
rotor resistance, 190-194
efficiency, 191194
maximum torque, 143, 191



slip energy recovery, 190, 200-209
airgap power, 201, 205
average voltage, 202, 203
dc link, 201
efficiency, 204-206
range of triggering angle, 203
recovery power, 205-206
slip power, 204-205
speed, 203, 207
static Scherbius circuit, 201
torque, 206-208
terminal voltage, 190, 209-211
phase control, 209-210
voltage/frequency, 190, 217-220
fixed v/f ratio, 218
maximum torque, 218
starting current, 218
voltage injection, 190, 194-200
equivalent circuit, 195
no-load speed, 197
starting current, 200
Speed control of separately excited
motor, 156-175
armature resistance, 157-160
armature voltage, 157, 160-161
field voltage, 157, 161-164
solid state control, 165-175
center tap transformer, 169, 174
conduction period, 166, 170-173
continuous armature current,
171-172
diode current, 174-175
discontinuous armature current,
171-173
free-wheeling diode, 174-175
instantaneous current, 175
single-phase, full-wave, 169-173
single-phase, half-wave, 165-169
voltage across armature
inductance, 167
Speed control of series motor,
176-182
armature resistance, 176-177
armature voltage, 176, 178
field voltage, 176, 178-182

INDEX

Speed—torque characteristics,
105-111
bi-directional drive system,
106-107
compound excited motor, 124~125
electric motor, 8, 112-152
four-quadrant drives, 108-109
induction motor, 139-143
separately excited, 117-118
series excited motor, 121-123
shunt excited motor, 120
synchronous motor, 151
Squirrel cage, 126
Static Scherbius circuit, 201
Stationary field, 114, 275-276
Steady-state ratings of PE devices, 24
Step-down convertet. See Buck
converter
Step functions, 32, 48
Step-up converter. See Boost
converter
Surge current, 25
Switching interval, 75
Switching time, 25
Synchronous motor, 144-152
dynamics. See Dynamics of
synchronous motor
equivalent circuit, 146
power angle, 148
power flow, 149-150
reactive power, 147-149
starting, 151-152
synchronous reactance, 146-147
synchronous speed, 150, 151
Synchronous speed, 129, 150,
151,304

Three-phase converter, 58-68, 74-80,
95-97
Three-phase energy recovery, 95-97
Thyristor, 18-22
four-layer diode, 18-19
silicon-controlled rectifier, 19-22
Time segment, 75
Torque independent of speed, 7
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Torque inversely proportional to
speed, 8
Torque linearly dependent on
speed, 7
Torque proportional to the square of
speed, 8
Transistor, 13-17, 22-24
bipolar, 13-16
current gain 8, 14, 16, 22
cutoff region, 14-15
darlington transistor, 22
field effect transistor, 16-18
insulated gate bipolar transistor, 23
junction-gate FET, 17
linear region, 14-15
load line, 15-16
metal-oxide FET, 17
saturation region, 14-15

Traveling time of electric drive,
286287

Uninterruptable power supply, 11
Unidirectional load. See Gravitational

load

Variable moment of inertia, 285-286
v/f control, 273
Voltage across inductance,
47-52, 167
Voltage/frequency control. See Speed
control of induction motor
Voltage injection. See Speed control
of induction motor

Wind machine, 270





