Solutions and Water Structure

- Properties of solutions
- Water microstructure
- Solute microstructure
 - Ionic solutes
 - Polar solutes
 - Nonpolar solutes (the hydrophobic effect)

$pH = -\log_{10}[H^+]$

Henderson Hasselbach

 $AH \qquad \longrightarrow \qquad A^- + H^+$ $K = \left[\frac{[A^-][H^+]}{[AH]}\right] = \frac{[A^-]}{[AH]} \times [H^+]$

 $pK = pH - \log_{10} \frac{[A^-]}{[AH]}$

Monosodium glutamate (MSG) is a flavor enhancer. It is most active over the pH range 6-8 and decreases at lower values.

Water Structure

- Molecular structure
- Supramolecular structure
- Solutes
 - Ionic
 - Polar
 - Nonpolar (the hydrophobic effect)

Water Molecular Structure

The Hydrogen Bond

(http://www.martin.chaplin.btinternet.co.uk/molecule.html)

Tetrahedral Structure of Water

- The lone pairs and bonding electrons repel one another
- The OH bonds are highly polarized
- Strong H-bonds (~10% of covalent bond)
- Each water molecule can hydrogen bond to two neighbors allowing the formation of an extensive 3D structure
- <u>http://wps.prenhall.com/wps/media/objects/439/4</u> <u>49969/Media_Portfolio/Chapter_08/FG08_13.JP</u> <u>G</u>

Supramolecular Structure of Water

- Water is highly hydrogen bonded (only about 15% of H-bonds break on melting ice)
- The bonds form and break dynamically
- Strong affinity of water for itself
- High specific heat (to warm water must break some H-bonds)

Polar Solutes

- Hydrogen bonds
- Dipole-dipole attractions

Thermodynamics of Binding

- Entropy cost to solvent (Δ S<0, -T Δ S>0)
- STRONG Enthalpy gain to solvent ($\Delta H < 0$)
- Net $\Delta G < 0$; reaction proceeds

Non Polar Solutes

- Weak transcient dipole (Van der Waals attraction)
- Strong structuring of water into a hydrogen bonded clathrate cage – entropy cost

The Hydrophobic Effect

- Same number of oil molecules
- Less surface oil molecules
- Fewer order "clathrate cage" water molecules
 △G<0, droplets tend to merge

Small Molecule Surfactants

Hydrophilic head group (charged or polar)

Hydrophobic tail (non-polar)

- Micelles and membranes
- Surface activity

- Spontaneous folding
- Surface activity