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Because of its inherently asymmetric nature, set-theoretic analysis offers many interesting

contrasts with analysis based on correlations. Until recently, however, social scientists have

been slow to embrace set-theoretic approaches. The perception was that this type of

analysis is restricted to primitive, binary variables and that it has little or no tolerance for

error. With the advent of ‘‘fuzzy’’ sets and the recognition that even rough set-theoretic

relations are relevant to theory, these old barriers have crumbled. This paper advances the

set-theoretic approach by presenting simple descriptive measures that can be used to

evaluate set-theoretic relationships, especially relations between fuzzy sets. The first mea-

sure, ‘‘consistency,’’ assesses the degree to which a subset relation has been approxi-

mated, whereas the second measure, ‘‘coverage,’’ assesses the empirical relevance of

a consistent subset. This paper demonstrates further that set-theoretic coverage can be

partitioned in a manner somewhat analogous to the partitioning of explained variation in

multiple regression analysis.

1 Introduction

The bulk of social science theory is verbal in nature. Verbal theories typically describe
ideal typic cases or situations, which in turn provide grist for social scientists’ formaliza-
tion of theory as hypotheses about empirical patterns and connections. Verbal theory is
largely set theoretic in nature. Because set relations are the building blocks of verbal
statements, they are also the building blocks of most social science theories. Unfortu-
nately, set relations described in theories are usually transformed by social scientists into
hypotheses about correlations between variables, which are then evaluated using standard
correlational techniques (e.g., multiple regression analysis), oriented toward the evaluation
of the ‘‘net effects’’ of causal variables (Ragin 2006). This paper is premised on the idea
that a theory that is formulated in terms of set relations should be evaluated on its own
terms, that is, as statements about set relations, not about correlations.

The reformulation of theoretical arguments describing set relations as correlational
hypotheses is one of the most common but dubious practices in all of contemporary social
science. Consider the ‘‘democratic peace’’ argument: democracies do not go to war against
each other. This statement is essentially a claim that country dyads in which both parties
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are democratic constitute a perfect (or near-perfect) subset of ‘‘nonwarring’’ country
dyads. Of course, the rate of warring may be very low in the set of dyads in which at least
one of the parties is not a democracy. The point of the argument is not the difference
between these two rates, which may be relatively small, but that the rate of warring is
‘‘zero or very close to zero’’ in the set of ‘‘democratic dyads.’’ The fact that democratic
dyads constitute a perfect or near-perfect subset of nonwarring dyads signals that this
arrangement (international relations between democracies) may be sufficient for peaceful
coexistence. Of course, there are many other ways to effect peaceful coexistence, and the
correlation between democratic dyad and nonwarring is weak because of these many
alternate routes (see Peceny and Beer 2002). The set-theoretic claim that democracies
do not go to war against each other, however, is not refuted in any way by the existence of
these alternate routes to peace.

In this paper I present simple descriptive measures for evaluating the strength of the
empirical support for theoretical arguments describing set relations. I focus primarily on
arguments stating that a specific cause or combination of causal conditions constitutes one
of several possible paths to an outcome. When this is true, cases displaying the causal
combination constitute a subset of the cases displaying the outcome, as in the example just
presented. I quantify two aspects of set relations. Set-theoretic consistency assesses the
degree to which the cases sharing a given condition or combination of conditions (e.g.,
democratic dyad) agree in displaying the outcome in question (e.g., nonwarring). That is,
consistency indicates how closely the subset relation is approximated. Set-theoretic
coverage, by contrast, assesses the degree to which a cause or causal combination ‘‘ac-
counts for’’ instances of an outcome. When there are several paths to the same outcome, the
coverage of any given causal combination may be small. Thus, coverage gauges empirical
relevance or importance. These two measures also can be used to evaluate set relations
suggesting that a causal condition is necessary (but not sufficient) for an outcome, that is,
where instances of an outcome constitute a subset of instances of a cause. In this context,
consistency assesses the degree to which instances of an outcome agree in displaying the
causal condition thought to be necessary, whereas coverage assesses the ‘‘relevance’’ of the
causal condition—the degree to which instances of the causal condition are paired with
instances of the outcome. My discussion of necessary conditions builds on the work of
Gary Goertz (Braumoeller and Goertz 2000; Goertz and Starr 2002; Goertz 2003, 2006).

These measures provide vital tools for refining set-theoretic analysis in the social
sciences. They are neither complex nor entirely ‘‘new,’’ for there are many similar and
parallel measures in the vast literature on quantitative analysis and statistical methods.
What is novel is their explicit coupling with set-theoretic reasoning, especially those forms
that are at odds with the inherently symmetric, correlational reasoning that undergirds
most forms of conventional quantitative analysis. Thus, this paper not only presents mea-
sures, it also addresses key differences between correlational reasoning and set-theoretic
reasoning. Note that set-theoretic reasoning is not limited to nominal-scale distinctions, as
is so often assumed by many quantitative researchers. As this paper demonstrates, with
‘‘fuzzy’’ sets it is a simple matter to apply set-theoretic reasoning to phenomena that vary
by level or degree.

2 Set-Theoretic Consistency

Perfectly consistent set relations are relatively rare in social research. Perfect consistency
usually requires small Ns, macrolevel data, or both. Generally, social scientists are able
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to identify only rough subsets because there are almost always exceptions (e.g., a war
between two democracies). It is important, therefore, to develop useful descriptive mea-
sures of the degree to which a set relation has been approximated, that is, the degree to
which the evidence is consistent with the argument that a set relation exists. I first address
the evaluation of the consistency of ‘‘crisp’’-set relations, where a very simple measure
suffices, and then turn to fuzzy sets. A crisp set is a conventional binary set with two
categories (e.g., presence versus absence of a presidential form of government). A fuzzy
set allows calibration of degree of set membership, using scores in the interval from 0.0 to
1.0 (e.g., degree of membership in the set of countries with competitive elections; see
Ragin 2000).

A simple, straightforward measure of the consistency of a crisp-set relation with suffi-
ciency is the proportion of cases with a given cause or combination of causes that also
display the outcome. For example, if 17 out of the 20 cases displaying a cause or causal
combination also display the outcome, then the proportion consistent is 0.85. In general,
consistency scores should be as close to 1.0 (perfect consistency) as possible. With observed
consistency scores below 0.75, it becomes increasingly difficult on substantive grounds to
maintain that a subset relation exists, even a very rough one (see also Ragin 2004).

When assessing consistency, it is important to consider the number of cases. Perfect
consistency does not guarantee that a meaningful set-theoretic connection exists. Suppose,
for example, that ‘‘all three’’ third-wave democracies that adopted parliamentary govern-
ments subsequently failed. The prudent conclusion would be that this connection, although
interesting and 100% consistent from a set-theoretic viewpoint, might well be happen-
stance (see also Dion 1998; Ragin 2000). Most social scientists would be more convinced
of an explicit connection between parliamentary government and subsequent failure if the
tally was, say, 17 out of 20, instead of three out of three.1 Although not 100%, 17 out of 20
(85%) is substantial enough to indicate, to a social scientist at least, that there may be some
sort of integral connection.

The assessment of the consistency of fuzzy set relations is more interesting and more
challenging than the crisp-set case. An overview of the use of fuzzy sets in social research
is presented in Fuzzy-Set Social Science (Ragin 2000; see also Smithson and Verkuilen
2006). The key point for present purposes is that with fuzzy sets, cases can have varying
degrees of membership in sets, with membership scores ranging from 0.0 to 1.0. For
example, a country might have only partial membership in the set of democracies. Fol-
lowing the 2000 presidential election, for instance, a disgruntled observer might score the
United States well below 1.0 in its membership in this set (e.g., a score of 0.75). Member-
ship scores greater than 0.5 indicate that a case is more in than out, scores close to 1.0
indicate that a case is mostly in, scores close to 0.0 indicate that a case is mostly out, and so
on. Full membership (1.0) and full nonmembership (0.0) are understood as qualitative
states, not arbitrary values (e.g., the highest and lowest observed scores). Thus, the cali-
bration of membership in a fuzzy set involves both quantitative and qualitative assessment
and must be grounded in theoretical and substantive knowledge (Ragin 2000, 2004;
Smithson and Verkuilen 2006).

A fuzzy subset relation exists when the membership scores in one set are consistently
less than or equal to their membership scores in another. For example, if degree of

1As explained in Fuzzy-Set Social Science (Ragin 2000), the N of cases can be taken into account by using
benchmarks and an exact probability test. For example, with three cases a proportion consistent of 1.00 is not
significantly greater than a benchmark proportion of 0.65, using an alpha of 0.05. However, a proportion of 0.85
with an N of 20 passes this test.
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membership in ‘‘parliamentary form of government’’ is consistently less than or equal to
degree of membership in ‘‘failure of democracy’’ across relevant third-wave democracies,
then the former is a subset of the latter. Recall that in the crisp-set example, not all
instances of ‘‘failure’’ were instances of ‘‘parliamentary government’’ because there were
(hypothetically) many ways to fail. With fuzzy sets a case might have a score of 0.9 in
failure but a score of only 0.2 in parliamentary government. As in the crisp example, this
case is not inconsistent with the set-theoretic argument because there is more than one way
to fail, including paths to failure for countries with weak membership in the set of coun-
tries with parliamentary governments. By contrast, a country with a membership score of
0.8 in parliamentary government and a membership of only 0.3 in failure clearly contra-
dicts the set-theoretic claim.

The fuzzy subset relation has a triangular form when depicted as a plot of two fuzzy
sets, as shown in Fig. 1. In this figure the causal condition (X) is a subset of the outcome
(Y); thus all Xi values are less than or equal to their corresponding Yi values. Note that
cases in the upper left-hand corner of the plot do not contradict sufficiency, for these are
cases that have substantial membership in the outcome due to the operation of causal
conditions other than X, and an argument of causal sufficiency permits multiple paths.
Thus, when membership in X is low, a wide range of Yi values is permissible. When
membership in X is high, however, there are many more opportunities to violate the subset
relation, as the range of permissible Yi values narrows. Of course, in a conventional
correlational analysis, cases in the upper left-hand corner would be considered errors
and these cases, in turn, would undermine the correlation between X and Y.

In Fuzzy-Set Social Science (Ragin 2000), the definition of the consistency of a fuzzy
set relation is straightforward but simplistic. In the plot of membership in the outcome (Y)
against membership in a causal condition or combination of causal conditions (X), con-
sistency is defined as the proportion of cases on or above the main diagonal of the plot.

Fig. 1 Fuzzy subset relation consistent with sufficiency.
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If membership in X is consistently less than or equal to membership in Y, then all the cases
will fall on or above the main diagonal of the plot, yielding a consistency score of 1.0
(or 100% consistent). In the ‘‘fuzzy-inclusion’’ algorithm described in Ragin (2000),
consistency scores are computed for different combinations of causal conditions, and these
scores provide the basis for evaluating sufficiency, defined as a set relation (see Ragin,
Drass, and Davey 2003; Ragin and Giesel 2003). For example, if significantly greater than
80% of the cases fall on or above the main diagonal in the plot just described, then the
investigator might claim that the cause or causal combination X is ‘‘almost always’’
sufficient for the outcome Y.

The procedures presented in Ragin (2000) for the evaluation of the sufficiency of causal
combinations are based on the simple categorization of cases as either consistent or in-
consistent and the computation of the simple proportion of consistent cases. In short, the
procedure closely follows the crisp-set template described above. One issue in the use of
this procedure concerns the contrast between cases with strong versus weak membership
in the causal condition or combination of causal conditions (X). Specifically, cases with
strong and weak memberships in the causal combination are weighted equally in the
calculation, yet they differ substantially in their relevance to the set-theoretic argument.
For example, a case with a membership of only 0.25 in the set of cases with the causal
combination (X) and a score of 0.0 in the outcome set (Y) is just as inconsistent as a case
with a score of 1.0 in the causal combination and a score of 0.75 in the outcome. (A mem-
bership score of 0.25 indicates that a case is more out than in a set; 0.5 is the crossover
point.) In fact, however, the second inconsistent case, with full membership in X, clearly
has more bearing on the set-theoretic argument because it is a much better instance of the
causal combination. It thus constitutes a more glaring inconsistency than the first case
despite the equal gaps—the Xi values exceed the Yi values by the same amount.

The same reasoning holds for consistent cases. A consistent case with two high mem-
bership scores (e.g., 0.9 in the causal combination and 1.0 in the outcome) is clearly more
relevant to the set-theoretic argument than a consistent case with two low scores (e.g., 0.1
in the causal combination and 0.2 in the outcome) or a consistent case with a low score in
the causal combination (say, 0.15) and a high score in the outcome (say, 0.8). Yet all are
counted equally in the formula for consistency just described (the proportion of cases on or
above the main diagonal of the plot).2 Imagine trying to support an argument in a oral
presentation to colleagues using in-depth evidence on a case with only weak membership
in the relevant sets. The commonsense thinking that indicates that this presentation would
be a waste of time is precisely formalized in fuzzy membership scores. Cases with strong
membership in the causal condition provide the most relevant consistent cases and the
most relevant inconsistent cases.

This commonsense idea is operationalized in the alternate measure of the consistency
of fuzzy set data with set-theoretic arguments recommended in this paper. This alternate
procedure, like the first, differentiates between consistent and inconsistent cases using the
main diagonal of the plot. A case on or above the main diagonal is consistent because its
membership in the causal condition is less than or equal to its membership in the outcome.
A case below the main diagonal is inconsistent because its membership in the causal
condition is greater than its membership in the outcome. However, rather than simply

2This criticism applies, in a slightly modified form, to some of the set-theoretic procedures recommended in
Goertz (2003, 2006). He suggests using ratios of membership scores, but small membership scores can easily
produce large ratios; and thus cases that are low in relevance to a given argument may be weighted the same as
cases that are high in relevance.
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calculating the raw proportion of consistent cases, the alternate procedure uses fuzzy
membership scores.

Consider, for example, the hypothetical set membership data on religious heterogeneity
and weak class voting for 12 countries shown in Table 1. Notice that the data in this table
are perfectly consistent from a set-theoretic viewpoint; that is, all the membership scores
in the causal condition are less than or equal to their corresponding membership scores in
the outcome. Based on this evidence, a researcher could claim that this causal condition
(religious heterogeneity) is a subset of the outcome (weak class voting). Thus, religious
heterogeneity could be interpreted (hypothetically) as a sufficient condition for weak class
voting. As previously noted, however, social science data are rarely this uniform. When
there are cases that are inconsistent with the subset relation, it is important to assess the
degree to which the empirical evidence is consistent with the set relation in question. For
example, suppose the first value of religious heterogeneity in Table 1 was 1.0 instead of
0.7. It would be inconsistent with the set relation because this value exceeds the corre-
sponding outcome membership score, 0.9. Although the set relation would no longer hold
consistently across the cases listed in Table 1, it would still be very close to perfect, with 11
out of the 12 cases consistent.

One straightforward measure of set-theoretic consistency using the fuzzy membership
scores is simply the sum of the consistent membership scores in a causal condition or
combination of causal conditions divided by the sum of all the membership scores in
a cause or causal combination (Ragin 2003). In Table 1, as presented, the value of this
measure is 1 (4.7/4.7) because all the membership scores in column 1 are consistent. If the
first value of religious heterogeneity in Table 1 is changed to 1.0, however, consistency
drops to 0.8 (4/5). The numerator is 1.0 fuzzy units lower than the denominator because of
the one inconsistent score of 1.0. The reduction of consistency to 0.8 (from perfect
consistency, 1.0) is substantial because 1.0 (the value substituted for 0.7 in the second
row) is a large membership score.

This consistency measure can be refined further so that it gives credit for near misses
and penalties for causal membership scores that exceed their mark, the outcome member-
ship score, by a wide margin.3 This adjustment can be accomplished by adding to the

Table 1 Illustration of a simple fuzzy subset relation

Religious
heterogeneity Weak class voting

0.7 0.9
0.1 0.9
0.1 0.1
0.3 0.3
0.9 0.9
0.7 0.7
0.3 0.9
0.3 0.7
0.3 0.7
0.1 0.1
0.0 0.0
0.9 1.0

3The formula described here is the one implemented in the fuzzy-truth table algorithm of fsQCA (Ragin, Drass,
and Davey 2003).
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numerator in the formula just sketched the part of each inconsistent causal membership
score that is consistent with the outcome. For example, if the first value of religious
heterogeneity in Table 1 is changed to 1.00, then most of it is consistent, up to the value
of the outcome membership score, 0.9. This portion is added to the numerator of the
consistency measure. Using this more refined measure of consistency yields an overall
consistency score of 0.98 (4.9/5). This adjusted consistency score is more compatible with
the evidence. After all, only one of the scores is inconsistent, and it is a very near miss.
Thus, a consistency score close to 1.0 should be expected.

Notice that the revised measure of consistency just sketched prescribes substantial
penalties for large inconsistencies. Suppose again that the first value of religious hetero-
geneity in Table 1 is 1.0, but this time assume that the corresponding value of the outcome,
weak class voting, is only 0.3. The consistent portion of the 1.0 membership score is 0.3,
yielding an overall addition of only 0.3 to the numerator. The resulting consistency score in
this instance would be 0.86 (4.3/5). This lower score reflects the fact that the one in-
consistent score exceeds its target by a wide margin.

It is possible to formalize the calculation of fuzzy set-theoretic consistency as follows
(see also Kosko 1993; Smithson and Verkuilen 2006):

ConsistencyðXi � YiÞ5
X

ðminðXi;YiÞÞ
.X

ðXiÞ;

where ‘‘min’’ indicates the selection of the lower of the two values. When the Xi values are
all less than or equal to their corresponding Yi values, the consistency score is 1.00; when
there are only a few near misses, the score is slightly less than 1.00; and when there are
many inconsistent scores, with some Xi values greatly exceeding their corresponding Yi

values, consistency drops below 0.5. It is important to point out that when the formula for
the calculation of fuzzy set-theoretic consistency just presented is applied to crisp-set data,
it returns the simple proportion of consistent cases. Thus, the formula can be applied to
crisp and fuzzy data alike.

This same general formula also can be applied to the assessment of the consistency of
a set relation indicating that a causal condition is a necessary condition for an outcome.
The study of necessary conditions has become an important focus in political science,
especially in comparative politics and international relations. In fact, upon close inspection
it is clear that many long-standing arguments and hypotheses about macropolitical phe-
nomena address necessary conditions (Goertz 2002). An argument of causal necessity is
supported when it can be demonstrated that instances of an outcome constitute a subset of
instances of a causal condition. With fuzzy sets, the consistency of the necessary condition
relationship depends on the degree to which it can be shown that membership in the
outcome is consistently less than or equal to membership in the cause, Yi � Xi. This
inequality is the reverse of the inequality defining the consistency of the sufficient condi-
tion relationship. Thus, a simple measure of the consistency of the subset relationship
indicating necessity is:

ConsistencyðYi � XiÞ5
X

ðminðXi;YiÞÞ
.X

ðYiÞ:

When all Yi values are less than or equal to their corresponding Xi values, this formula
returns a value of 1.0. When many Yi exceed their corresponding Xi values by wide
margins, it returns a value less than 0.5.

For illustration, consider Fig. 2, which depicts a subset pattern compatible with a
necessary condition relation. In this figure the outcome (Y) is a subset of the causal
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condition (X); thus, all Yi values are less than or equal to their corresponding Xi values.
Note that cases in the lower right-hand corner of the plot do not contradict necessity, for
these are cases that have low membership in the outcome because they lack some other,
unspecified causal condition. Of course, in a conventional correlational analysis cases in
the lower right-hand corner would be considered errors, which in turn would undermine
the correlation between X and Y. Note, however, that when membership in X is low,
membership in Y also must be low. Thus, in the low range of X there are many opportu-
nities to violate the subset relation, with only a narrow range of permissible Yi values.

As Smithson and Verkuilen (2006) demonstrate, the measure of set-theoretic consis-
tency just described is influenced by the average membership scores in sets X and Y.
Imagine a causal condition (X) with very low average membership scores and an outcome
(Y) with very high average membership scores. It may appear that there is support for
sufficiency because the set relation Xi � Yi holds, when in fact this evidence in favor of
sufficiency is primarily the product of skewed membership scores. Researchers, therefore,
should be cognizant of the potential impact of skewed membership scores when assessing
the consistency of either set-theoretic relation (Xi � Yi or Yi � Xi). The impact of skewed
membership scores on the assessment of set-theoretic consistency points to the importance
of careful calibration of fuzzy membership scores (Ragin 2000). These scores should
reflect researchers’ best assessments of the degree of membership of cases in well-defined
sets. Researchers should pay close attention to the three calibration anchors (the thresholds
for full membership and for full nonmembership and the location of the crossover point,
0.5 membership) when assigning these scores. Fuzzy set calibration is much more de-
manding than conventional social science measurement and requires thorough utilization
of theoretical and substantive knowledge coupled with careful concept formation and
elaboration (see Ragin 2000; Goertz 2005). Because calibration is central to fuzzy set

Fig. 2 Fuzzy subset relation consistent with necessity.
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analysis, the procedures researchers use to assign membership scores should be open,
transparent, and replicable.

Perhaps even more important is the fact that the interpretation of any set-theoretic
relation as either necessary or sufficient must be built on a solid foundation of theoretical
and substantive knowledge. Causal connections are not inherent in data. Set-theoretic
consistency is only one piece of evidence in the array of support that must be brought to
bear when a researcher makes a claim of either sufficiency or necessity or any other kind
of causal or integral connection.

3 Set-Theoretic Coverage

When researchers allow for equifinality (Mackie 1965; George 1979; George and Bennett
2005) and causal complexity, a common finding is that a given outcome may result from
several different combinations of conditions, with each combination sufficient but not
necessary for the outcome. These combinations are generally understood as alternate paths
or recipes for the outcome, and they are treated as logically equivalent (i.e., as substitut-
able). Still, it is common in crisp-set analyses to assess the proportion of instances fol-
lowing each path—that is, the number of cases following a specific path to the outcome
divided by the total number of instances of the outcome. This simple proportion is a direct
measure of set-theoretic coverage for crisp sets and is a clear indicator of the empirical
importance of a causal combination. Clearly, a causal combination that covers or accounts
for only a small proportion of the instances of an outcome is not as empirically important
as one that covers a large proportion.4

Coverage is distinct from consistency, and the two sometimes work against each other
because high consistency may yield low coverage. Complex set-theoretic arguments in-
volving the intersection of many sets can achieve remarkable consistency but low cover-
age. For example, consider the adults in the United States who combine excellent school
records, high achievement test scores, college-educated parents, high parental income,
graduation from Ivy League universities, and so on. It would not be surprising to learn that
100% of these individuals are able to avoid poverty. Perfect set-theoretic consistency is
unusual with individual-level data, but certainly not impossible. There are, however,
relatively few individuals with this specific combination of highly favorable circumstances
among the many who successfully avoid poverty. From a practical viewpoint, therefore,
this high level of set-theoretic consistency is not compelling because the causal combina-
tion is so narrowly formulated that its coverage of the set of individuals who successfully
avoid poverty is minuscule.

Although there is often a trade-off between consistency and coverage, it is important to
understand that it is reasonable to calculate coverage only after establishing that a set
relation is consistent.5 It is pointless to compute the coverage of a cause or combination of
causes that is not a consistent subset of the outcome. Also, as will become clear in the
discussion that follows, the same calculation has different meanings depending on the
context of the calculation. Thus, it is important to adhere to the protocol described here for

4Note that coverage gauges only empirical importance, not theoretic importance. A sufficient relation may be
quite ‘‘rare’’ from an empirical point of view (and thus exhibit low coverage), but it still could be centrally
relevant to theory. For example, the sufficient relation might be proof that a path that was thought to be
empirically impossible, at least from the perspective of theory, in fact is not.

5In the truth table algorithm of fsQCA (Ragin 1987; De Meur and Rihoux 2002; Ragin, Drass, and Davey 2003),
the assessment of set-theoretic coverage comes at the end of the procedure, after combinations of causal
conditions that are consistent subsets of the outcome have been identified, based on criteria specified by the
investigator.
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the results of assessments of consistency and coverage to be meaningful: consistency must
be established before coverage can be assessed.

For illustration of the general idea of coverage consider Table 2, which shows a hypo-
thetical cross-tabulation of poverty status (in poverty versus not in poverty) against edu-
cational achievement (high versus not high), using crisp sets and individual-level data.
This crude analysis using binary data supports the argument that individuals with high
educational achievement are able to avoid poverty. This set-theoretic argument is sup-
ported by the high proportion of cases in the third column that are not in poverty (cell
b divided by the sum of cells b and d yields a consistency score of 0.964). But how
important is this pathway to avoiding poverty? The simplest way to answer this question
is to calculate the proportion of the individuals not in poverty who have high educational
achievements—that is, cell b divided by the sum of cells a and b, which is 0.326. This
calculation shows that the path in question covers almost a third of the cases not in poverty,
which is substantial.

For comparison purposes consider Table 3, which has the same total number of cases as
Table 2, but some of the cases have been shifted from cell b to cell a and from cell d to
cell c. The proportion of cases consistent with the set-theoretic argument in Table 3 is 0.967,
about the same as in Table 2 (0.964). Thus, from a set-theoretic viewpoint, the evidence is
again highly consistent. But how important is this path, using the hypothetical frequencies
presented in Table 3? This can be ascertained by computing the proportion of cases
avoiding poverty that are covered by the set-theoretic argument, which is only 0.0325
(147/4520). Thus, in Table 3 the set-theoretic pattern is highly consistent, but coverage is
very low, indicating (hypothetically) that having high educational achievement is not an
important path to the outcome, avoiding poverty.

The procedures for calculating coverage using fuzzy sets parallel the computations for
crisp sets just presented. Another way to understand the calculation of coverage using
conventional binary sets (cell b divided by the sum of cells a and b) is to visualize Table 2
as a Venn diagram, showing a subset relationship, as in Fig. 3. The basic idea behind the
calculation of coverage is to assess the degree to which the smaller set (the set of cases
with high educational achievement in this example) physically covers the larger set (the set
of cases avoiding poverty). Thus, coverage, a gauge of empirical weight or importance,
can be seen as the size of the overlap of the two sets relative to the size of the larger set

Table 2 Cross-tabulation of poverty status and educational achievement:
preliminary frequencies

Low/average educational
achievement

High educational
achievement

Not in poverty a. 3046 b. 1474
In poverty c. 625 d. 55

Table 3 Cross-tabulation of poverty status and educational achievement:
altered frequencies

Low/average educational
achievement

High educational
achievement

Not in poverty a. 4373 b. 147
In poverty c. 675 d. 5
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(representing the outcome). The calculation of the size of the overlap of two fuzzy sets is
given by:

Overlap5
X

ðminðXi;YiÞÞ;

which is the same as the numerator in the calculation of fuzzy set-theoretic consistency
described previously. With fuzzy sets, the size of the larger set (the denominator) is given
directly by the sum of the membership scores in that set, that is, the sum of the membership
scores in the outcome,

P
(Yi). This calculation parallels the simple counting of the number

of cases in a set (e.g., the set of cases not in poverty) using crisp sets. Thus, the measure of
fuzzy set coverage is simply the overlap expressed as a proportion of the sum of the
membership scores in the outcome (Y):

CoverageðXi � YiÞ5
X

ðminðXi;YiÞÞ
.X

ðYiÞ:

In short, the formula for coverage substitutes the
P

(Yi) for
P

(Xi) in the denominator of
the formula for the consistency of Xi � Yi.

Observe that this formula is identical to the formula for the consistency of Yi as a subset
of Xi (Yi � Xi) presented in the discussion of the assessment of the consistency of
a necessary conditions relationship. Recall, however, that in the context of sufficiency,
the coverage of Yi by Xi (i.e., the formula just presented) is calculated only after it has been
established that X is a consistent subset of Y. Thus, the purpose of the calculation in the
context of sufficiency is to assess the magnitude of X relative to Y, given that most if not all

Fig. 3 Venn diagram illustrating concept of coverage using hypothetical data (from Table 2).
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Xi values are less than or equal to their corresponding Yi values. When the goal is to assess
the consistency of Y as a subset of X, however, the expectation is that most Yi values will
be less than or equal to their corresponding Xi values—indicating a possible necessary
conditions relationship. Indeed, if this is not the case, then the result will be a consistency
score (for Yi� Xi) that is substantially less than 1.0, indicating that Y is not a subset of X.6

Figure 4 depicts the concept of coverage relevant to the fuzzy subset relation, with
Xi�Yi. As in Fig. 1, condition X is a subset of outcome Y. Points below the main diagonal
constitute violations of the argument that X is a subset of Y. However, there are only two
such points, and the subset relationship is largely consistent. When calculating coverage,
only the portion of an Xi score that is above the main diagonal is counted as consistent (and
thus included as part of the overlap between X and Y). Most of the points in Fig. 4 are
above the main diagonal, and thus consistent with Xi � Yi. When these Xi values are small
relative to their corresponding Yi values, they are closer to the Y axis than to the main
diagonal. Although these points are consistent with the subset relation depicted in the
figure, they contribute relatively little to coverage, especially when the Yi values are above
0.5. The dotted horizontal lines in the figure show the portions of the Xi values counted as
consistent; these values are added to the numerator of the formula for coverage. The
denominator is the sum of the Yi values. The gaps from the consistent Xi values to the
main diagonal show the portions of set Y that are not covered by set X.

The calculation of coverage also can be applied to the assessment of necessary con-
ditions, where the outcome is a subset of the cause. Goertz (2003, 2006), building on
Braumoeller and Goertz (2000), presents an approach to the assessment of necessary
conditions that addresses some of the same issues discussed in this paper. A key focus
in his work is the distinction between trivial and nontrivial necessary conditions. A trivial

Fig. 4 Scatterplot illustrating the concept of coverage.

6In this context, it would be possible to find a
P

(min(Xi,Yi)) that is close to
P

(Yi)—thus yielding a very high
coverage score—only if the values of Xi are roughly equal to their corresponding Yi values. This situation would
correspond to a close coincidence of the two sets. Set coincidence is not the same as the correlation but rather is
a special case of correlation. In a plot of two fuzzy sets, any straight line that is neither vertical nor horizontal
yields a perfect correlation coefficient. However, perfect set coincidence occurs only when all the cases plot
exactly on the main diagonal of the plot. A simple measure of the degree to which the membership scores in two
sets coincide is

P
(min(Xi,Yi))/

P
(max(Xi,Yi)), where ‘‘max’’ indicates using the larger of the two scores. See

also Smithson and Verkuilen (2006), who contrast comorbidity, covariation, and co-occurrence.
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necessary condition is one that is strongly present in most cases, whether or not these cases
display the outcome. For example, ‘‘grievances’’ may be a necessary condition for the
organization and activation of a social movement organization, but grievances are almost
always present, and the absence of grievances rarely gets the chance to act in a constraining
manner on social movement organization. Thus, the existence of grievances could be seen
as an empirically trivial necessary condition. By contrast, an open and permissive political
climate (i.e., the absence of concerted government repression) could be seen as a nontrivial
necessary condition, for social movements routinely encounter government repression.
Although the specific computational formula recommended in this paper for assessing the
relevance of necessary conditions differs in its details from the one suggested by Goertz
(2003, 2006), the underlying goals are similar.7

A simple measure of the importance or relevance of X as a necessary condition for Y is
given by the degree of coverage of Xi by Yi:

CoverageðYi � XiÞ5
X

ðminðXi;YiÞÞ
.X

ðXiÞ:

When the coverage of X by Y is small, then the constraining effect of X on Y is negligible.
Conceptually, very low coverage corresponds to an empirically irrelevant or even mean-
ingless necessary condition. For example, almost all heroine addicts in the United States
are former milk drinkers, but it would be difficult to portray milk drinking as a relevant
necessary condition (i.e., as a gateway substance) for heroine addiction because the set of
former milk drinkers completely dwarfs the set of heroine addicts. By contrast, when the
coverage of X by Y is substantial, then the constraining effect of X as a necessary con-
dition may be great. For example, if a substantial proportion of people associating with
heroine addicts later become addicts and there is only a very small number of people who
become addicted to heroine without first associating with heroine addicts, then coverage is
high and ‘‘associating with heroine addicts’’ may be considered a relevant necessary
condition for heroine addiction.

The contrast between these two situations, high versus low relevance in the analysis of
necessary conditions is depicted in Fig. 5a and 5b. Figure 5a depicts a necessary condition
that exerts some constraint on the outcome (coverage is nontrivial). Figure 5b depicts an
empirically trivial necessary condition (very low set-theoretic coverage). Using fuzzy sets,
the situation depicted in Fig. 5b would appear as a plot in which almost all cases have very
strong membership in X (the causal condition) and thus would plot to the far right (see also
Goertz 2003, 2006).

As with the assessment of the coverage of a sufficient condition, it is important to assess
the relevance of a necessary condition (i.e., its constraining impact, as just described) only
after establishing that the subset relation is consistent. That is, it must first be established
that Y is a rough subset of X before assessing the size of Y relative to the size of X.
Adherence to this protocol prevents confusion regarding the interpretation of what are
essentially identical calculations: The calculation of the consistency of a sufficiency re-
lationship is identical to the calculation of the coverage (relevance) of a necessity relation-
ship, whereas the calculation of the coverage of a sufficiency relationship is identical to the
calculation of the consistency of a necessity relationship.

7In Goertz’s (2003, 2006) approach membership scores are divided at the case level and then these ratios are
averaged. In effect, this procedure assigns cases equal importance in the computation of a given measure. In the
approach advocated in this paper, however, cases with low fuzzy membership scores are given less weight
because they are weak instances of the phenomenon in question. This computational strategy makes the resulting
measures more reflective of the patterns observed in the best instances.
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4 Partitioning Coverage

When there is more than one condition or combination of conditions sufficient for an
outcome (equifinality), the assessment of the coverage of alternate combinations provides
direct evidence of their relative empirical importance. Further, the assessments of ‘‘raw’’
coverage can be complemented with assessments of each combination’s ‘‘unique’’ cover-
age, for it is possible to partition coverage in set-theoretic analysis in a manner that is
somewhat analogous to the partitioning of explained variation in multiple regression. The
discussion of the partitioning of coverage that follows assumes that the researcher has
demonstrated that the relevant conditions or combinations of conditions are highly con-
sistent subsets of the outcome.8

For purposes of illustration, consider evidence from a fuzzy set analysis of individual-
level data. The data set is the National Longitudinal Survey of Youth (better known as the
Bell Curve data; see Herrnstein and Murray 1994). The sample is white males, interviewed
as young adults. The outcome is the fuzzy set of cases not in poverty (;P, where ‘‘P’’
indicates degree of membership in the set of cases in poverty and ‘‘;’’ indicates negation).
The three causal conditions are the fuzzy set of cases with high achievement test scores
(T), the fuzzy set of cases with high parental income (I), and the fuzzy set of cases with
college education (C). (The calibration of these fuzzy sets is described in Ragin [2006].)
Applying fsQCA (Ragin, Drass, and Davey 2003) to these data yields two recipes for
avoiding poverty, namely, the combination of high test scores and high parental income
(T�I) and college education (C) by itself.9

Fig. 5 Venn diagrams illustrating necessary conditions. (a) Empirically relevant necessary
condition. (b) Empirically irrelevant necessary condition.

8For reasons to be explained subsequently, this section focuses only on the raw versus unique coverage of
sufficient conditions and not on the relative importance of necessary conditions. The latter topic is addressed
in Goertz (2003, 2006).

9Membership in T�I is the minimum (lower) of degree of membership in T and degree of membership in I.
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The calculation of the raw coverage of these two recipes for the outcome, avoiding
poverty (;P), is shown in Table 4. The first row reports the coverage calculation for the
combination of high test scores and high parental income (T�I). The sum of the overlap
between T�I and the outcome is 192.9. The sum of the memberships in the outcome is 947.
Thus, this combination covers about 20.4% of the total membership in the outcome
(192.90/947 5 0.2037). Using these procedures, condition C covers about 42.5% of the
total membership of the outcome (see row 2 of Table 4). Thus, both combinations cover
a substantial proportion of the outcome. However, the raw coverage of condition C
(college education) is substantially greater.

For comparison purposes, Table 4 also shows the coverage of the two combinations (T�I
and C) conceived as alternate paths to the same outcome, using logical or. When causal
combinations are joined by logical or, each case’s score in the union is the maximum value
of the two paths (i.e., the larger of the two scores: membership in T�I and membership in
C). In other words, when there is more than one path to an outcome, it is possible to
calculate how close a case is to the outcome by finding its highest membership score
among the possible paths. The degree of coverage of the outcome by this maximum score,
in turn, can be calculated using the same procedures applied separately to the two com-
ponents. This calculation is shown in the third row of Table 4, which reports a coverage
of 46.3%, greater than the coverage of either of the two components (compare row 3 of
Table 4 with rows 1 and 2). However, the coverage of the two-path model (46.3%) is only
modestly superior to the raw coverage of the best single path (path C, with 42.5%).

Table 4 provides all the information that is needed to partition coverage, following the
template provided by multiple regression analysis. To assess an independent variable’s
separate or unique contribution to explained variation in a multiple regression involving
several correlated predictor variables, researchers calculate the decrease in explained
variation that occurs once the variable in question is removed from the fully specified
multivariate equation. For example, to find the unique contribution of X1 to explained
variation in Y, it is necessary to compute the multiple regression equation with all relevant
independent variables included, and then to recompute the equation excluding X1. The
difference in explained variation between the first and second equations shows the unique
contribution of X1. These procedures ensure that the explained variation that X1 shares
with correlated independent variables is not credited to X1. The goal of partitioning in
fuzzy set analysis, by contrast, is to assess the relative importance of different combina-
tions of causally relevant conditions. Thus, the issue in set-theoretic analyses is not
‘‘correlated independent variables’’ because causal conditions are not viewed in isolation
from one another, as they are in multiple regression analysis. Rather, partitioning coverage
is important because some cases conform to more than one path.

Consider the crisp-set case. Suppose a researcher finds that there are two combinations
of conditions that generate outcome Y, A�B and C�D. The researcher calculates the cov-
erage of these two paths and finds that the first embraces 25% of the instances of Y
(coverage 5 0.25), whereas the second embraces 30% (coverage 5 0.3). However, when

Table 4 Calculation of coverage

Causal conditions
Sum of

consistent scores
Sum of

outcome scores Coverage

T�I 192.90 947 0.2037
C 402.85 947 0.4254
T�I þ C 438.56 947 0.4631
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calculating their coverage as alternate paths (i.e., their union: A�B þ C�D, where addition
indicates logical or), the researcher finds that together they embrace only 35% of the
instances of the outcome (coverage 5 0.35). The reason that this quantity is substantially
less than the sum of the two separate coverage scores (i.e., 0.35 , 0.25 þ 0.3) is because
the two paths partially overlap. That is, there are cases that combine all four causal
conditions (i.e., instances of A�B�C�D) and the coverage of these instances is counted
twice when coverage is calculated separately for the two causal combinations.

Fortunately, it is a simple matter to partition total coverage (0.35 in this example) into
its three components: uniquely due to A�B, uniquely due to C�D, and overlapping (i.e., due
to the existence of cases of A�B�C�D). The unique coverage of each term can be calculated
by subtraction, following the template provided by regression analysis. The unique cov-
erage of path A�B is 0.35 � 0.3 5 0.05, the unique coverage of path C�D is 0.35 � 0.25 5

0.10, and the remainder of total coverage is due to the overlap between these two terms.
In short, these simple calculations indicate that 20% of the instances of the outcome
is A�B�C�D, 5% of the instances of the outcome is A�B without C�D, and 10% is C�D
without A�B.

The calculation of the unique coverage of a combination of conditions in fuzzy set
analysis is exactly parallel, as shown in Table 5, which uses the same individual-level data
used in Table 4. The coverage of the outcome (avoiding poverty) that is uniquely due to
path T�I is the difference between the coverage of the two-path model (0.4631) and the
coverage that is obtained once this path (T�I) is removed from the two-path model, which
in this example is equivalent to the coverage of the other path (C) by itself. Thus, the
unique coverage of path T�I is 0.0377, that is, 0.4631 (the combined coverage of the two
paths) less 0.4254 (the single coverage of path C). Likewise, the coverage of the outcome
that is uniquely due to path C is the difference between the coverage of the two-path model
(0.4631) and the coverage of path T�I by itself (0.2037), or 0.2594. These calculations
reveal that the unique coverage of path C is much greater than the unique coverage of path
T�I. In fact, the coverage of T�I is almost entirely a subset of the coverage of C. (In other
words, most of T�I is T�I�C.) The remaining coverage of the two-path model is over-
lapping. This proportion can be calculated by computing the difference between the
coverage of the two-path model (0.4631) and the sum of the two unique portions
(0.0377 þ 0.2594 5 0.2971), which is 0.166. Figure 6 illustrates these results using a Venn
diagram.

When there are many different paths to the same outcome, it is very important to
calculate both the raw and unique coverage of each causal combination. These calculations
often reveal that there are only a few high-coverage causal combinations, even in analyses
that have many sufficient combinations. Although it is useful to know all the different
causal combinations linked to an outcome, it is also important to have an assessment of
their relative empirical weight. Calculations of raw and unique coverage provide these
assessments directly.

Note that it is possible to partition the coverage of overlapping sufficient conditions
only because the denominator is the same in all the different coverage calculations:

P
(Yi).

Table 5 Partitioning coverage

Total coverage Without term Unique

Unique to T�I 0.4631 0.4254 0.0377
Unique to C 0.4631 0.2037 0.2594
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This constant is computationally analogous to the total sums of squares in the dependent
variable in conventional multiple regression analysis. It is not possible to apply parallel
procedures to the assessment of the relative coverage of necessary conditions because
each measure of the coverage of a necessary condition has a different denominator. For
example, the coverage of necessary condition X1 would be:

X
ðminðX1i;YiÞÞ

.X
ðX1iÞ;

whereas the coverage of necessary condition X2 would be:

X
ðminðX2i;YiÞÞ

.X
ðX2iÞ:

5 Suggested Uses of Consistency and Coverage

5.1 Evaluating Monocausal Arguments

The two measures presented in this paper, set-theoretic consistency and coverage, have
many different uses.10 Any social scientific argument or statement that is formulated in
terms of sets (and most are formulated in these terms) can be evaluated using these
measures. As noted previously, the argument that democracies do not go to war against
each other can be evaluated by assessing whether or not the set of democratic dyads is
a consistent subset of the set of nonwarring dyads. More than likely, this subset relation is
highly consistent. However, its coverage is likely to be small because there are many ways
to avoid war, especially when all possible country dyads are considered (see, e.g., Peceny
and Beer 2002). Geographic distance alone suffices for most dyads, for example, regard-
less of whether the countries in question are democratic. For many scholars, the low
coverage of the democratic peace argument is not considered a liability, for the most

Fig. 6 Venn diagram representation of the partitioning of set-theoretic coverage using fuzzy sets.

10A very important use, constructing crisp truth tables from fuzzy sets, is not addressed in this paper. Interested
readers should consult Ragin (2004).
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common paths to peaceful coexistence (e.g., geographic distance) are trivial from the
perspective of theory.

5.2 Evaluating Combinatorial Arguments

The relevance of consistency and coverage to the democratic peace argument is easy
to grasp (and to display graphically) because the argument is monocausal and can be
formulated in terms of simple, crisp sets. Most arguments in the social sciences, however,
cite combinations of causes, not solitary conditions, and often these conditions are difficult
to operationalize as crisp sets. Consider, for example, the conditions thought to spawn
mass protest against austerity measures mandated by the International Monetary Fund
(IMF) in debtor countries. Most discussions of these conditions present, in effect, a de-
scription of the ideal typic protest country. The conditions manifested by this ideal typic
case include economic factors (e.g., deprivation and a declining standard of living), social
structural factors (e.g., the massing of the poor in urban slums), and political factors
(e.g., political corruption, authoritarian rule, and a recent history of political contention).
From the viewpoint of theory, it is this potent mix of conditions, their combination, that
explains austerity protest.

With fuzzy sets, the assessment of combinatorial arguments, such as the one just
sketched, is straightforward. The researcher first assesses each case’s degree of member-
ship in each of the components of the ideal typic formulation (e.g., degree of membership
of each country in the set of cases with economic deprivation and degree of membership in
the set of countries with concentrated urban slums). Next, the researcher assesses each
case’s degree of membership in the combination of causal conditions specified in the ideal
typic formulation. As explained in Ragin (2000), a case’s degree of membership in a com-
bination of causal conditions is determined by its lowest component membership score
(i.e., its weakest link). For example, a case with only weak membership in ‘‘authoritarian
rule’’ (one of the components of the ideal typic formulation just sketched) could have, at
best, only weak membership in any combination of conditions that includes this compo-
nent. Finally, the researcher assesses the consistency and coverage of the causal combi-
nation: (1) Is fuzzy membership in the combination of causal conditions (as specified in
the formulation) a consistent subset of the outcome (austerity protest)? (2) If so, how much
of the outcome is covered by the combination?

5.3 Comparing Nested Combinatorial Arguments

Measures of consistency and coverage also can be used to compare alternate ideal typic
formulations. A researcher might suspect, for example, that the authoritarian rule compo-
nent of the ideal typic formulation just sketched is superfluous. Membership scores can be
recalculated omitting this component, and new measures of consistency and coverage can
then be computed. If the researcher’s hunch is correct, then the measure of consistency
should remain high, indicating that membership in the combination of causal conditions is
a consistent subset of the outcome, and coverage should increase. Increased coverage
would indicate that the second formulation does a better job of accounting for membership
in the outcome than the first. Note that membership scores in the second ideal typic
formulation must be greater than or equal to membership scores in the first (i.e., the one
that includes authoritarian rule). This mathematical property follows from (1) the use of
the minimum to determine degree of membership in a combination of conditions and
(2) the fact that the causal conditions included in the second formulation constitute a
subset of those included in the first.
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6 Conclusion

Lieberson (2004) comments that it is an ‘‘oxymoron’’ to describe set-theoretic relations in
partial or probabilistic terms (e.g., ‘‘X is almost always necessary for Y’’). For example, he
might consider it oxymoronic to observe that ‘‘at public universities the most reliable way
for faculty members to receive large salary increases is to secure outside offers from peer
(or better) universities.’’ (Thus, faculty receiving such offers constitute a substantial but
perhaps slightly imperfect subset of faculty receiving large salary increases.) Everyday
experience indicates, of course, that such observations are not oxymoronic. The example
describes precisely the situation faced by most faculty at most public universities, espe-
cially during periods when public revenues are limited (i.e., the usual situation). The
measures of set-theoretic consistency and coverage presented in this paper provide useful
tools for evaluating such statements. Do faculty receiving such offers constitute a consis-
tent subset of faculty receiving large salary increases? How consistent? And how impor-
tant is this path to the desired outcome, large salary increases? What is its coverage? It not
only ‘‘makes sense’’ to assess set-theoretic statements in this manner, it is essential to do so.
Statements about set relations constitute the bulk of social science theorizing. It follows
that set-theoretic analysis is central to the assessment of social science theory.

Set-theoretic analysis is still in its infancy in the social sciences today. The purpose of
the measures of set-theoretic consistency and coverage introduced in this essay is to

enhance the utility of the approach. These simple measures provide powerful tools for

improving research on set relations among social phenomena. When using these measures,

it is important to keep in mind three important aspects.
The first is that they are oriented toward the evaluation of set relations reflecting explicit

connections (Ragin and Rihoux 2004). Explicit connections are best understood as uni-

formities or near uniformities in social phenomena. Sometimes these uniformities reflect
causal connections (e.g., the operation of a sufficient or necessary condition), but they also
may reflect other types of integral connections (e.g., constitutive relationships). This
feature explains why (a) it is always important to establish first that a set relation is
consistent before evaluating its coverage or relevance (i.e., before gauging its empirical
importance) and (b) it is often the case that high consistency yields low coverage. This
emphasis on explicit connections in set-theoretic analysis contrasts fundamentally with the
emphasis of conventional quantitative methods, where correlational connections are the
central focus.

The second important aspect of these measures is that they are descriptive, not in-
ferential. The set-theoretic techniques described here and in Ragin (1987, 2000) were

developed as methods of exploring cross-case evidence in a configurational manner.
Viewing cases as configurations in cross-case analysis (a) maintains a strong link to the
study of specific empirical cases and (b) counteracts the veiling of cases that occurs when
cross-case evidence is subjected to conventional forms of correlational analysis. Such
analyses obscure cases in their emphasis on the net effects of ‘‘independent’’ variables
and the competition to explain variation in the dependent variable (Ragin 2006).

The third aspect is that these measures are not ends in themselves. In conventional
cross-case analysis, researchers typically focus on measures of explained variation to

compare ‘‘models.’’ Too often, maximizing explained variation becomes the central focus

of the investigation (Lieberson 1985). By contrast, the goal of configurational analysis

using set-theoretic methods is to help researchers make sense of their cases (Ragin 1987;
Rihoux 2003; Ragin and Rihoux 2004). Calculations of consistency and coverage do and
should provide guidance, but the ultimate ‘‘test’’ of the results of a configurational analysis
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is not their consistency or coverage but how well they help researchers make sense of their
cases. Do the results resonate with what is known about processes and mechanisms
operating at the case level? Do they highlight different aspects of cases or suggest new
typologies? Do they group cases in a theoretically interesting or progressive manner?
A key goal of social research is to make sense of the diversity of empirical cases in ways
that resonate with the researcher’s theoretical ideas about social phenomena. Configura-
tional methods are especially well suited for this task.
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