ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МЕХАНИКИ ЖИДКОСТИ И ГАЗА

14.1. Предварительные замечания

В гл. 4 были выведены уравнения, выражающие основные законы механики применительно к модели сплошной среды:

закон сохранения массы;

закон изменения количества движения;

закон изменения момента количества движения;

закон изменения кинетической энергии;

закон сохранения энергии.

Эти законы были сформулированы для движущегося объема жидкости \forall , ограниченного произвольной замкнутой поверхностью A, а затем представлены в форме, позволяющей рассматривать A как зафиксированную в пространстве "контрольную" поверхность, сквозь которую протекает жидкость.

На основе указанных уравнений были получены зависимости — уравнение Бернулли, формула Борда, гидравлическое уравнение неразрывности, уравнение гидравлического прыжка и другие для интегральных характеристик потоков в трубах и каналах, таких, как средняя скорость у, напор Н и т.п. Эти зависимости позволяют решать многие практические задачи, часть которых рассмотрена в предыдущих главах. Вместе с тем, многие практически важные задачи требуют, чтобы в процессе решения были найдены не только интегральные, но и локальные (мгновенные местные) значения гидромеханических характеристик. Например, при решении задач о силах, действующих на тело, обтекаемое жидкостью или газом, или о тепло- и массопереносе в движущейся жидкой или газообразной среде необходимо, в частности, иметь возможность определить скорость в любой точке пространства. Для определения локальных значений гидромеханических характеристик необходимо представить законы механики для бесконечно малых объемов жидкости. Другими словами, следует записать их не в интегральной форме, как в предыдущих главах при рещении одномерных задач, а в дифференциальной. Для этого обычно интегралы по поверхности А, ограничивающей контрольный объем \forall , преобразуют в объемные интегралы, а затем, объединяя объемные интегралы в один интеграл и учитывая, что размеры и форма контрольного объема ∀ произвольны, из равенства нулю интеграла, выражающего тот или иной закон механики, следует, что подынтегральное выражение равно нулю. Приравняв нулю подынтегральное выражение, получают дифференциальное уравнение, выражающее соответствующий закон механики.

14.2. Дифференциальное уравнение, выражающее закон сохранения массы

Уравнение, выражающее закон сохранения массы для контрольного объема жидкости **∀**, имеет вид

$$\frac{D}{Dt} \int_{\nabla} \rho d\nabla = 0. \tag{14.1}$$

Используя выражение для субстанциальной производной в форме (3.51), представим (14.1) в виде

$$\frac{\partial}{\partial t} \int_{\nabla} \rho d\nabla + \int_{A} \rho u_n dA = 0.$$
 (14.2)

Чтобы получить искомое дифференциальное уравнение, преобразуем поверхностный интеграл в объемный с помощью теоремы Остроградского—Гаусса (3.25), получим

$$\frac{\partial}{\partial t} \int_{\nabla} \rho d\nabla + \int_{\nabla} [\rho \operatorname{div} \mathbf{u} + (\mathbf{u} \cdot \operatorname{grad}) \rho] d\nabla = 0, \qquad (14.3)$$

где $\mathbf{u} \cdot \operatorname{grad} = \mathbf{u}_x \frac{\partial}{\partial x} + \mathbf{u}_y \frac{\partial}{\partial y} + \mathbf{u}_z \frac{\partial}{\partial z}$ — символическое равенство.

Поскольку объем ♥ ограничен зафиксированной в пространстве (неизменяющейся во времени) поверхностью А, то частную производную по времени можно подвести под знак интеграла. Объединив после этого объемные интегралы, получим

$$\int_{\nabla} \left[\frac{\partial \rho}{\partial t} + \left(\mathbf{u} \cdot \operatorname{grad} \right) \rho + \rho \operatorname{div} \mathbf{u} \right] d\nabla = 0.$$
 (14.4)

Уравнение (14.4) получено для произвольной области ♥, поэтому подынтегральное выражение должно быть равно нулю во всех точках пространства, занятого жидкостью. Действительно, если в какой-либо точке пространства подынтегральное выражение не равно нулю и, например, положительно, то в ближайшей окрестности этой точки (при условии непрерывности подынтегрального выражения) значения этого выражения также будут положительны. Если же в качестве объема ♥ возьмем эту окрестность, то получим, что интеграл (14.4) больше нуля (не равен нулю), что противоречит равенству (14.4). Следовательно, во всех точках пространства, занятого жидкостью, имеет место равенство

$$\frac{\partial \rho}{\partial t} + (\mathbf{u} \cdot \text{grad}) \rho + \rho \operatorname{div} \mathbf{u} = 0, \text{ или } \frac{D\rho}{Dt} + \rho \operatorname{div} \mathbf{u} = 0,$$
 (14.5)

которое и представляет собой дифференциальное уравнение, выражающее закон сохранения массы при использовании модели сплошной среды для описания движения жидкости.

Наиболее важен частный случай этого уравнения, когда жидкость несжимаема и ее плотность не зависит ни от времени, ни от пространственных координат (ρ = const):

div
$$\mathbf{u} = 0$$
 или $\frac{\partial \mathbf{u}_{\mathbf{x}}}{\partial \mathbf{x}} + \frac{\partial \mathbf{u}_{\mathbf{y}}}{\partial \mathbf{y}} + \frac{\partial \mathbf{u}_{\mathbf{z}}}{\partial \mathbf{z}} = 0.$ (14.6)

Уравнение (14.6) называют дифференциальным уравнением несжимаемости. Отметим, что если движение жидкости безвихревое и $\mathbf{u} = \operatorname{grad} \phi$, то потенциал скорости ϕ для несжимаемой жидкости должен удовлетворять уравнению Лапласа. В этом легко убедиться, подставив $\mathbf{u} = \operatorname{grad} \phi$ в (14.6):

$$\operatorname{div}\,\mathbf{u} = \operatorname{div}\,\operatorname{grad}\,\phi = \frac{\partial^2\phi}{\partial x^2} + \frac{\partial^2\phi}{\partial y^2} + \frac{\partial^2\phi}{\partial z^2} = \Delta\phi = 0 \ . \tag{14.7}$$

14.3. Дифференциальные уравнения, выражающие закон изменения количества движения (уравнения движения в напряжениях)

$$\frac{D}{Dt} \oint_{\nabla} \rho \, \mathbf{u} \, d\nabla = \oint_{\nabla} \rho \, \mathbf{f} \, d\nabla + \oint_{A} \mathbf{p}_{n} \, dA. \tag{14.8}$$

Используя векторную форму теоремы Гаусса—Остроградского (3.36), преобразуем поверхностный интеграл в объемный. Учитывая (3.47), подведем субстанциальную производную под знак интеграла и в результате представим (14.8) в виде

$$\int_{\mathbf{w}} \left(\frac{\mathrm{D} \rho \mathbf{u}}{\mathrm{D} t} + \rho \mathbf{u} \, \operatorname{div} \mathbf{u} - \rho \mathbf{f} - \mathrm{Div} \Pi \right) d \mathbf{\nabla} = 0. \tag{14.9}$$

Вследствие произвольности объема ♥ следует считать, что подынтегральное выражение равно нулю, т.е.

$$\frac{D\rho \mathbf{u}}{D\mathbf{t}} + \rho \mathbf{u} \operatorname{div} \mathbf{u} = \rho \mathbf{f} + \operatorname{Div} \Pi. \tag{14.10}$$

Это уравнение можно упростить, используя уравнение неразрывности (14.5); для этого преобразуем его левую часть:

$$\frac{D\rho \mathbf{u}}{Dt} + \rho \mathbf{u} \operatorname{div} \mathbf{u} = \rho \frac{D\mathbf{u}}{Dt} + \mathbf{u} \frac{D\rho}{Dt} + \rho \mathbf{u} \operatorname{div} \mathbf{u} = \rho \frac{D\mathbf{u}}{Dt} + \mathbf{u} \left(\frac{D\rho}{Dt} + \rho \operatorname{div} \mathbf{u} \right) = \rho \frac{D\mathbf{u}}{Dt}. \quad (14.11)$$

Подставим (14.11) в (14.10) и получим

$$\rho \frac{\mathbf{D}\mathbf{u}}{\mathbf{D}\mathbf{t}} = \rho \mathbf{f} + \mathbf{D}\mathbf{i}\mathbf{v}\boldsymbol{\Pi} \tag{14.12}$$

или в проекциях на координатные оси

$$\frac{Du_{x}}{Dt} = f_{x} + \frac{1}{\rho} \left(\frac{\partial p_{xx}}{\partial x} + \frac{\partial p_{yx}}{\partial y} + \frac{\partial p_{zx}}{\partial z} \right);$$

$$\frac{Du_{y}}{Dt} = f_{y} + \frac{1}{\rho} \left(\frac{\partial p_{xy}}{\partial x} + \frac{\partial p_{yy}}{\partial y} + \frac{\partial p_{zy}}{\partial z} \right);$$

$$\frac{Du_{z}}{Dt} = f_{z} + \frac{1}{\rho} \left(\frac{\partial p_{xz}}{\partial x} + \frac{\partial p_{yz}}{\partial y} + \frac{\partial p_{zz}}{\partial z} \right).$$
(14.13)

Уравнения (14.13) называются уравнениями движения в напряжениях или уравнениями Коши. Эти три уравнения содержат три неизвестные проекции скорости и девять неизвестных составляющих тензора напряжений. В разд. 14.5 будет введена связь между составляющими тензора напряжений и характеристиками поля скорости, которая позволит сократить количество неизвестных.

14.4. Дифференциальные уравнения, выражающие закон изменения момента количества движения

Уравнение, выражающее закон изменения момента количества движения для контрольного объема, имеет вид (см. (4.10))

$$\frac{D}{Dt} \int_{\nabla} (\mathbf{r} \times \mathbf{u}) \rho d\nabla = \int_{\nabla} (\mathbf{r} \times \mathbf{f}) \rho d\nabla + \int_{A} (\mathbf{r} \times \mathbf{p}_{n}) dA.$$
 (14.14)

В соответствии с (3.47) преобразуем левую часть (14.14):

$$\frac{D}{Dt} \int_{\mathbf{v}} (\mathbf{r} \times \mathbf{u}) \rho d\mathbf{v} = \int_{\mathbf{v}} \left\{ \frac{D}{Dt} [(\mathbf{r} \times \mathbf{u}) \rho] + (\mathbf{r} \times \mathbf{u}) \rho \operatorname{div} \mathbf{u} \right\} d\mathbf{v} =
= \int_{\mathbf{v}} \left\{ \left(\frac{D\mathbf{r}}{Dt} \times \rho \mathbf{u} \right) + \left(\mathbf{r} \times \frac{D\rho \mathbf{u}}{Dt} \right) + (\mathbf{r} \times \mathbf{u}) \rho \operatorname{div} \mathbf{u} \right\} d\mathbf{v}.$$
(14.15)

По определению субстанциальной производной (3.56)

$$\begin{split} \frac{\mathbf{Dr}}{\mathbf{Dt}} &= \frac{\partial \mathbf{r}}{\partial t} + \left(\mathbf{u} \cdot \mathbf{grad} \right) \mathbf{r} = 0 + \mathbf{u}_{x} \frac{\partial \mathbf{r}}{\partial x} + \mathbf{u}_{y} \frac{\partial \mathbf{r}}{\partial y} + \mathbf{u}_{z} \frac{\partial \mathbf{r}}{\partial z} = \\ &= \mathbf{u}_{x} (1, 0, 0) + \mathbf{u}_{y} (0, 1, 0) + \mathbf{u}_{z} (0, 0, 1) = \\ &= (\mathbf{u}_{x}, \mathbf{u}_{y}, \mathbf{u}_{z}) = \mathbf{u}, \end{split}$$

при этом

$$\frac{\mathbf{Dr}}{\mathbf{Dt}} \times \rho \mathbf{u} = (\mathbf{r} \times \mathbf{u}) \rho = 0.$$

Следовательно,

$$\frac{\mathbf{D}}{\mathbf{Dt}} \int_{\nabla} (\mathbf{r} \times \mathbf{u}) \rho d\nabla = \int_{\nabla} \left[\left(\mathbf{r} \times \frac{\mathbf{D} \rho \mathbf{u}}{\mathbf{Dt}} \right) + \left(\mathbf{r} \times \mathbf{u} \right) \rho div \mathbf{u} \right] d\nabla. \tag{14.16}$$

Чтобы преобразовать поверхностный интеграл

$$\int_{A} (\mathbf{r} \times \mathbf{p}_{n}) d\mathbf{A} = \int_{A} (\mathbf{r} \times \mathbf{n}\Pi) d\mathbf{A}$$
 (14.17)

в объемный, приведем его к виду, соответствующему формулировке теоремы Остроградского—Гаусса. Для сокращения выкладок вместо системы координат (x, y, z) используем обозначения (x_1, x_2, x_3) . Это позволяет ввести сокращенную форму записи сумм; одночленные выражения, в которых целочисленный индекс повторяется дважды, представляют собой сумму по всем возможным значениям индекса, например:

$$n_1 p_{13} = \sum_{i=1}^{3} n_i p_{13} = n_1 p_{13} + n_2 p_{23} + n_3 p_{33}.$$

Используя эту форму записи, преобразуем подынтегральное выражение в правой части (14.17):

$$\mathbf{r} \times (\mathbf{n} \square \mathbf{n}) = \begin{pmatrix} x_1, x_2, x_3 \end{pmatrix} \times \begin{pmatrix} n_1, n_2, n_3 \end{pmatrix} \begin{pmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{pmatrix} = \begin{pmatrix} x_1, x_2, x_3 \end{pmatrix} \times \begin{pmatrix} n_1 p_{11}, n_1 p_{12}, n_1 p_{13} \end{pmatrix} = \\ = \begin{pmatrix} x_2 & x_3 \\ \pi_1 p_{12} & \pi_1 p_{13} \end{pmatrix}, \begin{pmatrix} x_3 & x_1 \\ n_1 p_{13} & \pi_1 p_{11} \end{pmatrix}, \begin{pmatrix} x_1 & x_2 \\ n_1 p_{11} & n_1 p_{12} \end{pmatrix} = \\ = \begin{pmatrix} x_2 n_1 p_{13} - x_3 n_1 p_{12}, & x_3 n_1 p_{11} - x_1 n_1 p_{13}, & x_1 n_1 p_{12} - x_2 n_1 p_{11} \end{pmatrix}.$$

Непосредственными вычислениями можно проверить, что такой же вектор получится из выражения

$$\left(n_1, \ n_2, \ n_3\right) \begin{pmatrix} x_2p_{13} - x_3p_{12} & x_3p_{11} - x_1p_{13} & x_1p_{12} - x_2p_{11} \\ x_2p_{23} - x_3p_{22} & x_3p_{21} - x_1p_{23} & x_1p_{22} - x_2p_{21} \\ x_2p_{33} - x_3p_{32} & x_3p_{31} - x_1p_{33} & x_1p_{32} - x_2p_{31} \end{pmatrix}.$$

Обозначив последнюю матрицу через Π_r , полученный результат представим в виде

$$\mathbf{r} \times (\mathbf{n}\Pi) = \mathbf{n}\Pi_{\mathbf{r}}.\tag{14.18}$$

При этом согласно теореме Остроградского—Гаусса (3.36) имеем

$$\int_{\mathbf{A}} (\mathbf{r} \times \mathbf{n}) \Pi d\mathbf{A} = \int_{\mathbf{A}} \mathbf{n} \Pi_{\mathbf{r}} d\mathbf{A} = \int_{\mathbf{V}} \mathrm{Div} \, \Pi_{\mathbf{r}} d\mathbf{V}. \tag{14.19}$$

Вычисляя Div Π_r в соответствии с определением (3.33), получим

Div
$$\Pi_{\mathbf{r}} = \left(\mathbf{x}_{2} \frac{\partial \mathbf{p}_{i3}}{\partial \mathbf{x}_{i}} - \mathbf{x}_{3} \frac{\partial \mathbf{p}_{i2}}{\partial \mathbf{x}_{i}} + \mathbf{p}_{23} - \mathbf{p}_{32}, \ \mathbf{x}_{3} \frac{\partial \mathbf{p}_{iI}}{\partial \mathbf{x}_{i}} - \mathbf{x}_{1} \frac{\partial \mathbf{p}_{i3}}{\partial \mathbf{x}_{i}} + \right.$$

$$+ \mathbf{p}_{31} - \mathbf{p}_{13}, \ \mathbf{x}_{1} \frac{\partial \mathbf{p}_{i2}}{\partial \mathbf{x}_{i}} - \mathbf{x}_{2} \frac{\partial \mathbf{p}_{iI}}{\partial \mathbf{x}_{i}} + \mathbf{p}_{12} - \mathbf{p}_{21} \right) =$$

$$= \mathbf{r} \times \text{Div } \Pi + \left(\mathbf{p}_{23} - \mathbf{p}_{32}, \mathbf{p}_{31} - \mathbf{p}_{13}, \mathbf{p}_{12} - \mathbf{p}_{21} \right). \tag{14-20}$$

Подставляя (14.20) в (14.19), а затем (14.10) и (14.19) в (14.14), получим

$$\int_{\textbf{v}} \left\{ \textbf{r} \times \left[\left(\frac{D \rho \textbf{u}}{D t} + \rho \textbf{u} \ \text{div} \textbf{u} - \rho \textbf{f} - D \text{iv} \ \Pi \right) + \left(p_{23} - p_{32}, \ p_{31} - p_{13}, \ p_{12} - p_{21} \right) \right] \right\} d\textbf{v} = 0. \ (14.21)$$

Выражение в круглых скобках равно нулю согласно закону изменения количества движения (14.10), а вектор в фигурных скобках равен нулю вследствие произвольности объема \forall . В результате получим

$$p_{12} = p_{21}, p_{13} = p_{31}, p_{23} = p_{32}.$$
 (14.22)

Проведенные преобразования показывают, что три равенства, выражающие правило *попарного равенства касательных напряжений*, эквивалентны векторному уравнению, выражающему закон изменения момента количества движения, при условии выполнения закона изменения количества движения.

14.5. Обобщенный закон Ньютона для вязких напряжений

В разделе 1.8 отмечено, что *вязкость* жидкости проявляется при сдвиговом, слоистом равномерном движении (см. рис. 1.8) следующим образом: между слоями жидкости возникают касательные напряжения, пропорциональные производной от продольной скорости по координате, направленной поперек потока:

$$p_{zx}^{B} = \eta \frac{\partial u_{x}}{\partial z}.$$
 (14.23)

Характерной особенностью вязких напряжений является то, что они не зависят от давления p, а зависят от изменчивости в пространстве поля скорости жидкости, которая в общем случае характеризуется тензором Grad ${\bf u}$.

Обобщим зависимость (14.23) на случай, когда все три составляющие скорости отличны от нуля.

В качестве первой простейшей рабочей гипотезы предположим, что тензор вязких напряжений П^в пропорционален тензору Grad u:

$$\Pi^{B} = \begin{pmatrix} p_{xx}^{B} & p_{xy}^{B} & p_{xz}^{B} \\ p_{yx}^{B} & p_{yy}^{B} & p_{yz}^{B} \\ \hline p_{zx}^{B} & p_{zy}^{B} & p_{zz}^{B} \end{pmatrix} = \eta \begin{pmatrix} \frac{\partial u_{x}}{\partial x} & \frac{\partial u_{y}}{\partial x} & \frac{\partial u_{z}}{\partial x} \\ \frac{\partial u_{x}}{\partial y} & \frac{\partial u_{y}}{\partial y} & \frac{\partial u_{z}}{\partial y} \\ \hline \frac{\partial u_{x}}{\partial z} & \frac{\partial u_{y}}{\partial z} & \frac{\partial u_{z}}{\partial z} \end{pmatrix}.$$
(14.24)

Согласно этой гипотезе зависимость вязких напряжений от производной скорости при сдвиговом течении (14.23) оказывается выполненной (элементы выделены прямоугольниками). Вместе с тем, вследствие симметричности тензора напряжений (см. (14.22)) $p_{xz} = p_{zx}$, но соглас-

но (14.24) $p_{xz}^{B} = \eta \frac{\partial u_{z}}{\partial x}$, а при сдвиговом течении $\frac{\partial u_{z}}{\partial x} = 0$. Следовательно, гипотеза (14.24) не может рассматриваться как обобщение зависимости (14.23). В качестве следующей (второй) гипотезы можно предположить, что симметричный тензор Π^{B} пропорционален симметричному тензору, характеризующему изменчивость в пространстве поля скорости. Таковым, в частности, является тензор скорости деформации $\mathring{S} = \frac{1}{2} \Big(\text{Grad } \mathbf{u} + \text{Grad}^* \mathbf{u} \Big)$. При этом обобщающая (14.23) зависимость при-

$$\begin{pmatrix} p_{xx}^{B} & p_{xy}^{B} & p_{xz}^{B} \\ p_{yx}^{B} & p_{yy}^{B} & p_{yz}^{B} \\ p_{zx}^{B} & p_{zy}^{B} & p_{zz}^{B} \end{pmatrix} = 2\eta \begin{pmatrix} \frac{\partial u_{x}}{\partial x} & \frac{1}{2} \left(\frac{\partial u_{x}}{\partial y} + \frac{\partial u_{y}}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial u_{x}}{\partial z} + \frac{\partial u_{z}}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial u_{x}}{\partial y} + \frac{\partial u_{y}}{\partial x} \right) & \frac{\partial u_{y}}{\partial y} & \frac{1}{2} \left(\frac{\partial u_{y}}{\partial z} + \frac{\partial u_{z}}{\partial y} \right) \\ \frac{1}{2} \left(\frac{\partial u_{x}}{\partial z} + \frac{\partial u_{z}}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial u_{y}}{\partial z} + \frac{\partial u_{z}}{\partial y} \right) & \frac{\partial u_{z}}{\partial z} \end{pmatrix}. \quad (14.25)$$

обретает вид

Согласно этой гипотезе выполняются как зависимость (14.23), так и условие симметричности тензора напряжений. Вместе с тем, как было отмечено в разд. 1.8, вязкие напряжения не зависят от гидродинамичес-

кого давления $p = -\frac{1}{3} \Big(p_{xx} + p_{yy} + p_{zz} \Big)$. Это означает, что на поле вязких напряжений можно наложить произвольное поле гидромеханического давления p, которое не изменит значения вязких напряжений. Поэтому полные нормальные напряжения p жидкости (не только обусловленные

вязкостью) должны представлять собой сумму вязких нормальных напряжений и давления:

$$p_{xx} = p_{xx}^{B} - p
 p_{yy} = p_{yy}^{B} - p
 p_{zz} = p_{zz}^{B} - p$$
(14.26)

Складывая эти равенства, получим

$$p_{xx} + p_{yy} + p_{zz} = p_{xx}^{B} + p_{yy}^{B} + p_{zz}^{B} - 3p.$$
 (14.27)

Принимая во внимание, что по определению гидродинамическое давление $p = -\frac{1}{3}(p_{xx} + p_{yy} + p_{zz})$, из (14.27) найдем, что сумма диагональных элементов тензора вязких напряжений Π^B равна нулю:

$$p_{xx}^{B} + p_{yy}^{B} + p_{zz}^{B} = 0. (14.28)$$

Тогда согласно тензорному равенству (14.25) следует потребовать, чтобы сумма диагональных элементов в правой части этого равенства также была равна нулю.

Для несжимаемой жидкости это выполняется само собой согласно уравнению несжимаемости:

$$\operatorname{div}\mathbf{u} = \frac{\partial \mathbf{u}_{x}}{\partial \mathbf{x}} + \frac{\partial \mathbf{u}_{y}}{\partial \mathbf{v}} + \frac{\partial \mathbf{u}_{z}}{\partial \mathbf{z}} = 0.$$

Для сжимаемой жидкости равенство нулю суммы диагональных элементов тензора $\overset{\circ}{S}$ обеспечивается введением в каждый из них слагаемо-

го $\left(-\frac{1}{3}\text{divu}\right)$. В результате получаем

$$\begin{pmatrix} p_{xx}^{B} & p_{xy}^{B} & p_{xz}^{B} \\ p_{yx}^{B} & p_{yy}^{B} & p_{yz}^{B} \\ p_{zx}^{B} & p_{zy}^{B} & p_{zz}^{B} \end{pmatrix} = 2\eta \begin{pmatrix} \frac{\partial u_{x}}{\partial x} - \frac{1}{3}\operatorname{divu} & \frac{1}{2}\left(\frac{\partial u_{x}}{\partial y} + \frac{\partial u_{y}}{\partial x}\right) & \frac{1}{2}\left(\frac{\partial u_{x}}{\partial z} + \frac{\partial u_{z}}{\partial x}\right) \\ \frac{1}{2}\left(\frac{\partial u_{x}}{\partial y} + \frac{\partial u_{y}}{\partial x}\right) & \frac{\partial u_{y}}{\partial y} - \frac{1}{3}\operatorname{divu} & \frac{1}{2}\left(\frac{\partial u_{y}}{\partial z} + \frac{\partial u_{z}}{\partial y}\right) \\ \frac{1}{2}\left(\frac{\partial u_{x}}{\partial z} + \frac{\partial u_{z}}{\partial x}\right) & \frac{1}{2}\left(\frac{\partial u_{y}}{\partial z} + \frac{\partial u_{z}}{\partial y}\right) & \frac{\partial u_{z}}{\partial z} - \frac{1}{3}\operatorname{divu} \end{pmatrix}$$
(14.29)

или

$$\Pi^{B} = 2\eta \, \mathring{S} - \frac{2\eta}{3} \operatorname{divu} \cdot E, \qquad (14.29a)$$

где Е — единичный тензор,

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} . \tag{14.30}$$

Связь между полными напряжениями в жидкости, определяемыми тензором Π , и вязкими напряжениями, определяемыми тензором $\Pi^{\text{в}}$, с учетом (14.26) представим в виде

$$\Pi = \begin{pmatrix} p_{xx} & p_{xy} & p_{xz} \\ p_{yx} & p_{yy} & p_{yz} \\ p_{zx} & p_{zy} & p_{zz} \end{pmatrix} = \begin{pmatrix} p_{xx}^B - p & p_{xy}^B & p_{xz}^B \\ p_{yx}^B & p_{yy}^B - p & p_{yz}^B \\ p_{zx}^B & p_{zy}^B & p_{zz}^B - p \end{pmatrix} = \Pi^B - pE. \quad (14.31)$$

Подставляя из (14.29) Π^B в (14.31), получим выражение обобщенного закона Ньютона для вязких напряжений:

$$\Pi = 2\eta \, \mathring{S} - \left(p + \frac{2\eta}{3} \operatorname{div} \mathbf{u} \right) E. \tag{14.32}$$

Для несжимаемой жидкости выражение (14.32) упрощается с помощью уравнения divu = 0. Преобразуем уравнение движения жидкости в напряжениях, используя обобщенный закон Ньютона.

14.6. Уравнения движения вязкой сжимаемой жидкости (уравнения Навье—Стокса)

Подставляя (14.32) в уравнение движения в напряжениях (14.12), получим

$$\rho \frac{\mathbf{D}\mathbf{u}}{\mathbf{D}t} = \rho \mathbf{f} + \mathbf{Div} \left(2\eta \dot{\mathbf{S}} - \left(\mathbf{p} + \frac{2\eta}{3} \operatorname{div}\mathbf{u} \right) \mathbf{E} \right). \tag{14.33}$$

Рассмотрим проекцию вектора $\operatorname{Div}\left(2\eta \dot{S} - \left(p + \frac{2\eta}{3}\operatorname{div}\mathbf{u}\right)E\right)$ на ось х:

$$\begin{split} Div_{x} & \left(2\eta \dot{S} - \left(p + \frac{2\eta}{3} \, divu \right) E \right) = \frac{\partial}{\partial x} \left(2\eta \frac{\partial u_{x}}{\partial x} - \left(p + \frac{2\eta}{3} \, divu \right) \right) + \frac{\partial}{\partial y} \left[2\eta \cdot \frac{1}{2} \left(\frac{\partial u_{x}}{\partial y} + \frac{\partial u_{y}}{\partial x} \right) \right] + \\ & + \frac{\partial}{\partial z} \left[2\eta \cdot \frac{1}{2} \left(\frac{\partial u_{x}}{\partial z} + \frac{\partial u_{z}}{\partial x} \right) \right] = -\frac{\partial p}{\partial x} - \frac{2\eta}{3} \frac{\partial}{\partial x} \left(divu \right) + \eta \frac{\partial}{\partial x} \left(\frac{\partial u_{x}}{\partial x} + \frac{\partial u_{y}}{\partial y} + \frac{\partial u_{z}}{\partial z} \right) + \\ & + \eta \left(\frac{\partial^{2} u_{x}}{\partial x^{2}} + \frac{\partial^{2} u_{y}}{\partial y^{2}} + \frac{\partial^{2} u_{z}}{\partial z^{2}} \right) = -\frac{\partial p}{\partial x} + \frac{\eta}{3} \frac{\partial}{\partial x} \left(div \, u \right) + \eta \Delta u_{x}. \end{split}$$

Вычислив аналогичные выражения для двух других проекций, подставим их в (14.33) и получим искомые дифференциальные уравнения движения вязкой сжимаемой жидкости, или уравнения Навье—Стокса:

$$\begin{split} \frac{Du_{x}}{Dt} &= \frac{\partial u_{x}}{\partial t} + u_{x} \frac{\partial u_{x}}{\partial x} + u_{y} \frac{\partial u_{x}}{\partial y} + u_{z} \frac{\partial u_{x}}{\partial z} = f_{x} - \frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{v}{3} \frac{\partial}{\partial x} \operatorname{div} \mathbf{u} + v\Delta u_{x}; \\ \frac{Du_{y}}{Dt} &= \frac{\partial u_{y}}{\partial t} + u_{x} \frac{\partial u_{y}}{\partial x} + u_{y} \frac{\partial u_{y}}{\partial y} + u_{z} \frac{\partial u_{y}}{\partial z} = f_{y} - \frac{1}{\rho} \frac{\partial p}{\partial y} + \frac{v}{3} \frac{\partial}{\partial y} \operatorname{div} \mathbf{u} + v\Delta u_{y}; \\ \frac{Du_{z}}{Dt} &= \frac{\partial u_{z}}{\partial t} + u_{x} \frac{\partial u_{z}}{\partial x} + u_{y} \frac{\partial u_{z}}{\partial y} + u_{z} \frac{\partial u_{z}}{\partial z} = f_{z} - \frac{1}{\rho} \frac{\partial p}{\partial z} + \frac{v}{3} \frac{\partial}{\partial z} \operatorname{div} \mathbf{u} + v\Delta u_{z}. \end{split}$$
(14.34)

Эту систему уравнений можно представить в виде одного векторного уравнения:

$$\frac{\mathbf{D}\mathbf{u}}{\mathbf{D}\mathbf{t}} = \mathbf{f} - \frac{1}{\rho} \operatorname{gradp} + \frac{\mathbf{v}}{3} \operatorname{grad} \operatorname{div}\mathbf{u} + \mathbf{v}\Delta\mathbf{u}. \tag{14.34a}$$

Три уравнения (14.34) и уравнение (14.5) образуют систему четырех уравнений с пятью неизвестными: u_x , u_y , u_z , p и ρ . Такие системы уравнений называются незамкнутыми. Эту систему следует замкнуть, т.е. дополнить пятым уравнением, связывающим те же неизвестные, но не вытекающим из использованных при выводе уравнений (14.34) и (14.9) законов. Таким пятым уравнением может быть, например, изотермическая (1.26) или адиабатическая (1.27) связь между плотностью и давлением.

Плотность несжимаемой жидкости постоянна и не является неизвестной. Система уравнений гидромеханики при этом состоит из четырех уравнений:

$$\frac{\mathbf{D}\mathbf{u}}{\mathbf{D}\mathbf{t}} = \mathbf{f} - \frac{1}{\rho} \operatorname{grad} \mathbf{p} + \mathbf{v}\Delta\mathbf{u};$$

$$\operatorname{div}\mathbf{u} = 0,$$
(14.35)

которые содержат четыре неизвестных $\mathbf{u_x}, \mathbf{u_y}, \mathbf{u_z}$ и р, т. е. эта система замкнута.

Уравнения (14.35) содержат производные первого порядка по времени и производные второго порядка по координатам. Чтобы найти решение системы, необходимо задать начальные условия (поля скорости и давления в момент t_0):

$$\mathbf{u}(x, y, z, t_0) = \mathbf{u}_0(x, y, z); p(x, y, z, t_0) = p_0(x, y, z).$$
(14.36)

где $\mathbf{u}_0(x, y, z)$ и $\mathbf{p}_0(x, y, z)$ — известные функции.

На границах области, занятой жидкостью, учитывая второй порядок уравнения по пространственным координатам, должны быть заданы два граничных условия. В частности, если область ограничена твердыми стенками, то, как известно из физики, скорость жидкости на стенке совпадает со скоростью стенки: если границы неподвижны, то граничные условия имеют вид

$$\mathbf{u} = 0 \tag{14.37}$$

или

$$u_n = 0;$$
 (14.38)

$$u_{r} = 0,$$
 (14.39)

где u_n и u_ℓ — соответственно нормальная и касательная составляющие вектора скорости жидкости на границе.

Система уравнений (14.35) должна обеспечивать возможность вычислять скорость и давление в любой точке потока жидкости во все моменты времени $t > t_0$. Однако математические трудности, возникающие при решении этой системы вследствие нелинейности уравнений

(они содержат слагаемые вида $u_x \frac{\partial u_x}{\partial x}$, $u_y \frac{\partial u_y}{\partial y}$ и т.п.), в настоящее

время не преодолены, и даже использование мощных ЭВМ не обеспечивает пока получения решений подавляющего большинства задач без их предварительного упрощения. Основная проблема заключается в том, что все практически важные виды движения жидкости имеют место при турбулентном режиме, и, следовательно, имеет смысл рассматривать только нестационарные и трехмерные решения указанной системы.

Для решения задач механики жидкости с помощью дифференциальных уравнений движения вязкой жидкости наиболее эффективно использование модели Рейнольдса—Буссинеска (см. гл. 17). На основе этой модели из системы уравнений Навье—Стокса получают систему уравнений Рейнольдса, в которой неизвестными являются осредненные скорость $\bar{\mathbf{u}}$ и давление $\bar{\mathbf{p}}$. Однако в систему уравнений Рейнольдса входят дополнительные неизвестные величины, и ее решение без привлечения экспериментальных материалов пока не выполняется. Решение инженерно-строительных задач с помощью системы уравнений Навье—Стокса и Рейнольдса представляют собой сложную задачу, поэтому в данном учебнике не описаны.

Решение уравнений Навье—Стокса без использования модели Рейнольдса—Буссинеска дает исчерпывающую информацию о распределении скорости и давления в потоке, однако получить это решение удается исключительно редко.

Если попытаться искать такие решения уравнений Навье—Стокса, при которых поле скорости имеет потенциал ϕ , то согласно уравнению несжимаемости (14.6) имеем $\Delta \phi = 0$, следовательно, и $\Delta u = 0$; при этом очевидно, что слагаемые, учитывающие влияние вязкости \vee в уравнениях Навье—Стокса (14.35), исключаются.

Для потенциала скорости вследствие того, что он удовлетворяет уравнению Лапласа, на твердой границе можно задать только одно условие; обычно это условие непроницаемости границы (14.38) в виде

$$u_n = \frac{\partial \varphi}{\partial n} = 0$$
.

Таким образом, если предположить, что поле скорости при движении вязкой жидкости имеет потенциал, то не удается удовлетворить проверенным в физических экспериментах условиям "прилипания" (14.38) и (14.39). Если же на границах области, для которой отыскивается решение уравнений Навье—Стокса, можно обеспечить выполнение только условия непроницаемости (14.38) и не требовать выполнения условия (14.39), то допустимо рассмотрение потенциального движения вязкой жилкости.

14.7. Модель невязкой несжимаемой жидкости (гидродинамические уравнения Эйлера)

При решении задач о течении жидкости на большом удалении от твердых границ эффективно использовать более простую модель невязкой несжимаемой жидкости, принимая v=0. Уравнения движения для такой модели можно получить из (14.35) в виде

$$\frac{\mathbf{D}\mathbf{u}}{\mathbf{D}\mathbf{t}} = \mathbf{f} - \frac{1}{\rho} \operatorname{grad} \mathbf{p} \tag{14.40}$$

или в проекциях на координатные оси

$$\frac{\partial u_{x}}{\partial t} + u_{x} \frac{\partial u_{x}}{\partial x} + u_{y} \frac{\partial u_{x}}{\partial y} + u_{z} \frac{\partial u_{x}}{\partial z} = f_{x} - \frac{1}{\rho} \frac{\partial p}{\partial x};$$

$$\frac{\partial u_{y}}{\partial t} + u_{x} \frac{\partial u_{y}}{\partial x} + u_{y} \frac{\partial u_{y}}{\partial y} + u_{z} \frac{\partial u_{y}}{\partial z} = f_{y} - \frac{1}{\rho} \frac{\partial p}{\partial y};$$

$$\frac{\partial u_{z}}{\partial t} + u_{x} \frac{\partial u_{z}}{\partial x} + u_{y} \frac{\partial u_{z}}{\partial y} + u_{z} \frac{\partial u_{z}}{\partial z} = f_{z} - \frac{1}{\rho} \frac{\partial p}{\partial z}.$$
(14.41)

Эти уравнения называются дифференциальными уравнениями движения невязкой несжимаемой жидкости, или уравнениями Эйлера.

Наиболее важны в практическом отношении такие решения уравнений Эйлера, при которых поле скорости имеет потенциал, т.е. является безвихревым. В этом случае отыскание поля скорости сводится к решению уравнения Лапласа для потенциала скорости φ , которое хорошо исследовано. Кроме того, если внешние объемные силы f имеют потенциал U, т.е. $f = \operatorname{grad} U$ (а наиболее важная на Земле объемная сила — сила тяжести — имеет потенциал $U = -\operatorname{gz}$), и движение было безвихревым в некоторый начальный момент времени, то оно останется безвихревым и во все последующие моменты времени (теорема Лагранжа).

Итак, если поле скорости имеет потенциал $\mathbf{u} = \operatorname{grad} \varphi$, то согласно уравнению неразрывности $\operatorname{div} \mathbf{u} = 0$ имеем

$$\Delta \varphi = 0$$
.

Если твердая граница потока неподвижна, то на ней $u_n = \frac{\partial \phi}{\partial n} = 0$. На других границах может быть задано либо направление скорости, либо значение нормальной к границе составляющей скорости, либо какаянибудь другая характеристика скорости жидкости. Таким образом, формулируется краевая задача для уравнения Лапласа, которое имеет при корректно заданных условиях единственное решение.

Решив уравнение Лапласа и отыскав значения скорости в каждой точке потока, для определения поля давления р используем уравнения Эйлера. Для этого преобразуем их следующим образом. Поскольку движение потенциальное, а следовательно, безвихревое, воспользуемся условием $\cot \mathbf{u} = 0$:

$$\frac{\partial u_z}{\partial y} = \frac{\partial u_y}{\partial z}, \quad \frac{\partial u_x}{\partial z} = \frac{\partial u_z}{\partial x}, \quad \frac{\partial u_y}{\partial x} = \frac{\partial u_x}{\partial y}$$
 (14.42)

и заменим производные в левой части уравнения системы (14.41) с помощью (14.42) так, чтобы в каждом из уравнений содержались производные только по одной пространственной переменной, например, в первом из уравнений (14.41) — только производные по х; при этом получим

$$\frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_y}{\partial x} + u_z \frac{\partial u_z}{\partial x} = \frac{\partial U}{\partial x} - \frac{1}{\rho} \frac{\partial p}{\partial x}.$$
 (14.43)

В слагаемом $\frac{\partial u_x}{\partial t}$ заменим u_x на $\frac{\partial \varphi}{\partial x}$ и поменяем порядок дифференцирования. Значения проекций скорости подведем под знак дифференциала и, учитывая, что $u_x^2 + u_y^2 + u_z^2 = u^2$, где и — модуль вектора скорости, получим

 $\frac{\partial}{\partial x} \left(\frac{\partial \varphi}{\partial t} + \frac{u^2}{2} - U + \frac{p}{\rho} \right) = 0.$

По аналогии из двух других уравнений системы (14.41) получим

$$\frac{\partial}{\partial y} \left(\frac{\partial \varphi}{\partial t} + \frac{u^2}{2} - U + \frac{p}{\rho} \right) = 0;$$

$$\frac{\partial}{\partial z} \left(\frac{\partial \varphi}{\partial t} + \frac{u^2}{2} - U + \frac{p}{\rho} \right) = 0.$$

Три последних равенства равносильны одному векторному:

$$\operatorname{grad}\left(\frac{\partial \varphi}{\partial t} + \frac{u^2}{2} - U + \frac{p}{\rho}\right) = 0,$$

откуда следует, что для безвихревого движения невязкой жидкости в поле силы тяжести (U=-gz) во всем пространстве, занятом движущейся жидкостью, имеет место равенство

$$\rho \frac{\partial \varphi}{\partial t} + \rho gz + p + \rho \frac{u^2}{2} = f(t). \tag{14.44}$$

С помощью этого уравнения, называемого *интегралом Лагранжа— Коши*, после того как найдено поле скорости, можно вычислить давление в каждой точке потока.

Из равенства (14.44) следует, что при установившемся движении невязкой жидкости сумма трех слагаемых

$$\rho gz + p + \rho \frac{u^2}{2} = const \qquad (14.45)$$

во всем объеме, занятом жидкостью. Это равенство известно как уравнение Бернулли для невязкой жидкости.

Основная особенность, облегчающая решение задач механики жидкости с помощью изложенного приема, заключается в том, что задача отыскания поля скорости при потенциальном движении жидкости сводится к решению линейного уравнения ($\Delta \phi = 0$), в то время как при вихревом движении она сводится к решению нелинейных уравнений Эйлера, методы решения которых и даже существование и единственность их решений недостаточно изучены.

14.8. Дифференциальные уравнения, выражающие закон изменения кинетической энергии

Уравнение, выражающее закон изменения кинетической энергии для контрольного объема, имеет вид (см. (14.16))

$$\frac{D}{Dt} \oint_{\mathbf{v}} \frac{\rho \mathbf{u}^2}{2} d\mathbf{V} = \oint_{\mathbf{v}} \rho(\mathbf{u} \cdot \mathbf{f}) d\mathbf{V} + \oint_{\mathbf{A}} (\mathbf{u} \cdot \mathbf{p}_n) d\mathbf{A} - \oint_{\mathbf{v}} \Phi d\mathbf{V}.$$
 (14.46)

Чтобы преобразовать поверхностный интеграл в объемный, как и в разд. 14.4, используем для обозначения проекций на координатные оси (x_1, x_2, x_3) подстрочные индексы. Тогда

$$\begin{split} \boldsymbol{u} \cdot \boldsymbol{p}_{n} &= \boldsymbol{u} \cdot \boldsymbol{n} \boldsymbol{\Pi} = \left(u_{1}, u_{2}, u_{3}\right) \cdot \begin{pmatrix} n_{k} p_{k1} \\ n_{k} p_{k2} \\ n_{k} p_{k3} \end{pmatrix} = u_{1} \left(n_{k} p_{k1}\right) + u_{2} \left(n_{k} p_{k2}\right) + u_{3} \left(n_{k} p_{k3}\right) = \\ &= u_{1} \left(n_{1} p_{11} + n_{2} p_{21} + n_{3} p_{31}\right) + u_{2} \left(n_{1} p_{12} + n_{2} p_{22} + n_{3} p_{32}\right) + u_{3} \left(n_{1} p_{13} + n_{2} p_{23} + n_{3} p_{33}\right) = \\ &= n_{1} \left(p_{11} \cdot u_{1} + p_{12} \cdot u_{2} + p_{13} \cdot u_{3}\right) + n_{2} \left(p_{21} \cdot u_{1} + p_{22} \cdot u_{2} + p_{23} \cdot u_{3}\right) + \\ &\quad + n_{3} \left(p_{31} \cdot u_{1} + p_{32} \cdot u_{2} + p_{33} \cdot u_{3}\right) = n_{i} \left(p_{ij} \cdot u_{j}\right) = \boldsymbol{n} \cdot \boldsymbol{\Pi} \boldsymbol{u} \,. \end{split}$$

В результате появляется возможность использовать теорему Остроградского—Гаусса:

$$\int_{A} (\mathbf{u} \cdot \mathbf{p}_{n}) d\mathbf{A} = \int_{A} (\mathbf{n} \cdot \Pi \mathbf{u}) d\mathbf{A} = \int_{A} \operatorname{div}(\Pi \mathbf{u}) d\mathbf{V}.$$
 (14.47)

Используя (14.47), а также (3.54) для того, чтобы подвести субстанциальную производную под знак интеграла, перепишем (14.46) в виде

$$\int\limits_{\pmb v} \!\! \left[\frac{D}{Dt} \! \left(\frac{\rho u^2}{2} \right) \! + \! \frac{\rho u^2}{2} \operatorname{div} \pmb u - \rho (\pmb u \cdot \pmb f) - \operatorname{div} (\Pi \pmb u) + \Phi \right] \! d \pmb \forall = 0 \, .$$

Вследствие произвольности контрольного объема подынтегральное выражение равно нулю:

$$\frac{D}{Dt}\frac{\rho u^2}{2} + \frac{\rho u^2}{2}\operatorname{div}\mathbf{u} = \rho(\mathbf{u} \cdot \mathbf{f}) + \operatorname{div}(\Pi \mathbf{u}) - \Phi. \tag{14.48}$$

Упростим левую часть (14.48), используя дифференциальное уравнение неразрывности (14.5):

$$\frac{D}{Dt} \frac{\rho u^2}{2} + \frac{\rho u^2}{2} \operatorname{div} \mathbf{u} = \frac{u^2}{2} \frac{D\rho}{Dt} + \rho \frac{D}{Dt} \left(\frac{u^2}{2}\right) + \frac{\rho u^2}{2} \operatorname{div} \mathbf{u} =$$

$$= \frac{u^2}{2} \left(\frac{D\rho}{Dt} + \rho \operatorname{div} \mathbf{u}\right) + \rho \frac{D}{Dt} \frac{u^2}{2} = \rho \frac{D}{Dt} \frac{u^2}{2}. \tag{14.49}$$

Плотность распределения мощности внутренних сил выразим через характеристики потока жидкости на основании следующих соображений. При плоском параллельноструйном течении (рис. 14.1) слой 2 сколь-

зит вдоль слоя 1 с относительной скоростью $\frac{\partial u_1}{\partial x_3} \Delta x_3$; на площадке A_3 , разделяющей эти слои, действует вязкое напряжение p_{31} , следователь-

но, в объеме $\forall = A_3 \Delta x_3$ сила $p_{31}A_3$ работает на перемещении $\frac{\partial u_1}{\partial x_2} \Delta x_3$ за каждую единицу времени. Других сил, совершающих работу, в этом объеме нет (сила, обусловленная нормальными напряжениями, совершает работу, если есть линейные деформации (см. разд. 3.6)), касательные напряжения р31 не выполняют работу, так как по площадкам, перпендикулярным оси х₁, нет относительного смещения элементов

жидкости $\left(\frac{\partial u_3}{\partial x_1} = 0\right)$. В результате имеем плотность распределения

мощности внутренних сил:

$$\Phi = \frac{N}{V} = \frac{\left(p_{31}A_3\right)\left(\frac{\partial u_1}{\partial x_3}\Delta x_3\right)}{A_3\Delta x_3} = p_{31}\frac{\partial u_1}{\partial x_3},$$
 (14.50)

где N — мощность внутренних сил в объеме \forall .

В общем трехмерном случае зависимость (14.50) обобщим, полагая, что каждая составляющая тензора напряжений П (см. (1.19)) совершает

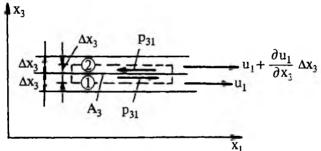


Рис. 14.1. Мощность касательных сил при сдвиговом

работу на соответствующем ему перемещении, определяемом составляющей тензора градиента скорости Grad u (см. (3.31)), так что Ф представляет собой скалярное произведение тензоров П и Grad u:

$$\Phi = \Pi \cdot \text{Grad } \mathbf{u} \tag{14.51}$$

или

$$\Phi = \sum_{k=1}^{3} \sum_{i=1}^{3} p_{ik} \frac{\partial u_k}{\partial x_i} = p_{ik} \frac{\partial u_k}{\partial x_i}.$$
 (14.51)

Учитывая полученный результат, преобразуем выражение div(Пu):

$$\operatorname{div}(\Pi \mathbf{u}) = \frac{\partial}{\partial x_{1}} \left(p_{11} u_{1} + p_{12} u_{2} + p_{13} u_{3} \right) + \frac{\partial}{\partial x_{2}} \left(p_{21} u_{1} + p_{22} u_{2} + p_{23} u_{3} \right) + \frac{\partial}{\partial x_{2}} \left(p_{31} u_{1} + p_{32} u_{2} + p_{33} u_{3} \right) = \frac{\partial}{\partial x_{i}} \left(p_{ik} u_{k} \right) = p_{ik} \frac{\partial u_{k}}{\partial x_{1}} + u_{k} \frac{\partial p_{ik}}{\partial x_{1}}. \quad (14.52)$$

По определению (3.33):

$$\mathbf{Div}\Pi = \begin{pmatrix} \frac{\partial \mathbf{p}_{11}}{\partial \mathbf{x}_{1}} + \frac{\partial \mathbf{p}_{21}}{\partial \mathbf{x}_{2}} + \frac{\partial \mathbf{p}_{31}}{\partial \mathbf{x}_{3}} \\ \frac{\partial \mathbf{p}_{12}}{\partial \mathbf{x}_{1}} + \frac{\partial \mathbf{p}_{22}}{\partial \mathbf{x}_{2}} + \frac{\partial \mathbf{p}_{32}}{\partial \mathbf{x}_{3}} \\ \frac{\partial \mathbf{p}_{13}}{\partial \mathbf{x}_{1}} + \frac{\partial \mathbf{p}_{23}}{\partial \mathbf{x}_{2}} + \frac{\partial \mathbf{p}_{33}}{\partial \mathbf{x}_{3}} \end{pmatrix} = \begin{pmatrix} \frac{\partial \mathbf{p}_{11}}{\partial \mathbf{x}_{1}} \\ \frac{\partial \mathbf{p}_{12}}{\partial \mathbf{x}_{1}} \\ \frac{\partial \mathbf{p}_{13}}{\partial \mathbf{x}_{1}} \end{pmatrix}. \tag{14.53}$$

Скалярное произведение векторов и и DivП равно:

$$\mathbf{u} \cdot \text{DivII} = \left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right) \begin{pmatrix} \frac{\partial \mathbf{p}_{11}}{\partial \mathbf{x}_{1}} \\ \frac{\partial \mathbf{p}_{12}}{\partial \mathbf{x}_{1}} \\ \frac{\partial \mathbf{p}_{13}}{\partial \mathbf{x}_{1}} \end{pmatrix} = \mathbf{u}_{1} \frac{\partial \mathbf{p}_{11}}{\partial \mathbf{x}_{1}} + \mathbf{u}_{2} \frac{\partial \mathbf{p}_{12}}{\partial \mathbf{x}_{1}} + \mathbf{u}_{3} \frac{\partial \mathbf{p}_{13}}{\partial \mathbf{x}_{1}} =$$

$$= \sum_{k=1}^{3} \sum_{i=1}^{3} u_k \frac{\partial p_{ik}}{\partial x_i} = u_k \frac{\partial p_{ik}}{\partial x_i}.$$
 (14.54)

Подставляя (14.51) и (14.54) в (14.52), имеем

$$\operatorname{div}(\Pi \mathbf{u}) = \Pi \cdot \operatorname{Grad} \mathbf{u} + \mathbf{u} \cdot \operatorname{Div} \Pi. \tag{14.55}$$

Подставив (14.49), (14.51) и (14.55) в уравнение (14.48), получим

$$\rho \frac{D}{Dt} \left(\frac{u^2}{2} \right) = \rho(\mathbf{u} \cdot \mathbf{f}) + \Pi \cdot Grad\mathbf{u} + \mathbf{u} \cdot Div\Pi - \Pi \cdot Grad\mathbf{u} = 0;$$

или

$$\rho \frac{D}{Dt} \left(\frac{u^2}{2} \right) = \rho(\mathbf{u} \cdot \mathbf{f}) + \mathbf{u} \cdot \text{Div}\Pi.$$
 (14.56)

Полученное дифференциальное уравнение, выражающее закон изменения кинетической энергии, в отличие от уравнения, выражающего этот же закон для контрольного объема (4.16), не является независимым в ряду дифференциальных уравнений механики жидкости (см. гл. 4). Оно может быть получено из дифференциального уравнения движения жидкости (14.12) с помощью тривиальной операции — скалярным умножением всех его членов на вектор скорости и.

Поэтому при описании движения жидкости с помощью дифференциальных уравнений закон изменения кинетической энергии не используется