
CHAPTER 5 PORTFOLIO RISK AND RETURN: PART I

Presenter Venue Date

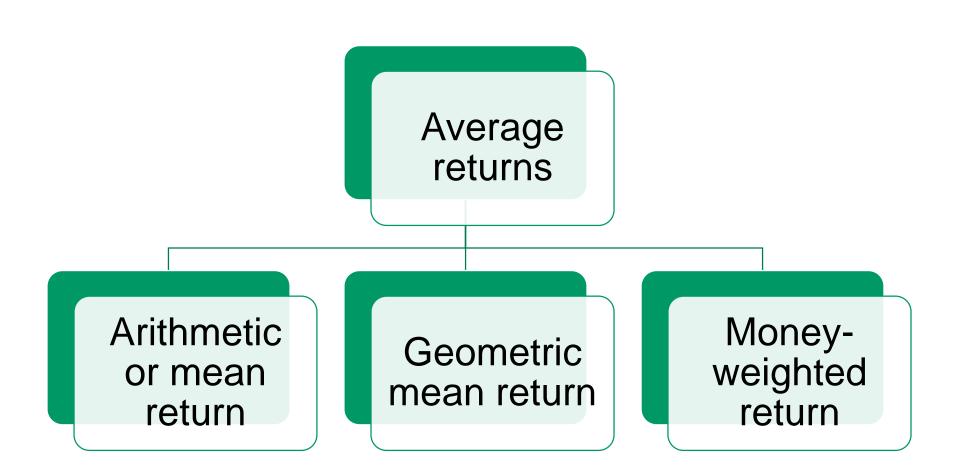
RETURN ON FINANCIAL ASSETS

CFA Institute

HOLDING PERIOD RETURN

A *holding period return* is the return from holding an asset for a single specified period of time.

$$R = \frac{P_t - P_{t-1} + D_t}{P_{t-1}} = \frac{P_t - P_{t-1}}{P_{t-1}} + \frac{D_t}{P_{t-1}}$$
$$= \text{Capital gain} + \text{Dividend yield}$$


$$R = \frac{105 - 100}{100} + \frac{2}{100} = 5\% + 2\% = 7\%$$

HOLDING PERIOD RETURNS

What is the 3-year holding period return if the annual returns are 7%, 9%, and –5%?

$$R = [(1+R_1) \times (1+R_2) \times (1+R_3)] - 1$$

= [(1+.07)(1+.09)(1+-.05)] - 1 \approx .1080 = 10.80%

AVERAGE RETURNS

ARITHMETIC OR MEAN RETURN

The *arithmetic* or *mean return* is the simple average of all holding period returns.

$$\overline{R}_{i} = \frac{R_{i1} + R_{i2} + \dots + R_{iT-1} + R_{iT}}{T} = \frac{1}{T} \sum_{t=1}^{T} R_{it}$$

$$\overline{R}_i = \frac{-50\% + 35\% + 27\%}{3} = 4\%$$

GEOMETRIC MEAN RETURN

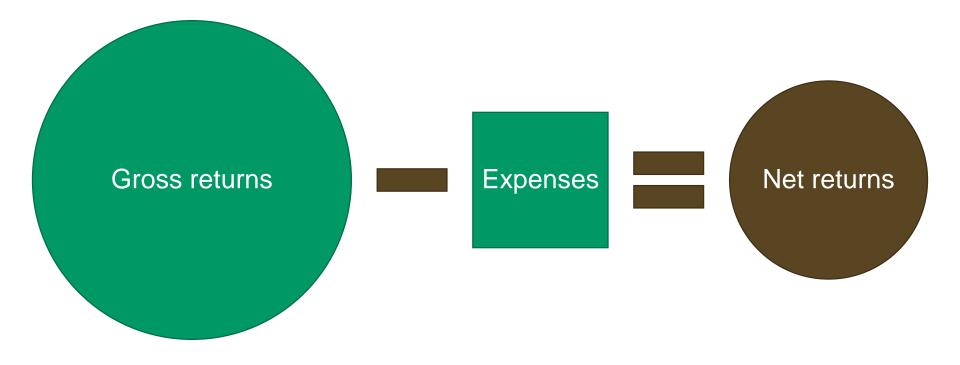
The *geometric mean return* accounts for the compounding of returns.

$$\overline{R}_{Gi} = \sqrt[T]{(1+R_{i1}) \times (1+R_{i2}) \times \dots \times (1+R_{iT-1}) \times (1+R_{iT})} - 1$$
$$= \sqrt[T]{\prod_{t=1}^{T} (1+R_{it})} - 1$$

$$R_{Gi} = \sqrt[3]{(1 - .50) \times (1 + .35) \times (1 + .27)} - 1 \approx -5.0\%$$

MONEY-WEIGHTED RETURN

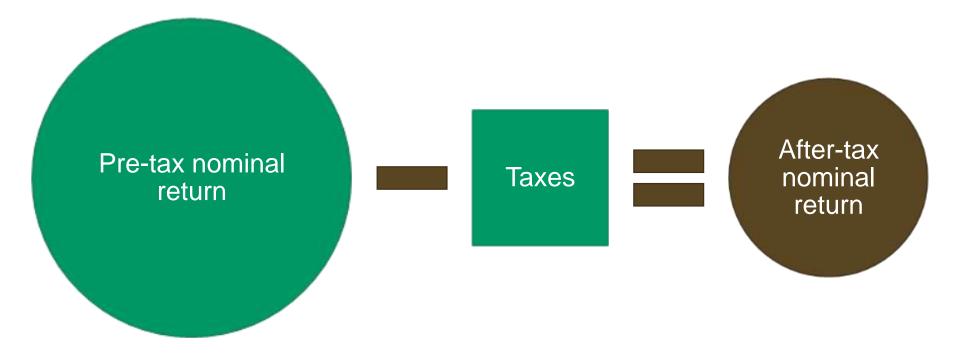
Year	1	2	3
Balance from previous year	€0	€50	€1,000
New investment by the investor (cash inflow	100	950	0
for the mutual fund) at the start of the year			
Net balance at the beginning of year	100	1,000	1,000
Investment return for the year	-50%	35%	27%
Investment gain (loss)	-50	350	270
Withdrawal by the investor (cash outflow for	0	-350	0
the mutual fund) at the end of the year			
Balance at the end of year	€50	€1,000	€1,270


$$\frac{CF_0}{(1+IRR)^0} + \frac{CF_1}{(1+IRR)^1} + \frac{CF_2}{(1+IRR)^2} + \frac{CF_3}{(1+IRR)^3} = 0$$

$$\frac{-100}{1} + \frac{-950}{(1+IRR)^1} + \frac{+350}{(1+IRR)^2} + \frac{+1270}{(1+IRR)^3} = 0$$

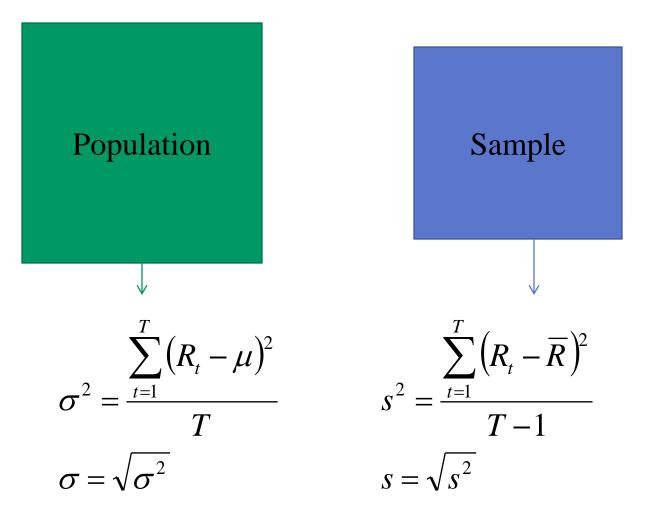
$$IRR = 26.11\%$$

ANNUALIZED RETURN $r_{annual} = (1 + r_{period})^c - 1$ *c* : number of periods in a year Weekly return of 0.20%:


 $r_{annual} = (1 + 0.002)^{52} - 1 = .1095 = 10.95\%$

18-month return of 20%: $r_{annual} = (1+0.20)^{\frac{2}{3}} - 1 = 0.1292 = 12.92\%$

GROSS AND NET RETURNS


PRE-TAX AND AFTER-TAX NOMINAL RETURN

NOMINAL RETURNS AND REAL RETURNS

 $\begin{aligned} (1+r) &= (1+r_{rF}) \times (1+\pi) \times (1+RP) = (1+0.03) \times (1+0.02) \times (1+0.05) \\ r &= 10.313\% \\ (1+r_{real}) &= (1+r_{rF}) \times (1+RP) = (1+0.03) \times (1+0.05) \\ r_{real} &= 8.15\% \\ (1+r_{real}) &= (1+r) \div (1+\pi) = (1+0.10313) \div (1+0.02) \\ r_{real} &= 8.15\% \end{aligned}$

VARIANCE AND STANDARD DEVIATION OF A SINGLE ASSET

CFA Institute

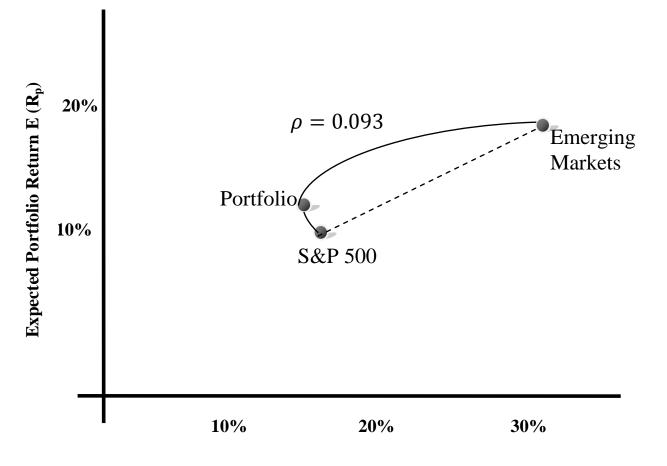
VARIANCE OF A PORTFOLIO OF ASSETS

Variance can be determined for *N* securities in a portfolio using the formulas below. $Cov(R_i, R_j)$ is the covariance of returns between security *i* and security *j* and can be expressed as the product of the correlation between the two returns ($\rho_{i,j}$) and the standard deviations of the two assets, $Cov(R_i, R_j) = \rho_{i,j}\sigma_i\sigma_j$.

$$\sigma_P^2 = Var(R_P) = Var\left(\sum_{i=1}^N w_i R_i\right)$$
$$= \sum_{i,j=1}^N w_i w_j Cov(R_i, R_j)$$
$$= \sum_{i=1}^N w_i^2 Var(R_i) + \sum_{i,j=1, i \neq j}^N w_i w_j Cov(R_i, R_j)$$

EXAMPLE 5-4 RETURN AND RISK OF A TWO-ASSET PORTFOLIO

Assume that as a U.S. investor, you decide to hold a portfolio with 80 percent invested in the S&P 500 U.S. stock index and the remaining 20 percent in the MSCI Emerging Markets index. The expected return is 9.93 percent for the S&P 500 and 18.20 percent for the Emerging Markets index. The risk (standard deviation) is 16.21 percent for the S&P 500 and 33.11 percent for the Emerging Markets index. What will be the portfolio's expected return and risk given that the covariance between the S&P 500 and the Emerging Markets index is 0.0050?


EXAMPLE 5-4 RETURN AND RISK OF A TWO-ASSET PORTFOLIO (CONTINUED)

$$R_{P} = w_{1}R_{1} + w_{2}R_{2} = (0.80 \times 0.0993) + (0.20 \times 0.1820)$$
$$= 0.1158 = 11.58\%$$

$$\sigma_P^2 = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 Cov(R_1, R_2)$$

= $(0.80^2 \times 0.1621^2) + (0.20^2 \times 0.3311^2) + (2 \times 0.80 \times 0.20 \times 0.0050)$
= 0.02281

$$\sigma_P = \sqrt{w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 Cov(R_1, R_2)}$$
$$= \sqrt{0.02281} = 0.1510 = 15.10\%$$

EXAMPLE 5-4 RETURN AND RISK OF A TWO-ASSET PORTFOLIO (CONTINUED)

Standard Deviation of Portfolio σ_p

EXHIBIT 5-5 RISK AND RETURN FOR U.S. ASSET CLASSES BY DECADE (%)

		1930s	1940s	1950s	1960s	1970s	1980s	1990s	2000s*	1926–
										2008
Large company	Return	-0.1	9.2	19.4	7.8	5.9	17.6	18.2	-3.6	9.6
stocks	Risk	41.6	17.5	14.1	13.1	17.2	19.4	15.9	15.0	20.6
Small company	Return	1.4	20.7	16.9	15.5	11.5	15.8	15.1	4.1	11.7
stocks	Risk	78.6	34.5	14.4	21.5	30.8	22.5	20.2	24.5	33.0
Long-term	Return	6.9	2.7	1.0	1.7	6.2	13.0	8.4	8.2	5.9
corporate bonds	Risk	5.3	1.8	4.4	4.9	8.7	14.1	6.9	11.3	8.4
Long-term government bonds	Return	4.9	3.2	-0.1	1.4	5.5	12.6	8.8	10.5	5.7
	Risk	5.3	2.8	4.6	6.0	8.7	16.0	8.9	11.7	9.4
Treasury bills	Return	0.6	0.4	1.9	3.9	6.3	8.9	4.9	3.1	3.7
·	Risk	0.2	0.1	0.2	0.4	0.6	0.9	0.4	0.5	3.1
Inflation	Return	-2.0	5.4	2.2	2.5	7.4	5.1	2.9	2.5	3.0
	Risk	2.5	3.1	1.2	0.7	1.2	1.3	0.7	1.6	4.2
Returns are measured as annualized geometric mean returns.										
Risk is measured by annualizing monthly standard deviations.										
* Through 31 December 2008.										
Source: 2009 Ibbotson SBBI Classic Yearbook (Tables 2-1, 6-1, C-1 to C-7).										

EXHIBIT 5-7 NOMINAL RETURNS, REAL RETURNS, AND RISK PREMIUMS FOR ASSET CLASSES (1900– 2008)

		United States				World		World excluding U.S.		
	Asset	GM	AM	SD	GM	AM	SD	GM	AM	SD
Nominal	Equities	9.2%	11.1%	20.2%	8.4%	9.8%	17.3%	7.9%	9.7%	20.1%
Returns	Bonds	5.2%	5.5%	8.3%	4.8%	5.2%	8.6%	4.2%	5.0%	13.0%
	Bills	4.0%	4.0%	2.8%	_	-	_	_	_	_
	Inflation	3.0%	3.1%	4.9%	_	-	_	_	_	_
Real	Equities	6.0%	8.0%	20.4%	5.2%	6.7%	17.6%	4.8%	6.7%	20.2%
Returns	Bonds	2.2%	2.6%	10.0%	1.8%	2.3%	10.3%	1.2%	2.2%	14.1%
	Bills	1.0%	1.1%	4.7%	_	-	-	_	_	_
Premiums	Equities	5.0%	7.0%	19.9%	_	-	_	_	_	_
	vs. bills									
	Equities	3.8%	5.9%	20.6%	3.4%	4.6%	15.6%	3.5%	4.7%	15.9%
	vs. bonds									
	Bonds	1.1%	1.4%	7.9%	_	-	_	_	_	_
	vs. bills									

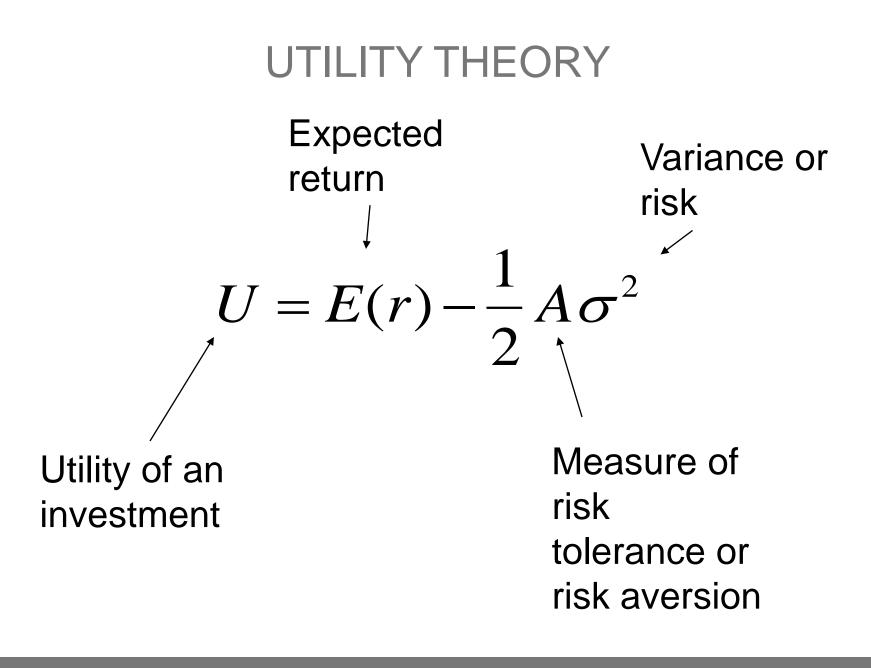
All returns are in percent per annum measured in US\$. GM = geometric mean, AM = arithmetic mean, SD = standard deviation.

"World" consists of 17 developed countries: Australia, Belgium, Canada, Denmark, France, Germany, Ireland, Italy, Japan, the Netherlands, Norway, South Africa, Spain, Sweden, Switzerland, United Kingdom, and the United States. Weighting is by each country's relative market capitalization size.

Sources: Credit Suisse Global Investment Returns Sourcebook, 2009. Compiled from tables 62, 65, and 68. T-bills and inflation rates are not available for the world and world excluding the United States.

IMPORTANT ASSUMPTIONS OF MEAN-VARIANCE ANALYSIS

Mean-variance analysis



Returns are normally distributed

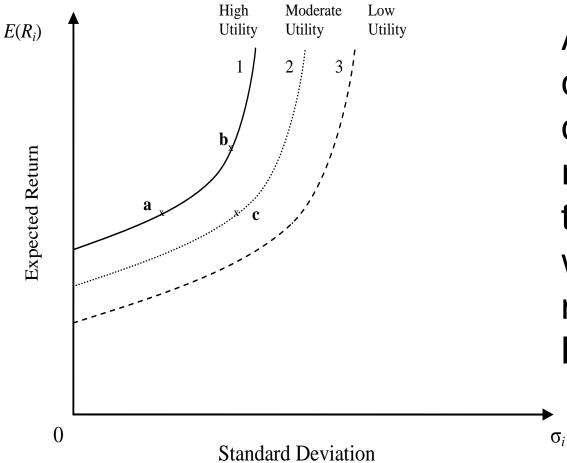
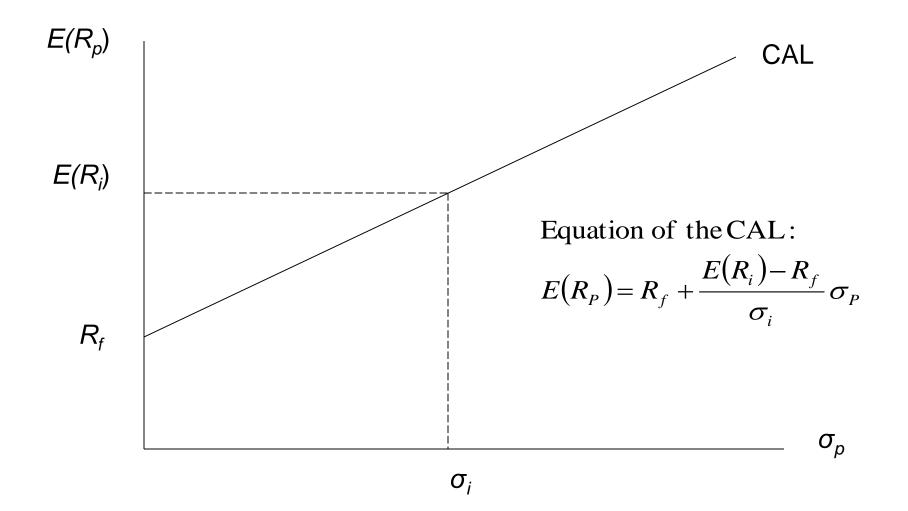

Markets are informationally and operationally efficient

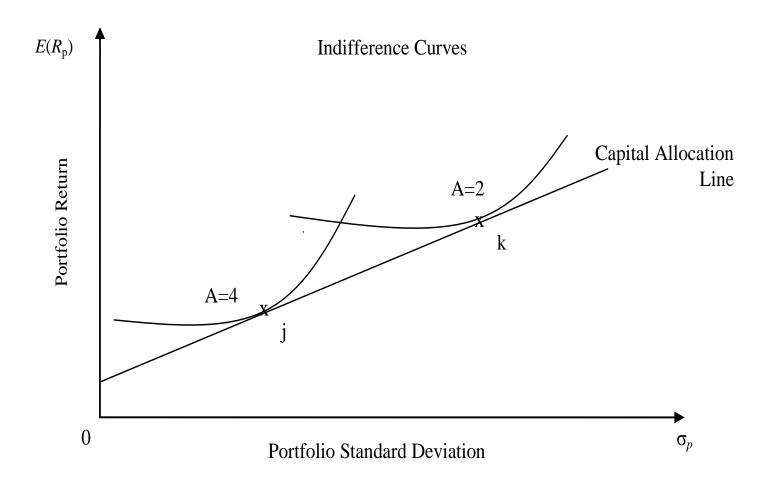
EXHIBIT 5-9 HISTOGRAM OF U.S. LARGE COMPANY STOCK RETURNS, 1926-2008

Violations of the normality assumption: skewness and kurtosis.	2000 1990 1981 1977 1969 1962	2007 2005 1994 1993 1992 1987	2006 2004 1988 1986 1979 1972 1971 1968	2003 1999 1998 1996 1983 1982	1997 1995 1991 1989 1985 1980			
	1953	1984	1965	1976	1975			
2001	1946 1940	1978 1970	1964 1959	1967 1963	1955 1950			
1973	1939	1960	1952	1961	1945			
2002 1966	1934	1956	1949	1951	1938	1958		
2008 1974 1957	1932	1948	1944	1943	1936	1935	1954	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1929 	1947) 1	1926 0 2	1942 20 3	1927 0 4	1928 0 5	1933 0 60	70

INDIFFERENCE CURVES



An indifference curve plots the combination of risk-return pairs that an investor would accept to maintain a given level of utility.


PORTFOLIO EXPECTED RETURN AND RISK ASSUMING A RISK-FREE ASSET

Assume a portfolio of two assets, a risk-free asset and a risky asset. Expected return and risk for that portfolio can be determined using the following formulas:

THE CAPITAL ALLOCATION LINE (CAL)

EXHIBIT 5-15 PORTFOLIO SELECTION FOR TWO INVESTORS WITH VARIOUS LEVELS OF RISK AVERSION

CORRELATION AND PORTFOLIO RISK

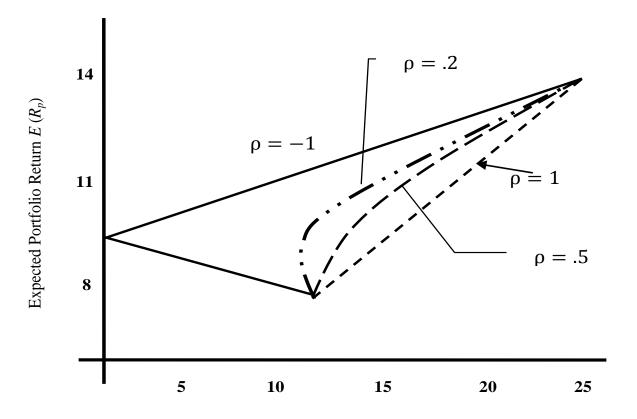

Correlation between assets in the portfolio

EXHIBIT 5-16 RELATIONSHIP BETWEEN RISK AND RETURN

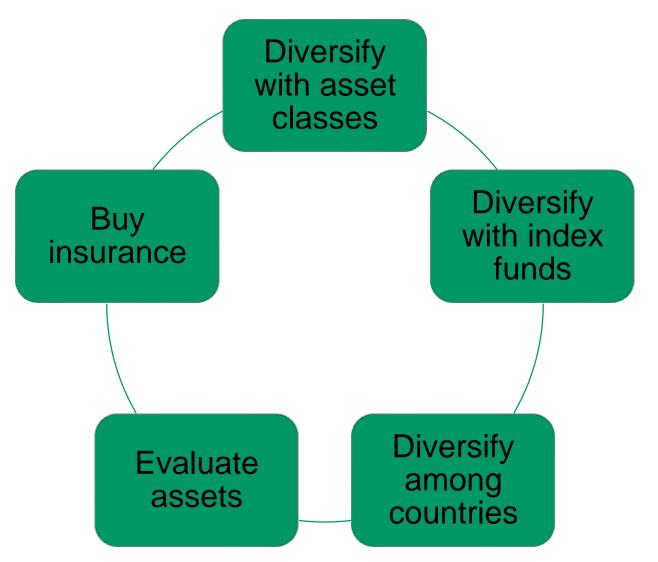
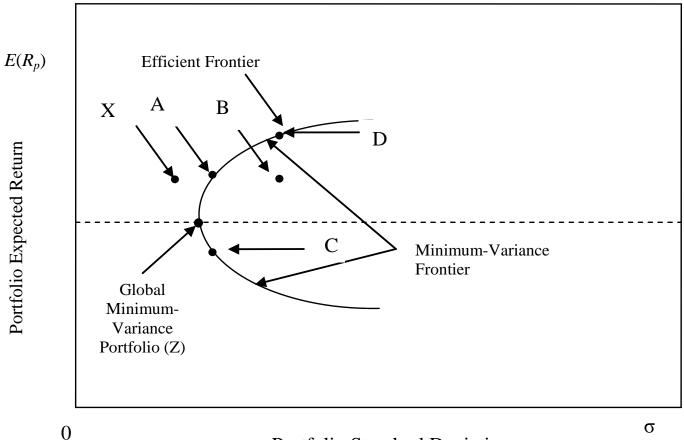

Weight in	Portfolio	Portfolio Risk with Correlation of						
Asset 1	Return	1.0	0.5	0.2	-1.0			
0%	15.0	25.0	25.0	25.0	25.0			
10%	14.2	23.7	23.1	22.8	21.3			
20%	13.4	22.4	21.3	20.6	17.6			
30%	12.6	21.1	19.6	18.6	13.9			
40%	11.8	19.8	17.9	16.6	10.2			
50%	11.0	18.5	16.3	14.9	6.5			
60%	10.2	17.2	15.0	13.4	2.8			
70%	9.4	15.9	13.8	12.3	0.9			
80%	8.6	14.6	12.9	11.7	4.6			
90%	7.8	13.3	12.2	11.6	8.3			
100%	7.0	12.0	12.0	12.0	12.0			

EXHIBIT 5-17 RELATIONSHIP BETWEEN RISK AND RETURN


Standard Deviation of Portfolio σ_p

AVENUES FOR DIVERSIFICATION

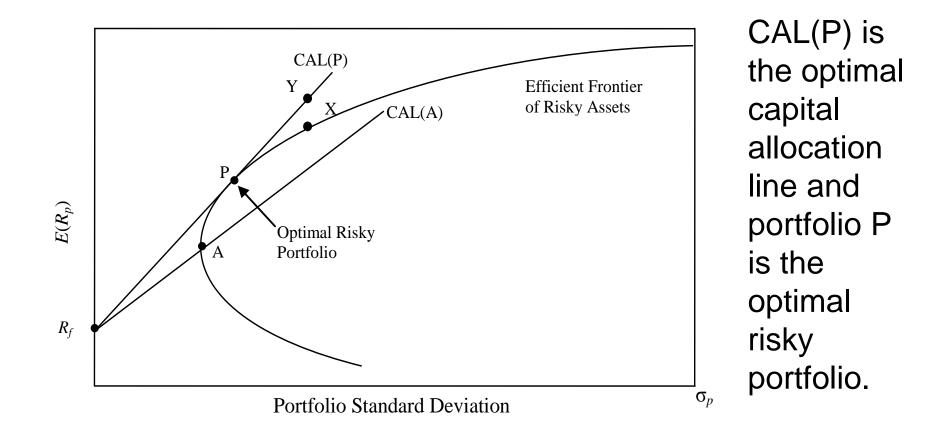
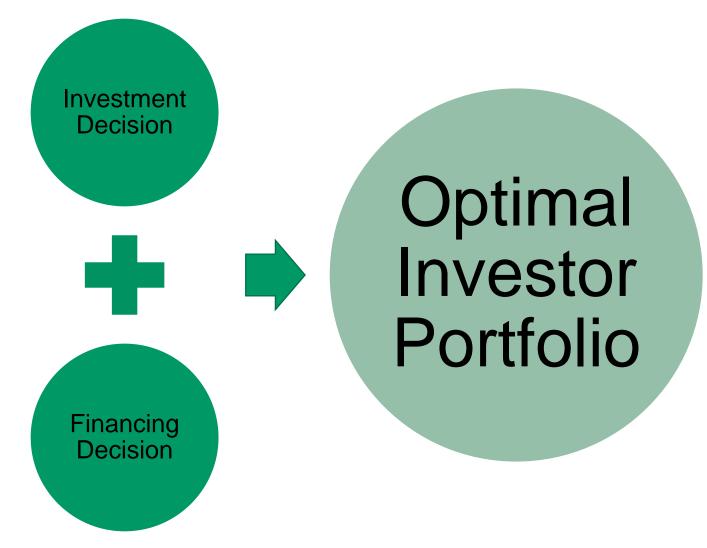
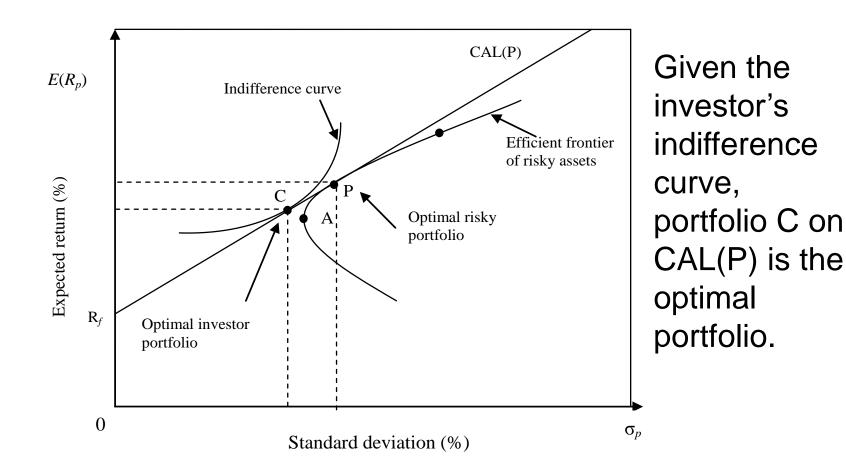

CFA Institute

EXHIBIT 5-22 MINIMUM-VARIANCE FRONTIER



Portfolio Standard Deviation

EXHIBIT 5-23 CAPITAL ALLOCATION LINE AND OPTIMAL RISKY PORTFOLIO



THE TWO-FUND SEPARATION THEOREM

CFA Institute

EXHIBIT 5-25 OPTIMAL INVESTOR PORTFOLIO

SUMMARY

- Different approaches for determining return
- Risk measures for individual assets and portfolios
- Market evidence on the risk-return tradeoff
- Correlation and portfolio risk
- The risk-free asset and the optimal risky portfolio
- Utility theory and the optimal investor portfolio