Numerals

All our lives we are surrounded by numbers. We count money we eam and spend, weight of our bags, years or months spent somewhere or with someone, hours and minutes of waiting, meters and kilometers of distance between places, etc. For all these measurements we need to use in our speech numerals. In this article we are going to

A numeral is a figure, a letter, a word (or their combinations) representing a number. They may be divided into two majortypes: cardinal and ordinal numerals. Cardinal numerals indic ate number, quantity or a mount and are used in counting. Ordinal numerals indic ate order, that is, the order of things in a series. Numerals can be written in figures or words (2 or two; 25 or twenty-five; 17th or seventeenth). But in this article we're going to discuss not only ordinal and cardinal numerals, but also fractions and other details connected with usage of numerals.

Cardinal numerals

In fomal nontec hnic al texts, numbers from one to one hundred, round numbers, and any numbers that can be expressed in one or two words are usually spelled out, that is, written out in words. In less formal texts, as a general rule, numbers from one to ten should be spelled out, and figures can be used for numbers above ten.
For example: She has got three brothers.
How many feet are there in a mile? - There are 5280
feet in a mile.
Numbers at the beginning of the sentence should be written out in words. If you need to use figures, restructure your sentence.
For example: Fifty-six workers were fired yesterday. - Yesterday 56 workers were fired.
Numerals used in the same function in a sentence are usually written either as words or as figures.
For example: He wrote one hundred a nd thirty essays, fifty-two stories, and seven novels./ He wrote 130 essays, 52 stories, and 7 novels.

Here are symbols a nd words representing cardinal numbers:

Symbol	Word	Symbol	
0	nought	17	seventeen
1	one	18	eighteen
2	two	19	nineteen
3	three	20	twenty
4	four	21	twenty-one
5	five	30	thirty
6	six	40	forty
7	seven	50	fifty
8	eight	60	sixty
9	nine	70	seventy
10	ten	80	eighty
11	eleven	90	ninety
12	twelve	100	one hundred
13	thirteen	101	one hundred and one
14	fourteen	1,000	one thousand
15	fifteen	$1,000,000$	one million
16	sixteen	$1,000,000,000,000 *$	one billion

Both in British English and in Americ an English groups of three digits in numera ls of one thousand and higher are usually separated by a comma, counting from the right: 4,$286 ; 12,345 ; 378,925 ; 6,540,210$.

Ordinal numerals

Ordinal numerals that can be expressed in one or two words are usually written as words. Generally, Ordinal numerals are used as adjectives and stand before nouns. An ordinal numeral is usually preceded by the definite article "the".
For example: The first story was interesting. The second was dull.
John Kennedy was the 35th president of the United States.
Here are ordinal numbers in figures and in words:

In figures	In words	In figures	In words
1**	the first	$20^{\text {th }}$	the twentieth
$2^{\text {nd }}$	the second	21 ${ }^{\text {st }}$	the twenty-first
$3^{\text {rd }}$	the third	$22^{\text {nd }}$	the twenty-second
$4^{\text {th }}$	the fourth	$23{ }^{\text {rad }}$	the twenty-third
$5^{\text {th }}$	the fifth	24 ${ }^{\text {th }}$	the twenty-fourth
$6^{\text {th }}$	the sixth	25 ${ }^{\text {th }}$	the twenty-fifth
$7^{\text {th }}$	the seventh	26 ${ }^{\text {h }}$	the twenty-sixth
$8^{\text {th }}$	the eighth	27 ${ }^{\text {th }}$	the twenty-seventh
$9^{\text {th }}$	the ninth	28*	the twenty-eighth
$10^{\text {th }}$	the tenth	$29^{\text {th }}$	the twenty-ninth
$11^{\text {th }}$	the eleventh	$30^{\text {th }}$	the thirtieth
$12^{\text {th }}$	the twelfth	$40^{\text {th }}$	the fortieth
$13^{\text {th }}$	the thirteenth	$50^{\text {th }}$	the fiftieth
$14^{\text {th }}$	the fourteenth	$60^{\text {th }}$	the sixtieth
15 th	the fifteenth	$70^{\text {th }}$	the seventieth
$16^{\text {th }}$	the sixteenth	$80^{\text {th }}$	the eightieth
$17^{\text {th }}$	the seventeenth	$90^{\text {th }}$	the ninetieth
$18^{\text {th }}$	the eighteenth	$10^{\text {th }}$	the hundredth
19th	the nineteenth	101st	the hundred and first

Diffic ult spellings

Pay attention to the differences in the spelling and pronunciation of the following cardinal and ordinal numerals.
-two, twelve, twenty, twenty-two - sec ond, twelfth, twentieth, twenty-sec ond; -three, thirteen, thirty, thirty-three - third, thirteenth, thirtieth, thirty-third; -four, fourteen, forty, forty-four - fourth, fourteenth, fortieth, forty-fourth; -five, fifteen, fifty, fifty-five - fifth, fifteenth, fiftieth, fifty-fifth;
-eight, eighteen, eighty, eighty-eight - eighth, eighteenth, eightieth, eightyeighth;

- nine, nineteen, ninety, ninety-nine - ninth, nineteenth, ninetieth, ninety-ninth; Note the pronunciation of "five, fifth" a nd "nine, ninth": five [faiv] - fifth [fif Θ]; nine [nain] - ninth [nain θ].
Numerals like "eighteen" have two stresses: sixteen ['siks'ti:n]; eighteen ['ei'ti:n]. Depending on the position of the numeral in the sentence, primary stress may fall on the first or on the last syllable.
For example: He has SIXteen BOOKS. How many? - SixTEEN.
Numerals like "eighty" have one stress on the first syllable: twenty ['twenti]; sixty ['siksti], eighty ['eiti].
Note the pronunciation of ordinal numerals like "twentieth": twentieth ['twentil价; fortieth ['fo:rtiï]; fiftieth ['fiftiï]; seventieth ['seventiï]; ninetieth ['naintiiө]

Fractions

A fraction is a numberwe need for measuring. When we measure something, such asa length, it will not always be a whole number. Therefore we need numbersthat are less than 1,2 or other figures - numbers that are the parts of these figures: half of one, a third/ a fourth/ a fifth/ a millionth part of some figure. For example:
Thye firsheramble bintfiof ction, written before slash (/), is called numeratora nd is expressed by a cardinal numeral. The second number, written afterslash (/), is called denominatora nd is expressed by ordinal numeral. NOTE: you use ordinal numeral only in oral speech and in fractions written in words, you don't have to write suffixes "rd, th, ths" in written figures. Therefore, you write $1 / 5$, but you pronounce it and write it in words as one-fifth.
Pay attention that when you write fractions with words, not symbols, you also need to use hyphen (-). For exa mple: $1 / 7$ will be one-seventh. But, when the numerator or denominator is already hyphenated you don't need to use one more hyphen. For example: $1 / 25$ will be one twenty-fifth, NOTone-twenty-fifth.

-1/4 - one-fourth / a quarter;
-1/5- one-fifth; 1/8 - one-eighth;
-1/9 - one-ninth; 1/10 - one-tenth;
-3/4 - three-fourths / three-quarters;
-5/8 - five-eighths; 9/10 - nine-tenths;
-1/32 - one thirty-second;
-1/100 - one-hundredth;
-1/1000--one-thousandth;
-33/100 - thirty-three hundredths;
-65/1000 - sixty-five thousandths;
-7/36 - seven thirty-sixths;

Decimal fractions

The decimal point (not a comma) separates the whole from the fraction in decimal fractions in English. Decima ls a re written in figures. When pronouncing decimalswe use the word "point" to represent the dot. The numbers following the dot are pronounced separately.
For example: When you have the number 1.36 we say "One point three six." The digits to the left of the decimal point are usually read as a cardinal number, and the digits to the right of the decimal point are usually read as separate digits. Squared/ Cubed/ To the power of
 equials four.
Cubed numbers are written $2^{3}=$ We say "Two cubed" $=2 \times 2 \times 2=$ Two cubed equals eight
Youcan also say "to the powerof" - "Two to the power of two equalsfour." and "Two to the power of three equals eight."
You can then have "to the power of" a ny number.
The to the poiner 8 ftynelvere trsmur h easier to write $2^{12}=4096$.

For example:

12 eggs="A dozen eggs."
6 eggs= "Half a dozen eggs."

Interesting numbers

There are a number of ways you can say 0 in English.

	When we use it		Example
$\mathrm{O}=\mathrm{oh}$	after a decimal point		9.02 $=$ "Nine point oh two."
	in bus or room numbers		Room $101=$ "Room one oh one." Bus $602=$ "Bus six oh two."
	in phone numbers		$9130472=$ Nine one three oh four seven two."
	in years		$1906={ }^{\text {N }}$ Nineteen oh six. ${ }^{\text {" }}$
$\mathrm{O}=$ nought	before a decimal point		O.06 = "Nought point oh six."
$\mathrm{O}=$ zero	in temperature		$-10^{\circ} \mathrm{C}=$ "7O degrees below zero."
	US English for the number		$O=$ "Zero"
$\mathrm{O}=$ nil	in football		Chelsea 2 Manchester United $O={ }^{\text {K Chelsea }}$ two Manchester United' nill."
O = love	in tennis		$2 \mathrm{O}-\mathrm{O}=$ "7wenty $/$ ove."
111			SUMS
Symibols		Whondl (coonnmmon ternm in brackets)	
-		Plus ${ }^{\text {c }}$	rind)
-		Nininu	(Take away)
\times		NMulti	lied by (Times)
\div		Diviad	d by
$\bar{\square}$		Equal	(1s)
-		Point	
		Perce	

Letters as numbers

$$
\sim \mathbf{k} \sim
$$

The letterk is often used to denote a thousand. So, $1 \mathrm{k}=1,000$. If you see a job advertised a nd it offers a salary of $£ 12 k$ it means £12,000.00.

$$
\sim \mathbf{m} \sim
$$

The letter m is often used to denote a million. So, $1 \mathrm{~m}=1,000,000$. If you see a job advertised a nd it offers a salary of $£ 12 m$, a pply for it!

~bn~

The letters bn denote a billion. So, 1bn is usually 1,000,000,000 (see above).
If you see a job advertised and it offers a salary of $£ 12 b n$, it's probably a missprint.

myriad

The word myriad used to mean 10,000. Nowadays it's used to refer to a countless number or multitude of specified things.
For example:
Earth hosts a myriad of a nimals.

