
4 Pipes

4.1 Introduction

Pipes are a common feature of water supply systems and have many advantages over open
channels. They are completely enclosed, usually circular in section and always flow full of water.
This is in contrast to channels which are open to the atmosphere and can have many different
shapes and sizes – but more about channels in Chapter 5. One big advantage of pipes is that
water can flow uphill as well as downhill so land topography is not such a constraint when
taking water from one location to another.

There are occasions when pipes do not flow full – one example is gravity flow sewers. They
take sewage away from homes and factories and often only flow partially full under the force
of gravity in order to avoid pumping. They look like pipes and are indeed pipes but hydraulically
they behave like open channels. The reason pipes are used for this purpose is that sewers are
usually buried below ground to avoid public health problems and it would be difficult to bury
an open channel!

4.2 A typical pipe flow problem

Pipe flow problems usually involve calculating the right size of pipe to use for a given discharge.
A typical example is a water supply to a village (Figure 4.1). A pipeline connects a main storage
reservoir to a small service (storage) tank just outside the village which then supplies water to
individual houses. The required discharge (Q m3/s) for the village is determined by the water
demand of each user and the number of users being supplied. We now need to determine the
right size of pipe to use to ensure that this discharge is supplied from the main storage reservoir
to the service tank.

A formula to calculate pipe size would be ideal. However, to get there we first need to look at
the energy available to ‘push’ water through the system, so the place to start is the energy equa-
tion. But this is a real fluid problem and so energy losses due to friction must be taken into account.
So writing the energy equation for two points in this system – point 1 is at the main reservoir and
point 2 at the service tank – and allowing for the energy loss as water flows between the two:

Points 1 and 2 are carefully chosen in order to simplify the equation and also the solution.
Point 1 is at the surface of the main reservoir where the pressure p1 is atmospheric pressure and
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so equal to zero (remember we are working in gauge pressures). Point 2 is also at the water
surface in the service tank so p2 is zero as well. The water velocities v1 and v2 in the reservoir
and the tank are very small and so the kinetic energy terms are also very small and can be
assumed to be zero. This leaves just the potential energy terms z1 and z2 and the energy loss
term hf. So the energy equation simplifies down to:

hf � z1 � z2

z1 � z2 is the difference in water levels between the reservoir and the storage tank and this repre-
sents the energy available to ‘push’ water through the system. hf is the energy loss due to friction in
the pipe. The energy available is usually known and so this means we also know the amount of
energy that can be lost through friction. The question now is – is there a formula that links this energy
loss hf with the pipe diameter? The short answer is yes – but it has taken some 150 years of research
to sort this out. So let us first step through this bit of history and see what it tells us about pipe flow.

4.3 A formula to link energy loss and pipe size

Some of the early research work on pipe friction was done by Osborne Reynolds (1842–1912),
a mathematician and engineer working at the University in Manchester in UK. He measured the
pressure loss in pipes of different lengths and diameters at different discharges with some inter-
esting results. At low flows he found that the energy loss varied directly with the velocity. So
when the velocity was doubled the energy loss also doubled. But at high flows the energy loss
varied as the square of the velocity. So when the velocity was doubled the energy loss increased
four-fold. Clearly, Reynolds was observing two quite different types of flow. This thinking led to
Reynolds classic experiment that established the difference between what is now referred to as
laminar and turbulent flow and formulae which would enable the energy loss to be calculated
for each flow type from a knowledge of the pipes themselves.

4.3.1 Laminar and turbulent flow

Reynolds experiment involved setting up a glass tube through which he could pass water at
different velocities (Figure 4.2). A thin jet of coloured dye was injected into the flow so that the
flow patterns were visible.
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When the water moved slowly the dye remained in a thin line as it followed the flow path
of the water down the pipe. This was described as laminar flow. It was as though the water was
moving as a series of very thin layers – like a pack of cards – each one sliding over the other, and
the dye had been injected between two of the layers. This type of flow rarely exists in nature
and so is not of great practical concern in hydraulics. However, you can see it occasionally under
very special conditions. Examples include smoke rising in a thin column from a chimney on a very
still day or a slow flow of water from a tap that looks so much like a glass rod that you feel you
could get hold of it. Blood flow in our bodies is usually laminar.

The second and more common type of flow he identified was turbulent flow. This occurred
when water was moving faster. The dye was broken up as the water whirled around in a ran-
dom manner and was dissipated throughout the flow. Turbulence was a word introduced by
Lord Kelvin (1824–1907) to describe this kind of flow behaviour.

There are very clear visual differences between laminar and turbulent flow but what was not
clear was how to predict which one would occur in any given set of circumstances. Velocity was
obviously important. As velocity increased so the flow would change from laminar to turbulent
flow. But it was obvious that from the experiments that velocity was not the only factor. It was
Reynolds who first suggested that the type of flow depended not just on velocity (v) but also on
mass density (�), viscosity (�) and pipe diameter (d). He put these factors together in a way
which is now called the Reynolds Number in recognition of his work.

Reynolds No. � 
��d
�
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Note that Reynolds Number has no dimensions. All the dimensions cancel out. Reynolds
found that he could use this number to reliably predict when laminar and turbulent flow would
occur.

R 
 2000 flow would always be laminar
R � 4000 flow would always be turbulent

Between R � 2000 and 4000 he observed a very unstable zone as the flow seemed to jump
from laminar to turbulent and back again as if the flow could not decide which of the two
conditions it preferred. This is a zone to avoid as both the pressure and flow fluctuate widely in
an uncontrolled manner.

Reynolds Number also shows just how important is viscosity in pipe flow. Low Reynolds
Number (R 
 2000) means that viscosity (�) is large compared with the term �vd. So viscosity is
important in laminar flow and cannot be ignored. High Reynolds Number (R � 4000) means
viscosity is small compared with the �vd term and so it follows that viscosity is less important in
turbulent flow. This is the reason why engineers ignore the viscosity of water when designing
pipes and channels as it has no material effect on the solution. Ignoring viscosity also greatly
simplifies pipeline design.

It has since been found that Reynolds Number is very useful in other ways besides telling us
the difference between laminar and turbulent flow. It is used extensively in hydraulic modelling
(physical models – not mathematical models) for solving complex hydraulic problems. When a
problem cannot be solved using some formula, another approach is to construct a small-scale
model in a laboratory and test it to see how it performs. The guideline for modelling pipe
systems (or indeed any fully enclosed system) is to ensure that the Reynolds Number in the
model is similar to the Reynolds Number in the real situation. This ensures that the forces and
velocities are similar so that the model, as near as possible, produces similar results to those in
the real pipe systems.

Although it is useful to know that laminar flow exists it is not important in practical
hydraulics for designing pipes and channels and so only turbulent flow is considered in this text.
Turbulent flow is very important to us in our daily lives. Indeed it would be difficult for us to live
if it was not for the mixing that takes place in turbulent flow which dilutes fluids. When we
breathe out, the carbon dioxide from our lungs is dissipated into the surrounding air through
turbulent mixing. If it did not disperse in this way we would have to move our heads to avoid
breathing in the same gases as we had just breathed out. Car exhaust fumes are dispersed in a
similar way, otherwise we could be quickly poisoned by the intake of concentrated carbon
monoxide.

4.3.2 A formula for turbulent flow

Several formulae link energy loss with pipe size for turbulent flow but one of the most com-
monly used today is that devised by Julius Weisbach (1806–1871) and Henry Darcy
(1803–1858). It is often referred to as the Darcy–Weisbach equation:

where � is a friction factor; l is pipe length (m); v is velocity (m/s); g is gravity constant (9.81 m/s2)
and d is pipe diameter (m).

hf � 

� lv2
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This formula shows that energy loss depends on pipe length, velocity and diameter but also
on the friction between the pipe and the flow as represented by �:

� Length has a direct influence on energy loss. The longer the pipeline the greater the energy
loss.

� Velocity has a great influence on energy loss because it is the square of the velocity that
counts. When the velocity is doubled (say by increasing the discharge), the energy loss
increases four-fold. It is usual practice in water supply systems to keep the velocity below
1.6 m/s. This is done primarily to avoid excessive energy losses but it also helps to reduce
water hammer problems (see Chapter 5, Section 5.9).

� Pipe diameter has the most dramatic effect on energy loss. As the pipe diameter is reduced
so the energy losses increase, not only because of the direct effect of d in the formula but
also because of its effect on the velocity v (remember the discharge equation Q � va). The
overall effect of reducing the diameter by half (say from 300 to 150 mm) is to increase hf

by 32-times. See box below for an illustration of this.
� Pipe friction λ Unfortunately this is not just a simple measure of pipe roughness; it depends

on several other factors which are discussed more fully in the next section.

Take care when using the Darcy–Weisbach formula as some text books, particularly
American, use f as the friction factor and not and they are not the same. The link between them
is �� 4f.
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EXAMPLE: HOW PIPE DIAMETER AFFECTS ENERGY LOSS

A pipeline 1000 m long carries a flow of 100 l/s. Calculate the energy loss when the pipe
diameter is 0.3 m, 0.25 m, 0.2 m and 0.15 m and � � 0.04.

The first step is to calculate the velocities for each pipe diameter using the discharge
equation:

Q � va

And so:

v �

Use this equation to calculate velocity v for each diameter and then use the
Darcy–Weisbach equation to calculate hf. The results are shown in Table 4.1. Notice the
very large rise in head loss as the pipe diameter is reduced. Clearly the choice of pipe
diameter is a critical issue in any pipeline system.

Q
a

Table 4.1 Results of Darcy–Weisbach equation to calculate hf.

Diameter (m) Pipe area (m2) Velocity (m/s) Head loss hf (m)

0.30 0.07 1.43 13.6
0.25 0.049 2.04 33.3
0.20 0.031 3.22 103.7
0.15 0.018 5.55 418.6



4.4 The � story

It would be convenient if � was just a constant number for a given pipe that depended only on
its roughness and hence its resistance to the flow. But few things are so simple and � is no
exception. Some of the earliest work on pipe friction was done by Paul Blazius in 1913. He 
carried out a wide range of experiments on different pipes and different flows and came to the
conclusion that � depended only on the Reynolds Number and surprisingly, the roughness of the
pipe seemed to have no effect at all on friction.

From this he developed a formula for � (note R is Reynolds Number):

Another investigator was Johann Nikuradse who may well have been puzzled by the Blazius
results. He set up a series of laboratory experiments in the 1930s with different pipe sizes and
flows and he roughened the inside of the pipes with sand grains of a known size in order to cre-
ate different but known roughness. His data showed that values of � were independent of
Reynolds Number and depended only on the roughness of the pipe. Clearly, either someone was
wrong or they were both right and each was looking at something different.

4.4.1 Smooth and rough pipes

We now know that both investigators were right but they were looking at different aspects of
the same problem. Blazius was looking at flows with relatively low Reynolds Numbers (4000 to
100 000) and his results refer to what are now called smooth pipes. Nikuradse’s experiments
dealt with high Reynolds Number flows (greater than 100 000) and his results refer to what
are now called rough pipes. Both Blazius and Nikuradse results are shown graphically in
Figure 4.3a. This is a graph with a special logarithmic scale for Reynolds Number so that a wide
range of values can be shown on the same graph. It shows how � varies with both Reynolds
Number and pipe roughness which is expressed as the height of the sand grains (k) divided by
the pipe diameter (d). The Blazius formula produces a single line on this graph and is almost a
straight line.

The terms rough and smooth refer as much to the flow conditions in pipes as to the pipes
themselves and so, paradoxically, it is possible for the same pipe to be described as both rough
and smooth. Roughness and smoothness are also relative terms. How the inside of a pipe feels
to touch is not a good guide to its smoothness in hydraulic terms. Pipes which are smooth to
the touch can still be quite rough hydraulically. However, a pipe that feels rough to touch will
be very rough hydraulically and very high energy losses can be expected.

As there are two distinct types of flow it implies that there must be some point or zone where
the flow changes from one to the other. This is indeed the case. It is not a specific point but a
zone known as the transition zone when � depends on both Reynolds Number and pipe rough-
ness (Figure 4.3a). This zone was successfully investigated by C.F. Colebrook and C.M. White
working at Imperial College in London in the 1930s and they developed a formula to cover this
flow range. This is not quoted here as it is quite a complex formula and in practice there is no
need to use it because it has now been simplified to design charts. These can be used to select
pipe sizes for a wide range of hydraulic conditions. The use of typical pipe charts is described
later in this chapter in Section 4.8.

The transition zone between smooth and rough pipe flow should not be confused with the
transition zone from laminar to turbulent flow, as is often done. The flow is fully turbulent for
all smooth and rough pipes and the transition is from smooth to rough pipe flow.

� � 0.316
R 0.25
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To summarise the different flows in pipes:

laminar flow

↓
transition from laminar to turbulent flow
(this zone is very unstable and should be avoided)

↓
turbulent flow
smooth pipe flow

↓
transition from smooth to rough pipe flow

↓
rough pipe flow
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4.4.2 A physical explanation

Since those early experiments, modern scientific techniques have enabled investigators to look
more closely at what happens close to a pipe wall. This has resulted in a physical explanation
for smooth and rough pipe flow (Figure 4.3b). Investigators have found that even when the flow
is turbulent there exists a very thin layer of fluid – less than 1 mm thick – close to the boundary
that is laminar. This is called the laminar sub-layer. At low Reynolds Numbers the laminar sub-layer
is at its thickest and completely covers the roughness of the pipe. The main flow is unaffected by
the boundary roughness and is influenced mainly by viscosity in the laminar sub-layer. It seems that
the layer covers the roughness like a blanket and protects the flow from the pipe wall. This is the
smooth pipe flow that Blazius investigated. As Reynolds Number increases, the laminar sub-layer
becomes thinner and roughness elements start to protrude into the main flow. The flow is now
influenced both by viscosity and pipe roughness. This is the transition zone. As Reynolds Number
is further increased the sub-layer all but disappears and the roughness of the pipe wall takes over
and dominates the friction. This is rough pipe flow which Nikuradse investigated.

Commercially manufactured pipes are not artificially roughened with sand like experimental
pipes, they are manufactured as smooth as possible to reduce energy losses. For this reason they
tend to come within the transition zone where � varies with both Reynolds Number and pipe
roughness.

4.5 Hydraulic gradient

One way of showing energy losses in a pipeline is to use a diagram (Figure 4.4a). The total
energy is shown as a line drawn along the pipe length and marked e—e—e. This line always
slopes downwards in the direction of the flow and demonstrates that energy is continually being
lost through friction. It connects the water surfaces in the two tanks. There is a small step at the
downstream tank to represent the energy loss at the outlet from the pipeline into the tank. Note
that the energy line is not necessarily parallel to the pipeline. The pipeline usually just follows
the natural ground surface profile.

Although total energy is of interest, pressure is more important because this determines how
strong the pipes must be to avoid bursts. For this reason a second line is drawn below the energy
line, but parallel to it, to represent the pressure (pressure energy) and is marked h—h—h. This
shows the pressure change along the pipeline. Imagine standpipes are attached to the pipe.
Water would rise up to this line to represent the pressure head (Figure 4.4a). The difference
between the two lines is the kinetic energy. Notice how both the energy line and the hydraulic
gradient are straight lines. This shows that the rate of energy loss and the pressure loss are uni-
form (at the same rate). The slope of the pressure line is called the hydraulic gradient. It is cal-
culated as follows:

where hf is change in pressure (m); l is the pipe length over which the pressure change takes
place (m).

The hydraulic gradient has no dimensions as it comes from dividing a length in metres by a
head difference in metres. However, it is often expressed in terms of metres head per metre length
of pipeline. As an example a hydraulic gradient of 0.02 means for every one metre of pipeline there
will be a pressure loss of 0.02 m. This may also be written as 0.02 m/m or as 2 m/100 m of
pipeline. This reduces the number of decimal places that must be dealt with and means that for

hydraulic gradient � 
hf

l
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every 100 m of pipeline 2 m of head is lost through friction. So if a pipeline is 500 m long (there
are five 100 m lengths) the pressure loss over 500 m will be 5 � 2 � 10 m head.

The hydraulic gradient is not a fixed line for a pipe; it depends on the flow (Figure 4.4b).
When there is no flow the gradient is horizontal but when there is full flow the gradient is at its
steepest. Adjusting the outlet valve will produce a range of gradients between these two
extremes.

The energy gradient can only slope downwards in the direction of flow to show how energy
is lost, but the hydraulic gradient can slope upwards as well as downwards. An example of this
is a pipe junction when water flows from a smaller pipe into a larger one (Figure 4.4c). As water
enters the larger pipe the velocity reduces and so does the kinetic energy. Although there is
some energy loss when the flow expands (this causes the energy line to drop suddenly) most of
the loss of kinetic energy is recovered as pressure energy and so the pressure rises slightly.

Two more points of detail about the energy and hydraulic gradients (Figure 4.4a). At the first
reservoir, the energy gradient starts at the water surface but the hydraulic gradient starts
just below it. This is because the kinetic energy increases as water enters the pipe so there is a
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corresponding drop in the pressure energy. As the flow enters the second reservoir the energy
line is just above the water surface. This is because there is a small loss in energy as the flow
expands from the pipe into the reservoir. The hydraulic gradient is located just below the water
level because there is still some kinetic energy in the flow. When it enters the reservoir this
changes back to pressure energy. The downstream water level represents the final energy
condition in the system. These changes close to the reservoirs are really very small in
comparison to the friction losses along the pipe and so they play little or no part in the design
of the pipeline.

Normally pipelines are located well below the hydraulic gradient. This means that the pres-
sure in the pipe is always positive – see the standpipes in Figure 4.4a. Even though it may rise
and fall as it follows the natural ground profile, water will flow as long as it is always below the
hydraulic gradient and provided the outlet is below the inlet. There are limits to how far below
the hydraulic gradient a pipeline can be located. The further below the higher will be the pres-
sure in the pipe and the risk of a burst if the pressure exceeds the limits set by the pipe
manufacturer.

4.6 Energy loss at pipe fittings

Although there is an energy loss at the pipe connection with the reservoir in Figure 4.4a this is
usually very small in comparison with the loss in the main pipeline and so it is often ignored.
Similar losses occur at pipe bends, reducers, pipe junctions and valves and although each one is
small, together they can add up. They can all be calculated individually but normal design
practice is to simply increase the energy loss in the main pipeline by 10% to allow for all these
minor losses.

4.7 Siphons

Siphon is the name given to sections of pipe that rise above the hydraulic gradient. Normally
pipes are located well below the hydraulic gradient and this ensures that the pressure is always
positive and so well above atmospheric pressure. Under these conditions water flows freely
under gravity provided the outlet is lower than the inlet (Figure 4.4a). But when part of a
pipeline is located above the hydraulic gradient, even though the outlet is located below the
inlet, water will not flow without some help (Figure 4.5a). This is because the pressure in the
section of pipe above the hydraulic gradient is negative.

4.7.1 How they work

Before water will flow, all the air must be taken out of the pipe to create a vacuum. When this
happens atmospheric pressure on the open water surface pushes water into the pipe to fill the
vacuum and once it is full of water it will begin to flow. Under these conditions the pipe is
working as a siphon. Taking the air out of a pipeline is known as priming. Sometimes a pump is
needed to extract the air but if the pipeline can be temporarily brought below the hydraulic
gradient the resulting positive pressure will push the air out and it will prime itself. This can be
done by closing the main valve at the end of the pipeline so that the hydraulic gradient rises to
a horizontal line at the same level as the reservoir surface. An air valve on top of the siphon then
releases the air. Once the pipe is full of water, the main valve can then be opened and the
pipeline flows normally.
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Even pipelines that normally operate under positive pressures have air valves. These release
air which accumulates at high spots along the line. So it is good practice to include an air valve
at such locations. They can be automatic valves or just simple gate valves that are opened
manually occasionally to release air.

It can sometimes be difficult to spot an air valve that is above the hydraulic gradient and this
can lead to problems. An engineer visiting a remote farm saw what he thought was a simple
gated air valve on a high spot on a pipeline supplying the farm with water. Air does tend to
accumulate over time and can restrict the flow. So he thought he would do the farmer a favour
and open the valve to bleed off any air that had accumulated. After a while he realised that the
hissing sound was not air escaping from the pipe but air rushing in. The pipe was in fact above
the hydraulic gradient and was working as a siphon at that point and the valve was only there
to let air out during the priming process. The pressure inside the pipe was in fact negative and
so when he opened the valve air was sucked and this de-primed the siphon. Realising his
mistake he quickly closed the valve and went on down to the farmhouse. The farmer was most
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upset. What a coincidence – just as a water engineer had arrived, his water supply had suddenly
stopped and an engineer was on hand to fix it for him!

If your car ever runs out of petrol a siphon can be a useful means of taking some fuel from
a neighbour’s tank. Insert a flexible small diameter tube into the tank and suck out all the air
(making sure not to get a mouthful of petrol). When the petrol begins to flow catch it in a
container and then transfer it to your car. Make sure that the outlet is lower than the liquid level
in the tank otherwise the siphon will not work.

Another very practical use for siphons is to detect leakage in domestic water mains
(sometimes called rising mains) from the supply outside in the street to a house (Figure 4.5b).
This can be important for those on a water meter who pay high prices for their water. A leaky
pipe in this situation would be very costly. The main valve to the house must first be closed. Then
seal the cold water tap inside the house by immersing the outlet in a pan of water and opening
the tap. If there is any leakage in the main pipe then water will be siphoned back out of the pan
into the main. The rate of flow will indicate the extent of the leakage.

Siphons can be very useful in situations where the land topography is undulating
between a reservoir and the water users. It is always preferable to locate a pipe below the
hydraulic gradient by putting it in a deep trench but this may not always be practicable. In
situations where siphoning is unavoidable the pipeline must not be more than 7 m above
the hydraulic grade line. Remember atmospheric pressure drives a siphon and the absolute
limit is 10 m head of water. So 7 m is a safe practical limit. When pipelines are located in
mountainous regions the limit needs to be lower than this due to the reduced atmospheric
pressure.

The pressure inside a working siphon is less than atmospheric pressure and so it is negative
when referred to as a gauge pressure (measured above or below atmospheric pressure as
the datum), for example, a �7 m head. Sometimes siphon pressures are quoted as absolute
pressures (measured above vacuum pressure as the datum). So �7 m gauge pressure is the same
as �3 m absolute pressure. This is calculated as follows:

gauge pressure � �7 m head
absolute pressure � atmospheric pressure � gauge pressure

� 10 � 7 � 3 m head absolute

4.8 Selecting pipe sizes in practice

The development of � as a pipe roughness coefficient is an interesting story and this nicely
leads into the use of the Darcy–Weisbach formula for linking energy loss with the various pipe
parameters. There are several examples using this formula in the boxes and they demon-
strate well the effects of pipe length, diameter and velocity on energy loss. So it is a useful
learning tool.

Engineers in different industries and in different countries have also used other formulae
often developed empirically to fit their particular circumstances. But these are gradually being
abandoned and replaced by the Colebrook-White formula which accurately deals with most
commercially available pipes. The task of using the formula, which is a rather complicated one,
is made simple by the fact that it is now available as a set of design charts (Figure 4.6). The charts
are also easier to use because discharge can be related directly to pipe diameter whereas
Darcy–Weisbach formula only links to velocity and so requires an extra step (continuity equation)
to get to discharge.

The boxes provide examples of the use of Darcy–Weisbach formula and design charts based
on Colebrook-White formula.
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EXAMPLE: CALCULATING PIPE DIAMETER USING DARCY–WEISBACH FORMULA

A 2.5 km long pipeline connects a reservoir to a smaller storage tank outside a town
which then supplies water to individual houses. Determine the pipe diameter when the
discharge required between the reservoir and the tank is 0.35 m3/s and the difference in
their water levels is 30 m. Assume the value of � is 0.03.

This problem can be solved using the energy equation. The first step is to write down
the equation for two points in the system. Point 1 is at the water surface of the main
reservoir and point 2 is at the surface of the tank. Friction losses are important in this
example and so these must also be included:

This equation can be greatly simplified. p1 and p2 are both at atmospheric pressure and
are zero. The water velocities v1 and v2 in the two tanks are very small and so the kinetic
energy terms are also very small and can be assumed to be zero. This leaves just the
potential energy terms z1 and z2 and the energy loss term hf so the equation simplifies to:

hf � z1 � z2

Using the Darcy–Weisbach formula for hf:

And so:

Diameter d is unknown but so is the velocity in the pipe. So first calculate velocity v using
the continuity equation:

Q � va

v � 
Q
a

�lv2

2gd
 � z1 � z2

hf � �lv2

2gd

p1

�g � 
v2

1

2g
 � z1 � 

p2

�g � 
v2

2

2g
 � z2 � hf

4.6 Calculating the pipe diameter.
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Calculate area a:

And use this value to calculate v:

�

Note that as d is not known it is not yet possible to calculate a value for v and so this must
remain as an algebraic expression for the moment.

Put all the known values into the Darcy–Weisbach equation:

Rearrange this to calculate d:

Calculate the fifth root of 0.025 to find d:

d � 0.47 m � 470 mm

The nearest pipe size to this would be 500 mm. So this is the size of pipe needed to carry
this flow between the reservoir and the tank.

This may seem rather involved mathematically but another approach, and perhaps a
simpler one, is to guess the size of pipe and then put this into the equation and see if it
gives the right value of discharge. This ‘trial and error’ approach is the way most engineers
approach the problem. The outcome will show if the chosen size is too small or too large.
A second or third guess will usually produce the right answer. If you are designing pipes
on a regular basis you soon learn to ‘guess’ the right size for a particular installation. The
design then becomes one of checking that your guess was the right one.

Try this design example again using the design chart in Figure 4.6 above to see if you
get the same answer.

d5 � 0.03 � 2500 � 0.198
2 � 9.81 � 30

 � 0.025

0.03 � 2500 � 0.198
2 � 9.81 � d � d4

 � 0.35

4 � 0.35
3.14 � d2

 � 0.446
d2

v � 
4Q

�d2

a � �d 2

4

EXAMPLE: CALCULATING DISCHARGE FROM A PIPELINE

A 200 mm diameter pipeline 2000 m long is connected to a reservoir and its outlet is
15 m below the reservoir water level and discharges freely into the atmosphere. Calculate
the discharge from the pipe when the friction factor is 0.014.
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To solve this problem use the energy equation between point 1 at the surface of the
reservoir and point 2 just inside the water jet emerging from the pipe outlet:

This equation can be greatly simplified because p1 is at atmospheric pressure and so is
zero. Also p2 is very near atmospheric pressure because the position of 2 is in the jet as it
emerges from the pipe into the atmosphere. If it was above atmospheric pressure then
the jet would flow laterally under the pressure. It does not do this and so the pressure can
be assumed to be close to atmospheric pressure. Therefore p2 is zero. The water velocity
v1 is zero in the reservoir and v2 at the outlet is very small in comparison with the potential
energy of 30 m and so this can be assumed to be zero also. This leaves just the potential
energy terms z1 and z2 and the energy loss term hf so the equation simplifies to:

z1 � z2 � hf �

Put in the known values and calculate velocity v:

15 �

v2 � � 2.1

v � 1.45 m/s

Use the continuity equation calculate the discharge:

Q � va

Calculate area a:

a � � � 0.031 m2

Q � 1.45 � 0.031
Q � 0.045 m3/s or 45 l/s

�0.22

4
�d 2

4

15 � 2 � 9.81 � 0.2
0.014 � 2000

0.014 � 2000 � v2

2 � 9.81 � 0.2

�lv2

2gd

p1

�g � 
v 2

1

2g
 � z1 � 

p2

�g � 
v2

2

2g
 � z2 � hf

4.7 Measuring the discharge.



4.8.1 Using hydraulic design charts

Pipe charts are now an increasingly common way of designing pipes. An excellent and widely
used source is Hydraulic Design of Channels and Pipes by Peter Ackers (see references for
details). This is a book of design charts based on the Colebrook-White equation. The equation
best describes the transitional flow between smooth and rough pipe flow referred to in Section 4.4.1
which covers all commercially available pipes. An example of one of these charts is shown in
Figure 4.8. It does not use � values but expresses friction as the height of the roughness on the
inside of a pipe. So for this chart, surface roughness is k � 0.03 mm and this is representative
of asbestos cement and PVC pipes in reasonably good condition. The chart’s range of flows is
considerable; from less than 0.1 l/s to 20 000 l/s (or 20 m3/s) with pipe diameters from 0.025 m
to 2.5 m. This should satisfy most pipe designers. In the box is an example showing what a
design chart looks like.

100 Pipes

EXAMPLE: CALCULATING DISCHARGE FROM A PIPELINE 
USING A DESIGN CHART

Using the same example as for the Darcy–Weisbach equation. A 200 mm diameter
pipeline 2000 m long is connected to a reservoir and the outlet is 15 m below the reser-
voir water level. Calculate the discharge from the pipe when the pipe roughness value k
is 0.03 mm.

4.8 Typical pipe design chart.
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There are four important practical points to note from the examples.
The first point refers to the first worked example which showed how mathematically

cumbersome it can be to determine the diameter by calculation. The easier way is to do what
most engineers do; they guess the diameter and then check by calculation that their chosen
pipe is the right one. This might seem a strange way of approaching a problem but it is quite
common in engineering. It always helps to know approximately the answer to a problem before
beginning to solve it. An experienced engineer usually knows what answer to expect; the cal-
culation then becomes just a way of confirming this. (This is one of the basic unwritten laws of
engineering – that you need to know the answer to the problem before you begin so that you
know that you have the right answer when you get there.) This foresight is important because
when you calculate a pipe diameter how will you know that you have arrived at the right
answer? There will not be any answers available to the real problems in the field as there are
in this text book and there may not be anyone around to ask if it is the right answer. You need
to know that you have the right answer and this comes largely from experience of similar design
problems. New designers are unlikely to have this experience, but they have to start some-
where and one way is to rely initially on the experience of others and to learn from them. This
is the apprenticeship that all engineers go through to gain experience and become competent
designers.

The second point to note is that there is no one unique pipe diameter that must be used in
any given situation. If, for example, calculations show that a 100 mm pipe is sufficient then any
pipe larger than this will also carry the flow. The question of which one is the most acceptable
is usually determined by several design criteria. One is that the velocity should not exceed
1.6 m/s. Another might be a limit on the head that can be lost through friction. A third could be
a limit on the pipe sizes available. There are only certain standard sizes which are manufactured
and not all these may be readily available in some countries. A final deciding factor is cost – which
pipe is the cheapest to buy and to operate?

The third point to consider is the value for pipe roughness. It is easy to choose the value for
a new pipe but how long will it be before the roughness increases? What will the value be in,

The design chart uses the hydraulic gradient to show the rate of head loss in a pipeline.
So the first step is to calculate the hydraulic gradient from the information given above.
The pipe is 2000 m long and the head loss from the reservoir to the pipe outlet is 15 m so:

hydraulic gradient � � � 0.0075

or � 0.75 m/100 m

Using the chart locate the intersection of the lines for a hydraulic gradient of
0.75 m/100 m and a diameter of 200 mm. This locates the discharge line and the value
of the discharge:

Q � 0.045 m3/s or 45 l/s

Note that the chart can also be used in reverse to determine the diameter of a pipe and
head loss for a given discharge.

15
2000

h
l



say, 10 years from now when the pipe is still being used? The roughness will undoubtedly
increase through general wear and tear. If there has been lime scale deposits or algae slime build
up on the inside of the pipe or the pipe has been misused and damaged then the roughness will
be significantly greater. So when choosing the most appropriate value for design it is important
to think ahead to what the roughness might be later in the life of the pipe. This is where engi-
neering becomes an art and all the engineer’s experience is brought to bear in selecting the right
roughness value for design purposes. If the selected roughness is too low then the pipe may not
give good, long service. If it is too high then this will result in the unnecessary expense of having
pipes which are too big for the job in hand.

The final point, and often the most important to consider, is cost. Small diameter pipes are
usually cheaper than larger diameter ones but they require more energy to deliver the discharge
because of the greater friction. This is particularly important when water is pumped and energy
costs are high. The trade-off between the two must take account of both capital and operating
costs if a realistic comparison is to be made between alternatives. This aspect of pipeline design
is covered in more detail in Chapter 8 Pumps.

4.8.2 Sizing pipes for future demand

Pipe sizes are often selected using a discharge based on present water demands and little
thought is given to how this might change in the future. Also there is always a temptation to
select small pipes to satisfy current demand simply because they are cheaper than larger ones.
These two factors can lead to trouble in the future. If demand increases and higher discharges
are required from the same pipe, the energy losses can rise sharply and so a lot more energy is
needed to run the system.

As an example, a 200 mm diameter pumped pipeline 500 m long supplies a small town with
a discharge of 50 l/s. Several years later the demand doubles to 100 l/s. This increases the veloc-
ity in the pipe from 1.67 to 3.34 m/s (i.e. it doubles) which pushes up the energy loss from 5 m
to 20 m (i.e. a four-fold increase). This increase in head loss plus the extra flow means that eight
times more energy is needed to operate the system and extra pumps may be required to pro-
vide the extra power input. A little extra thought at the planning stage and a little more invest-
ment at the beginning could save a lot of extra pumping cost later.

Increasing the energy available is one way of increasing the discharge in a pipeline to meet
future demand. But another way is to increase the effective diameter of the pipe. The practical
way of doing this is to lay a second pipe parallel to the first one. It may not be necessary to lay
the second pipe along the entire length. Pipes are expensive and so from a cost point of view
only the minimum length of parallel pipe should be laid to meet the demand (Figure 4.9). The
discharge in pipe 1 will equal the discharge in pipe 2. This is the original pipeline carrying the
(inadequate) discharge between the tanks – note the energy line which represents the uniform
energy loss along the pipeline. Pipe 3 is the new pipe laid parallel to the original pipe and so the
combined effect of pipes 2 and 3 is to increase the cross-sectional area carrying the discharge
and decrease the energy loss along the parallel section of the pipeline (the velocity is lower
because of the increased area). The effect of reducing the energy loss in the parallel section is
to make more energy available to move water through pipeline 1 and so the overall discharge
is increased. Note how the energy line for pipe 1 in the new system is steeper showing that it is
carrying a higher discharge. The energy line for the parallel pipes has a more gentle gradient
due to the overall reduction in velocity in this section. The length of parallel pipe depends on
the required increase in discharge. Should the discharge demand increase further in the future the
length of parallel pipeline can be extended to suit. The job for the designer is to decide on the
diameter and length of pipe 3.
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pipe 1

e
e
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e

pipe 2

e

pipe 3

new energy line

flow

original energy line

4.9 Parallel pipes can increase discharge with the same energy.

EXAMPLE: CALCULATING LENGTH OF A PARALLEL PIPE

A 1000 m long pipeline 150 mm diameter supplies water from a reservoir to an offtake
point. Calculate the discharge at the offtake when the head available is 10 m. Since the
pipeline was installed the water demand has doubled and so a parallel 250 mm dia
pipeline is to be installed alongside the original pipeline (Figure 4.9). Calculate the length
of new pipe required to double the discharge. Assume the friction factor for the pipelines
is k � 0.03 mm. Use the pipe design chart in Figure 4.8 above.

First calculate the original discharge. Calculate the hydraulic gradient (100 h/l) and
together with the pipe diameter determine the discharge from the pipe design chart. The
data and the results are tabulated as follows:

Pipe Pipe dia Length Friction k Hyd grad Discharge
(mm) (m) (mm) (m/100 m) (l/s)

Original pipe 150 1000 0.03 1.0 23

The demand has now doubled to 46 l/s. So the additional 23 l/s is supplied by introduc-
ing a pipe of 250 mm diameter – pipe 3 – alongside the original pipeline but as yet of
unknown length. This length cannot be calculated directly and requires some iteration. In
other words, some intelligent guess work. It is convenient at this stage to divide the orig-
inal pipeline into two parts – pipe 2 which has the same length as pipe 3, and pipe 1
which is from the reservoir to the point where the two parallel pipes join.

First determine the hydraulic gradient in the two parallel pipes – pipes 2 and 3 – so
that the two pipelines carry a combined discharge of 46 l/s. The gradient will be the
same for each pipeIine as they have the same pressure at the points of connection and
discharge. Mark on the pipe chart vertical lines representing the two pipe diameters.
Look for a hydraulic gradient that intersects the pipe ‘lines’ so that the sum of the two
discharges is 46 l/s. This occurs at a hydraulic gradient of 0.18 m/100 m which results
in discharges of 10 and 35 l/s totalling 45 l/s. This is close enough to 46 l/s.

Next determine the hydraulic gradient for pipe 1 for a discharge of 46 l/s. From the
chart this is 3.2 m/100 m.

Using this information it is now possible to set up an equation to calculate the length
of pipe 3.
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The sum of the head loss in pipes 1 and 3 (remember the loss in pipe 3 will be the
same as pipe 2) is 10 m. So:

h1 � h3 � 10 m

Now:

Similarly:

So:

Both L1 and L3 are unknown. So to ‘eliminate’ one of the unknowns substitute for L1 in
terms of L3:

L1 � 1000 – L3

Substitute this into the above equation:

� 10

(1000 – L3) 3.2 � 0.18L3 � 1000

3200 – 3.2L3 � 0.18L3 � 1000

3.38L3 � 2200

L3 � � 650 m

So the length of pipe 3 is 650 m. This is also the length of pipe 2. Pipe 1 will be 350 m.
The following table summarises the results:

Pipe Pipe dia (mm) Friction k (mm) Hyd grad (m/100 m) Discharge (l/s) Length (m)

Pipe 1 150 0.03 3.20 46 350
Pipe 2 150 0.03 0.18 10 650
Pipe 3 250 0.03 0.18 35 650

This is one example where using a formula makes the problem easier to solve as it avoids
the iterative approach. Try to solve the problem using the Darcy–Weisbach formula and
the continuity equation with a value of � � 0.04 for the pipes.

2200
3.38

(1000 � L3) � 3.2
100

 � 

L3 

�
 

0.18
100

L1 

�
 

3.2
100

 � 
L3 

�
 

0.18
100

 � 10

h3 � 
L3 

�
 

0.18
100

h1 � 
L1 

�
 

3.2
100

100h1

L1
 � hydraulic gradient � 3.2



Pipes 105

4.9 Pipe networks

Most water supply systems are not just single pipes but involve several branching pipes or a pipe
network. These supply water to several reservoirs or dwellings in a village or town (Figure 4.10).
Some networks are simple and involve just a few pipes but some are quite complicated involving
many different pipes and connections. Sometimes the pipes form a ring or loop and this ensures
that if one section of pipe fails for some reason then flow can be maintained from another direc-
tion. It also has hydraulic advantages. Each offtake point is supplied from two directions and so
the pipe sizes in the ring can be smaller than if the point was fed from a single pipe.

The simplest example of a ring or loop network is a triangular pipe layout (Figure 4.11). Water
flows into the loop at point A and flows out at points B and C. So the water flows away from
point A towards B and C. But there will also be a flow in pipe BC and this could be in the direc-
tion BC or CB depending on the pressure difference between B and C. If the pressure at B is
higher than C then there will be a flow from B to C. Conversely if the pressure at C is higher
than the pressure at B then the flow will be from C to B.

There are three rules to solving the problem of pressures and discharges in a network:

1 The sum of all the discharges at a junction is zero;
2 The flow in one leg of a network will be in the direction of the pressure drop;
3 The sum of the head losses in a closed loop will be zero for a start and finish at any junction

in the loop.

These rules apply to all networks, not just the simple ones. However, the calculations can get rather
involved. An example of how the rules are applied to a simple network is shown in the box.

4.10 Pipe networks.

50 l/s

100 l/s
50 l/s

L = 1200m

d = 150mmL = 2050m

d = 450mm

L = 2000m

A B

C

d = 300mm

4.11 Triangular pipe network.



4.10 Measuring discharge in pipes

Discharges in pipelines can be measured using a venturi meter or an orifice plate (Figure 4.12).
Both devices rely on changing the components of the total energy of flow from which discharge
can be calculated (see Section 3.7.6). The venturi meter was developed by an American,
Clemens Herschel (1842–1930) who was looking for a way to measure water abstraction from
a river by industrialists. Although the principles of this measuring device were well established
by Bernoulli it was Herschel who, being troubled by unlicensed and unmeasured removal of
water by pipelines from a canal by paper mills, developed it into the device used today.

A venturi meter comprises a short, narrow section of pipe (throat) followed by a gradually
expanding tube. This causes the flow velocity to increase (remember continuity) and so the
kinetic energy increases also. As the total energy remains the same throughout the system it
follows that there must be a corresponding reduction in pressure energy. By measuring this
change in pressure using a pressure gauge or a manometer and using the continuity and energy
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EXAMPLE: CALCULATING DISCHARGES AND PRESSURES IN A PIPE NETWORK

A simple network of three pipes forms a triangle ABC. The following data are available

Pipe Diameter (mm) Length (m) Friction factor k (mm)

AB 300 2000 0.03
BC 150 1200 0.03
CA 450 2050 0.03

The discharge entering the system at point A is 100 l/s and this meets the demand at B of
50 l/s and at C of 50 l/s. Calculate the discharges in each pipe and the pressures at B and C
if A is supplied at a pressure of 100 m head of water. Use the pipe design chart in Figure 4.8.

Start by looking at the data, apply some common sense, and rule (1) get an assess-
ment of the likely discharges in each pipe. AB and AC are approximately the same in
length and AC has a large diameter. So assume QAC is 60 l/s, QAB is 40 l/s and QCB is 10 l/s.
Note the assumed flow directions indicated by the arrows.

Next calculate the head loss in each pipe using the pipe chart in Figure 4.8. Notice how
the discharges in pipes BC and CA are listed as negative. The sign comes from considering
the discharges positive in a clockwise direction around the loop.

Pipe Diameter Discharge Hydraulic Length (m) Head loss (m)
(mm) (l/s) gradient

(m per 100 m)

AB 300 40 0.14 2000 �2.80
BC 150 �10 0.2 1200 �2.40
CA 450 �60 0.025 2050 �0.51

Applying rule (3) from the start point A and moving in a clockwise direction add up all the
head losses in the pipes, that is, 2.80 – 2.40 – 0.51 � 0.11 m. This sum should come to zero.
To make the above sum come to zero slightly decrease the discharge in pipe AB, recalcu-
late the head losses again and see if the sum of the head losses comes to zero. In this case
the value is close to zero so this suggests that the discharge values chosen are close to the
right ones. So there is no need for further iteration.
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equations, the following formula for discharge in the pipe can be obtained:

where a1 is area of main pipe (m2); a2 is area of venturi throat (m2); H is the head difference
between pipe and throat (m); g is gravity constant (9.81 m/s2); Cd is coefficient of discharge.

This is the theory, but in practice there are some minor energy losses in a venturi meter, so a
coefficient discharge Cd is introduced to obtain the true discharge. Care is needed when using
this formula. Some textbooks quote the formula in terms of a2 rather than a1 and this changes
several of the terms. It is the same formula from the same fundamental base but it can be con-
fusing. The safest way is to avoid the formula and work directly from the energy and continuity
equations. A derivation of the formula and an example of calculating discharge working from
energy and continuity are shown in the boxes.

m � 
a1

a2

Q � Cda1� 2gH

m2�1

4.12 Measuring discharge in pipelines.

DERIVATION: FORMULA FOR DISCHARGE IN A VENTURI METER

First write down the energy equation for the venturi meter. Point 1 is in the main pipe and
point 2 is located in the throat of the venturi. It is assumed that there is no energy loss
between the two points. This is a reasonable assumption as contracting flows suppress
turbulence which is the main cause of energy loss.

p1

�g � 

v2
1

2g
 � z1 

� 

p2

�g � 

v2
2

2g
 � z2
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As the venturi is horizontal:

z1 � z2

And so:

Now rearrange this equation so that all the pressure terms and all the velocity terms are
brought together:

The left-hand side of this equation is the pressure difference between points 1 and 2
which can be measured using pressure gauges or a differential manometer. This is a
manometer with one limb connected to the pipe and the other limb connected to the
throat (see Section 2.9.4).

At this point it is not possible to calculate the velocities because both v1 and v2 are
unknown. A second equation is needed to do this – the continuity equation.

Write the continuity equation for points 1 and 2 in the venturi:

a1v1 � a2v2

Rearrange this:

Now a1 and a2 are the cross-sectional areas of the pipe and venturi respectively and can
be calculated from the pipe and venturi throat diameters respectively. Substituting for v2

in the energy equation

p1

�g � 
p2

�g � �a2
1

a2
2
� 

v2
1

2g
 � 

v2
1

2g

v2 � 
a1

a2
v1

p1

�g � 
p2

�g � 
v2

2

2g
 � 

v2
1

2g

p1

�g � 
v2

1

2g
 � 

p2

�g � 
v2

2

2g

4.13 Venturi meter for measuring discharge.
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In the case of the venturi meter Cd � 0.97 which means that the energy losses are small and the
energy theory works very well (Cd � 1.0 would mean the theory was perfect). For orifice plates
the same theory and formula can be used but the value of Cd is quite different at Cd � 0.6. The
theory is not so good for this case because there is a lot of energy loss (Figure 4.12b). The water
is not channelled smoothly from one section to another as in the venturi but is forced to make
abrupt changes as it passes through the orifice and expands downstream. Such abruptness
causes a lot of turbulence which results in energy loss. (The Cd value is similar to that for orifice
flow from a tank – see Section 3.6.3.)

Put:

where H is the difference in head between the pipe (point 1) and the venturi throat 
point 2)

Rearrange the equation for v1

Use the continuity equation to calculate discharge:

Q � a1v1

And so:

Put:

And so:

Introduce a coefficient of discharge Cd:

Q � Cda1� 2gH

m2�1

Q � a1� 2gH

m2�1

m � 
a1

a2

Q � �2gH � a1a2

�a2
1�a2

2 �

v1 � �2gH � a2

�a2
1�a2

2 �

H � 
p1

�g � 
p2

�g

p1

�g � 
p2

�g � 
v2

1

2g
 �a2

1�a2
2

a2
2
�
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EXAMPLE: CALCULATING DISCHARGE USING A VENTURI METER

A 120 mm diameter venturi meter is installed in a 250 mm diameter pipeline to measure
discharge. Calculate the discharge when the pressure difference between the pipe and
the venturi throat is 2.5 m of head of water and Cd is 0.97.

Although there is a formula for discharge it can be helpful to work from first princi-
ples. Not only does this reinforce the principle but it also avoids possible errors in using a
rather involved formula which can easily be misquoted. So this example is worked from
the energy and continuity equations.

First step write down the energy equation:

As the venturi is horizontal:

z1 � z2

And so:

Now rearrange this equation so that all the pressure terms and all the velocity terms are
brought together:

But:

Remember that the pressure terms are in m head of water and it is the difference that is
important and not the individual pressures:
And so:

It is not possible to solve this equation directly as both v1 and v2 are unknown. So use con-
tinuity to obtain another equation for v1 and v2:

a1v1 � a2v2

Rearrange this:

Next step calculate the areas a1 and a2.

v2 � 
a1

a2
 v1

v2
2

2g
 � 

v2
1

2g
 � 2.5 m

p1

�g � 
p2

�g � 2.5 m

p1

�g � 
p2

�g � 
v2

2

2g
 � 

v2
1

2g

p1

�g � 
v2

1

2g
 � 

p2

�g � 
v2

2

2g

p1

�g � 
v2

1

2g
 � z1 � 

p2

�g � 
v2

2

2g
 � z2
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Area of pipe:

Area of venturi:

Substitute this value for v2 in the energy equation:

20.7 � 2.5 � 2 � 9.81 � 49.05

Calculate Q:

Q � Cd v1 a1

� 0.97 � 1.57 � 0.05
Q � 0.076 m3/s

v1 ��49.05
19.7

 �1.57 m/s

v2
1 � v2

1

4.552v2
1

2g
 � 

v2
1

2g
 � 2.5 m

v2 � 0.05
0.011

 v1 � 4.55 v1

a2 � 
�d2

2

4
 � �0.122

4
 � 0.011 m2

a1 � 
�d1

2

4
 � �0.252

4
 � 0.05 m2

EXAMPLE: CALCULATING THE FORCE ON A NOZZLE

A 100 mm diameter fire hose discharges 15 l/s from a 50 mm diameter nozzle. Calculate
the force on the nozzle.

To solve this problem all three hydraulic equations are needed; energy, continuity and
momentum. The energy and continuity equations are needed to calculate the pressure in
the 100 mm pipe and momentum is then used to calculate the force on the nozzle.

4.11 Momentum in pipes

The momentum equation is used in pipe flow to calculate forces on pipe fittings such as noz-
zles, pipe bends and valves. In more advanced applications it is used in the design of pumps and
turbines where water flow creates forces on pump and turbine impellers.

To solve force and momentum problems a concept known as the control volume is used. This
is a way of isolating part of a system being investigated so that the momentum equation can be
applied to it. To see how this works an example is given in the box below showing how the force
on a pipe reducer (or nozzle) can be calculated.
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The first step is to calculate the pressure p1 in the 100 mm pipe. Use the energy equation:

The pressure in the jet as it emerges from the nozzle into the atmosphere is p2. The jet is
at the same pressure as the atmosphere and so the pressure p2 is zero. The potential ener-
gies z1 and z2 are equal to each other because the nozzle and the pipe are horizontal and
so they cancel out.

So the energy equation becomes:

The value of p1 is unknown and so are v1 and v2. So the next step is to calculate the veloc-
ities from the discharge equation:

and

Area of pipe:

Area of jet:

Next calculate the velocities:

v1 

� 

Q
a1  

 � 

0.015
0.0078

 � 1.92 m/s

a2 

� 

�d2
2

4
 � 

�0.052

4
 � 0.0019 m2

a1 

� 

�d1
2

4
 � 

�0.12

4
 � 0.0078 m2

v2�
Q
a2

v1 

� 

Q
a1

p1

�g � 

v2
2

2g
 � 

v2
1

2g

p1

�g � 

v2
1

2g
 � z1 

� 

p2

�g � 

v2
2

2g
 � z2

4.14 Calculating the force on a nozzle.
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And:

Put all the known values into the energy equation:

p1 � 2.99 � 1000 � 9.81 � 29 332 N/m2

The final step is to calculate the force F on the nozzle using the momentum equation. To
do this the concept of the control volume isolates that part of the system being investi-
gated. All the forces which help to maintain the control volume are then identified. F1 and
F2 are forces due to the water pressure in the pipe and the jet and F is the force exerted
on the water by the nozzle. Although the force F2 is shown acting against the flow
remember that there is an equal and opposite force acting in the direction of the flow
(Newton’s third law).

Use the momentum equation:

F1 � F2 � F � �Q (v2 � v1)

F is the force we wish to calculate but at this stage both F1 and F2 are also unknown. So
the next step is to calculate F1 and F2 using known values of pressure and pipe area:

F1 � p1 � a1

� 29 332 � 0.0078 � 228.8 N

And:

F2 � p2 � a2

But p2 is zero and so:

F2 � 0

Finally all the information for the momentum equation is available to calculate F:

228.8 � F � 0 � 1000 � 0.015 (7.9 � 1.92)
F � 228.8 � 89.7
F � 139 N

As this is a fire hose, a firm grip would be required to hold it in place. If a fireman let go
of the nozzle, the unbalanced force of 139 N would cause it to rapidly shoot backwards
and this could do serious injury if it hit someone. A larger nozzle and discharge would
probably need two firemen to hold and control it.

p1

�g � 

7.92

2 � 9.81
 � 

1.922

2 � 9.81
 � 2.99

v2 

� 

Q
a2 

 � 

0.015
0.0019

 � 7.9 m/s



Forces, often large ones, also occur at pipe bends and this is not always appreciated. For example,
a 90� bend on a 0.5 m diameter pipe operating at 30 m head carrying a discharge of 0.3 m3/s
would produce a force of 86 kN. This is a large thrust (over 8 tons) – which means that the bend
must be held firmly in place if it is not to move and burst the pipe (Figure 4.15). A good way to
deal with this is to bury the pipe below ground and encase the bend in concrete to stop it mov-
ing. The side of the trench must also be very firm for the concrete to push against it.

4.12 Pipe materials

Pipes are a major cost in any water supply or irrigation scheme. They must carry the design flow,
resist all external and internal forces, be durable and have a long useful life. So it is important
to know something about what pipes are available, how they are installed and used, what valves
and fittings are needed and how to test them once they are in place.

4.12.1 Specifying pipes

Pipe manufacture is normally controlled by specifications laid down by national and international
standards organisations. In the UK the British Standards Institute (BSI) has developed its own
standards for pipes although a notable exception to this is the aluminium pipe used in many
irrigation systems which has an international standard adopted by UK. The standards were
developed for the water supply industry which demand high quality manufacture and rigorous
testing of all pipes and fittings. The International Standards Organisation (ISO) does a similar job
on an international scale. Many standards are the same and some BSI publications for example
also have an ISO number.

Although the internal bore of a pipe determines its flow capacity it is not generally used to
specify pipe size. The reason for this is that pipes are also classified according to pressure which
means they have different wall thicknesses. If the outside diameter of a pipe is fixed, which is
often the case from a pipe joining point of view, the internal bore will be different for different
wall thicknesses. To add to this confusion different pipe materials (e.g. PVC, steel) will have dif-
ferent wall thicknesses. To overcome this problem manufacturers quote a nominal pipe size,
which in many cases is neither the inside nor the outside diameter! – it is just an indication of
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the pipe diameter for selection purposes. It is also normal to specify the safe working pressure
at which the pipes can be used.

4.12.2 Materials

Pipes are made from a wide variety of materials but the most common in water systems are steel,
asbestos cement and various plastics. Steel pipes tend to be used only where very high pressures
are encountered or in conjunction with other pipe materials where extra strength is needed, such
as under roads or across ditches. Larger pipes are made from steel plate bent or rolled to shape
and butt welded. But small sizes up to 450 mm are made from hot steel ingots which are pierced
and rolled into a cylinder of the right dimensions. Corrosion is a problem with steel and so pipes
are wrapped with bituminous materials or galvanising. Buried pipes often use cathodic protec-
tion. Corrosion is an electrolytic process set up between the pipe and the surrounding soil. It is a
bit like a battery with the steel pipe acting as an anode which gradually corrodes. The process is
reversed by making the pipe a cathode either by connecting it to an expendable anodic material
such as magnesium or by passing a small electric current through the pipe material.

Asbestos cement pipes are still used in many countries for underground mains and are made
from cement and asbestos fibre mixed in a slurry and deposited layer upon layer on a rolling
mandrel. The pipe is then dipped in cold bitumen for protection and the end turned down to a
specific diameter for jointing purposes. Unlike steel, asbestos cement does not corrode easily but
it is easily damaged by shock loads and must be handled with care. Sometimes damage is not
always apparent as in the case of hairline fractures. These only show up when the pipe is being
site tested and leaks occur. Joints are made using an asbestos cement collar and rubber sealing
rings similar to those used for PVC pipes. Bends and fittings cannot be made from asbestos
cement and so ductile iron is used. An important criterion is that the outside diameter of the
ductile steel must be the same as the asbestos cement so they can be effectively joined together.

Several plastic materials are in common use for making pipes. Unplasticised polyvinyl chlo-
ride (UPVC) is a rigid material and an alternative to asbestos cement, which is falling out of
favour because of the health risks associated with asbestos fibres. Pipes come in various pres-
sure classes and are colour coded for easy recognition. They are virtually corrosion free, light in
weight, flexible and easily jointed by a spigot and socket system using either a chemical solvent
or rubber ring to create a seal. But laying PVC pipes needs care. They are easily damaged by
sharp stones in the soil and distorted by poor compaction of material on the bottom and sides
of trenches. Hydraulically PVC has a very low friction characteristic, but it can be easily damaged
internally by sand and silt particles in the flowing water.

In contrast polythene pipe is very flexible and comes in high density and low density forms.
Low density pipe is cheaper than high density and is used extensively for trickle and some sprin-
kler irrigation systems where pipes are laid out on the ground. The pipe wall is thin and so it is
easily damaged by sharp tools or animals biting through it. However, it will stand up to quite
high water pressures. High density pipes are much stronger, but more expensive and are used
extensively for domestic water supply systems.

4.13 Pipe fittings

Pipelines require a wide range of valves and special fittings to make sure the discharge is always
under control. Some of the more important are sluice valves, air valves, non-return valves and
control valves (Figure 4.16).

Sluice valves are essentially on-off valves. They can be used to control pressure and discharge
but they are rather crude and need constant attention. It is only the last 10% of the gate opening



116 Pipes

(a) Sluice valve.

Air blockage

Hollow
ball

Escaping air

water flow

(b) Air valve.

(c) Non-return valve.

4.16 Pipe fittings.



Pipes 117

that has any real controlling influence. Moving the gate over the remaining 90% does not really
influence the discharge, it just changes the energy from pressure to kinetic energy so the flow
goes through the narrow opening faster. The valve body contains a gate which can be lowered
using a screw device to close off the flow. The gate slides in a groove in the valve body and relies
on the surfaces of the gate and the groove being forced together to make a seal. It was devel-
oped over 100 years ago for the water industry and has not changed materially since then. The
gate can be tapered so that it does not jam in the gate guide but the taper gate must be opened
fully otherwise it may start to vibrate once it is partially open. Sluice valves do require some effort
to open them as water pressure builds up on one side producing an unbalanced head. The term
‘cracking open’ a valve is sometimes used to describe the initial effort needed to get the valve
moving. A 100 mm valve fitted with a hand wheel is difficult to open when there is an unbal-
anced pressure of over 8 bar. Larger valves often used gearing mechanisms to move them and
so opening and closing valves can be a slow business. This is an advantage as it reduces the
problems of water hammer (see Section 4.14).

Butterfly valves do much the same job as sluice valves – they consist of a disc which rotates
about a spindle across the diameter of the pipe. They are easier to operate than sluice valves
requiring less force to open them. In spite of this they have not always been favoured by design-
ers because the disc in an obstacle to the flow where debris can accumulate. It is also possible
to close a small butterfly valve quite rapidly and this can cause water hammer problems.

Air valves are a means of letting unwanted air out of pipelines. Water can contain large vol-
umes of dissolved air which can come out of solution when the pressure drops, particularly at
high spots on pipelines (see Section 4.7). If air is allowed to accumulate it can block the flow or
at least considerably reduce it. Air valves allow air to escape. There are two types depending on
whether the pipeline is above or below the hydraulic gradient. For pipes below the hydraulic gra-
dient where the water pressure is positive, the most common situation, a ball valve is used. When
air collects in the pipe the ball falls onto its seating allowing air to escape. As the air escapes water
rises into the valve which pushes the ball up to close off the valve. When the pipeline is above
the hydraulic gradient the pressure inside the pipe is negative (below atmospheric pressure). In this
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case the ball valve would not work as air would be sucked in and this would allow the pipe to fill
with air and break the siphon. A manual valve is needed to remove the air but a bellows fitting
can also be used to suck out unwanted air. This process is very much like the priming described
both for siphons (see Section 4.7) and pumps (see Section 8.4.1).

The non-return valve – sometimes called a reflux valve – does what it says. It allows water to
flow one way only and prevents return flow once the main flow stops. These are essential fit-
tings on pump delivery pipes to prevent damage from water hammer, and on water supply
pipelines to prevent contamination from being ‘sucked’ into the pipe when it is being shut
down. An example is an outside tap for watering the garden with a hose pipe. If for some rea-
son another tap on the same domestic supply system is opened at the same time, the flow in
the hose pipe can stop and even be reversed. This can suck soil particles and harmful bacteria
into the pipeline and contaminate the flow. To avoid this problem all outside taps should be fit-
ted with a non-return valve – in the UK it is a legal requirement.

Control valves are available for a wide range of control issues such as discharge and pressure
control, pressure reducing, pressure sustaining and surge control. Some valves now are very
sophisticated and expensive but each works on a simple principle. One simple example is a valve
to regulate pressure under agricultural sprinklers. Sprinklers work best when the operating pres-
sure is constant and at the value recommended by the manufacturer. A small regulator placed
under each sprinkler ensures that each sprinkler operates at the desired pressure. Normally pres-
sures p1 and p2 are equal and close to the sprinkler operating pressure (Figure 4.16d). But if the
pressure p1 rises then p2 also starts to rise. This pushes down the sleeve closing up the water-
way and reducing the flow to the sprinkler. The effect of this is to reduce the pressure p2. If p1

starts to fall then p2 also falls, the sleeve opens and allows more flow through to maintain the
pressure p2. The regulated pressure p2 is controlled by a spring in compression inside the sleeve.
This can be adjusted using a small screw. For example, if a higher pressure p2 is required then
the screw is turned clockwise increasing the spring compression. This stops the movement of
the sleeve until the higher pressure p2 is reached. Although this is a simple mechanism most
pressure regulating valves work on this principle. Note that pressure control valves will only
reduce the pressure, they cannot increase it beyond the working pressure in the pipeline.

4.14 Water hammer

Most people will already have experienced this but may not have realised it nor appreciated the
seriousness of it. When a domestic water tap is turned off quickly, there is sometimes a loud
banging noise in the pipes and sometimes the pipes start to vibrate. The noise is the result of
a high pressure wave which moves rapidly through the pipes as a result of the rapid closure of
the tap. This is known as water hammer and although it may not be too serious in domestic
plumbing it can have disastrous consequences in larger pipelines and may result in pipe bursts.

Water hammer occurs when flowing water is suddenly stopped. It behaves in a similar way
to traffic flowing along a road when suddenly one car stops for no clear reason (Figure 4.17).
The car travelling close behind then crashes into it and the impact causes the cars to crumple.
The next one crashes into the other two and so on until there is quite a pile up. Notice that
all the cars do not crash at the same time. A few seconds pass between each impact and so it
takes several seconds before they all join the pile up. If you are watching this from a distance it
would appear as if there was a wave moving up the line of cars as each joins the pile up. The
speed of the wave is equal to the speed at which successive impacts occur. It is worth pointing
out that cars are designed to collapse on impact so as to absorb the kinetic energy. If they were
built more rigidly then all the energy on impact would be transferred to the driver and the
passengers and not even seat belts would hold you in such circumstances.
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Now imagine water flowing along a pipeline at the end of which is a valve that is closed
suddenly (Figure 4.17b). If water was not compressible then it would behave like a long solid
rod and would crash into the valve with such enormous force (momentum change) that it would
probably destroy the valve. Fortunately, water is compressible and it behaves in a similar man-
ner to the vehicles it squashes on impact. Think of the flow being made up of small ‘parcels’ of
water. The first parcel hits the valve and compresses (like the first car); the second crashes into
the first and compresses and so on until all the water is stopped. This does not happen instantly
but takes several seconds before all the water feels the impact and stops. The result is a sudden,
large pressure rise at the valve and a pressure wave which travels rapidly along the pipe. This is
referred to as a shock wave because of its suddenness.

The pressure wave is not just one way. Once it reaches the end of the pipeline it reflects back
towards the valve again. It is like a coiled spring that moves back and forth and gradually stops.
This oscillating motion can go on for several minutes in a pipe until friction slowly reduces the
pressure back to the normal operating level.

The extent of the pressure rise depends on how fast the water was travelling (velocity) and
how quickly the valve was closed. It does not depend on the initial pipeline pressure as is often
thought. It can be calculated using a formula developed by Nicholai Joukowsky (1847–1921)
who carried out the first successful analysis of this problem:

where �h is rise in pressure (m); c is velocity of the shock wave (m/s); v is water velocity (m/s);
g is gravity constant (9.81 m/s2).

The shock wave travels at very high velocity between 1200 and 1400 m/s. It depends on the
diameter of the pipe and the material from which the pipe is made as some materials absorb
the energy of compression of the water better than others. An example in the box shows just
how high the pressure can rise.


h � cv
g
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The example of course, is an extreme one as it is difficult to close a valve instantaneously. It
is also wrong to assume that the pipe is rigid. All materials stretch when they are under pressure
and so the pipe itself will absorb some of the pressure energy by expanding. All these factors
help to reduce the pressure rise but they do not stop it. Even if the pressure rise is only half the
above value (say 6 bar) it is still a high pressure to suddenly cope with and this too is enough to
burst the pipe. When pipes burst they usually open up along their length rather than around
their circumference. They burst open rather like unzipping a coat.

Reducing water hammer problems is similar to reducing car crash problems. When cars are
moving slowly then the force of impact is not as great. Also when the first car slows down grad-
ually then the others are unlikely to crash into it. Similarly, when water is moving more slowly
the pressure rises when a valve closes is reduced (see Joukowsky equation). This is one of the
reasons why most pipeline designers restrict velocities to below 1.6 m/s so as to reduce water
hammer problems. Also, when valves are closed slowly, water slows down gradually and there
is little or no pressure rise along the pipe.

In summary to reduce the effects of water hammer:

� Make sure water velocities are low (below 1.6 m/s).
� Close control valves slowly.

In some cases it is not always possible to avoid the sudden closure of a pipeline. For exam-
ple, if a heavy vehicle drives over pipes laid out on the ground, such as might occur with fire
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EXAMPLE: CALCULATING PRESSURE RISE IN A PIPELINE
DUE TO WATER HAMMER

Using the Joukowsky equation determine the pressure rise in a pipeline when it is suddenly
closed. The normal pipeline velocity is 1.0 m/s and the shock wave velocity is 1200 m/s.

If the pipeline is 10 km long determine how long it takes for the pressure wave to
travel the length of the pipeline.

Using the Joukowsky equation:

pressure rise � 122 m

So the pressure rise would be 122 m head of water or 12.2 bar. This is on top of the
normal operating pressure of the pipe and could well cause the pipe to burst.

Calculate the time it takes the wave to travel the length of the pipe:

It takes only 8 s for the shock wave to travel the 10 km length of the pipe and 16 s for
this to return to the valve.

time � 

distance
velocity

 �  

10 000
1200

 � 8 s

� 1200�1.0
9.81


h � cv
g
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hoses, it will squash them and stop the flow instantly. This will immediately cause the pressure
to rise rapidly and this could burst the pipes. A similar situation can occur on farms where mobile
irrigation machines use flexible pipes. It is easy for a tractor to accidentally drive over a pipe
without realising that the resulting pressure rise can split open the pipeline and cause a lot of
damage. In such situations where there are pipes on the ground and vehicles about, it is wise
to use pipe bridges.

Some incidents though are not always easy to foresee. On a sprinkler irrigation scheme in
east Africa pipe bridges were used to allow tractors to cross pipelines. But an elephant got into
the farm and walked through the crop. It trod on an aluminium irrigation pipe and squashed it
flat resulting in an instantaneous closure. This caused a massive pressure rise upstream and
several pipes burst open!

4.15 Surge

Surge and water hammer are terms that are often confused because one is caused by the other.
Surge is the large mass movement of water that sometimes takes place as a result of water ham-
mer. It is much slower and can last for many minutes whereas water hammer may only last for
a few seconds.

An example of the difference between the two can be most easily seen in a hydro-electric
power station (Figure 4.18). Water flows down a pipeline from a large reservoir and is used to
turn a turbine which is coupled to a generator that produces electricity. Turbines run at high
speeds and require large quantities of water and so the velocities in the supply pipe can be very
high. The demand for electricity can vary considerably over very short periods and problems
occur when the demand falls and one or more of the turbines have to be shut down quickly.
This is done by closing the valve on the supply pipe and this can cause water hammer. To pro-
tect a large part of the pipeline a surge tank is located as close to the power station as possible.
This is a vertical chamber many times larger than the pipeline diameter. Water no longer required
for the turbine is diverted into the tank and any water hammer shock waves coming up from

4.18 Surge in pipelines.



the valve closure are absorbed by the tank. Thus water hammer is confined to the pipeline
between the turbine and the tank and so only this length of pipe needs to be constructed to
withstand the high water hammer pressures. Gradually the tank fills with water and the flow
from the reservoir slows down and eventually stops. Usually, the rushing water can cause the
tank to overfill. In such cases water may flow back and forth between the tank and the reser-
voir for several hours. This slow but large movement of water is called surge and although it is
the result of water hammer it is quite different in character.

Surge can also cause problems in pumping mains and these are discussed more fully in
Section 8.14.

4.16 Some examples to test your understanding

1 A 150 mm pipeline is 360 m long and has a friction factor � � 0.02. Calculate the head
loss in the pipeline using the Darcy–Weisbach formula when the discharge is 0.05 m3/s.
Calculate the hydraulic gradient in m/100 m of pipeline (19.46 m; 5.4 m/100 m).

2 A pipeline 2.5 km long and 150 mm diameter supplies water from a reservoir to a small
town storage tank. Calculate the discharge when the pipe outlet is freely discharging into
the tank and the difference in level between the reservoir and the outlet is 15 m. Assume
� � 0.04 (0.012 m3/s).

3 Water from a large reservoir flows through a pipeline, 1.8 km long and discharges into serv-
ice tank. The first 600 m of pipe is 300 mm in diameter and the remainder is 150 mm in
diameter. Calculate the discharge when the difference in water level between the two
reservoirs is 25 m and � � 0.04 for both pipes (0.02 m3/s).

4 A venturi meter is fitted to a pipeline to measure discharge. The pipe diameter is 300 mm
and the venturi throat diameter is 75 mm. Calculate the discharge in m3/s when the differ-
ence in pressure between the pipe and the venturi throat is 400 mm of water. Assume the
coefficient of discharge is 0.97 (0.07 m3/s).

5 A pipeline is reduced in diameter from 500 mm to 300 mm using a concentric reducer pipe.
Calculate the force on the reducer when the discharge is 0.35 m3/s and the pressure in the
500 mm pipe is 300 kN/m2 (37.4 kN).

6 A 500 mm diameter pipeline is fitted with a 90� bend. Calculate the resultant force on the
bend if the normal operating pressure is 50 m head of water and the discharge is 0.3 m3/s.
Calculate the resultant force when there is no flow in the pipe but the system is still under
pressure (138 kN; 137 kN).

7 Calculate the pressure rise in a 0.5 m diameter pipeline carrying a discharge of 0.3 m3/s
when a sluice valve is closed suddenly (187 m).
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