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Abstract. When implementing the tasks of controlling technological 
processes, finding the optimal control actions, and creating control 
algorithms that implement the optimal modes of technological processes, it 
is necessary to present the criterion of optimality in the form of a goal 
function, the extremum of which best meets the purpose of this object and 
expressed as - Relevant technical and economic indicators. The criterion of 
optimality should be an integral indicator that reflects the main aspects of 
production. Profit is most often taken as such a criterion for typical 
microbiological industries - as the most generalized indicator, reflecting 
almost all aspects of the enterprise. Possible criteria of optimality are 
analyzed in the form of technical and economic indicators of the process of 
cultivation of microorganisms, the extremum of which best meets the 
objectives of production and reflects the main aspects of the functioning of 
the control object. The analysis of possible modes of microalgae 
cultivation has been carried out. Two optimization algorithms are 
substantiated. The first one is based on random search method with an 
absolute bias, an algorithm for optimizing the process of cultivating 
microorganisms with continuous regeneration of the flow in one cultivator. 
The second is an algorithm for determining the optimal residence time of 
chlorella particles in multistage cultivators, focused on the method of 
dynamic programming implemented in Wellman's recurrence relation. The 
developed algorithm for operational forecasting and automatic control of 
the chlorella cultivation process allows, under given production conditions 
and the composition of nutrients, to increase the productivity of 
technological equipment and improve the quality of the target product, as 
well as to prevent in advance various unforeseen and emergency 
production situations. 

1 Introduction 

Microbiological processes are characterized by a mode of operation in which a complex 
biochemical reaction and mass transfer phenomena are accompanied by an intensive 
consumption of various nutrients and a single-mode growth and reproduction of a culture or 
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the formation of a target product. At the same time, as the analysis of the modeling results 
has shown, the content of nutrients is constantly decreasing, and the growth rate decreases, 
although, at the initial stage, the value of these indicators increases intensively [1,2,3,4]. 

An attempt to optimize the process according to the appropriate criteria at each moment 
of time leads to a forced drop in the culture's growth rate. As a result, the operation of the 
fermenter is far from optimal. Therefore, when optimizing, it is necessary to choose such a 
mode and the desired trajectory of the growth rate (depending on the mode of the 
microbiological process of the chemostat or pipe-stat), which would provide the optimal 
value of the objective function and at the same time satisfy the restrictions imposed on the 
operating mode of cultivators described by the system of equations (1) [5-7]. 
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(1) 

 
Due to the complexity and insufficient knowledge of the class of processes under 

consideration, the best, in a certain sense, the technological regime cannot be determined in 
advance, since its choice depends on several factors, information about which is revealed 
already in the course of the process itself. To optimize the facility, it is necessary to 
implement the conditions for ensuring the best quality of the output product that meets 
economic standards and specific production conditions. The noted circumstances lead to the 
fact that the properties and quality of the produced target product vary within wide limits. 
Therefore, it is necessary to solve a complex optimization problem that would consider the 
given values of the input and control parameters [8-10]. 

2 Methods 

The problem is solved based on a mathematical model using effective computational 
methods and modern computer technology. 

An equation of the type describes the control object 
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= 𝑓𝑓𝑠𝑠(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛,  𝑢𝑢1, … , 𝑢𝑢𝑛𝑛, 𝑡𝑡)      (2) 
 

Let the initial value x0 be given at time t = t0. Then each control U∈ V (U is some set 
containing a constraint arising from the conditions of the technical regulations, the current 
state corresponds) 
 

x = x(t,u,x0,t0) 
 

S is some surface in the space of variables t, x1,…, xn given by the equation 
 

S(t1,x1,x2,…,xn) = 0 
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F1 constraints can be functional. 
Now let's turn to the process of optimizing the cultivator on the time interval (0, T). 

Here T can be a variable or a given fixed time of the end of the process. In this case, 
restrictions are imposed on the control functions 
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where V is a given limitation corresponding to the conditions of the technological 

regulations. 
In this case, the optimization problem is to determine the admissible vector of the 

function u (t), which delivers an extremum to the conditional criterion described by a 
functional of the form 
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Suppose that at the initial moment t = t0 it is found at the p point X which is not optimal 

for the function f (X). Let us consider the question of which direction of a point from X 
moves in which the value of the function f (X) increases (decreases) with the greatest 
speed. It is known that such a direction is determined by the gradient of the function f (x) 
calculated at the point X = X ,̅ i.e. 
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Indeed, if the direction of motion of the point entering from the state X is determined by 

the vector i = {l1, ... l2}, then the equation of this motion can be represented as 
 

x = xs+lst;        s = 1,2,…, n; 
𝑡𝑡 ≥ 0 

 
The rate of increase of the function f (x) along the ray from the initial point X ̅ is 

determined by the formula 
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The right-hand side of this ratio is of greatest importance at 
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Formula (7) gives an expression for the components of the unit vector directed along the 

gradient of the function f (x) • The function f (x) when moving from the point X ̅, has the 
highest rate of decrease opposite to the direction of the vector (7). This property of the 
gradient f (x) is the basis of the method for numerically finding the values of the control 
parameters at which f (x) has a minimum. This method gives good results only with the 
largest number of input parameters. It is also effective when combined with other methods. 

The main idea of the method is to randomly choose the direction of movement at each 
step. With all the variety of random search methods, they are united by the use of a random 
vector ∆x having an equally probable possibility of different directions in the subsequent 
space of variables. When forming a random vector, random numbers are used [11,12]. 

Consider the algorithm we used for a random search with an absolute bias [13,14]. 
The absolute offset random search method is used to repeatedly execute a random step 

until it succeeds. If ∆x(f) is a successful step, then 
 

∆𝑥𝑥(𝑗𝑗+1) =  −∆𝑥𝑥(𝑗𝑗) 
 
is it checked whether such a choice is successful? If ∆xj led to failure, then we choose 
 

∆𝑥𝑥(𝑗𝑗+1) =  ∆𝑥𝑥(𝑗𝑗) 
 
 The problem of optimizing the technological process of growing microalgae was solved on 
a computer. 

3 Results and discussion. 
The previous one solved the problem of optimizing the process of cultivating chlorella 

with continuous regeneration of the flow in one cultivator. 
However, the cultivation process is often carried out in several series-connected 

cascades of cultivators, where the flow continuously flows from one cultivator to another in 
a multistage switching mode. To optimize such multistage processes, it is important to 
determine the optimal cultivation time in individual cultivators to obtain the maximum 
concentration of chlorella at the output [15,16]. 

For the problem under consideration, an optimality criterion of the form 
Where 
 

                                             𝑅𝑅1 = ∑𝑥𝑥1,                                   (8)
𝑁𝑁

𝑖𝑖=1

 

 
where                                               𝑥𝑥1 = 𝐷𝐷1−𝜇𝜇𝑖𝑖

𝐷𝐷𝑖𝑖𝑋𝑋𝑖𝑖−1
 

μi is the specific growth rate of microorganisms in the i-th cultivator; 
Xi is concentration of microorganisms in the i-th cultivator 

For the case I = 1, we have 

4

E3S Web of Conferences 264, 04032 (2021)	 https://doi.org/10.1051/e3sconf/202126404032
CONMECHYDRO - 2021



 
The right-hand side of this ratio is of greatest importance at 
 

𝑙𝑙 =
𝑑𝑑𝑑𝑑(Х̅)
𝑑𝑑𝑋𝑋𝑆𝑆

√∑ (𝑑𝑑𝑑𝑑(Х̅)
𝑑𝑑𝑋𝑋𝑆𝑆

)2𝑛𝑛
𝑆𝑆=1

 (7) 

 
Formula (7) gives an expression for the components of the unit vector directed along the 

gradient of the function f (x) • The function f (x) when moving from the point X ̅, has the 
highest rate of decrease opposite to the direction of the vector (7). This property of the 
gradient f (x) is the basis of the method for numerically finding the values of the control 
parameters at which f (x) has a minimum. This method gives good results only with the 
largest number of input parameters. It is also effective when combined with other methods. 

The main idea of the method is to randomly choose the direction of movement at each 
step. With all the variety of random search methods, they are united by the use of a random 
vector ∆x having an equally probable possibility of different directions in the subsequent 
space of variables. When forming a random vector, random numbers are used [11,12]. 

Consider the algorithm we used for a random search with an absolute bias [13,14]. 
The absolute offset random search method is used to repeatedly execute a random step 

until it succeeds. If ∆x(f) is a successful step, then 
 

∆𝑥𝑥(𝑗𝑗+1) =  −∆𝑥𝑥(𝑗𝑗) 
 
is it checked whether such a choice is successful? If ∆xj led to failure, then we choose 
 

∆𝑥𝑥(𝑗𝑗+1) =  ∆𝑥𝑥(𝑗𝑗) 
 
 The problem of optimizing the technological process of growing microalgae was solved on 
a computer. 

3 Results and discussion. 
The previous one solved the problem of optimizing the process of cultivating chlorella 

with continuous regeneration of the flow in one cultivator. 
However, the cultivation process is often carried out in several series-connected 

cascades of cultivators, where the flow continuously flows from one cultivator to another in 
a multistage switching mode. To optimize such multistage processes, it is important to 
determine the optimal cultivation time in individual cultivators to obtain the maximum 
concentration of chlorella at the output [15,16]. 

For the problem under consideration, an optimality criterion of the form 
Where 
 

                                             𝑅𝑅1 = ∑𝑥𝑥1,                                   (8)
𝑁𝑁

𝑖𝑖=1

 

 
where                                               𝑥𝑥1 = 𝐷𝐷1−𝜇𝜇𝑖𝑖

𝐷𝐷𝑖𝑖𝑋𝑋𝑖𝑖−1
 

μi is the specific growth rate of microorganisms in the i-th cultivator; 
Xi is concentration of microorganisms in the i-th cultivator 

For the case I = 1, we have 

 
𝑋𝑋1 = 𝐷𝐷1−𝜇𝜇1

𝐷𝐷1𝑋𝑋0
 (9) 

 
Since each investigated control object is individually periodic and multistage, the 

criterion of optimality of the entire technological system, in which a continuous process of 
growing a microorganism is ultimately implemented, is an additive function (8) for each 
separate stage. The vector of output parameters of any stage depends only on the vector of 
input and control parameters (9) of any stage. Therefore, to solve the problem posed, the 
dynamic programming method [13,17,18,19] is effective, according to which, for given 
output values of the process, the calculation starts from the end. It is assumed that the 
evaluation of the effectiveness. For a cultivator cascade, it is defined as follows: 

 
Z = 0,  i = 1,2,…, N-1;     Zn = x(N) 

 

Let restrictions be imposed on the control variables of the process Di 

 

𝐷𝐷(𝑛𝑛) =
1

∑ 1
𝐷𝐷𝑖𝑖

𝑛𝑛
𝑖𝑖=1

                                                (10) 

 

When passing from stage to stage at the first stage of solving the problem using 
dynamic programming, its dimension increases by one due to a constraint of the type of 
equality (10) in the range of D * (89). 

To return to the original difference, an undefined Lagrange multiplier λ is used. To 
assess the optimality criterion, new expressions are formed at each stage: 

 
𝑍𝑍∗ = 𝜆𝜆𝐷𝐷𝑖𝑖;     𝑟𝑟∗ = 𝜆𝜆 ∗ 𝐷𝐷𝑛𝑛 + 𝑥𝑥(𝑁𝑁) 

 

With the introduction of an indefinite Lagrange multiplier, the original criterion is 
modified 

 

𝑅𝑅𝑖𝑖∗ = 𝑥𝑥(𝑛𝑛) +
𝜆𝜆

∑ 1/𝐷𝐷𝑁𝑁
𝑖𝑖=1

= 𝑅𝑅1 +
𝜆𝜆

∑ 1/𝐷𝐷1𝑁𝑁
𝑖𝑖=1

 (11) 

 

The maximum value of the optimality criterion, in this case, is a function of two 
quantities X (0) and λ; however, the value of λ is no longer associated with the restriction of 
the choice of control at the stage. Therefore, the Wellman recurrence relation depends on 
the mathematical formulation of the optimality principle for the last reactor of a multistage 
process 

 
𝑓𝑓(𝑥𝑥(𝑁𝑁−1), 𝜆𝜆) = 𝐷𝐷𝑛𝑛max {𝜆𝜆𝐷𝐷𝑛𝑛 + 𝐷𝐷𝑖𝑖−𝜇𝜇𝑖𝑖

𝐷𝐷𝑖𝑖𝑋𝑋𝑁𝑁−1
} (12) 
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The change in the concentration xi in the process of continuous cultivation of chlorella 
is described by the equation 
 

𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝐷𝐷𝑖𝑖(𝑥𝑥𝑖𝑖−1 − 𝑥𝑥𝑖𝑖) + 𝜇𝜇𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖    (13) 

 
To obtain the values of the concentration of chlorella (9) for the case of a stationary 

regime, it is sufficient in this equation (13) to set the time derivatives equal to zero: 
 

𝐷𝐷𝑖𝑖(𝑥𝑥𝑖𝑖−1 − 𝑥𝑥𝑖𝑖) + 𝜇𝜇𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖 = 0             (14) 

 
The xi value from equation (14) and the optimal Dn value for the last cultivator are 

determined from the following condition: 
 

𝛿𝛿
𝛿𝛿𝐷𝐷𝑁𝑁

{𝜆𝜆𝐷𝐷𝑁𝑁 + 𝐷𝐷𝑁𝑁−𝜇𝜇𝑁𝑁
𝐷𝐷𝑁𝑁∗𝑥𝑥𝑁𝑁−1

}      (15) 

 
allowing to obtain the equation 
 

𝜆𝜆 +
𝜇𝜇𝑁𝑁

𝐷𝐷𝑁𝑁2𝑥𝑥𝑁𝑁−1
= 0 

 
The solution is as follows: 
 

𝐷𝐷𝑛𝑛 = √𝜇𝜇𝑁𝑁
𝜆𝜆 ∗ 𝑥𝑥𝑁𝑁−1

              (16) 

Using relation (14), we substitute the obtained values into equation (12), and we have 
 

𝑓𝑓1(𝑥𝑥𝑁𝑁−2, 𝜆𝜆) = 𝐷𝐷𝑁𝑁−1 max

{
 

 
𝜆𝜆𝐷𝐷𝑁𝑁−1 + 𝜆𝜆√

𝛼𝛼𝑁𝑁𝑋𝑋𝑁𝑁
𝜆𝜆𝑋𝑋𝑁𝑁−1

+ 𝑥𝑥(𝑁𝑁−1) + √𝛼𝛼𝑁𝑁−1𝑥𝑥𝑁𝑁−1 − 𝜇𝜇𝑁𝑁

√
𝛼𝛼𝑁𝑁−1𝑥𝑥𝑁𝑁−1
𝜆𝜆𝑥𝑥𝑁𝑁𝑥𝑥𝑁𝑁−1 }

 

 
  (17) 

 
Based on equation (9), we write the Bellman recurrence relation for (N-1) cultivator 
 

𝑓𝑓2(𝑥𝑥(𝑁𝑁−2), 𝜆𝜆) = 𝐷𝐷𝑁𝑁−1max {𝜆𝜆𝐷𝐷𝑁𝑁−1 + 𝜆𝜆√
𝛼𝛼𝑁𝑁

𝜆𝜆𝑋𝑋𝑁𝑁−1
+ 𝑥𝑥(𝑁𝑁−1) + √𝛼𝛼𝑁𝑁−1𝑥𝑥𝑁𝑁−1 − 𝜇𝜇𝑁𝑁

√
𝛼𝛼𝑁𝑁−1

𝜆𝜆𝑥𝑥𝑁𝑁𝑥𝑥𝑁𝑁−1

}    (18) 

 

Wherein 
 

𝑥𝑥(𝑁𝑁−1) = 𝑥𝑥(𝑁𝑁−2) +
𝐷𝐷𝑁𝑁−1 − 𝛼𝛼𝑁𝑁−1
𝐷𝐷𝑁𝑁−1𝑥𝑥𝑁𝑁−2

             (19 

Substituting the value xN-1 into equation (18), we get 
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√
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  (17) 

 
Based on equation (9), we write the Bellman recurrence relation for (N-1) cultivator 
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Substituting the value xN-1 into equation (18), we get 
 

𝑓𝑓2(𝑥𝑥(𝑁𝑁−2), 𝜆𝜆) = 𝐷𝐷𝑁𝑁−1max {𝜆𝜆𝐷𝐷𝑁𝑁−1 + 𝜆𝜆√
𝛼𝛼𝑁𝑁−1
𝜆𝜆𝑋𝑋𝑁𝑁−1

+ 𝑥𝑥(𝑁𝑁+2) +
𝐷𝐷𝑁𝑁−1 − 𝛼𝛼𝑁𝑁−1
𝐷𝐷𝑁𝑁−1𝑥𝑥𝑁𝑁−2

+
𝛼𝛼𝑥𝑥𝑁𝑁𝑥𝑥𝑁𝑁−1

√𝛼𝛼𝑁𝑁−1𝑥𝑥𝑁𝑁−1𝜆𝜆

}    (20) 

Similarly, we find DN-1 and f2 (x(N-2), λ) from condition (15): 
 

𝐷𝐷𝑁𝑁−1 = √
𝛼𝛼𝑁𝑁−1𝑥𝑥𝑁𝑁−1

𝜆𝜆
  (21) 

𝑓𝑓2(𝑥𝑥(𝑁𝑁−2), 𝜆𝜆) = 𝜆𝜆√
𝛼𝛼𝑁𝑁𝑥𝑥𝑁𝑁
𝜆𝜆

+ 𝑥𝑥(𝑁𝑁−2) +
𝛼𝛼𝑥𝑥𝑁𝑁𝑥𝑥𝑁𝑁−1

√𝛼𝛼𝑁𝑁−1𝑥𝑥𝑁𝑁−1𝜆𝜆

+
𝛼𝛼𝑁𝑁𝑥𝑥𝑁𝑁

√𝛼𝛼𝑁𝑁𝑥𝑥𝑁𝑁𝜆𝜆

 (22) 

 
For the (N-2) - th cultivator, you can also derive the following equations: 
 

𝐷𝐷𝑁𝑁−2 = √
𝛼𝛼𝑁𝑁−2𝑥𝑥𝑁𝑁−2

𝜆𝜆
 (23)  

𝑓𝑓3(𝑥𝑥(𝑁𝑁−3), 𝜆𝜆) = 𝜆𝜆√
𝛼𝛼𝑁𝑁−2𝑥𝑥𝑁𝑁−2

𝜆𝜆
+ 𝜆𝜆√

𝛼𝛼𝑁𝑁−2𝑥𝑥𝑁𝑁−2
𝜆𝜆

+ 𝜆𝜆√
𝛼𝛼𝑁𝑁𝑥𝑥𝑁𝑁
𝜆𝜆

+ 𝑥𝑥(𝑁𝑁−3) +
𝛼𝛼𝑥𝑥𝑁𝑁−2𝑥𝑥𝑁𝑁−2

√𝛼𝛼𝑁𝑁−2𝑥𝑥𝑁𝑁−2𝜆𝜆

+
𝛼𝛼𝑥𝑥𝑁𝑁𝑥𝑥𝑁𝑁−1

√𝛼𝛼𝑁𝑁−1𝑥𝑥𝑁𝑁−1𝜆𝜆
+

𝛼𝛼𝑁𝑁𝑥𝑥𝑁𝑁

√𝛼𝛼𝑁𝑁𝑥𝑥𝑁𝑁𝜆𝜆

 (24) 

 

From equations (16), (23), as well as taking into account expressions (17), (22), and 
(24) for an arbitrary i-th reactor, the following formulas are derived: 

 

𝐷𝐷𝑖𝑖 = √
𝛼𝛼𝑖𝑖𝑥𝑥𝑖𝑖
𝜆𝜆

 (25) 

𝑓𝑓𝑁𝑁−𝑖𝑖+1(𝑥𝑥(𝑖𝑖−1), 𝜆𝜆) = 𝜆𝜆∑√
𝛼𝛼𝑁𝑁−𝑗𝑗𝑥𝑥𝑁𝑁−𝑗𝑗

𝜆𝜆
+ 𝑥𝑥(𝑖𝑖−1) + ∑

𝛼𝛼𝑁𝑁−𝑗𝑗𝑥𝑥𝑁𝑁−𝑗𝑗

√𝛼𝛼𝑁𝑁−𝑗𝑗𝑥𝑥𝑁𝑁−𝑗𝑗𝜆𝜆

𝑁𝑁−𝑗𝑗

𝑗𝑗=0

𝑁𝑁−𝑖𝑖

𝑗𝑗=0

            (26) 

Using equations (25) and (26) for the first reactor of the cascade at i = 1, we obtain 
 

𝐷𝐷𝑖𝑖 = √
𝛼𝛼𝑖𝑖𝑥𝑥𝑖𝑖
𝜆𝜆

 (26   ) 

𝑓𝑓𝑁𝑁(𝑥𝑥(0), 𝜆𝜆) = 𝜆𝜆∑√
𝛼𝛼𝑁𝑁−𝑗𝑗𝑥𝑥𝑁𝑁−𝑗𝑗

𝜆𝜆
+ 𝑥𝑥(0) + ∑

𝛼𝛼𝑁𝑁−𝑗𝑗𝑥𝑥𝑁𝑁−𝑗𝑗

√𝛼𝛼𝑁𝑁−𝑗𝑗𝑥𝑥𝑁𝑁−𝑗𝑗𝜆𝜆

𝑁𝑁−𝑗𝑗

𝑗𝑗=0

𝑁𝑁−𝑖𝑖

𝑗𝑗=0

 (27) 

 
At this point, the first stage of solving the optimization problem by the dynamic 

programming method ends, and the further course of the solution consists in finding the 
optimal values of D_i, which in this case can be found as functions of the indefinite 
Lagrange factor λ. 

Substituting the values from (27) into equation (9) for i = 1, we obtain 
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𝑥𝑥1 =
𝐷𝐷1−𝜇𝜇1
𝜆𝜆1𝑥𝑥0

=
√𝜇𝜇1/𝜆𝜆𝑥𝑥1 − 𝜇𝜇1
√𝜇𝜇1/𝜆𝜆𝑥𝑥1𝑥𝑥0

 

 

Using the formula (25), we calculate the optimal value for the case i = 2 
 

𝐷𝐷2 = √
𝜇𝜇2
𝜆𝜆𝑥𝑥1

 

 
Substituting the values Di found as functions from expression (25) into condition (10), 

we determine the values of λ. In this case, the equation takes the form 
𝜆𝜆𝑖𝑖 = 𝜆𝜆(𝑁𝑁)𝑁𝑁 

It follows from this expression that for N cultivators connected in series, the total 
residence time 𝑇𝑇 = 1

𝜆𝜆𝑁𝑁
 should be distributed equally over all cultivators if separately they 

have the same volume. For μ = const, we also have x = const. Consequently, to determine 
the residence time of the particles of the cultivated mass in each cultivator, it is necessary to 
perform a calculation on a computer. 

Thus, it can be concluded that the maximum value of the concentration of chlorella X at 
the exit from the last cultivator can be expressed as (11), if we bear in mind that the 
maximum value of R * is reflected by the relation (28) 

 

𝑓𝑓𝑁𝑁(𝑥𝑥(0), 𝜆𝜆) = 𝜆𝜆∑√
𝛼𝛼𝑁𝑁−𝑗𝑗𝑥𝑥𝑁𝑁−𝑗𝑗

𝜆𝜆
+ 𝑥𝑥(0) + ∑

𝛼𝛼𝑁𝑁−𝑗𝑗𝑥𝑥𝑁𝑁−𝑗𝑗

√𝛼𝛼𝑁𝑁−𝑗𝑗𝑥𝑥𝑁𝑁−𝑗𝑗𝜆𝜆

𝑁𝑁−𝑗𝑗

𝑗𝑗=0

𝑁𝑁−𝑖𝑖

𝑗𝑗=0

 

𝐷𝐷(𝑁𝑁) =
1

∑ ∗ 1
𝐷𝐷𝑖𝑖

𝑁𝑁
𝑗𝑗=0

=
1

∑ ∗ 1

√
𝜇𝜇𝑖𝑖
𝜆𝜆𝑥𝑥𝑖𝑖

𝑁𝑁
𝑗𝑗=0

, 

 
From where 

𝜆𝜆 =
1

(𝐷𝐷(𝑁𝑁) ∑ ∗ 1

√
𝜇𝜇𝑖𝑖
𝜆𝜆𝑥𝑥𝑖𝑖

)𝑁𝑁
𝑗𝑗=0

2 

 
We substitute the found λ values into equations (25) and obtain the dilution rate for an 

arbitrary i-th cultivator in the form 
 

𝐷𝐷𝑖𝑖 = 𝐷𝐷(𝑁𝑁)√𝛼𝛼𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖(∑∗ √
𝑥𝑥𝑖𝑖
𝜇𝜇𝑖𝑖

)         (29)
𝑁𝑁

𝑗𝑗=0

 

 
For μi = const and xi = const, equation (29) takes the following form: 

𝐷𝐷𝑖𝑖 = 𝐷𝐷(𝑁𝑁) ∗ 𝑁𝑁 (30) 

or 

𝐷𝐷𝑖𝑖 =
1
𝑇𝑇
𝑁𝑁,   𝑖𝑖 = 1, 𝑁𝑁̅̅ ̅̅ ̅  (30) 
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𝑥𝑥1 =
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Using the formula (25), we calculate the optimal value for the case i = 2 
 

𝐷𝐷2 = √
𝜇𝜇2
𝜆𝜆𝑥𝑥1

 

 
Substituting the values Di found as functions from expression (25) into condition (10), 

we determine the values of λ. In this case, the equation takes the form 
𝜆𝜆𝑖𝑖 = 𝜆𝜆(𝑁𝑁)𝑁𝑁 

It follows from this expression that for N cultivators connected in series, the total 
residence time 𝑇𝑇 = 1

𝜆𝜆𝑁𝑁
 should be distributed equally over all cultivators if separately they 

have the same volume. For μ = const, we also have x = const. Consequently, to determine 
the residence time of the particles of the cultivated mass in each cultivator, it is necessary to 
perform a calculation on a computer. 

Thus, it can be concluded that the maximum value of the concentration of chlorella X at 
the exit from the last cultivator can be expressed as (11), if we bear in mind that the 
maximum value of R * is reflected by the relation (28) 

 

𝑓𝑓𝑁𝑁(𝑥𝑥(0), 𝜆𝜆) = 𝜆𝜆∑√
𝛼𝛼𝑁𝑁−𝑗𝑗𝑥𝑥𝑁𝑁−𝑗𝑗

𝜆𝜆
+ 𝑥𝑥(0) + ∑

𝛼𝛼𝑁𝑁−𝑗𝑗𝑥𝑥𝑁𝑁−𝑗𝑗

√𝛼𝛼𝑁𝑁−𝑗𝑗𝑥𝑥𝑁𝑁−𝑗𝑗𝜆𝜆

𝑁𝑁−𝑗𝑗

𝑗𝑗=0

𝑁𝑁−𝑖𝑖

𝑗𝑗=0

 

𝐷𝐷(𝑁𝑁) =
1

∑ ∗ 1
𝐷𝐷𝑖𝑖

𝑁𝑁
𝑗𝑗=0

=
1

∑ ∗ 1

√
𝜇𝜇𝑖𝑖
𝜆𝜆𝑥𝑥𝑖𝑖

𝑁𝑁
𝑗𝑗=0

, 

 
From where 

𝜆𝜆 =
1

(𝐷𝐷(𝑁𝑁) ∑ ∗ 1

√
𝜇𝜇𝑖𝑖
𝜆𝜆𝑥𝑥𝑖𝑖

)𝑁𝑁
𝑗𝑗=0

2 

 
We substitute the found λ values into equations (25) and obtain the dilution rate for an 

arbitrary i-th cultivator in the form 
 

𝐷𝐷𝑖𝑖 = 𝐷𝐷(𝑁𝑁)√𝛼𝛼𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖(∑∗ √
𝑥𝑥𝑖𝑖
𝜇𝜇𝑖𝑖

)         (29)
𝑁𝑁

𝑗𝑗=0

 

 
For μi = const and xi = const, equation (29) takes the following form: 

𝐷𝐷𝑖𝑖 = 𝐷𝐷(𝑁𝑁) ∗ 𝑁𝑁 (30) 

or 

𝐷𝐷𝑖𝑖 =
1
𝑇𝑇
𝑁𝑁,   𝑖𝑖 = 1, 𝑁𝑁̅̅ ̅̅ ̅  (30) 

4 Conclusions 

The developed algorithm for predicting and controlling the process of chlorella cultivation 
allows, under given production conditions and the composition of nutrients, to increase the 
productivity and quality of the target product and prevent various unforeseen and 
emergency production situations in advance. 

Based on the developed models and algorithms, a functional and algorithmic structure 
of a control system for the cultivation of chlorella is proposed, focused on solving the 
following tasks: collection and primary processing of information, forecasting the course of 
the technological process, optimization of operating parameters and control of the course of 
the technological process [20]. 
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