

Ст. преподаватель Васильева Елена Александровна

Лекция 1. Традиционная энергетика. Общие положения.

<u>Традиционные способы получения</u> <u>энергии:</u>

- Сжигание ископаемого топлива;
- Деление ядер делящихся материалов (урана);
- Механическая работа воды.

Традиционные виды топлива:

- Твердые (уголь, торф, дрова; горючие сланцы, руды делящихся материалов);
- Жидкие (мазут, продукты нефтепереработки; газовый конденсат);
- Газообразные (природный газ).

Топливно-энергетический комплекс (ТЭК) -

— это система, включающая совокупность производств, процессов, материальных устройств по добыче топливно-энергетических ресурсов (ТЭР), их преобразованию, транспортировке, распределению и потреблению как первичных ТЭР, так и преобразованных видов энергоносителей.

В ТЭК входят:

- нефтяная промышленность;
- угольная промышленность;
- газовая промышленность;
- электроэнергетика.

70 % электроэнергии вырабатывают на тепловых электростанциях - ТЭС. ТЭС делятся на конденсационные тепловые электростанции (КЭС), и теплоэлектроцентрали (ТЭЦ).

Основное оборудование ТЭС:

котел-парогенератор ПГ, турбина Т, генератор Г, конденсатор пара К, циркуляционный насос Н.

Основное оборудование АЭС:

ядерный реактор ЯР, турбина Т, генератор Г, конденсатор пара К, циркуляционный насос Н.

Основное оборудование ГЭС:

водяная турбина ВТ, генератор Г,

Основные проблемы традиционной энергетики

- Традиционные виды топлива исчерпаемые ресурсы;
- Отчуждение земель для складирования пустой породы;
- Загрязнение атмосферы при складировании отвалов и их возгорании;
- Загрязнение окружающей среды при погрузке/разгрузке, транспортировке и хранении топлива;

- Загрязнение атмосферы продуктами сгорания ископаемого топлива;
- Тепловое загрязнение атмосферы и воды;

Экологические проблемы АЭС

- Размещение радиоактивных отходов;
- Тепловое загрязнение атмосферы и воды;

Экологические проблемы ГЭС

- отчуждение значительных площадей пойменных земель под водохранилища;
- засорение территорий

Для всех ЭС:

 создание электромагнитных полей вокруг линий электропередач (ЛЭП).

Альтернативные (возобновляемые) источники энергии:

- энергия Солнца;
- энергия ветра;
- энергия течений и волн морей и океанов;
- энергия малых рек;
 - геотермальная энергия;
- низкопотенциальная тепловая энергия;
- энергия от сжигания альтернативного топлива.

Альтернативные виды топлива

Твердое: органическая часть ТБО; отходы древесины; топливные пеллеты и брикеты; биоуголь; осадки от очистки сточных вод и др.

Жидкое: биодизель; биоэтанол, биобутанол; пиролизная нефть; отходы масел и др.

Газообразное: биогаз; синтез-газ; пиролизный газ; водород;

Топливо условное -

- единица учёта тепловой ценности топлива, применяемая для сопоставления эффективности различных видов топлива и их суммарного учёта. В качестве единицы у.т. принимается 1 кг топлива с теплотой сгорания 7000 ккал/кг (или 29,3 МДж/кг).

$$B_{\mathbf{y}} = \frac{\mathcal{Q}_{\mathbf{H}}^{\mathbf{p}}}{7000} B_{\mathbf{H}} = 9 \cdot B_{\mathbf{H}},$$

Энергетический потенциал

в зависимости от степени учета техникоэкономических аспектов применения:

Валовый потенциал - это среднемноголетнее количество энергии, заключенное в данном виде энергоресурса, при условии ее полного полезного использования.

Технический потенциал - это часть валового потенциала, преобразование которого в полезную энергию возможно при современном уровне развития технических средств и экологических ограничениях.

Экономический потенциал - часть технического потенциала, который экономически целесообразно преобразовывать в полезную энергию при конкретных экономических условиях.

В зависимости от качества энергии:

механическую работу.

Коэффициент полезного действиядоля энергии источника, которая может быть превращена в

Оценка потенциала ВИЭ в России

Ресурсы	Валовый потенциал, млн. т у.т./год	Технический потенциал, млн. т у.т./год	Экономический потенциал, млн. т у.т./год
Энергия ветра	44326	2216	11
Малая гидроэнергетика	402	126	70
Солнечная энергия	2 205400	9695	3 -12,5
Энергия биомассы	467	129	35- 69
Геотермальная энергия (гидротермальные ресурсы)		11869	114
Низкопотенциальное тепло	563	194	53
ИТОГО по ВИЭ	2 251158	24229**	320

- КПД механических АИЭ: гидроэнергии 0,6-0,7; ветровой 0,3-0,4
- КПД лучистых и тепловых АИЭ (включая биомассу) - 0,3-0,35
- КПД фотоэлектрических АИЭ 0,15-0,3

Политика России в области ВИЭ. Энергетическая стратегия на период до 2020 г.

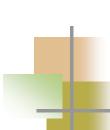
Стратегические цели:

- Сокращение потребления невозобновляемых ТЭР;
- Снижение экологической нагрузки от ТЭК;
- Обеспечение дальних регионов энергией;

ПП РФ №1р от 08.04.2010г.:

Показатели ВИЭ в производстве электроэнергии:

2020 г. – 4,5 %


Лекция 2. Солнечная энергетика.

Мощность солнечного излучение у поверхности Земли зависит от:

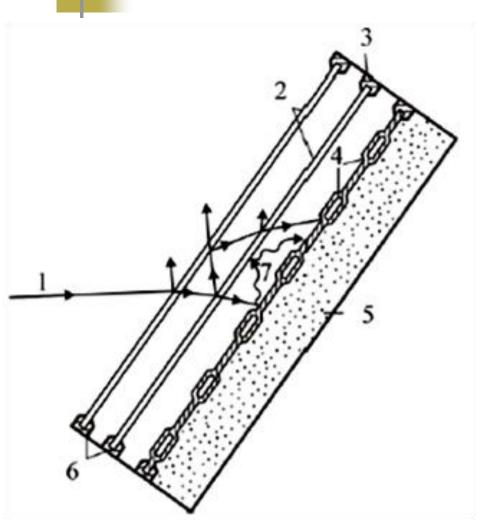
- Широты и долготы местности;
- Географических и климатических условий;
- Показателя атмосферной массы:

$$AM = (P/P_0) \cdot (1/\cos\theta);$$

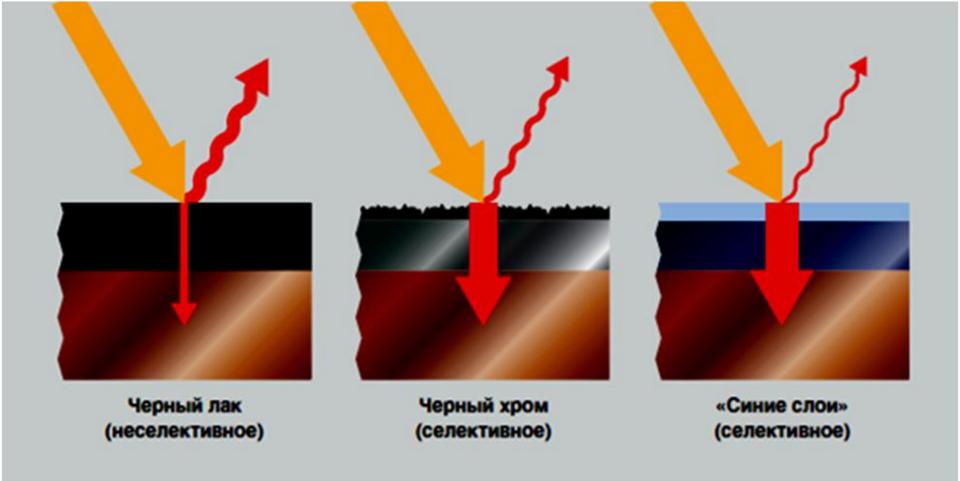
Состояния атмосферы (состав, температура)

Классификация солнечных установок:

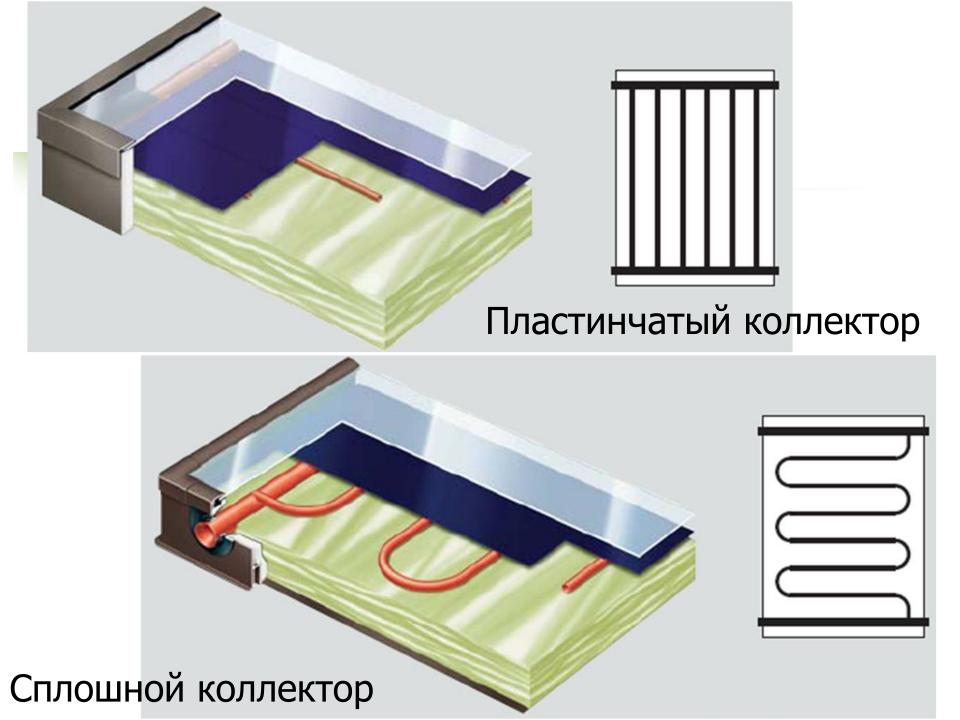
Тепловые и <u>электрические</u>


 \angle

фотоэлектричекие паротурбинные

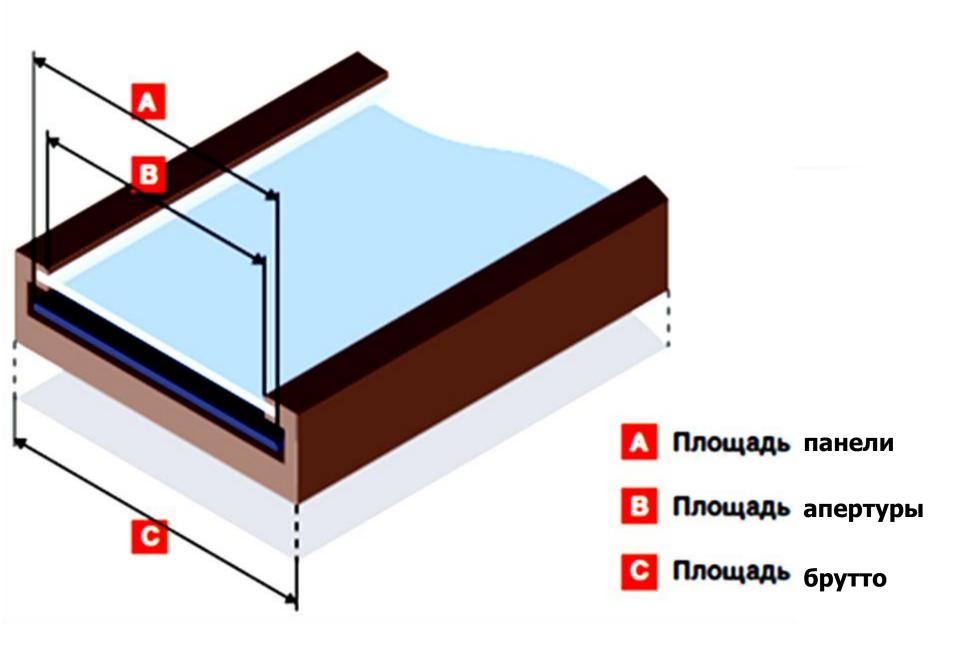

По концентрированию энергии:

- Без концентраторов
- С концентраторами
- Солнечные пруды



- 1 солнечное излучение;
- 2 остекление;
- 3 корпус;
- 4 поглощающая панель;
- 5 теплоизоляция;
- 6 уплотнитель;
- 7 собственное длинноволновое излучение панели.

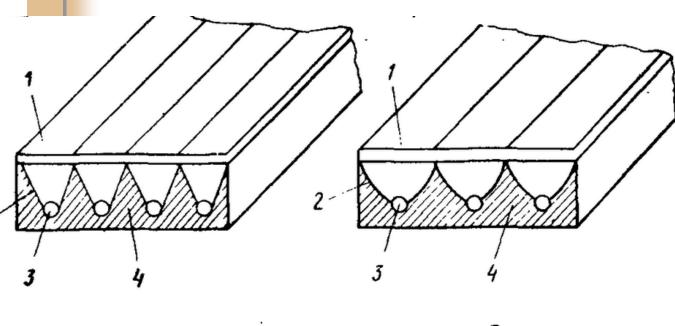
Поверхность	Способ	Коэффициент поглощения α	Коэффициент излучения є
Черный лак	Лакирование	0,95	0,85
Черный хром	Гальванизация	0,95	0,15
«Синие слои»	Напыление	0,95	0,05



Коэффициент полезного действия (КПД) и площадь апертуры КСЭ

КПД солнечного коллектора - доля солнечного излучения, попадающая на площадь апертуры коллектора, которая преобразуется в полезную тепловую энергию.

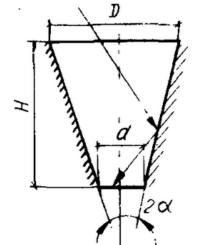
$$\eta = \eta_0 - \frac{k_1 \cdot \Delta T}{E_a} - \frac{k_2 \cdot \Delta T^2}{E_a}$$

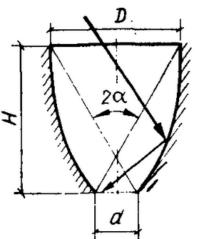

Площадь апертуры коллектора - это максимальная проецируемая площадь, через которую может поступать солнечное излучение.

Вакуумированный трубчатый коллектор

Концентрирующие водонагреватели с фоклинами

а — двугранный;

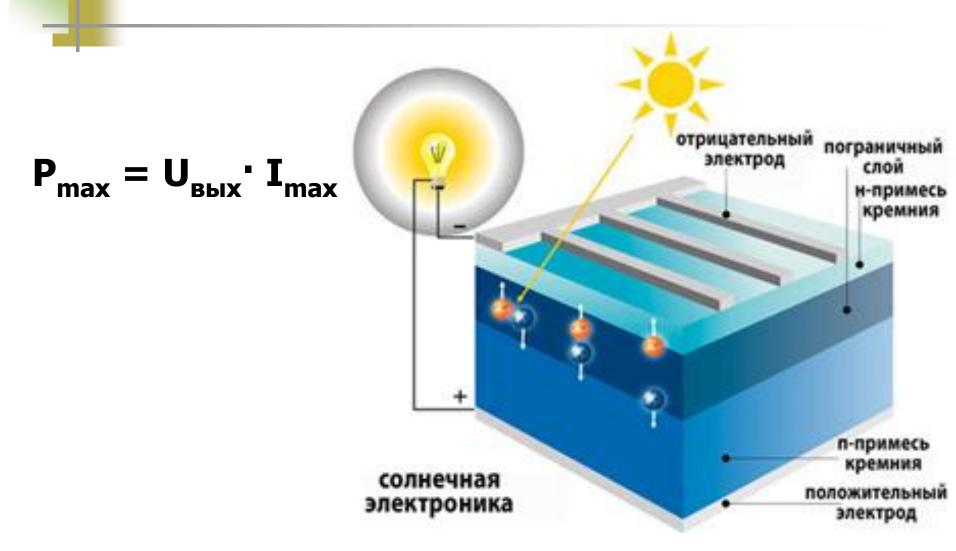

б — параболоцилиндрический;

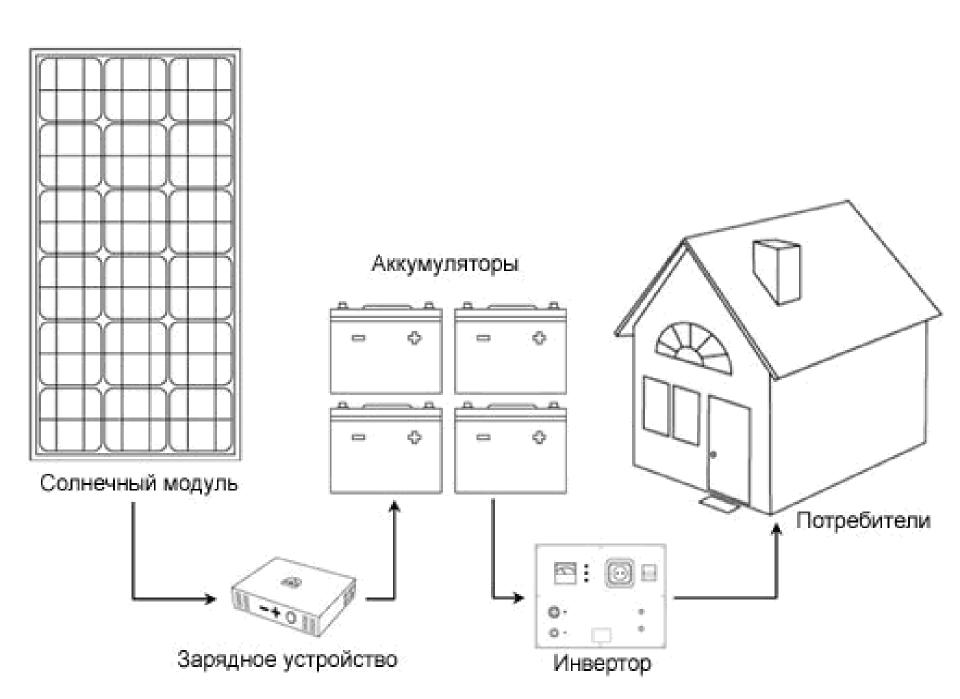

прозрачное покрытие;

2 — отражающая поверхность;

3 - каналы степлоносителем;

4 — теплоизоля-ция

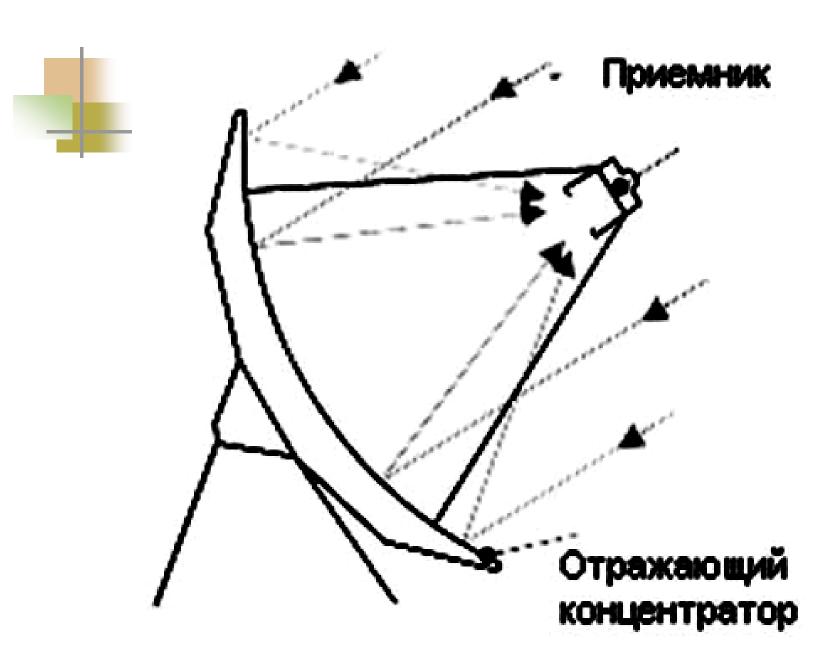



Фотоэлектрические преобразователи

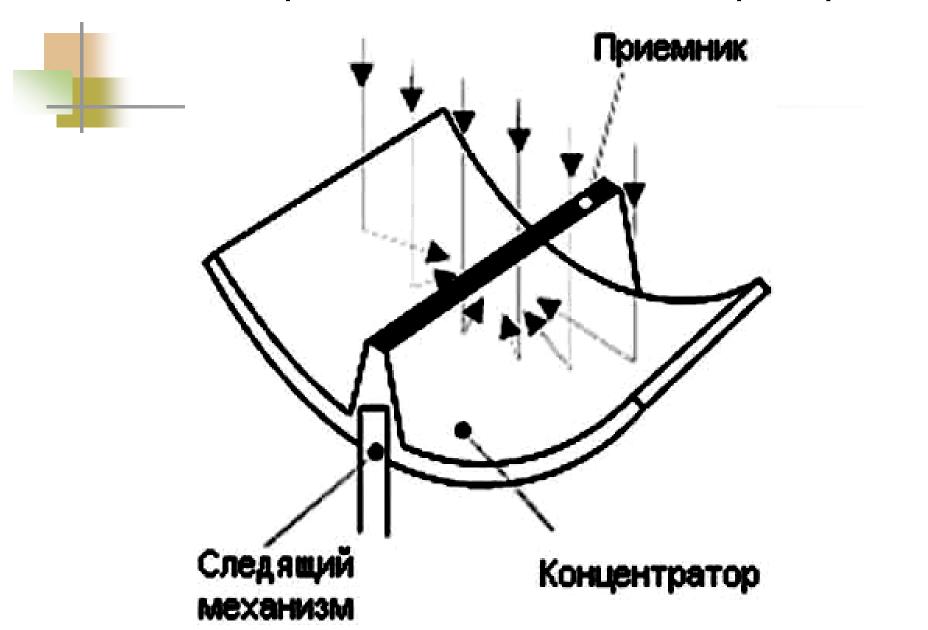
Для преобразования солнечной энергии в электрическую используются специальные солнечные батареи (модули) состоящие из множества ячеек - фотоэлементов.

Фотоэлемент — это особый вид полупроводникового диода, который преобразует солнечное излучение в видимом, инфракрасном и ультрафиолетовом диапазонах в электроэнергию.

Кремниевый фотоэлемент (КФЭ)



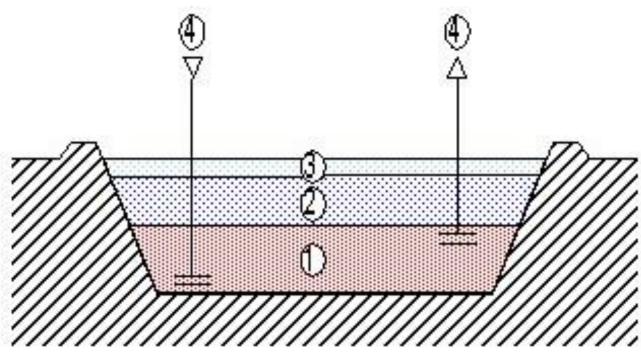
Солнечные ___ ТЭС


Приемник Гелиостаты Башня

Башенная СТЭС

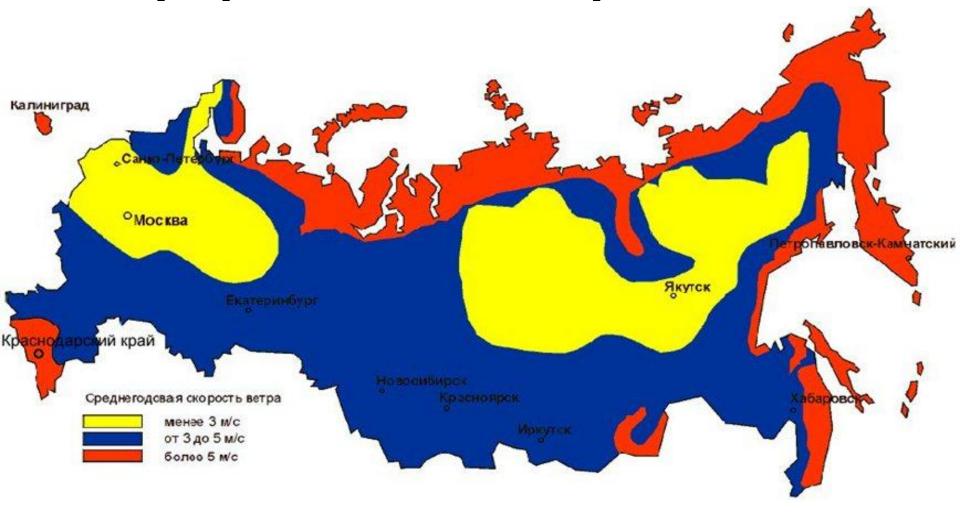
Тарельчатая СТЭС

СТЭС с параболическим концентратором



Комбинированные СТЭС

Солнечные пруды


- 1. Высокая концентрация соли 2. Средний слой.
 - 3. Низкая концентрация соли
- 4. Холодная вода "в" и горячая вода "из"

Лекция 3. Ветроэнергетика

Целесообразность применения ветроэнрегетических установок (ВЭУ) напрямую связана с расположением ветровых зон.

«Национальный Кадастр ветроэнергетических ресурсов России» содержит систематизированный свод сведений о полученных эмпирическими и расчетными методами динамических и энергетических характеристиках ветра в приземном и пограничном слое атмосферы, его временной и пространственной структуре и изменчивости на территории России, а также об энергетической и экономической эффективности современных ВЭУ в различных ветроклиматических регионах страны.

Графический кадастр

Скорость ветра

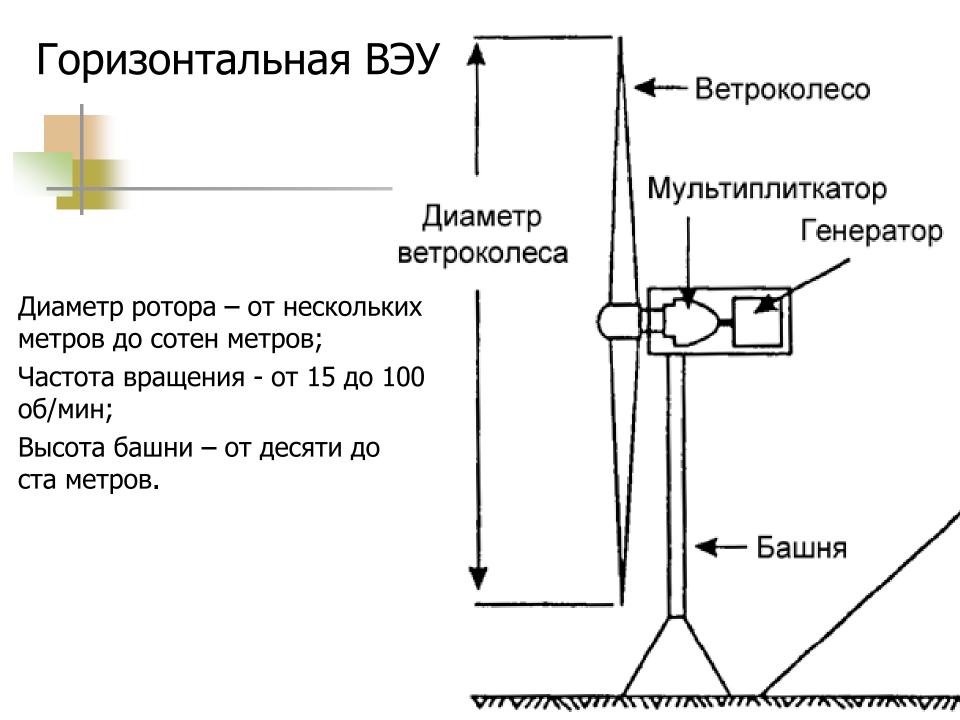
До высоты 100 м скорость ветра может быть приблизительно определена по формуле: $h - h_0$

 $\omega_h = \omega_0 ln \frac{h - h_0}{h_{IIP}}$

Удельная мощность ветрового потока, проходящего через единицу площади поперечного сечения, определяется по формуле:

$$N_{\rm B} = \frac{m \cdot \omega^2}{2}, \frac{\rm BT}{\rm M^2}$$

Классификация ВЭУ

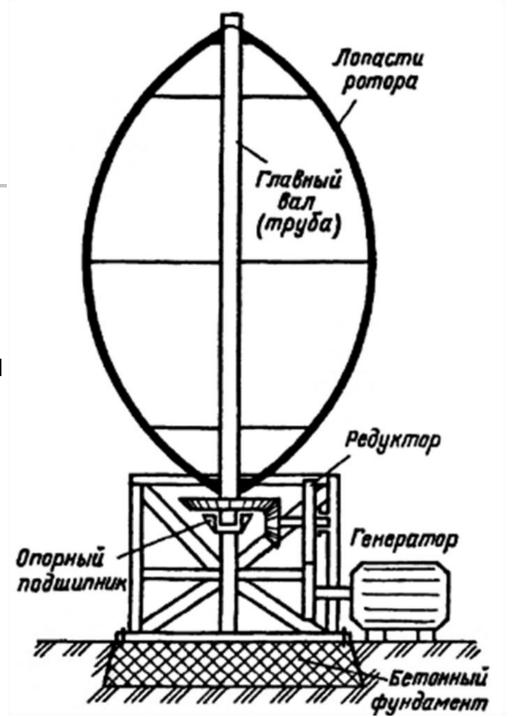

По мощности:

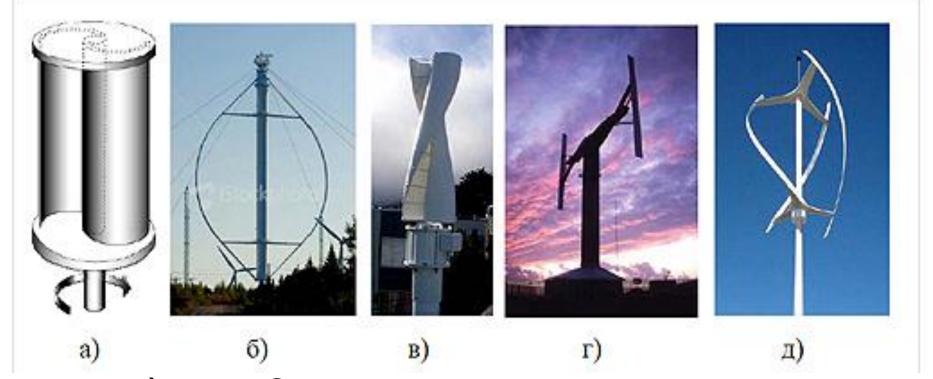
- малые до 10 кВт;
- средние 10-100 кВт;
- крупные 100-1000 кВт;
- сверхкрупные свыше 1000 кВт.
- По отношению рабочего колеса к направлению воздушного потока:
- горизонтальные (параллельные);
- вертикальные.

Мощностные режимы работы ВЭУ:

- **1 режим** $-0 \le \omega \le \omega_p^{min}$ мощность ВЭУ нулевая, т.к. скорость ветра недостаточна для запуска турбины;
- **2 режим** $\omega_p^{\text{min}} \le \omega \le \omega_p^{\text{max}}$ оптимальный режим работы, мощность меняется в зависимости от скорости ветра и частоты вращения ротора;
- **3 режим** $\omega > \omega_p^{\text{max}}$ мощность ВЭУ нулевая, т.к. возникает принудительное торможение ротора и он разворачивается параллельно вектору скоростей ветра.

Для малых и средних ВЭУ $\omega_p^{min} = 2,5...4$ м/с, $\omega = 8...10$ м/с; для крупных ВЭУ $\omega_p^{min} = 4...5$ м/с,


Вертикальная ВЭУ (ротор Дарье)


Достоинства:

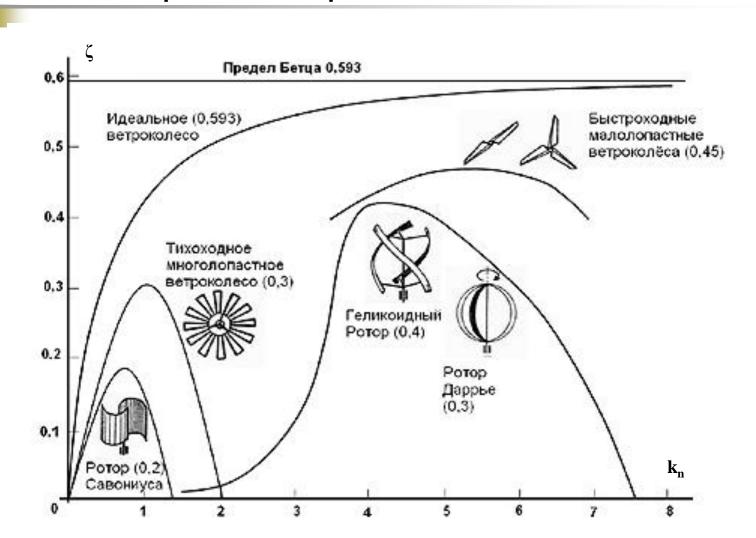
- способны работать и при меньшей мощности ветра;
- не требуется сооружения очень прочной башни.

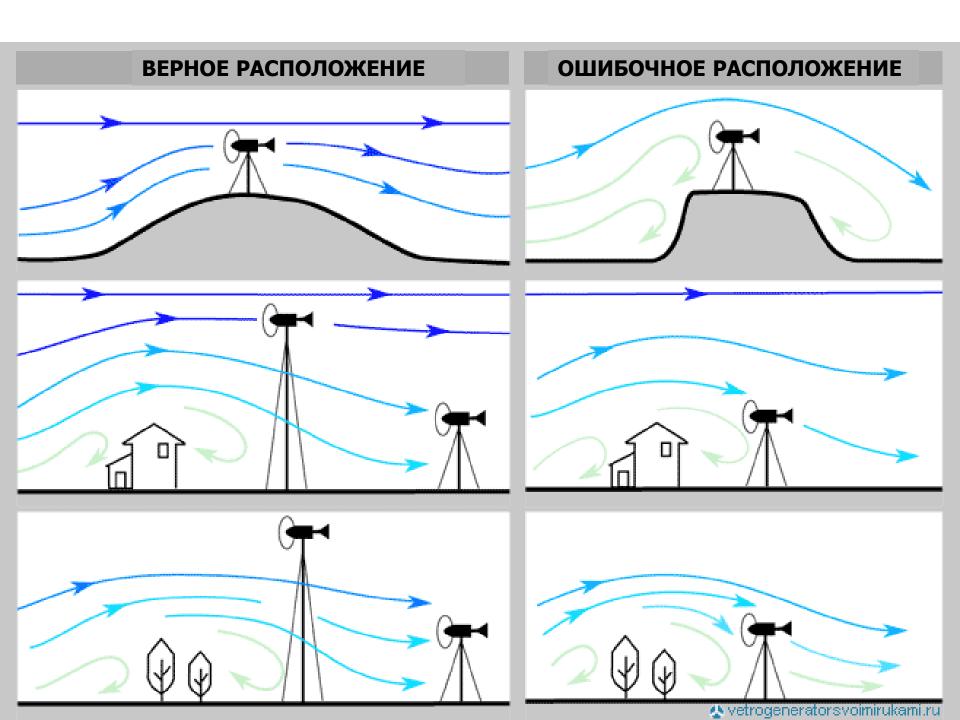
Недостатки:

- работает лишь половина лопастей;
- конструкция занимает большую территорию

- а) ротор Савониуса
- б) ротор Дарье
- в) ротор Виндсайт (разновидность ротора Савониуса)
- г) ротор Масгроува
- д) геликоидная турбина Горлова

«Росток»

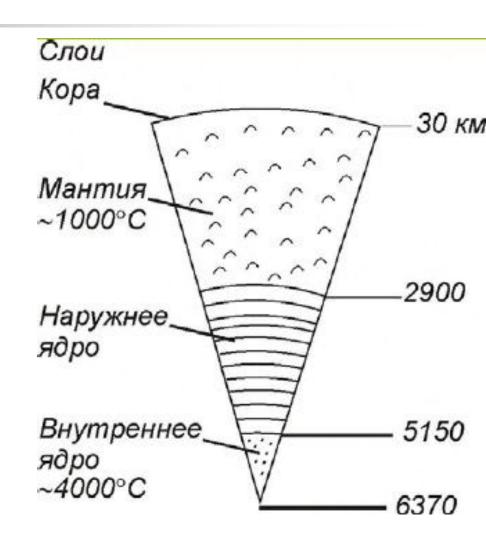

OCA-300-12



Коэффициент использования энергии ветра -

- отношение механической мощности, развиваемой ветродвигателем, к механической мощности воздушного потока, протекающего через пространство, ометаемое рабочими поверхностями ветродвигателя (ζ). Для идеального ветродвигателя, в котором не учитываются никакие потери, величина $\boldsymbol{\zeta}$ не может быть более 0,593 - предел Бетца.

Быстроходность ветрогенератора (kn) — это отношение линейной скорости наиболее удаленной от оси вращения ветродвигателя точки лопасти к скорости ветра.



Лекция 4. Геотермальная

энергетика

Интервал глубины, на котором наблюдается повышение температуры на 1°C называется геотермической ступенью.

- 1) Геотермальные. Температурный градиент более 80°С/км. Расположены в тектонических зонах на границе континентальных плит.
- 2) Полутермальные. Температурный градиент от 40 до 80°С/км. Извлечение тепла производится из естественных водоносных пластов (*гидротерм*) или из раздробленных сухих пород.
- 3) Нормальные. Температурный градиент до 40°С/км. Этот класс наиболее распространен и пригоден для использования низкопотенциальных геотермальных установок.

По температуре геотермальные воды классифицируются на:

- ■Слаботермальные до 40 °C;
- ■Термальные 40-60°С;
- ■Высокотермальные 60-100°C;
- ■Перегретые более 100 °C.

Соффиони — подземные источники перегретого пара, образовавшиеся в результате нагрева грунтовых вод горячими газами от магматического очага.

По химическому составу:

- гидрокарбонатно-натриевые
- сульфатно-натриевые
- хлормагниевые
- хлоркальциевые

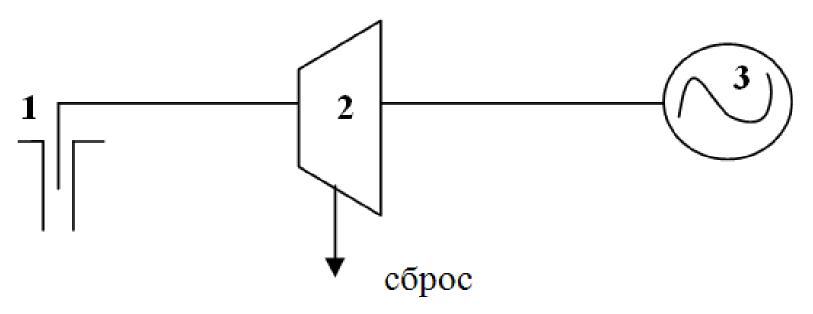
1

По степени минерализации:

- пресные до 1 г/л;
- солоноватые 1-10 г/л;
- соленые 10-50 г/л
- рассолы— более 50 г/л (до 600 г/л)

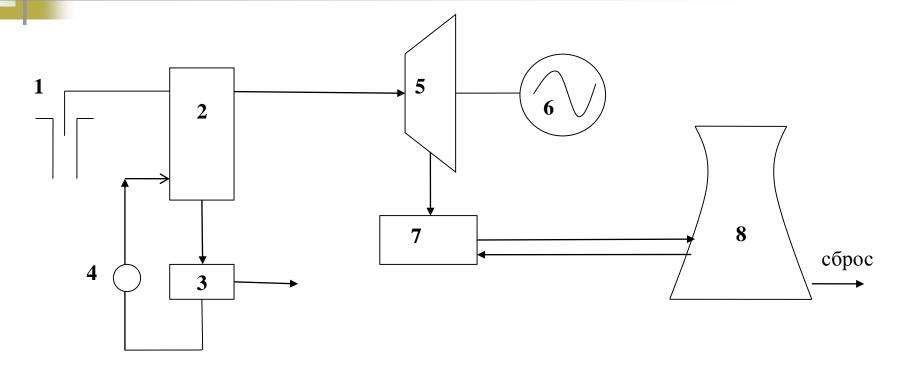
По степени водоотдачи скважины бывают:

- малодебитные до 0,005 м³/с;
- среднедебитные − 0,005-0,02 м³/с;
- высокодебитные более 0,02 м³/с



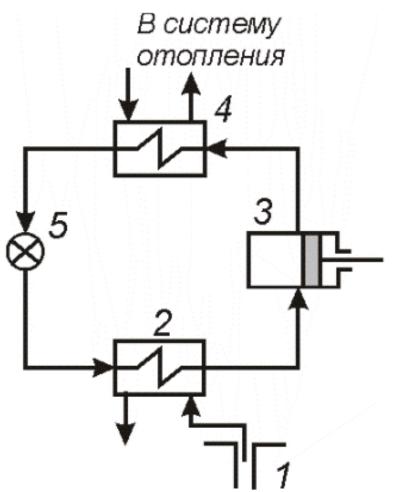
Наиболее рационально использовать термальные воды в последовательном цикле: электроэнергия — отопление — горячее водоснабжение.

Если температура воды менее 120 °C, то первая ступень исключается.



Открытая схема прямого действия для получения электроэнергии

1 — скважина (соффиони); 2 — паровая турбина; 3 — генератор


Открытая схема непрямого (косвенного) действия

- 1 скважина; 2 теплообменник; 3 дегазатор;
- 4 насос; 5 паровая турбина; 6 генератор; 7
- конденсатор; 8 градирня

Для получения электроэнергии и нагрева воды для ГВС используются схемы с тепловым насосом:

1 – скважина:

2 – испаритель;

3 – компрессор;

4 - конденсатор;

5 – регулирующий вентиль

Петротермальная энергия

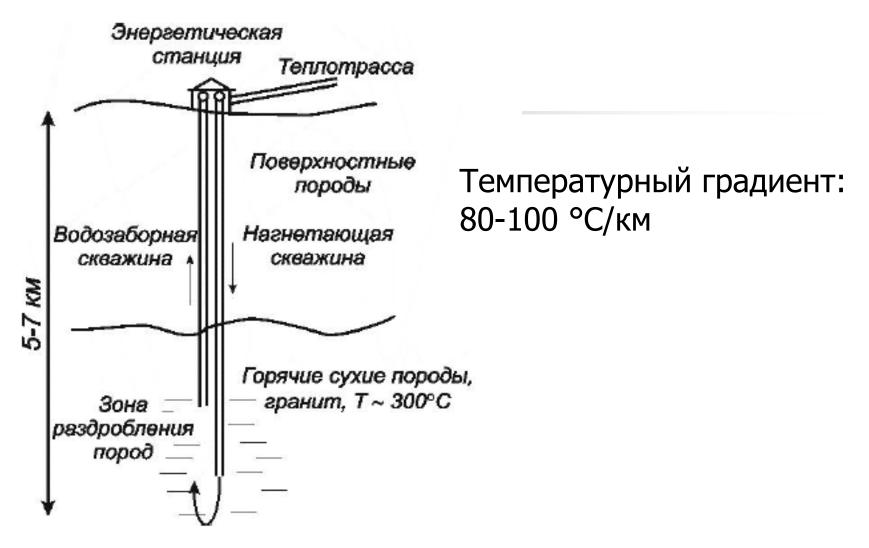


Схема извлечения тепла из сухих горных пород

Лекция 5. Энергия рек, морей и океанов

Классификация источников гидроэнергии:

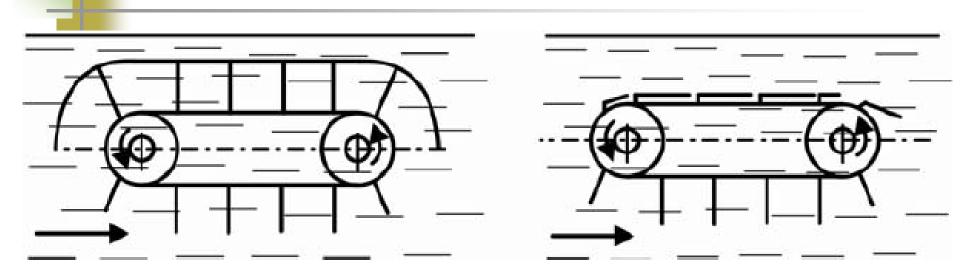
- 1) Свободнопоточные ГЭС:
 - а) речных течений;
 - б) течений в искусственных безнапорных водоводах;
 - в) непериодического течения;
- 2) Гидроаккумулирующие ЭС;
- 3) Приливные ГЭС;
- 4) Волновые ГЭС;
 - а) береговые;
 - б) в акватории в зоне свободных волн.
- 5) Низкопотенциальные ГТЭС

Свободнопоточные ГЭС

ПО НАПОРУ:

- высоконапорные (более 80 м),
- средненапорные (от 80 до 25 м)
- низконапорные (до 25 м)
 ПО ОТВОДУ ПОТОКА
- плотинные
- деривационные
- * К альтернативным речным ГЭС относятся малые, микро и нано ГЭС.

Турбина Каплана



Турбина Турго

Энергия морских и океанических течений

(а) ленточное колесо с воздушной камерой

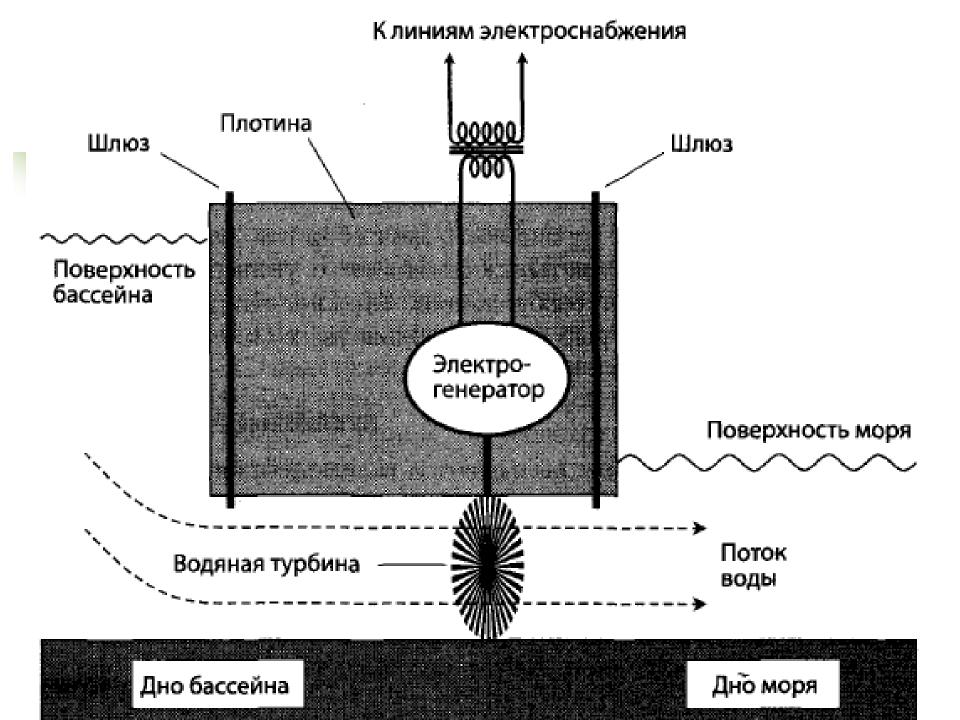
(б) колесо со складными лопастями

- 1. значительное заглубления в толщу воды и надежная якорная система;
- 2. устойчиво высокие, стабильные по скорости и направлению потоки;
- 3. ровный рельеф дна.

Гидроаккумулирующие ЭС

- два бассейна, расположенные на разных высотах.

В часы потребления энергии вода перетекает под напором из верхнего бассейна в нижний, вращая турбину. В часы спада потребления энергии вода перекачивается обратно в верхний бассейн.

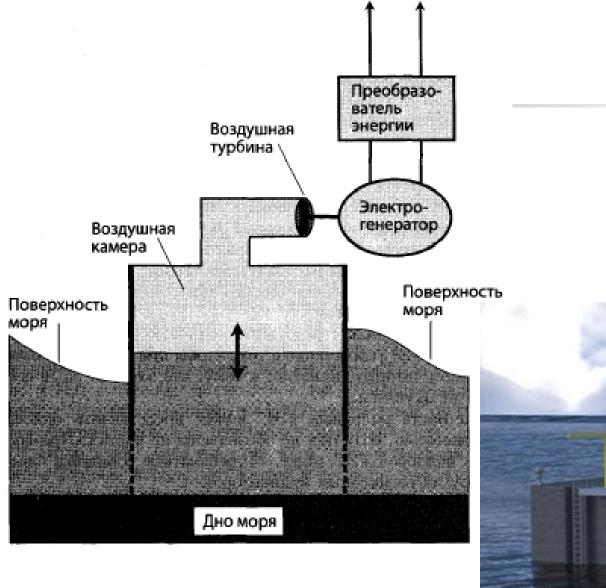

Приливные ГЭС

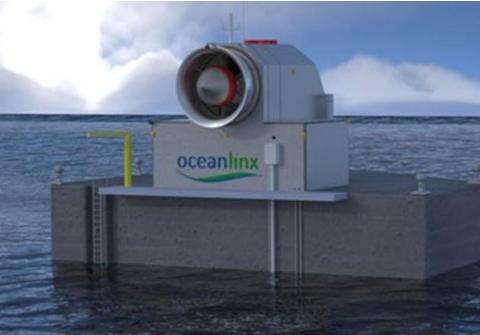

Максимальная мощность прилива:

$$W = \rho \cdot g \cdot S \cdot R^2$$
, BT

Электрическая мощность:

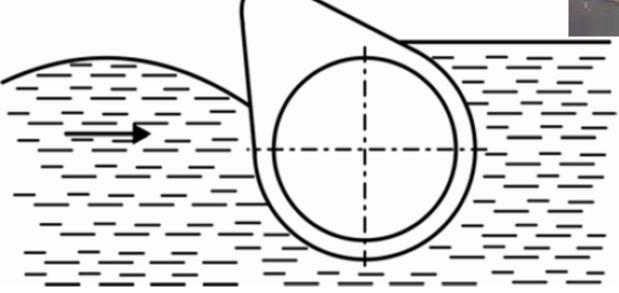
$$q_{cp} = 0.1 \cdot \rho \cdot \omega^3$$
, $\kappa BT/M^2$

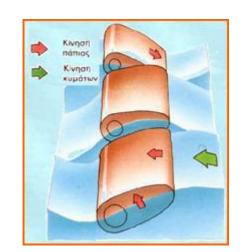

Волновой потенциал морей России:


Mope	Мощность, кВт/м	Mope	Мощность, кВт/м
Азовское	3	Охотское	12-20
Черное	6-8	Берингово	15-44
Балтийское	7-8	Японское	21-31
Каспийское	7-11	Баренцево	20-25

- 1. Использование давления вертикальных подъемов и спадов волны.
- 2. Использование горизонтального перемещения волн и угла их наклона.
- 3. Концентрация волн в сходящемся канале.

Поневмобуй Масуды





«Утка» Солтера

Португальские змеи Pelamis

Лекция 6. Получение энергии из биомассы и отходов

Pecypc	Метод	Подведенный энергоресурс
	прямое сжигание	тепловая и электроэнергия
Сухая древесина и ее отходы,	газификация	метанол, водород, аммиак
топливные брикеты и пеллеты	пиролиз	синтез-нефть, смола, пирогаз, биоуголь
	гидролиз	этанол
Осадки от механической и биологической очистки	прямое сжигание и плазменная обработка	тепловая и электроэнергия
сточных вод; органическая	газификация	синтез-газ (водород)
часть ТБО	анаэробная ферментация	биогаз
Фитомасса и	спиртовая ферментация	этанол
сахаросодержащие с/х отходы	анаэробная ферментация	биогаз
Вода	электролиз; фотолиз; биофотолиз	водород
Биогаз и природный газ	каталитическая конверсия (паровая)	водород

Прямое сжигание

- 1) Слоевое сжигание отходов в топке мусоросжигательного котла.
- 2) Сжигание отходов в псевдоожиженом слое.
- 3) Сжигание топливных пеллет и брикетов

Биохимическая переработка

- Биогаз анаэробная ферментация;
- Биодизельное топливо эритрификация;
- Биоэтанол спиртовое брожение;
- Биоводород ацетонобутиловое брожение, фотолиз

Термохимическая конверсия

- Пиролиз (сухая перегонка) конверсия органического сырья при температуре 450-600 °C без доступа воздуха с получением газообразного, жидкого и твердого топлива.
- Газификация сжигание биомассы при температуре 900-1500 °С в присутствии воздуха или кислорода и воды с получением синтезгаза.