KINEMATICS OF FLOWS
AND IDEAL FLOW

A. KINEMATICS OF FLOW

» 5.1 INTRODUCTION

Kinematics is defined as that branch of science which deals with motion of particles without
considering the forces causing the motion. The velocity at any point in a flow field at any time is
studied in this branch of fluid mechanics. Once the velocity is known, then the pressure distribution
and hence forces acting on the fluid can be determined. In this chapter, the methods of determining
velocity and acceleration are discussed.

» 5.2 METHODS OF DESCRIBING FLUID MOTION

The fluid motion is described by two methods. They are —(7) Lagrangian Method, and (i7) Eulerian
Method. In the Lagrangian method, a single fluid particle is followed during its motion and its
velocity, acceleration, density, etc., are described. In case of Eulerian method, the velocity, accelera-
tion, pressure, density etc., are described at a point in flow field. The Eulerian method is commonly
used in fluid mechanics.

» 5.3 TYPES OF FLUID FLOW

The fluid flow is classified as :
(i) Steady and unsteady flows ;
(i) Uniform and non-uniform flows ;
(iii) Laminar and turbulent flows ;
(iv) Compressible and incompressible flows ;
(v) Rotational and irrotational flows ; and
(vi) One, two and three-dimensional flows.

5.3.1 Steady and Unsteady Flows. Steady flow is defined as that type of flow in which the fluid
characteristics like velocity, pressure, density, etc., at a point do not change with time. Thus for
steady flow, mathematically, we have
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where (xy, ¥, Z¢) is a fixed point in fluid field.
Unsteady flow is that type of flow, in which the velocity, pressure or density at a point changes with
respect to time. Thus, mathematically, for unsteady flow

A% dp
5 #0, a— # 0 etc.
%05 Yo 20 ! X0s Yo %0

5.3.2 Uniform and Non-uniform Flows. Uniform flow is defined as that type of flow in
which the velocity at any given time does not change with respect to space (i.e., length of direction of
the flow). Mathematically, for uniform flow

(a_v) =0
ds t = constant

where 9V = Change of velocity
ds = Length of flow in the direction S.
Non-uniform flow is that type of flow in which the velocity at any given time changes with respect
to space. Thus, mathematically, for non-uniform flow

(a—") £0.
ds t = constant

5.3.3 Laminar and Turbulent Flows. Laminar flow is defined as that type of flow in which
the fluid particles move along well-defined paths or stream line and all the stream-lines are straight and
parallel. Thus the particles move in laminas or layers gliding smoothly over the adjacent layer. This
type of flow is also called stream-line flow or viscous flow.

Turbulent flow is that type of flow in which the fluid particles move in a zig-zag way. Due to the
movement of fluid particles in a zig-zag way, the eddies formation takes place which are responsible

D
for high energy loss. For a pipe flow, the type of flow is determined by a non-dimensional numberV—
v

called the Reynold number,
where D = Diameter of pipe

V = Mean velocity of flow in pipe
and v = Kinematic viscosity of fluid.

If the Reynold number is less than 2000, the flow is called laminar. If the Reynold number is more
than 4000, it is called turbulent flow. If the Reynold number lies between 2000 and 4000, the flow may
be laminar or turbulent.

5.3.4 Compressible and Incompressible Flows. Compressible flow is that type of flow in
which the density of the fluid changes from point to point or in other words the density (p) is not
constant for the fluid. Thus, mathematically, for compressible flow

p # Constant

Incompressible flow is that type of flow in which the density is constant for the fluid flow. Liquids
are generally incompressible while gases are compressible. Mathematically, for incompressible flow

p = Constant.
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5.3.5 Rotational and Irrotational Flows. Rotational flow is that type of flow in which the
fluid particles while flowing along stream-lines, also rotate about their own axis. And if the fluid
particles while flowing along stream-lines, do not rotate about their own axis then that type of flow is
called irrotational flow.

5.3.6 One-, Two- and Three-Dimensional Flows. One-dimensional flow is that type of
flow in which the flow parameter such as velocity is a function of time and one space co-ordinate only,
say x. For a steady one-dimensional flow, the velocity is a function of one-space-co-ordinate only. The
variation of velocities in other two mutually perpendicular directions is assumed negligible. Hence
mathematically, for one-dimensional flow

u=f(x),v=0and w=20
where u, v and w are velocity components in x, y and z directions respectively.

Two-dimensional flow is that type of flow in which the velocity is a function of time and two
rectangular space co-ordinates say x and y. For a steady two-dimensional flow the velocity is a function
of two space co-ordinates only. The variation of velocity in the third direction is negligible. Thus,
mathematically for two-dimensional flow

u=f(x,y), v=_fy(x,y)and w = 0.

Three-dimensional flow is that type of flow in which the velocity is a function of time and three
mutually perpendicular directions. But for a steady three-dimensional flow the fluid parameters are
functions of three space co-ordinates (x, y and z) only. Thus, mathematically, for three-dimensional
flow

u =f1(-x’ Y, 2), Vv =f2(-x’ Y, 2) and w =f3(x’ Y, 2).

» 5.4 RATE OF FLOW OR DISCHARGE (Q)

It is defined as the quantity of a fluid flowing per second through a section of a pipe or a channel.
For an incompressible fluid (or liquid) the rate of flow or discharge is expressed as the volume of fluid
flowing across the section per second. For compressible fluids, the rate of flow is usually expressed as
the weight of fluid flowing across the section. Thus

(i) For liquids the units of Q are m>/s or litres/s
(ii) For gases the units of Q is kgf/s or Newton/s
Consider a liquid flowing through a pipe in which
A = Cross-sectional area of pipe
V = Average velocity of fluid across the section
Then discharge Q=AxV. (5.

» 5.5 CONTINUITY EQUATION

The equation based on the principle of conservation of mass is called continuity equation. Thus for
a fluid flowing through the pipe at all the cross-section, the quantity of fluid per second is constant.
Consider two cross-sections of a pipe as shown in Fig. 5.1.

Let V, = Average velocity at cross-section 1-1
p; = Density at section 1-1
A, = Area of pipe at section 1-1
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and V,, p,, A, are corresponding values at section, 2-2. 0 ®

Then rate of flow at section 1-1=p,;A,V, L o

Rate of flow at section 2-2 = pA,V, DIRE_CIIONAU_I’i 1'

According to law of conservation of mass OF FLOW

Rate of flow at section 1-1 = Rate of flow at section 2-2
or P1A V| = pA,V, ..(5.2)

Equation (5.2) is applicable to the compressible as well as incom- Fig. 5.1 Fluid flowing through
pressible fluids and is called Continuity Equation. If the fluid is in- a pipe.
compressible, then p, = p, and continuity equation (5.2) reduces to

AV, =4V, ..(5.3)

Problem 5.1 The diameters of a pipe at the sections I and 2 are 10 cm and 15 cm respectively. Find
the discharge through the pipe if the velocity of water flowing through the pipe at section 1 is
5 m/s. Determine also the velocity at section 2.

Solution. Given :

@
At section 1, D, =10cm=0.1m @
T T
A, =Z (D12) =Z (.1)2 = 0.007854 m> —» iD=10cm |D,=15cm
V=5 m/s.

At section 2, D,=15cm =0.15m V,= 5m/sec

A, =% (15)* = 0.01767 m> Fig. 5.2

(i) Discharge through pipe is given by equation (5.1)
or Q0=A XV,
= 0.007854 x 5 = 0.03927 m*/s. Ans.
Using equation (5.3), we have A|V, = A,V,
.. AV,  0.007854
(i) .. v, = =
A, 0.01767
Problem 5.2 A 30 cm diameter pipe, conveying water, branches into two pipes of diameters
20 cm and 15 cm respectively. If the average velocity in the 30 cm diameter pipe is 2.5 m/s, find the

discharge in this pipe. Also determine the velocity in 15 cm pipe if the average velocity in 20 cm
diameter pipe is 2 m/s.

Solution. Given :

X 5.0 = 2.22 m/s. Ans.

@ _- ,L“\|°—~°°

V41=2.5m/sec
—
Dy =30cm
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D, =30 cm =0.30 m

A =L D=L x 32=0.07068 m
4 4

V,=25m/s
D, =20cm =020 m

A, =2 (2*=L x 4200314 m%
4 4

V,=2m/s
D;=15cm =0.15m

A =Z (152 =T % 0.225 = 0.01767 m?
374 4

Find (i) Discharge in pipe 1 or 0,
(ii) Velocity in pipe of dia. 15 cm or V,

Let Q,, O, and Q5 are discharges in pipe 1, 2 and 3 respectively.
Then according to continuity equation

0,=0,+0; (D)
(i) The discharge Q, in pipe 1 is given by

Q,=A,V, = 0.07068 x 2.5 m*s = 0.1767 m’/s. Ans.
(i) Value of V,

0, = A,V, = 0.0314 x 2.0 = 0.0628 m>/s
Substituting the values of 0, and @, in equation (1)

0.1767 = 0.0628 + O,
- 0, = 0.1767 — 0.0628 = 0.1139 m>/s
But 0;=A;xV;=0.01767 x V; or 0.1139 =0.01767 x V,
\= 0.1139

0.01767
Problem 5.3 Water flows through a pipe AB 1.2 m diameter at 3 m/s and then passes through a
pipe BC 1.5 m diameter. At C, the pipe branches. Branch CD is 0.8 m in diameter and carries one-
third of the flow in AB. The flow velocity in branch CE is 2.5 m/s. Find the volume rate of flow in
AB, the velocity in BC, the velocity in CD and the diameter of CE.

= 6.44 m/s. Ans.

Solution. Given :

Diameter of pipe AB, Dyg=12m
Velocity of flow through AB, V,p= 3.0 m/s
Dia. of pipe BC, Dp-=15m

Dia. of branched pipe CD, D ,=0.8 m
Velocity of flow in pipe CE, Vp= 2.5 m/s
Let the flow rate in pipe AB=Q m’s
Velocity of flow in pipe BC = V- m/s
Velocity of flow in pipe CD =V, m/s
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A B

—% 1
1.2m 1.5m

S SN

VAB= 3 m/sec

VcE= 2.5m/sec

Fig. 5.4
Diameter of pipe CE = D
Then flow rate through CD = (Q/3

and flow rate through CE=Q-0/3= 2TQ

(i) Now volume flow rate through AB = Q = V,; X Area of AB
=3.0x % (Dyp)? = 3.0 X % (1.2)% = 3.393 m’/s. Ans.

(ii) Applying continuity equation to pipe AB and pipe BC,
V4p X Area of pipe AB = V. X Area of pipe BC

T T
or 30 %7 (Dpp)* = Ve X7 (Dge)*
or 3.0 x (1.2)% = Vg x (1.5) [Divide by ﬂ
2
or Ve =2 T;‘f = 1.92 m/s. Ans.
(iii) The flow rate through pipe
CD=Q,= % = —3'1)93 = 1.131 m’/s

0, = Vep X Area of pipe CD x% (Dep)?

or 1.131= Vg x% x 0.8% = 0.5026 V¢
D =ﬂ = 2.25 m/s. Ans.
0.5026

(iv) Flow rate through CE,
0,=0-0,=3393-1.131=2262m’s

0, = Vg % Atea of pipe CE = VCE% (Dep)’

or 2.263=12.5 x% X (Dgg)?
or Dep=|2283X4 _ 1152 = 10735 m
25XT

Diameter of pipe CE = 1.0735 m. Ans.
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Problem 5.4 A 25 cm diameter pipe carries oil of sp. gr. 0.9 at a velocity of 3 m/s. At another
section the diameter is 20 cm. Find the velocity at this section and also mass rate of flow of oil.

Solution. Given :

at section 1, D =25cm=0.25m

A =L pp? =§ x 0.25% = 0.049 m>

4
Vi=3m/s

at section 2, D,=20cm =02 m

A, =§ 0.2)* = 0.0314 m>

V2 = ?
Mass rate of flow of oil = ?
Applying continuity equation at sections 1 and 2,

AIVI = A2V2
or 0.049 x 3.0 = 0.0314 x V,
v, = QM9X30 _ 4 68 mis. Ans.
0.0314
Mass rate of flow of oil = Mass density X Q = p X A; X V|

Density of oil

Sp. gr. of oil =
p-& Density of water
Density of oil

= 0.9 x 1000 kg/m> =

Mass rate of flow

= Sp. gr. of oil X Density of water
900 kg
m’

=900 x 0.049 x 3.0 kg/s = 132.23 kg/s. Ans.

Problem 5.5 A jet of water from a 25 mm diameter nozzle is directed vertically upwards. Assuming
that the jet remains circular and neglecting any loss of energy, that will be the diameter at a point 4.5 m
above the nozzle, if the velocity with which the jet leaves the nozzle is 12 m/s.

Solution. Given :
Dia. of nozzle, D,

25 mm = 0.025 m
Velocity of jet at nozzle, V,; =12 m/s

Height of point A, h=45m

Let the velocity of the jet at a height 4.5 m =V,

Consider the vertical motion of the jet from the outlet of the
nozzle to the point A (neglecting any loss of energy).

Initial velocity, u=V, =12 m/s

Final velocity, V=1V,

Value of g=-981m/s’and h=4.5m
Using, Viou’= 2gh, we get

V,2-122=2x (- 9.81) x4.5

JET OF 45m
WATER

DIA =25 mm

NOZZLE

Fig. 5.5
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V, =122 — 2 9.81x 4.5 = /144 — 8829 = 7.46 m/s

Now applying continuity equation to the outlet of nozzle and at point A,

we get
AV, =AV,
T2
— D" xV, 2
A 1 1 % (0.025)" x12
or A= _4 _ Tx(0025) = 0.0007896
V, V, 4x746
Let D, = Diameter of jet at point A.

Then A, =§ D,? or 0.0007896 =§ x D,

D, = /W =0.0317 m = 31.7 mm. Ans.
T

» 5.6 CONTINUITY EQUATION IN THREE-DIMENSIONS

Consider a fluid element of lengths dx, dy and dz in the direction of x, y and z. Let u, v and w are the
inlet velocity components in x, y and z directions respectively. Mass of fluid entering the face ABCD
per second

= p X Velocity in x-direction X Area of ABCD
=pXuxX(dyxdz)

Then mass of fluid leaving the face EFGH per second = pu dydz +ai (pu dydz) dx
X

Gain of mass in x-direction
= Mass through ABCD — Mass through EFGH per second

= pu dydz — pu dydz - ai (pu dydz)dx
X

=- i (pu dydz) dx
ox

Z
)
=- = (pu) dx dydz { " dydz is constant}
X
Similarly, the net gain of mass in y-direction D 5 %
0 A :W E dz
=— — (pv) dxdydz )
gy PV Lt (7L—*X
BL-"V dy
and in z-direction -9 (pw) dxdydz k]
0z Y Fig. 5.6

Net gain of masses = —L% (pu) + aiy (pv)+ 8% (pw)} dxdydz

Since the mass is neither created nor destroyed in the fluid element, the net increase of mass per unit
time in the fluid element must be equal to the rate of increase of mass of fluid in the element. But mass
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d
of fluid in the element is p. dx. dy. dz and its rate of increase with time isE (p dx. dy. dz) or

op
— .dx dy dz.
or

Equating the two expressions,

or _[% (pu) + aiy (pv)+ 8% (pw)} dxdydz = ?)_‘t) dxdydz
or a_p+ i(pu) + i(pv) + 9 (pw) = 0 [Cancelling dx.dy.dz from both sides] ...(5.3A)
ot  ox dy 0z

Equation (5.3A) is the continuity equation in cartesian co-ordinates in its most general form. This
equation is applicable to :
(i) Steady and unsteady flow,
(i) Uniform and non-uniform flow, and
(iiif) Compressible and incompressible fluids.

)
For steady flow,a—‘t) = 0 and hence equation (5.3A) becomes as

0 0 p)
—(pu) +—(PV) + — =
= (P) 3 (pv) + 5 (W) =0 (5.3B)
If the fluid is incompressible, then p is constant and the above equation becomes as
ou dv ow
ox dy Oz G4

Equation (5.4) is the continuity equation in three-dimensions. For a two-dimensional flow, the com-
ponent w = 0 and hence continuity equation becomes as

ou dv
p + % =0. ...(5.5)
5.6.1 Continuity Equation in Cylindrical Polar Co-ordinates. The continuity equation in
cylindrical polar co-ordinates (i.e., r, 0, z co-ordinates) is derived by the procedure given below.
Consider a two-dimensional incompressible flow field. The
two-dimensional polar co-ordinates are r and 0. Consider a fluid ug + Y 4o u, + M o
element ABCD between the radii r and r + dr as shown in | % p ar
Fig. 5.7. The angle subtended by the element at the centre is d6. 7y
The components of the velocity V are u, in the radial direction d’/a@
and ugy in the tangential direction. The sides of the element are %
having the lengths as
Side AB = rd6, BC = dr, DC = (r + dr) d®, AD = dr. Ok B
The thickness of the element perpendicular to the plane of
the paper is assumed to be unity.
Consider the flow in radial direction A
Mass of fluid entering the face AB per unit time

= p x Velocity in r-direction X Area {/ -
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=pXu X(@ABx1) (*~ Area = AB x Thickness = rd0 x 1)
=pXu,x(rddx1)=p.u,.rdd

Mass of fluid leaving the face CD per unit time
= p X Velocity X Area

=p x(u, + aau, .dr) X (CD x 1) ('~ Area=CD x 1)
r
=p x(u, + aa"’ dr) X (r + dr)d® [+ CD = (r + dr) d6]
r
=p x[u, Xr+udr+r ou, dr+ o, (dr)z} de
or or

= p[u, Xr+u, Xdr+r aau, .dr:| do
r

[The term containing (dr)? is very small and has been neglected]
Gain of mass in r-direction per unit time
= (Mass through AB — Mass through CD) per unit time

=p.u, rdd - p[u,.r+ u.dr+r aau, .dr:| do
r

=p.u,.rd®—p.u,.r. do- p[u,.dr+ r aau, .dr:| de
r

=-p [u,.dr+ r o, .dr}. do
or

[This is written in this form because
__ p[“_r,, a&} v dr.de  (r.d®. dr. 1) is equal to volume of
r r element]

Now consider the flow in 8-direction
Gain in mass in 0-direction per unit time
= (Mass through BC — Mass through AD) per unit time
= [p X Velocity through BC X Area — p X Velocity through AD X Area]

= [p.ue.dr x1 —p(ue +aaig.dej X dr x 1}

=—p(%.de) drx 1 (- Area=drx 1)

00

- paaig. r.d8.dr [Multiplying and dividing by 7]
r

Total gain in fluid mass per unit time

U,  ou ouy rd0.dr
=_—o|l 2+ rdr.do— p—2 22 ..(5.5A
p[ — ar:| r.dr Pg . (5.54)
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But mass of fluid element = p X Volume of fluid element
=p X [rd6 x dr x 1]
=pXxXrdd.dr
Rate of increase of fluid mass in the element with time
= % [p.rd0.dr]= ?)_‘t) rd® dr ...(5.5B)
(" rdO . dr .1 is the volume of element and is a constant quantity)
Since the mass is neither created nor destroyed in the fluid element, hence net gain of mass per unit
time in the fluid element must be equal to the rate of increase of mass of fluid in the element.
Hence equating the two expressions given by equations (5.5 A) and (5.5 B), we get

—p[u—'+aai:| r.dr. de_p%rde.dr =a_p rd0 dr
r

r 0 r ot
u, ou dug 1 9p
or -plt+="|-p=—=.— = =— Cancelling rdr . d6 from both sides
p[ ror } SFTR" ! & ]
ap u, ou duy 1
or — 4 T4 r +p——.— =0 ...(5.5C
ot p[ r or } P 0 r ( )
Equation (5.5 C) is the continuity equation in polar co-ordinates for two-dimensional flow.
9

For steady flow m = 0 and hence equation (5.5 C) reduces to

p|:u_’+ai:|+p% l:O

r or 90 r
: s
or % (ru,) +% (ug) = 0 [‘.‘aa—r(r.u,)=r. aa"r’ +u,} ..(5.5D)

Equation (5.5 D) represents the continuity equation in polar co-ordinates for two-dimensional steady
incompressible flow.

Problem 5.5A Examine whether the following velocity components represent a physically possible
flow ?
u,=rsin®,ug=2rcos 6.
Solution. Given : u,=rsin 8 and ug = 2r cos 0
For physically possible flow, the continuity equation,

i (ru,) +i (ug) = 0 should be satisfied.

or 20
Now u,=rsin 6
Multiplying the above equation by r, we get
ru, = r* sin 0
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Differentiating the preceding equation w.r.t. r, we get

% (ru,) = % (7* sin 0)
=2rsin 0 (s sin O is constant w.r.t. r)
Now ug=2r cos
Differentiating the above equation w.r.t. 0, we get
% (ug) = % (2r cos 0)
= 2r (- sin ) (*+ 2r is constant w.r.t. 9)
=—2rsin 0

0 0
—(ru, )+—(ug) =2rsin 0-2rsin =0
or ( r) 20 ( 9)
Hence the continuity equation is satisfied. Hence the given velocity components represent a physi-

cally possible flow.

» 5.7 VELOCITY AND ACCELERATION

Let Vis the resultant velocity at any point in a fluid flow. Let u, v and w are its component in x, y and
z directions. The velocity components are functions of space-co-ordinates and time. Mathematically,

the velocity components are given as

u=fi(x,y, 210
v =f2(x’ y’ 2, t)
w =f3(x’ y’ 2, t)

and Resultant velocity, V=ui+vj+wk= ,/uz +v2 +w?

Let a,, a, and a, are the total acceleration in x, y and 7 directions respectively. Then by the chain
rule of differentiation, we have
du OJudx dudy du dz OJdu
==t ——+——+

a. = = —_
Y dt Oxdt dydt 09z dt ot

But d—x=u,d—y=vand£=w
dt dt dt
Yo ox  dy dz ot
dv Jdv Jdv dv oy
Similarly, a,=—=uy—+v—+w—+— ...(5.6
Y P N N Y -0
a2 0w, v v ow
oo ox dy oz ot |

1%
For steady flow, _t = 0, where V is resultant velocity
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ou dv ow
or E—O,at =0a da— 0

Hence acceleration in x, y and z directions becomes
_du _ Ou Ju ou

Todr 8x+ 8y+ F

ﬂ Jdv Jdv Jdv

a,= U—+v—+w— ..(5.7
Yoodt ox dy 0z G-7)
S _ o w0
¢odt ox dy 0z |
Acceleration vector A=ai+ ay]' + ak ...(5.8)

= [, 2 2 2
=4a, +a, +a,”.

5.7.1 Local Acceleration and Convective Acceleration. Local acceleration is defined as
the rate of increase of velocity with respect to time at a given point in a flow field. In the equation given

by (5.6), the expressmna—u ﬁ or a_w is known as local acceleration.

ot ot ot
Convective acceleration is defined as the rate of change of velocity due to the change of position of
fluid particles in a fluid flow. The expressions other thang— ? and %_w in equation (5.6) are known

as convective acceleration.

Problem 5.6 The velocity vector in a fluid flow is given
V = 4x%i — 10x%yj + 2tk.

Find the velocity and acceleration of a fluid particle at (2, 1, 3) at time t = 1.
Solution. The velocity components u, v and w are u = 453, v =—10x? v, w=2t
For the point (2, 1, 3), we have x=2,y=1and z= 3 at time ¢ = 1.

Hence velocity components at (2, 1, 3) are
u=4x(2)°= 32 units
v =—10(2)*(1) = — 40 units
w =2 X1 =2 units
Velocity vector V at (2, 1, 3) = 32i — 40/ + 2k

or Resultant velocity = ,/uz +v2 +w?
=327 +(=40)? + 2> = /1024 +1600 + 4 = 51.26 units. Ans.

Acceleration is given by equation (5.6)
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ow ow ow ow
a,=u—+v—+w—+

ox dy oz ot

Now from velocity components, we have

ou , Ou ou ou
—=12x, —=0,—=0and — =0
n Uy ™

v ov , OV OV
— =—20xy, — =-10x%, —=0—=0
ox v dy g 0z ot
ow ow ow ow

W0, 20,2 0 ana 2 =21
ox 0 dy 0 0z 0 an ot

Substituting the values, the acceleration components at (2, 1, 3) at time ¢ = 1 are
a, = 4x> (12x%) + (- 10x%y) (0) + 2t x (0) + 0
= 48x° = 48 x (2)° = 48 x 32 = 1536 units
a, = 4x> (- 20xy) + (= 10x%) (- 10x%) + 2£ (0) + 0
= — 80x*y + 100x%y
=-80 (2)* (1) + 100 (2)* x 1 = — 1280 + 1600 = 320 units.
a, = 4x (0) + (= 10x%) (0) + (20) (0) + 2.1 = 2.0 units
Acceleration is A=aj+aj+ ak=1536i + 320§ + 2k. Ans.

or  Resultant A =4/(1536)* +(320)> +(2)* units

=4/2359296 + 102400 + 4 = 1568.9 units. Ans.
Problem 5.7 The following cases represent the two velocity components, determine the third com-
ponent of velocity such that they satisfy the continuity equation :
(i) u=x2+y2+z2;v=xy2—yz2+xy
(ii) v = 2y2, w = 2xyz.
Solution. The continuity equation for incompressible fluid is given by equation (5.4) as

a_u + a_v + a_W =0
dx dy 0z
Case L. u=x2+y2+z2 8_u=2x
ox
v=xy2—yz2+xy a—v=2xy—z2+x
dy
o ou ov L. .
Substituting the values of — and — in continuity equation.
X y
2x + 2xy—z2+x+a—w =0
0z
aW 2 2
or — =-3x-2xy+z-orow=(-3x-2xy+ 2z 0z

0z
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Integration of both sides gives Jdw = | (— 3x—2xy+7° ) dz

3
< . .
or w= (— 3xz—-2xyz+ ?] + Constant of integration,
where constant of integration cannot be a function of z. But it can be a function of x and y that is f (x, y).

3
w =(— 3xz — 2xyz + z?] + f(x, y). Ans.

Case II. y= 2y2 a_v =4y
dy
w=2xyz .. a_w =2xy
0z

o v ow . . .
Substituting the values of — and — in continuity equation, we get
y 74

%+4y+2xy=0
ox

or %=—4y—2xyordu=(—4y—2xy)dx
X

2

Integrating, we get u=-—4xy-— Zy% + f(y, 7) = —dxy - xzy + f(y, z). Ans.

Problem 5.8 A fluid flow field is given by

V= xzyi + yzzj - (2xyz + yzz)k
Prove that it is a case of possible steady incompressible fluid flow. Calculate the velocity and accel-
eration at the point (2, 1, 3).

Solution. For the given fluid flow field u = x?y > = 2xy
X
v
yv= y2z S — = 2yz
dy
ow
w=—2xyz7 — yz2 a_z =—2xy - 2yz.

For a case of possible steady incompressible fluid flow, the continuity equation (5.4) should be
satisfied.

du Jdv ow

ie., —+—+—=0.
dx dy Oz
L u ov w
Substituting the values of —, — and —, we get
dox dy 0z
a—u+ﬂ+a—w =2xy+2yz—-2xy-2yz=0

dx dy Oz
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Hence the velocity field V= x?yi + y%zj — (2xyz + yz°) k is a possible case of fluid flow. Ans.

Velocity at (2, 1, 3)
Substituting the values x=2,y=1 and z = 3 in velocity field, we get
V= xyi+ y'5j - Qxyz+y2) k
=22x1i+12x3j-(2x2x1x3+1x3)k
= 4i + 3j — 21k. Ans.

and Resultant velocity =\/42 +3%+(=21)" =,/16 + 9 + 441 = /466 = 21.587 units. Ans.

Acceleration at (2, 1, 3)
The acceleration components a,, ay and a, for steady flow are

a _ua_u+v8_u+w8_u

T ox dy 0z

a —uﬂ+va—v+w&

Y“ T ox 9y 0z

T ox dy 0z
u=x2y,a—x 2 ,g—;=x2andg—u=0

ov v ov

= 2’ _O’__2 » 2
YR T Ty

w=- 2xyz—yz2,a—w=—2yz M - 2%, %—W = - 2xy - 2yz.
x z

) )
Substituting these values in acceleration components, we get acceleration at (2, 1, 3)
a, = X%y (2xy) + y*z (0)? = 2xyz + y2) (0)
_ x3y2 + x2y2z
=22 1% +22x12x3=2%x8+ 12
=16 + 12 = 28 units
ay = x’y (0) + y°z (2y2) - 2xyz +y2°) (/)
_ 2y3z2 _ 2xy3z _ y3z2

=2x1°%x3%2-2x2x1>x3-1>%x3%2=18 - 12 -9 = — 3 units

a, = x%y (= 2y2) + ¥’z (= 2x2 - %) — (2xyz + y2) (= 2xy — 2y2)

= = 2077 — 2xy°2% — Y°22 + [4x%y%z + 2xy%2% + dxy?s? + 2y%20)

= 2x22x1?x3-2x2x12x32-12x3>

FEAX2Xx1Px3+2x2x12x3%+4x2x12x3%+2x12x37

=-24-36-27 + [48 + 36 + 72 + 54]
=-24-36-27+48+36+72+54=123
Acceleration =ad+aj+ ak=28i-3j+123k. Ans.
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or Resultant acceleration = \/282 +(-3) +1232 = J784 + 9 + 15129

= /15922 = 126.18 units. Ans.

Problem 5.9 Find the convective acceleration at the middle of a pipe which converges uniformly
from 0.4 m diameter to 0.2 m diameter over 2 m length. The rate of flow is 20 lit/s. If the rate of flow
changes uniformly from 20 l/s to 40 I/s in 30 seconds, find the total acceleration at the middle of the
pipe at 15th second.

Solution. Given :

Diameter at section 1, D/ =04m;D,=02m,L=2m, 0 =201/s=0.02 m>/s as one litre

=0.001m* = 1000 cm®

Find (i) Convective acceleration at middle i.e., at A when Q = 20 I/s.

(ii) Total acceleration at A when Q changes from 20 //s to 40 //s in 30 seconds.

Case I. In this case, the rate of flow is constant and equal to 0.02 m>/s. The velocity of flow is in
x-direction only. Hence this is one-dimensional flow and velocity components in y and z directions are
zeroorv=0,z=0.

ou
Convective acceleration = ua—y only (i)
] ou ) .
Let us find the value of # and — at a distance x from inlet ) X
x
The diameter (D,) at a distance x from inlet or at section X-X is given by, —T— o 3
04-0.2 0.4m 0.2m
Dx =04 - > X X _l_ R
=(04-0.1x)m Iy
L X3 X \
The area of cross-section (A,) at section X-X is given by, < 1m —
=—D?’==—(04-0.1x i
=, D=7 ( ) Fig. 5.8
Velocity (u) at the section X-X in terms of Q (i.e., in terms of rate of flow)
u= Q = g = Q = 4Q
Area A, T > m(04-01%°
T Ux
4
= 0401021 004-0.1x)"m/s ...(ii)
., ou . . P
To find a—, we must differentiate equation (ii) with respect to x.
x
d
9 2 11273004017
ox Ox
=1.2730(-2)(0.4-0.1 0% (=0.1) [Here Q is constant]
=0.2546 Q (0.4 - 0.1 x)! (i)

Substituting the value of u and g_u in equation (i), we get
X

Convective acceleration = [1.273 Q (0.4 — 0.1 x)2] x [0.2546 Q (0.4 — 0.1 x)"]
=1.273 % 0.2546 x 0> x (0.4 - 0.1 x)~>
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= 1.273 x 0.2546 X (0.02)%> x (0.4 — 0.1 x)> [ -+ Q = 0.02 m%/s]
..Convective acceleration at the middle (where x = 1 m)
1.273 x 0.2546 x (0.02)> x (0.4 — 0.1 x 1) m/s?
1.273 x 0.2546 x (0.02)> x (0.3)™ my/s’
= 0.0048 m/s>. Ans.

Case II. When Q changes from (.02 m>/s to 0.04 m>/s in 30 seconds, find the total acceleration
at x=1 m and ¢ = 15 seconds.

Total acceleration = Convective acceleration + Local acceleration at f = 15 seconds.

The rate of flow at f = 15 seconds is given by

0=0, +% x 15 where Q, = 0.04 m*/s and Q, = 0.02 m*/s

0.04 -0.02)

=0.02 + x 15= 0.03 m%/s

Ju
The velocity (1) and gradient (B_x ) in terms of Q are given by equations (i) and (iii) respectively

.. Convective acceleration = u. Rl
ox
=[1.273 Q (0.4 - 0.1 x)2] x [0.2546 Q (0.4 — 0.1 )]
=1.273 x 0.2546 0* x (0.4 — 0.1 x 1)
.. Convective acceleration (when Q = 0.03 m3/sand x =1 m)
=1.273 x 0.2546 x (0.03)> x (0.4 - 0.1 x 1)~
=1.273 x 0.2546 x (0.03) x (0.3)> m/s?

=0.0108 m/s? (i)
) u 0 -
Local acceleration = E = E [1.273 Q (0.4 -0.1 x)™]
[ - u from equation (if) isu = 1.273 Q (0.4 - 0.1 x)‘z]
=1.273 x (0.4 - 0.1 x) 2 x g—tQ

[ - Local acceleration is at a point where x is constant but Q is changing]
Local acceleration (at x = 1 m)

=1.273 x (0.4 — 0.1 x 1)2x g—tQ

=1.273 03—2 0_02 |:..a_Q— QZ_Q1—0'04_0'02_0'_2:|
= 1273 x03) " x =5 FY t 30 30
= 0.00943 m/s> ()

Hence adding equations (iv) and (v), we get total acceleration.

.. Total acceleration = Convective acceleration + Local acceleration
= 0.0108 + 0.00943 = 0.02023 m/s>. Ans.
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» 5.8 VELOCITY POTENTIAL FUNCTION AND STREAM FUNCTION

5.8.1 Velocity Potential Function. It is defined as a scalar function of space and time such
that its negative derivative with respect to any direction gives the fluid velocity in that direction. It is
defined by ¢ (Phi). Mathematically, the velocity, potential is defined as ¢ = f(x, y, z) for steady flow

such that
_ 9%
ox

u=

99

v=—— ..(5.9)

dy

%

az
where u, v and w are the components of velocity in x, y and z directions respectively.

The velocity components in cylindrical polar co-ordinates in terms of velocity potential function are
given by

0
u =22
or
1 3¢
Ug= —— ..(5.9A
7 1 00 (5:94)
where  u, = velocity component in radial direction (i.e., in r direction)
and ug = velocity component in tangential direction (i.e., in 6 direction)
The continuity equation for an incompressible steady flow is a_u + a_v + a_w =0.
dx dy 0z
Substituting the values of u, v and w from equation (5.9), we get
i(_a_q) +i _a_q) +i(_a_¢ =0
ox\ odx) odyl dy) odz\ oz
2’0 %0 . 3%
or —+—+— =0. ..(5.10
ox>  9y*  97? (>-10)
Equation (5.10) is a Laplace equation.
L . %0 %0
For two-dimension case, equation (5.10) reduces to —- =0. ...(5.11)

+—" =
ox* oy’
If any value of ¢ that satisfies the Laplace equation, will correspond to some case of fluid flow.

Properties of the Potential Function. The rotational components* are given by

L[
¢ 2lox 9y

* Please, refer to equation (5.17) on page 192.
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Substituting the values, of u, v and w from equation (5.9) in the above rotational components, we
get

oo L[2( 2 _1(_a_¢j'=1'_ 2% , 9%
) | ox{ dy) 9y X 2| Ooxdy dyox
o H[2(-2).2(2)_1[ Do, 2
Y720z ox) ox 2)| 2 | 0z0x  0xdz
[ i Y 2
i oe 2 (-2)- 2 2)|_1[ Do, e
2|dy\ 9dz) 9dz\ dy)| 2| dydz 0dzdy

0 _ % 3% _ 3%
Oxdy Jydx  0z9x 0xoz

If ¢ is a continuous function, then ; etc.

0,=0,= 0= 0.
When rotational components are zero, the flow is called irrotational. Hence the properties of the
potential function are :
1. If velocity potential (¢) exists, the flow should be irrotational.

2. If velocity potential (¢) satisfies the Laplace equation, it represents the possible steady incom-
pressible irrotational flow.

5.8.2 Stream Function. Itis defined as the scalar function of space and time, such that its partial
derivative with respect to any direction gives the velocity component at right angles to that direction. It
is denoted by W (Psi) and defined only for two-dimensional flow. Mathematically, for steady flow it is
defined as y = f(x, y) such that

)
W _,
ox (5.12)
and a_‘V =—u
dy
The velocity components in cylindrical polar co-ordinates in terms of stream function are given as
1 dy oy
u,=——and yg= —— ..(5.124
" r 00 o or ( )
where u,= radial velocity and ug = tangential velocity
The continuity equation for two-dimensional flow is a_u + ﬂ =0.

x  dy
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Substituting the values of # and v from equation (5.12), we get

o oy) 9 (ovy o’y d*y
Ry i — | —=1=0 _ 4+ — " =
ox ( dy J+ dy ( ox J or oxdy * oxdy

Hence existence of y means a possible case of fluid flow. The flow may be rotational or irrotational.

2\dx dy

Substituting the values of # and v from equation (5.12) in the above rotational component, we get

_L| 9 (w)_ 8 ( avy)|_L|dv oy
w, = - 2 + 2
2|0x\dx) dyl{ oy 2| ox dy

2
For irrotational flow, w, = 0. Hence above equation becomes as%—\zv + 3_\‘; =0
X 'y

The rotational component , is given by ®, = l (& - a_uj

which is Laplace equation for y.
The properties of stream function () are :
1. If stream function (V) exists, it is a possible case of fluid flow which may be rotational or

irrotational.

2. If stream function () satisfies the Laplace equation, it is a possible case of an irrotational flow.
5.8.3 Equipotential Line. A line along which the velocity potential ¢ is constant, is called
equipotential line.

For equipotential line ¢ = Constant
dy=0
But 0 = f(x, y) for steady flow
9% 99
dd=—dx+—d
¢ ox dy Y
90 99 }
=—udx —vd v =y, —=—y
Y { ox ox
= — (udx + vdy).
For equipotential line, ddp=0
or — (udx + vdy) =0 or udx + vdy =0
dy u
=2 _-_Z ..(5.13
dx v ( )
dy . Lo
But —— = Slope of equipotential line.
X

5.8.4 Line of Constant Stream Function

y = Constant
dy =0
But d\|f=a—\|’dx+ﬂdy=+vdx—udy v =y, —=—y
ox dy
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For a line of constant stream function
=dy =0orvdx —udy=0
dy v

or — = — ..(5.14
dx u ( )

But ? is slope of stream line.
X

From equations (5.13) and (5.14) it is clear that the product of the slope of the equipotential line and
the slope of the stream line at the point of intersection is equal to — 1. Thus the equipotential lines are
othogonal to the stream lines at all points of intersection.

5.8.5 Flow Net. A grid obtained by drawing a series of equipotential lines and stream lines is called
a flow net. The flow net is an important tool in analysing two-dimensional irrotational flow problems.

5.8.6 Relation between Stream Function and Velocity Potential Function

From equation (5.9),

we have u=—a—¢andv=—a—¢
ox dy
From equation (5.12), we have u = _8_\|l and v = a—w
dy ox
Thus, we have u=—a—¢=—a—wandv=—a—¢=a—w
ox dy dy ox
Hence a—q) = a_l|f
ox dy
..(5.15)
dy ox
Problem 5.10 The velocity potential function (0) is given by an expression
3 3
Xy 2 XY 2
=-Z "+ L+
¢ 3 Xty

(i) Find the velocity components in x and y direction.
(i) Show that ¢ represents a possible case of flow.

3 3
Solution. Given : o=- % -2+ % +y°
The partial derivatives of ¢ w.r.t. x and y are

% _ ¥, .3y

=Y e
a3 T3 M

and 2 _ 3w ¥ )
y 3 3 7
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(i) The velocity components u and v are given by equation (5.9)

3 2 3
u=_9_¢=_[_y__2x+3’;_q=y?+zx-x2y

ox 3
2
u=Y +2x- xzy. Ans.
3
20 37 x° 3ry? X , X
vV ——=—|-——+—+2y|= ———2y=xy"——-2
dy [ 3 3 Ty T y
Ans.
(ii) The given value of ¢, will represent a possible case of flow if it satisfies the Laplace equation, i.e.,
Vo, 0% _,
ox? oy’
From equations (1) and (2), we have
Now a—q)=—y3/3—2x+x2y
ox
0’
— =—-2+2x
ox? Y
3
and a—q)=—xy2+x—+2y
dy
00
—=-2xy+2
oy* Y
3’0 %0
—+—==02+2x)+(-2xy+2)=0
T o2 ( y) + (= 2xy + 2)

Laplace equation is satisfied and hence ¢ represent a possible case of flow. Ans.

Problem 5.11  The velocity potential function is given by ¢ = 5 (x* — y°).
Calculate the velocity components at the point (4, 5).

Solution. 0=5x"-y")
90
— =10x
ox
99
— = —10y.
dy Y
But velocity components u and v are given by equation (5.9) as
99
=-—=-10
ox *
90 _

=— L =_(-10y)=10
v PR (- 10y) y

The velocity components at the point (4, 5), i.e.,at x =4,y =15
u=-10 X 4 = - 40 units. Ans.
v =10 X 5 = 50 units. Ans.
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Problem 5.12 A stream function is given by ¢y = 5x — 6y.
Calculate the velocity components and also magnitude and direction of the resultant velocity at any
point.

Solution. Y =5x- 6y
N sama Y-
ox dy

But the velocity components # and v in terms of stream function are given by equation (5.12) as

U= _8_1|I = — (- 6) = 6 units/sec. Ans.

dy
v = a_llf = 5 units/sec. Ans.
X
Resultant velocity =\/u2 +v?2 = \/62 +5% = \/36 +25 =+/61 = 7.81 unit/sec
TS v 5
Direction is given by, tan 0= —=g =0.833
u

- 6= tan"' .833 = 39° 48’. Ans.
Problem 5.13 [f for a two-dimensional potential flow, the velocity potential is given by

p=x(2y-1)
determine the velocity at the point P (4, 5). Determine also the value of stream function ¥ at the point P.
Solution. Given : 0=x2y-1
(i) The velocity components in the direction of x and y are
3 9
u=-o o= o0 [x2y-Dl=-[2y-1]1=1-2y
X ox
v=—a—¢=—i [xQ2y-1D]=-[2x]=-2x
dy 9y

At the point P (4, 5),i.e.,atx=4,y=5
u=1-2x5=-9 units/sec
vy =—2 X4 = — § units/sec

Velocity at P =-9i-8j
or Resultant velocity at P =\/92 +8% = 81+ 64 = 12.04 units/sec = 12.04 units/sec. Ans.
(ii) Value of Stream Function at P
We know that %—"’ =—u=-(1-2y)=2y-1 (i)
y
and N oo (i)
ox

Integrating equation (i) w.r.t. ‘y’, we get

2
Jay =[@2y-1)dyory= 2% —y + Constant of integration.
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The constant of integration is not a function of y but it can be a function of x. Let the value of
constant of integration is k. Then
Y=y —y+k (i)
Differentiating the above equation w.r.t. ‘x’, we get
v _ 9%k
ox ox
oy

But from equation (ii), — = - 2x

ox

k
Equating the value of a—w, we get 8_ =-2x.

ox ox

2

Integrating this equation, we get k = |- 2xdx = - 2% =-x%

Substituting this value of k in equation (iii), we get y = y2 -y- x%. Ans.

Stream function y at P (4, 5) = 5% — 5 — 4% =25 — 5 — 16 = 4 units. Ans.

Problem 5.14 The stream function for a two-dimensional flow is given by y = 2xy, calculate the
velocity at the point P (2, 3). Find the velocity potential function ¢.

Solution. Given : V= 2xy
The velocity components # and v in terms of y are
oy d
u=——=—— (2xy) =-2x
w9 (2xy)
oy 0
v=—=— (2xy) = 2y.
ox Ox (2x) =2y

At the point P (2, 3), we get u = — 2 X 2 = — 4 units/sec
v = 2 X 3 = 6 units/sec

Resultant velocity at P =\/u2 +v? = J42 +6% = /16 + 36 =/52 = 7.21 units/sec.
Velocity Potential Function ¢

We know a—q) =—u=-(-2x)=2x ..(0)
ox
90 —v=_2y (i)
dy
Integrating equation (i), we get
| do = [ 2xdx
2
or 0= % +C=x*+C (i)
where C is a constant which is independent of x but can be a function of y.
% _ac

Differentiating equation (iii) w.r.t. ‘y’, we get —

dy dy
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But from (ii), % =-2y
dy
aC
=~ _-_2
dy Y
. . . 2y* 2
Integrating this equation, we get C = = 2y dy =— > =-y

Substituting this value of C in equation (iii), we get ¢ = X - yz. Ans.
Problem 5.15 Sketch the stream lines represented by y = x° + y.
Also find out the velocity and its direction at point (1, 2).

Solution. Given : y=x+y°
The velocity components u and v are
oy 0 2 2
U= -——"F=—— (x"+y)=-2
% % (" +y9) y 2
Yy _ 3 < 2
y=V_9 2+ yY) =2x 4 UNITS/SEC
ox Ox .
) ) Fig. 5.9
At the point (1, 2), the velocity components are
u=-72x2=-4 units/sec

v =2 X 1 =2 units/sec

Resultant velocity = ,[,,42 +y? = 1/(_4)2 +22

=+/20 = 4.47 units/sec
v 2 1

and tanf=—=—=—
u 4 2
0=tan'.5=26°34
Resultant velocity makes an angle of 26° 34" with x-axis.
Sketch of Stream Lines

W=y Fig. 5.10
Let vy =1,2,3 and so on.
Then we have 1=x"+ y2

2=x2+y2

3=+ y?

and so on.

Each equation is a equation of a circle. Thus we shall get concentric circles of different diameters
as shown in Fig. 5.10.
Problem 5.16 The velocity components in a two-dimensional flow field for an incompressible
fluid are as follows :

3

u= y? +2x—x’yandv = xy* -2y - x'/3

obtain an expression for the stream function .

Y
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Solution. Given : u=y"r3+2x-x%
v=xy’-2y-x/3.
The velocity components in terms of stream function are

N v=xy’ -2y —x/3 ...(0)

ox
a—\V:—u=—y3/3—2x+x2y ...(i0)

dy

Integrating (i) w.r.t. x, we get Yy = | (xy2 -2y - x*13) dx
2.2 4
x7y X
or = —-2xy— + k,

Ve YT )

where £ is a constant of integration which is independent of x but can be a function of y.
Differentiating equation (iii) w.r.t. y, we get

2
a—w = m—2x+a—k =x’y—2x+ a—k
dy 2 dy dy
But from (ii), AP N
dy
Comparing the value of a—w, we get x2y - 2x +—k =- y3/3 - 2x+ x2y
dy dy
ok 3
—=-y13
dy Y
-yt _ -y
Integrating, we get k= J(— y13) dy = =
4x3 2
Substituting this value in (iii), we get
2 2 4 4
Xy
= - -———=——C S
v 2 y 12 12

Problem 5.17 In a two-dimensional incompressible flow, the fluid velocity components are given by
u=x—-4yandv=-y-—4x.
Show that velocity potential exists and determine its form. Find also the stream function.

Solution. Given : u=x—-4y and v=-y-4x
oy and & =1
ox dy

MLy 1=0
dox dy

Hence flow is continuous and velocity potential exists.
Let ¢ = Velocity potential.



190 Fluid Mechanics

Let velocity components in terms of velocity potential is given by

a—q)=—u=—(x—4y)=—x+4y
ox

and a—q)=—v=—(—y—4x)=y+4x
dy

2
Integrating equation (i), we get ¢ = — % +4xy+ C

where C is a constant of integration, which is independent of x.
This constant can be a function of y.
Differentiating the above equation, i.e., equation (iii) with respect to ‘y’, we get

But from equation (iii), we have g—q) =y+4x
y

Equating the two values of g—q), we get
y
4x+a—C=y+4x or 8_C=y
dy dy

Integrating the above equation, we get

2
c=2+¢
2

where C, is a constant of integration, which is independent of x and y.

2
Taking it equal to zero, we get C = y?

Substituting the value of C in equation (iii), we get

2 2
x y

= — " +4xy+2—. Ans.
o= -+

Value of Stream functions
Let y = Stream function
The velocity components in terms of stream function are

%—Y=v=—y—4x
oy

and VL =—u=—(x-4y)=-x+4y
dy

Integrating equation (iv) w.r.t. x, we get

4x?
=S—yx-———+k
A4 Y >

where £ is a constant of integration which is independent of x but can be a function of y.

(i)

(i)

(i)

...(iv)

...(v)

(Vi)
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Differentiating equation (vi) w.r.t. y, we get 8_\|l =-x-0+ a—k
dy dy
, oy
But from equation (v), we have . =—x+4y
y
Equating the two values of a—w, we get —x +a—k =—x+4y or a—k =4y
dy ) dy

4y2

Integrating the above equation, we get & =T= 2y2

Substituting the value of & in equation (vi), we get
Y==yx-— 2+ 2y2. Ans.

» 5.9 TYPES OF MOTION

A fluid particle while moving may undergo anyone or combination of following four types of
displacements :
(i) Linear Translation or Pure Translation,
(ii) Linear Deformation,
(iii) Angular Deformation, and
(iv) Rotation.

5.9.1 Linear Translation. It is defined as the movement of a fluid element in such a way that it
moves bodily from one position to another position and the two axes ab and cd represented in new
positions by a’b” and ¢’d’ are parallel as shown in Fig. 5.11 (a).

5.9.2 Linear Deformation. It is defined as the deformation of a fluid element in linear direction
when the element moves. The axes of the element in the deformed position and un-deformed position
are parallel, but their lengths change as shown in Fig. 5.11 (b).

4"
a’ I
d = d
| .c’ —— T 1
a _T_b a_._.1_|,d_'..b ,
_ S b
o ¢ X - X
o cic’
(a) LINEAR TRANSLATION (b) LINEAR DEFORMATION
AY o Y
<
B d
\
R
)/B_VAX af \_c'/_ d
ox | -
X (0] c A X

(c) ANGULAR DEFORMATION (d) PURE ROTATION
Fig.5.11. Displacement of a fluid element.
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5.9.3 Angular Deformation or Shear Deformation. It is defined as the average change in
the angle contained by two adjacent sides. Let AG; and A8, is the change in angle between two
adjacent sides of a fluid element as shown in Fig. 5.11 (¢), then angular deformation or shear strain
rate

= % (A6, + AB,]

Now A91=ﬂ><£=ﬂ andA92=a—u.£=a—u.
ox Ax ox dy Ay Oy
Angular deformation = % [AB, + AB,]
or Shear strain rate = l ﬂ_'_a_u ...(5.16)
2|0x dy

5.9.4 Rotation. It is defined as the movement of a fluid element in such a way that both of its
axes (horizontal as well as vertical) rotate in the same direction as shown in Fig. 5.11 (d). It is equal

l(av ou

—- —J for a two-dimensional element in x-y plane. The rotational components are

ox dy
oo l(t
¢ 2lox 9y

1{ow ov
=|—-— ...(5.17
O Z(Hy 82) o7

o= d(B2)
Y 2\oz ox

5.9.5 Vorticity. It is defined as the value twice of the rotation and hence it is given as 2.
Problem 5.18 A fluid flow is given by V = 8x%i — 10x%yj.
Find the shear strain rate and state whether the flow is rotational or irrotational.

Solution. Given : V = 8x% — 10x%yj

2

u=8x3,%=24x2,a—u=0
ox dy
and v=- 10x2y, ﬂ = — 20xy, a_v = - 10x?
ox dy
(i) Shear strain rate is given by equation (5.16) as
1(ov ou 1
= —| —+— |=—= (- 20xy + 0) = — 10xy. Ans.
2 (8}( 8yj 2 - 201y +0) Xy Ans



Kinematics of Flow and Ideal Flow

193

(ii) Rotation in x - y plane is given by equation (5.17) or

Jdv  du 1
A =2 200y -0)=- 10
®:= (ax dy J 2 (= 202y = 0) v

As rotation ®, # 0. Hence flow is rotational. Ans.
Problem 5.19 The velocity components in a two-dimensional flow are
U= y3/3 + 2x — xzy and v = xy2 -2y - x/3.
Show that these components represent a possible case of an irrotational flow.

Solution. Given : u=y"r3+2x-x%
ou
—=2-2x
ox Y
a—u=i—x2=y2—x2
dy 3
Also v =xy2—2y—x3/3
v
— =2xy-2
dy Y
av 2 3x2 2 2
= i — X
ax 7 3 7
ou dv
(i) For a two-dimensional flow, continuity equation is a— + a— =0
y
- ou v
Substituting the value of — and —, we get
x dy
% dv =2-2xy+2xy-2=90
ox ay
It is a possible case of fluid flow.
v du )
(it) Rotation, w, is given by ®, — [(y -x9]1=0
ox By

Rotation is zero, which means it is case of irrotational flow. Ans.

» 5.10 VORTEX FLOW

Vortex flow is defined as the flow of a fluid along a curved path or the flow of a rotating mass of

fluid is known a ‘Vortex Flow’. The vortex flow is of two types namely :
1. Forced vortex flow, and
2. Free vortex flow.

5.10.1 Forced Vortex Flow. Forced vortex flow is defined as that type of vortex flow, in
which some external torque is required to rotate the fluid mass. The fluid mass in this type of flow,

rotates at constant angular velocity, . The tangential velocity of any fluid particle is given by

V=OXr .(5.18)
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where r = Radius of fluid particle from the axis of rotation.

| CENTRAL AXIS

_—_—_—{_:4:4’ LIQUID

VERTICAL > ——— -
CYLINDER |[—— —F——

(a) CYLINDER IS STATIONARY (b) CYLINDER IS ROTATING

Fig.5.12 Forced vortex flow.

Hence angular velocity  is given by

o= 2 = Constant. ..(5.19)
r

Examples of forced vortex are :

1. A vertical cylinder containing liquid which is rotated about its central axis with a constant
angular velocity ®, as shown in Fig. 5.12.

2. Flow of liquid inside the impeller of a centrifugal pump.

3. Flow of water through the runner of a turbine.

5.10.2 Free Vortex Flow. When no external torque is required to rotate the fluid mass, that
type of flow is called free vortex flow. Thus the liquid in case of free vortex is rotating due to the
rotation which is imparted to the fluid previously.

Examples of the free vortex flow are :

1. Flow of liquid through a hole provided at the bottom of a container.

2. Flow of liquid around a circular bend in a pipe.

3. A whirlpool in a river.

4. Flow of fluid in a centrifugal pump casing.

The relation between velocity and radius, in free vortex is obtained by putting the value of external
torque equal to zero, or, the time rate of change of angular momentum, i.e., moment of momentum
must be zero. Consider a fluid particle of mass ‘m’ at a radial distance r from the axis of rotation,
having a tangential velocity v. Then

Angular momentum = Mass X Velocity =m X v

Moment of momentum = Momentum X r=m X v X r

d
Time rate of change of angular momentum = 5 (mvr)

For free vortex % (mvr)=0

. Constant
Integrating, we get mvr = Constant or vir = ——— = Constant ...(5.20)

m
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5.10.3 Equation of Motion for Vortex Flow. Consider a fluid element ABCD (shown
shaded) in Fig. 5.13 rotating at a uniform velocity in a horizontal plane about an axis perpendicular to
the plane of paper and passing through O.
Let r = Radius of the element from O.
A = Angle subtended by the element at O.
Ar = Radial thickness of the element.
AA = Area of cross-section of element.
The forces acting on the element are :
(i) Pressure force, pAA, on the face AB.

D, p \AA

N
.. op e
(ii) Pressure force, p+a— Ar | AA on the face CD. 0\ 5 c
r £
v
my* / Ar ‘7
(iii) Centrifugal force,—— acting in the direction away .
r
from the centre, O. Fig. 5.13
Now, the mass of the element = Mass density X Volume
=p X AA X Ar
2
Centrifugal force = pAAAr —.
r
Equating the forces in the radial direction, we get
9 2
(p+—pAr) AA - pAA = pAAAr -
or r
by 2
or P Ar AA = ppAAr 2.
or r
. . dp v2
Cancelling Ar X AA from both sides, we get 8_ =p — ..(5.21)
r r
Equation (5.21) gives the pressure variation along the radial direction for a forced or free vortex
9 9
flow in a horizontal plane. The expression a—p is called pressure gradient in the radial direction. Asa—p
r r
is positive, hence pressure increases with the increase of radius ‘r’.
The pressure variation in the vertical plane is given by the hydrostatic law, i.e.,
9
P __og ..(5.22)

0z
In equation (5.22), z is measured vertically in the upward direction.
The pressure, p varies with respect to r and z or p is a function of r and z and hence total derivative

of pis

= Zdr+-=X4d
dp or 4 aZ ¢

Substituting the values of g_P from equation (5.21) and a_p from equation (5.22), we get
r

0z
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2
dp=p VT dr - pgdz ..(5.23)

Equation (5.23) gives the variation of pressure of a rotating fluid in any plane.

5.10.4 Equation of Forced Vortex Flow. For the forced vortex flow, from equation (5.18),
we have
V=OXr
where ® = Angular velocity = Constant.
Substituting the value of v in equation (5.23), we get
2.2

dp=p X dr — pg dz.

’
Consider two points 1 and 2 in the fluid having forced vortex flow as shown in Fig. 5.14.

Integrating the above equation for points 1 and 2, we get

2 2 2
J;dp = J; pmzrdr—";pgdz
r? 2
or (p2—p1)=[pm2 7} - pg [2]}
1
P")2 2 2
or @2—-p)= ) [ry"=r"1-pg 22— 2]
_P 22 2.2
—5[0372 -0 1-pg [z, - 2]
v, = OF
=%[v22_v12]_pg [Z2—Zl]{ v12=mr12}

If the points 1 and 2 lie on the free surface of the liquid, then p, = p, and
hence above equation becomes

0= % ["22 - V12] -pg [z, -27]

L oy
MR T\
MR i

or pg -2l = 5 )" = ']
1 2 2 ‘
or [2-21=— [v," = v/’
2g
o . . B B _ Fig. 5.15
If the point 1 lies on the axis of rotation, then v, = ® X r; = ® X 0 = 0. The above
equation becomes as
- =V = ——
2T U T 2 T
2 2, .2
X
Let Z—2, = Z, then we have Z= 22— = £ X2 .(5.24)

28 2g



Kinematics of Flow and Ideal Flow 197

Thus Z varies with the square of r. Hence equation (5.24) is an equation of parabola. This means
the free surface of the liquid is a paraboloid.
Problem 5.20 Prove that in case of forced vortex, the rise of liquid level at the ends is equal to
the fall of liquid level at the axis of rotation.

Solution. Let R = radius of the cylinder.
0-0 = Initial level of liquid in cylinder when the cylinder is not rotating.
.. Initial height of liquid =((th+x)
. Volume of liquid in cylinder = TR? X Height of liquid
= R> X (h + x) (i)

Let the cylinder is rotated at constant angular velocity ®. The liquid will rise at the ends and will fall

at the centre.
Let y = Rise of liquid at the ends from O-O
x = Fall of liquid at the centre from O-0.
Then volume of liquid
= [Volume of cylinder upto level B-B]
— [Volume of paraboloid]
= [rR* x Height of liquid upto level B-B]

<—::'—>l><<_

R2
- ["T x Height of paraboloid}

2 <— R >

TR
=TRPX (h+x+y) — — X (x+ ) ~AXIS OF
2 ROTATION

2 Fig. 5.16
=nR2xh+nR2(x+y)-“%x(x+y)

2
=R?x h +% (x+y) ..(ii)

Equating (i) and (i), we get
2
nR2(h+x)=1tR2xh+% (x+y)

2 2
or TR?h + TR*x = TR* X h +% x +% y

2 2 2 2

or ARy - = x= o —x= —— or x=
2 2 7 2 2 7 Y

or Fall of liquid at centre = Rise of liquid at the ends.

Problem 5.21 An open circular tank of 20 cm diameter and 100 cm long contains water upto a
height of 60 cm. The tank is rotated about its vertical axis at 300 r.p.m., find the depth of parabola
formed at the free surface of water.

Solution. Given :

Diameter of cylinder =20 cm

Radius, R = ? =10 cm
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Height of liquid, H =60 cm
Speed, N =300 r.p.m.
Angular velocity, = 2nN = 2 X x 300 = 31.41 rad/sec.
60 60
Let the depth of parabola =Z
2 2
. . wrn
Using equation (5.24), Z= 7 where r, = R
8
2p2 2 2
_ O R BLADXA0) _ 54 8 em. Ans.
2g 2 x981

Problem 5.22 An open circular cylinder of 15 cm diameter and 100 cm long contains water upto
a height of 80 cm. Find the maximum speed at which the cylinder is to be rotated about its vertical
axis so that no water spills.

Solution. Given :

Diameter of cylinder =15cm

. Radius, R = % =75cm
Length of cylinder, L =100 cm
Initial height of water = 80 cm.

Let the cylinder is rotated at an angular speed of ® rad/sec, when the water is about to spill. Then
using,

Rise of liquid at ends = Fall of liquid at centre
But rise of liquid at ends = Length — Initial height
=100 - 80 =20 cm
Fall of liquid at centre =~ = 20 cm
Height of parabola =20+ 20=40cm
Z=140 cm
252 2 2
Using the relation, Z= ﬁ, we get 40 = m
2g 2 x 981
w2 = 402 x981 =1395.2
7.5%175
o= /13952 = 37.35 rad/s
. Speed, N is given by o= M—N
60
or y= 80X _ 60X3735 _ 356 66 r.p.m. Ans.
2n 2xm

Problem 5.23 A cylindrical vessel 12 cm in diameter and 30 cm deep is filled with water upto the
top. The vessel is open at the top. Find the quantity of liquid left in the vessel, when it is rotated about
its vertical axis with a speed of (a) 3000 r.p.m., and (b) 600 r.p.m.
Solution. Given :
Diameter of cylinder =12 cm
Radius, R=6cm
Initial height of water =30 cm
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Initial volume of water = Area X Initial height of water

= % x 122 x 30 cm> = 3392.9 cm>

(a) Speed, N =300 r.p.m.
= 2gév = 2 x 300 = 31.41 rad/s

®’R? _ (3141)° x 6
2g 2 %981

As vessel is initially full of water, water will be spilled if it is rotated. Volume of water spilled is
equal to the volume of paraboloid.

Height of parabola is given by Z = = 18.10 cm.

But volume of paraboloid = [Area of cross-section X Height of parabola] + 2
= % D xZ =T 1221310 _ 023,53 cm?
Volume of water left = Initial volume — Volume of water spilled
= 3392.9 - 1023.53 = 2369.37 cm”. Ans.
(b) Speed, N =600 r.p.m.
o= 2N _ 2mX600 _ o) 83 radss
60 60

®’R? _ (62.82)° x 6
2¢  2x981
As the height of parabola is more than the height of cylinder the shape of imaginary parabola will be
as shown in Fig. 5.17.
Let r = Radius of the parabola at the bottom of the vessel.
Height of imaginary parabola
=72.40 - 30 = 42.40 cm.
Volume of water left in the vessel
= Volume of water in portions ABC and DEF
= Initial volume of water
— Volume of paraboloid AOF

Height of parabola, Z= = 72.40 cm.

L 7240m
+ Volume of paraboloid COD. R
Now volume of paraboloid 424cm | |
[ /o
AOF = % x D* x Height of parabola LA !

\ | / |
Y gu _Jé _IH
n 7247 /o

= = x 122 x——" =4094.12 cm®>  IMAGINARY = IMAGINARY
4 CYLINDER PARABOLA
For the imaginary parabola (COD), ®» = 62.82 rad/sec Fig. 5.17
Z=424 cm

r = Radius at the bottom of vessel
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2.2 5 )
Using the relation Z= or , we get 42.4 = 62.82° xr
2 %981
_2x981x4240 ) o
62.82 X 62.82

r= /21079 =4.59 cm
Volume of paraboloid COD

% X Area at the top of the imaginary parabola X Height of parabola
1

5 % o’ x 42.4 =% X Tt X 4.59% x 42.4 = 1403.89 cm>

Volume of water left = 3392.9 — 4094.12 + 1403.89 = 702.67 cm®. Ans.
Problem 5.24 An open circular cylinder of 15 cm diameter and 100 cm long contains water upto
a height of 70 cm. Find the speed at which the cylinder is to be rotated about its vertical axis, so that
the axial depth becomes zero.
Solution. Given :

Diameter of cylinder =15cm

. Radius, R = % =75cm

Length of cylinder = 100 cm

Initial height of water =70 cm.

When axial depth is zero, the depth of paraboloid = 100 cm.

2p2 :
Using the relation, Z= R , we get f«— 15 cm —>|
Fig. 5.18
2 2
100 = o xX75
2%x9.81
o2 = 100 x 2 x9.81
7.5%x7.5
o= 100x2x9.81 _ 44292 = 50.05 rad/s
75%x7.5 7.5
.. Speed, N is given by W= 2nH
60
or y= 80X _ 60X5905 _ 56568 r.p.m. Ans.
2n 2n

Problem 5.25 For the problem (5.24), find the difference in total pressure force (i) at the bottom
of cylinder, and (ii) at the sides of the cylinder due to rotation.
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Solution. (i) The data is given in Problem 5.24. The difference in total pressure force at the
bottom of cylinder is obtained by finding total hydrostatic force at the bottom before rotation and after
rotation.

Before rotation, force = pgAE

where p = 1000 kg/m>, A = Area of bottom =§ D? =% x (0.15m% & = 70 cm = 0.70 m

Force = 1000 x 9.81 x% x (0.15)2 x 0.7 N = 121.35 N

After rotation, the depth of water at the bottom is not constant and hence pressure force due to the
height of water, will not be constant. Consider a circular ring of radius r and width dr as shown in
Fig. 5.19. Let the height of water from the bottom of the tank upto free surface of water at a radius

2.2 _ = -
re 7= or Y
28
Hydrostatic force on ring at the bottom,
dF = pg X Area of ring X Z 100 cm
2.2
= 1000 x 9.81 x 2mrdr x >
28
Y
2.2 -
=9810 x 2 X 7tr % O »ar
28
Total pressure force at the bottom
R 2.2 dr
=[aF = [ 9810x2xmr x 2 ar
0 2 g
0.075 0’ ;
= [ 19620 xmx 21 dr
0 2 g
Fig. 5.19
From Problem 5.24, o = 59.05 rad/s
R=75cm = .075 m.
Substituting these values, we get total pressure force
075
19620 x wx (59.05)° [ r*
- 2x9.381 4
2 4
- 19620 X T X (59.05) y (.075) = 86.62 N

2x9.81
Difference in pressure forces at the bottom
121.35 — 86.62 = 34.73 N. Ans.
(i) Forces on the sides of the cylinder
Before rotation = pgAh
where A = Surface area of the sides of the cylinder upto height of water
= 1D x Height of water = 1 x .15 x 0.70 m? = 0.33 m?
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h = C.G. of the wetted area of the sides

= % X height of water = % =035 m

Force on the sides before rotation = 1000 x 9.81 x 0.33 x 0.35=1133 N
After rotation, the water is upto the top of the cylinder and hence force on the sides

= 1000 x 9.81 x Wetted area of the sides X % x Height of water

=9810><TED><1.0><% X1.0=9810><Tt><.15><%:2311.43N

Difference in pressure on the sides
2311.43 — 1133 = 1178.43 N. Ans.

5.10.5 Closed Cylindrical Vessels. If a cylindrical vessel is closed at the top, which contains
some liquid, the shape of paraboloid formed due to rotation of the vessel will be as shown in Fig. 5.20
for different speed of rotations.

Fig. 5.20 (a) shows the initial stage of the cylinder, when it is not rotated. Fig. 5.20 (b) shows the
shape of the paraboloid formed when the speed of rotation is ®,. If the speed is increased further say
,, the shape of paraboloid formed will be as shown in Fig. 5.20 (¢). In this case the radius of the
parabola at the top of the vessel is unknown. Also the height of the paraboloid formed corresponding
to angular speed ®, is unknown. Thus to solve the two unknown, we should have two equations. One
equation is

2.2

2g
The second equation is obtained from the fact that for closed vessel, volume of air before rotation

is equal to the volume of air after rotation.
Volume of air before rotation = Volume of closed vessel — Volume of liquid in vessel

Z=

i xZ
Volume of air after rotation = Volume of paraboloid formed = .

N

3
L,

!
|
!
|||
II:
i
H
it

—_——— —

—_— — = —

Fig. 5.20

Problem 5.26 A vessel, cylindrical in shape and closed at the top and bottom, contains water upto
a height of 80 cm. The diameter of the vessel is 20 cm and length of vessel is 120 cm. The vessel is
rotated at a speed of 400 r.p.m. about its vertical axis. Find the height of paraboloid formed.
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Solution. Given :

1T
Initial height of water = 80 cm N
Diameter of vessel =20 cm
.. Radius, R =10 cm
Length of vessel = 120 cm
Speed, N =400 r.p.m.

2N 21mx 400
w = =

When the vessel is rotated, let Z

r = Radius of paraboloid at the top of the vessel

= 41.88 rad/s
60 60

= Height of paraboloid formed

This is the case of closed vessel. Fig. 5.21
Volume of air before rotation = Volume of air after rotation
or T pxL-Epxs0=mixZ
4 4 2
where Z = Height of paraboloid, r = Radius of parabola.
or T D x120- " D?x80=mx 2
4 4 2
or E><D2><(120-80)=3D2><4o=nr2><§
4 4 2
T 2 2 y4
or — %x20°%x40=4000 X T = 1tr°- X —
4 2
4 XTT X2
Pxz = 2000XTX2 _ eh00 ()
T
2.2 2, .2 2, .2
Using relation z=2r ,we get Z= 4188 xr” _ 4188 xr” _ 0.894 7
2g 2 x 981
= g
0.894
Substituting this value of 72 in (i), we get T
2« 7=28000
0.894 Z
7% = 8000 x 0.894 = 7152

IInd Method

Let Z, = Height of paraboloid, if the vessel would not have been
closed at the top, corresponding to speed,
N =400 r.p.m.

z

= /7152 = 84.56 cm. Ans.

[

or o = 41.88 rad/s

Then Z,

o’R’> _ 4188° x10°
2¢ 2 %981

= 89.34 cm.




204 Fluid Mechanics

Half of Z, will be below the initial height of water in the vessel

Z, _ 8934

ie., AO = =44.67 cm

But height of paraboloid for closed vessel
=CO=CA + A0 = (120 - 80) + 44.67 cm
=40 + 44.67 = 84.67 cm. Ans.
Problem 5.27 For the data given in Problem 5.26, find the speed of rotation of the vessel, when
axial depth of water is zero.

Solution. Given : - - }h r_’.]_ ‘
Diameter of vessel =20 cm = =
.. Radius, R =10 cm N .
Initial height of water =80 cm T =
Length of vessel =120 cm 120 = ]
Let w is the angular speed, when axial depth is zero. 80 | = =
When axial depth is zero, the height of paraboloid is 120 cm and = =]
radius of the parabola at the top of the vessel is r. ' AL = |

2.2 2, 2 o |
.. Using the relation, Z= or or 120 = o Xr Fig. 5.23

2g 2 %980

w’r* =2 x 980 x 120 = 235200 (D)

Volume of air before rotation = Volume of air after paraboloid
TR? x (120 — 180) = Volume of paraboloid

- x L
2
2 2
X Z
or rx102x40= 2 X2 M 120
2 2
2
o _ mx10°x40x2 _ 8000 _
T x120 120

Substituting the value of % in equation (i), we get
o’ X 66.67 = 235200

= 235200 = 59.4 rad/s
V 66.67

Speed N is given by ® = 2V
60
or N=90XO _ 60X94 _ 56723 r.p.m. Ans.
2n 2n

Problem 5.28 The cylindrical vessel of the problem 5.26 is rotated at 700 r.p.m. about its vertical
axis. Find the area uncovered at the bottom of the tank.
Solution. Given :

Initial height of water = 80 cm
Diameter of vessel =20 cm
Radius, R=10 cm

Length of vessel = 120 cm
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Speed, N =700 r.p.m.
o= 2 2XRXT00 _ 23 3 radss.
60 60

If the tank is not closed at the top and also is very long, then the height of parabola corresponding
to o = 73.3 will be

o’ xR* _ 733* x10
2xg 2 %980

=274.12 cm

From Fig. 5.24,
x4+ 120 + x, = 274.12

or X +x,=274.12 - 120 = 154.12 cm ...(i)
From the parabola, KOM, we have

o’r’ _ 73.3% x 12

120 + x)) = N (11
) v 2 x980 @
For the parabola, LON, we have
2.2 2.2
73.3° %
=20 _ 33 xr; .. (iii)
2g 2 %980
Now, volume of air before rotation = Volume of air after rotation
Volume of air before rotation = mR* x (120 — 80) = &t x 10? x 40 = 12566.3 cm® (i)
Volume of air after rotation = Volume of paraboloid KOM — volume of paraboloid LON
120+ x
=nr12x(2—1)—nr22x% ()

Equating (iv) and (v), we get

nr? (120+x) 7l xx,
2 2
Substituting the value of r12 from (ii) in (vi), we get
(120 + xl) X 2% 980 (120 + xl) 1tr22 + x

12566.3 =

o (Vi)

12566.3 = 1 X ; x
733 2 2
2 x980 % (120 + x
-+ From (i), r’ = ( _ )
(733)
2
or 12566.3 = 0.573 (120 + x1)2 _ T 2>< X

Substituting the value of x; from (iii) in the above equation

12566.3 = 0.573 | 120 +
2 %980 2 2 X980

= 0.573 (120 + 2.74 1, — 4.3 X 1,2 X 1)°
=0.573 [120% + 2.74% r,* + 2 x 120 X 2.74 r,7] - 4.3 r,*

2
733% x rf] Ty y 73371}
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= 0.573 [14400 + 7.506 r," + 657.6 r,°] — 4.3 r,*

125663 _ 21930 = 14400 + 7.506 rt+657.6 r)-43r,
0.573
or r,* (7.506 — 4.3) + 657.6 r,> + 14400 — 21930 = 0
or 3.206 r,* + 657.6 r,>— 7530 = 0
L, _ 6576 |/657.6% — 4 x (= 7530) x (3.206)
2=

2x3.206

—657.6 + ,/432437.76 + 96564.72
6.412

_ +
_ Z05762 72732 _ 1598 or 10.87
6.412

Negative value is not possible
r22 = 10.87 cm?

.. Area uncovered at the base = nr22 =1 x 10.87 = 34.149 cm’. Ans.
Problem 5.29 A closed cylindrical vessel of diameter 30 cm and height 100 cm contains water
upto a depth of 80 cm. The air above the water surface is at a pressure of 5.886 N/cm?. The vessel is
rotated at a speed of 250 r.p.m. about its vertical axis. Find the pressure head at the bottom of the
vessel : (a) at the centre, and (b) at the edge.

Solution. Given : 'y
Diameter of vessel =30 cm
. Radius, R=15cm
Initial height of water, H= 80 cm Xq
Length of cylinder, L=100 cm
Pressure of air above water = 5.886 N/cm?
or p = 5.886 x 10* lz
m
Head due to pressure, h = plpg
30
5.886 x 10° =30 om =
= ————— = 6 m of water Fig. 5.25
1000 x 9.81
Speed, N = 250 r.p.m.
W= 27N = 2 X250 = 26.18 rad/s
60 60

Let x, = Height of paraboloid formed, if the vessel is assumed open at the top and it is very long.

o’R> _ 26.18° x15°
2g 2 %981

Let r, is the radius of the actual parabola of height x,

= 78.60 cm (D)

Then we have X =
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2.2 2 2
Then = O 20A8T X 5 2 (i)
2g 2 % 981

The volume of air before rotation
= mR? (100 — 80) = & x 15% x 20 = 14137 cm?
Volume of air after rotation = Volume of paraboloid EOF
1 2
= E X Ttrl X x2
But volume of air before and after rotation is same.
1
14137 = — x 7tr,2 X x,
2
But from (ii), x,=035r7

14137 = % x mtr 2 x 0.35 2

r14 _ 2 x14137
7t X 0.35
r = 25714 = 12.66 cm
Substituting the value of r, in (i), we get
x, = 0.35 x 12.66% = 56.1 cm
Pressure head at the bottom of the vessel

=25714

(a) At the centre. The pressure head at the centre, i.e., at H = Pressure head due to air + OH

=6.0+ (HL - LO) {+ OH=LH- LO}
 HL=100cm=1m
=6.0 + (1.0 - 0.561)
LO=x,=56.1cm=.561m
= 6.439 m of water. Ans.
(b) At the edge, i.e., at G = Pressure head due to air + height of water above G
=6.0+AG=6.0+ (GM + MA) = 6.0 + (HO + x))
=6.0 + HO + 0.786 {v x;,=78.6 cm = 0.786 m}

*+ HO=LH - LO=100-56.1
=6.0 + 0.439 + 0.786

=439cm=0439m
= 7.225 m of water. Ans.

Problem 5.30 A closed cylinder of radius R and height H is completely filled with water. It is
rotated about its vertical axis with a speed of ® radians/s. Determine the total pressure exerted by
water on the top and bottom of the cylinder.

Solution. Given :
Radius of cylinder R
Height of cylinder =H

Angular speed =
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As the cylinder is closed and completely filled with water, the rise of water level at the ends and
depression of water at the centre due to rotation of the vessel, will be prevented. Thus the water will
exert force on the complete top of the vessel. Also the pressure will be exerted at the bottom of the
cylinder.

Total Pressure exerted on the top of cylinder. The top of cylinder
is in contact with water and is in horizontal plane. The pressure variation
at any radius in horizontal plane is given by equation (5.21)

2 2.2
or 9 _pv_poTr

=pw’r {+ v=wxr}
or r r

Integrating, we get

2.2
w'r _B 22
2

Consider an elementary circular ring of radius r and width dr on the top
of the cylinder as shown in Fig. 5.26.
Area of circular ring = 27wrdr

fdp:fpofrdr or p= P

Fig. 5.26
Force on the elementary ring = Intensity of pressure X Area of ring €
= p X 27;rdr
=P @’ X 2rrdr. { p= P mzrz}
2 2

Total force on the top of the cylinder is obtained by integrating the above equation between the
limits 0 and R.

R R
Total force or Fy= J:) %o)zr2 xznrdr=%0)2 X2 J:) dr

p : R*
=Lw?x2n |—| =L 0’ x2nx—
2 4] 2 4
2
0
= pTan“ ...(5.25)
Total pressure force on the bottom of cylinder, Fjp

= Weight of water in cylinder + total force on the top of cylinder

=pg><1tR2><H+%m2an4=pgan2xH+ Fr  ..(5.26)
p = Density of water.
Problem 5.31 A closed cylinder of diameter 200 mm and height 150 mm is completely filled with
water. Calculate the total pressure force exerted by water on the top and bottom of the cylinder, if it
is rotated about its vertical axis at 200 r.p.m.
Solution. Given :
Dia. of cylinder =200 mm = 0.20 m
Radius, R=0.1m
Height of cylinder, H=150 mm = 0.15 m
Speed, N =200 r.p.m.
o= 2N 21 x 200
60 60

= 20.94 rad/s

Angular speed,
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Total pressure force on the top of the cylinder is given by equation (5.25)

Fp= % x @ X T X R* = @ % 20.94> x 1 x (0.1)* = 34.44 N. Ans.
Now total pressure force on the bottom of the cylinder is given by equation (5.26) as
Fp=pg xnR*x H + F;
= 1000 x 9.81 x 7 x (0.1)> x 0.15 + 34.44
=46.22 + 34.44 = 80.66 N. Ans.
5.10.6 Equation of Free Vortex Flow. For the free vortex, from equation (5.20), we have
v X r = Constant = say ¢
c

or vV=—
r

Substituting the value of v in equation (5.23), we get
v? c? c?
dp=p7dr—pgdz=p>< dr—pgdz=pxX— dr-pgdz
r

rPxr
Consider two points 1 and 2 in the fluid having radius r, and r, from the central axis respectively as
shown in Fig. 5.27. The heights of the points from bottom of the vessel is z; and z,.
Integrating the above equation for the points 1 and 2, we get

2 2 502 2
Jdp:J p%dr—‘[pgdz
1 1 r 1
2 (% -3 2
or Dr—P1=PcC Jl r dr—pgjldz

-3+1 72 oc?
pc{ - } —pgl-al= " Iy =1 1= pg - 2]

1 )
2 2 2
o Pl 14 = Pl _
2 {rzz rlz} pg[22 Zl] 2{@2 rlz} pg[22 Zl]
C C
R b =fin=t}
=§[V12_V§]_Pg[zz_zl]

Dividing by pg, we get

2 2
Pro=D _ V1=V
= =12, — 2
pg 2¢ 2 =2
v} v;
or LRI R R T (5.27)
pg  2g pg  2¢
Equation (5.27) is Bernoulli’s equation. Hence in case of free vortex

flow, Bernoulli’s equation is applicable.
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Problem 5.32 In a free cylindrical vortex flow, at a point in the fluid at a radius of 200 mm and
at a height of 100 mm, the velocity and pressures are 10 m/s and 117.72 kN/m? absolute. Find the
pressure at a radius of 400 mm and at a height of 200 mm. The fluid is air having density equal to

1.24 kg/m>.
Solution. At Point 1 : Given :
Radius, r; =200 mm = 0.20 m
Height, z; =100 mm = 0.10 m
Velocity, v, =10 m/s
Pressure, p, = 117.72 kKN/m? = 117.72 x 10* N/m?
At Point 2 : r, =400 mm = 0.4 m

2, =200 mm = 0.2 m
P, = pressure at point 2
p = 1.24 kg/m*
For the free vortex from equation (5.20), we have
v X r= constant Or v,r, = V,r,
vp X 10x0.2

v, = = 5 m/s
r 0.4
Now using equation (5.27), we get
2
LIRE S
pg  2g pg  2g
But p = 1.24 kg/m*
3 2 2
117.72 x 10 + 10 +01=P2, 5 +02
124x9.81 2x9.81 pg 2x981
3 2 2
or Py _ 117.72 x 10 + 10 5

+0.1- -0
pg 124x981 2x981 2 x9.81

=9677.4 + 5.096 + 0.1 — 1.274 — 0.2 = 9676.22
P, = 9676.22 x pg = 9676.22 x 1.24 x 9.81
117705 N/m? = 117.705 x 10> N/m?
117.705 kN/m? (abs.) = 117.705 kN/m>. Ans.

(B) IDEAL FLOW (POTENTIAL FLOW)

» 5.11 INTRODUCTION

Ideal fluid is a fluid which is incompressible and inviscid. Incompressible fluid is a fluid for which
density (p)remains constant. Inviscid fluid is a fluid for which viscosity (W) is zero. Hence a fluid for
which density is constant and viscosity is zero, is known as an ideal fluid.

d
The shear stress is given by, T= L d_u Hence for ideal fluid the shear stress will be zero as =0
Y

for ideal fluid. Also the shear force (which is equal to shear stress multiplied by area) will be zero in
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case of ideal or potential flow. The ideal fluids will be moving with uniform velocity. All the fluid
particles will be moving with the same velocity.

The concept of ideal fluid simplifies the typical mathematical analysis. Fluids such as water and air
have low viscosity. Also when the speed of air is appreciably lower than that of sound in it, the
compressibility is so low that air is assumed to be incompressible. Hence under certain conditions,
certain real fluids such as water and air may be treated like ideal fluids.

» 5.12 IMPORTANT CASES OF POTENTIAL FLOW

The following are the important cases of potential flow :
(i) Uniform flow, (if) Source flow,
(iii) Sink flow, (iv) Free-vortex flow,
(v) Superimposed flow.

» 5.13 UNIFORM FLOW

In a uniform flow, the velocity remains constant. All the fluid particles are moving with the same
velocity. The uniform flow may be :
(i) Parallel to x-axis (ii) Parallel to y-axis.

5.13.1 Uniform Flow Parallel to x-Axis. Fig. 5.27 (a) shows the uniform flow parallel to
x-axis. In a uniform flow, the velocity remains constant. All the fluid particles are moving with the
same velocity.

Vil

Fig. 5.27 (a)

Let U = Velocity which is uniform or constant along x-axis
u and v = Components of uniform velocity U along x and y-axis.
For the uniform flow, parallel to x-axis, the velocity components u and v are given as

u=Uandv=0 ...(5.28)
But the velocity u in terms of stream function is given by,
u= Y
dy
and in terms of velocity potential the velocity u is given by,
0
u=2
ox
oy _ 90
u= > % ...(5.29)
dy ox
Similarly, it can be shown that v = — 8_\|1 = 8_(1) ...(5.294)
dx dy

But u = U from equation (5.28). Substituting ¥ = U in equation (5.29), we have
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oy bo i)
—_r _ =Y ...(53
v Jdy Ox (530)
_ oy - _8(])
or U= ay and also U = o

First part gives dy = U dy whereas second part gives do = U dx.

Integration of these parts gives as
y=Uy+C,and ¢ =Ux + C,

where C, and C, are constant of integration.

Now let us plot the stream lines and potential lines for uniform flow parallel to x-axis.

Plotting of Stream lines. For stream lines, the equation is
y=Uxy+C,

Let y = 0, where y = 0. Substituting these values in the above equation, we get
0=Ux0+C,orC;=0

Hence the equation of stream lines becomes as Y
y=U.y ..(5.31)
The stream lines are straight lines parallel to x-axis and at a Stream lines

distance y from the x-axis as shown in Fig. 5.28. In equation
(5.31), U. y represents the volume flow rate (i.e., m3/s) be-

tween x-axis and that stream line at a distance y. 4 y=4 I , =Ux4=4U
Note. The thickness of the fluid stream perpendicular to the 3 y=3 l v, =Ux3=3U
plane is assumed to be unity. Then y X 1 or y represents the area of 2 y=2 ‘;" T
flow. And U . y represents the product of velocity and area. Hence 4 2
U. y represents the volume flow rate. y=1 ‘l’l =Ux1=U
0 y=0 v, X
Plotting of potential lines. For potential lines, the equation is Fig. 5.28
0=U.x+C, ...(5.32)

Let ¢ =0, where x = 0. Substituting these values in the above equation, we get C, = 0.
Hence equation of potential lines becomes as
0=U.x
The above equation shows that potential lines are straight lines parallel to y-axis and at a distance of
x from y-axis as shown in Fig. 5.29.
Fig. 5.30 shows the plot of stream lines and potential lines for uniform flow parallel to x-axis. The
stream lines and potential lines intersect each other at right angles.

YA
o cl|le e |l.c ] Potential lines
I i [ 2 ““ Potential
SlS lines A ol w A tream lines
S|k ] e & S| S 3
o
P
g l—1 //\u4
o |- N |w |» >3
1] 1] 1 1] n /
x x x x x \VZ
// W1
0 1 2 3 4 x 0 V=0 X

Fig. 5.29 Fig. 5.30
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5.13.2 Uniform Potential Flow Parallel to y-Axis. Fig. 5.31 shows the uniform potential
flow parallel to y-axis in which U is the uniform velocity along y-axis.

ﬂ‘ T T A ﬂ‘

>
Fig. 5.31
The velocity components u, v along x-axis and y-axis are given by
u=0andv=U ...(5.33)

These velocity components in terms of stream function () and velocity potential function (¢) are
given as

oy  do
— - ...(5.34
! Jdy Ox (5:34)
_ oy _dob
and V= _8x __8y ...(5.35)

But from equation (5.33), v = U. Substituting v = U in equation (5.35), we get
ad

= — and also U = —

ox dy ox dy
First part gives dy = — U dx whereas second part gives d¢ = U dy.
Integration of these parts gives as
y=-U.x+Ciand¢=U.y + C, ...(5.36)

where C, and C, are constant of integration. Let us now plot the stream lines and potential lines.

Plotting of Stream lines. For stream lines, the equation is W = U.x + C,

Let y = 0, where x = 0. Then C, = 0.

Hence the equation of stream lines becomes as Yy = — U.x ...(5.37)

The above equation shows that stream lines are straight lines parallel to y-axis and at a distance of x from
the y-axis as shown in Fig. 5.32. The —ve sign shows that the stream lines are in the downward direction.

b §
Stream lines
? 5 e Ko S %Potentlal lines
” ~ »%
4 y Y ¥
y=4 // 9,
3

y=3 / 0y
oz y=2 o~ ™ < ¢2
I [Tl 0 I
< xX X b3 X
1 =
y=1 9,
0 _ _ t
y=01 2 3 4 6=0 X
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Plotting of Potential lines. For potential lines, the equation is ¢ = U.y + C,

Let ¢ = 0, where y = 0. Then C, = 0.

Hence equation of potential lines becomes as ¢ = U.y ...(5.38)

The above equation shows that potential lines are straight lines parallel to x-axis and at a distance of
y from the x-axis as shown in Fig. 5.32.

» 5.14 SOURCE FLOW

The source flow is the flow coming from a point (source) and
moving out radially in all directions of a plane at uniform rate.
Fig. 5.33 shows a source flow in which the point O is the source )

from which the fluid moves radially outward. The strength of a 0
source is defined as the volume flow rate per unit depth. The unit -< < >
of strength of source is m %s. Tt is represented by q. ource/

Let u, = radial velocity of flow at a radius r from the source O (s
q = volume flow rate per unit depth
r = radius
The radial velocity u, at any radius r is given by, ¥
q Fig. 5.33  Source flow (Flow away

U= - -.(5.39) from source)

The above equation shows that with the increase of r, the radial velocity decreases. And at a large
distance away from the source, the velocity will be approximately equal to zero. The flow is in radial
direction, hence the tangential velocity ug = 0.

Let us now find the equation of stream function and velocity potential function for the source flow.
As in this case, ug = 0, the equation of stream function and velocity potential function will be obtained
from u,.

Equation of Stream Function

By definition, the radial velocity and tangential velocity components in terms of stream function are
given by

=L WY nd g = — v [See equation (5.124)]
r 90 or
But u,= 4 [See equation (5.39)]
2nr
1oy _ g
ro  2nur
or dy=r.-L a0=-2 49
2nr 21
Integrating the above equation w.r.t. 6, we get
q

Y = — x 0 + C|, where C| is constant of integration.
2n

Let y=0,when 6 =0, then C, =0.
Hence the equation of stream function becomes as
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v=2 9 ...(5.40)
2w

In the above equation, g is constant.
The above equation shows that stream function is a function of 0. For a given value of 0, the
stream function Y will be constant. And this will be a radial line. The stream lines can be plotted by

having different values of 6. Here 0 is taken in radians. b :% A
. . y-9
Plotting of stream lines v 34 - 8
When 6=0,y=0 8 W m
% “ "N\ Stream lines
b4 b4 k> 3
0 = 45° = — radians, y = i.—= 4 units B ® are radial
4 2 4 8 ¥ 0
h = 8=0 '_
9=9O°=£radians,w=i.£=1 units w4 0=n S =l
2 2 2 4 =2
0= 135"=3—1t radians,w:i.?’—n:?’—q units ‘l‘:%xq
4 2 4 8
The stream lines will be radial lines as shown in Fig. 5.34. i
3
Equation of Potential Function ‘*’:Tq
By definition, the radial and tangential components in Fig. 5.34  Stream line for
terms of velocity function are given by source flow.
1
u,= 8_(]) and ug = — 8_(]) [See equation (5.9A)]
or r d0
But from equation (5.39), u,= 4
2nr
Equating the two values of u,, we get
9% _ ¢ q
— = or dp = dr
or 2mr ¢ 27r
Integrating the above equation, we get
J do = J L' dr Potential lines
2nr are circle
or o=-L J 1 dr [ 4_i5a constant term}
2nd r 2n
q
=—"log,r ...(541
o 0 (541

In the above equation, g is constant.

The above equation shows, that the velocity potential function is
a function of r. For a given value of r, the velocity function ¢ will be
constant. Hence it will be a circle with origin at the source. The
velocity potential lines will be circles with origin at the source as
shown in Fig. 5.35.

Let us now find an expression for the pressure in terms of
radius.

Fig.5.35 Potential lines for source.
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Pressure distribution in a plane source flow

The pressure distribution in a plane source flow can be obtained with the help of Bernoulli's equa-
tion. Let us assume that the plane of the flow is horizontal. In that case the datum head will be same
for two points of flow.

Let p = pressure at a point 1 which is at a radius r from the source at point 1
u, = velocity at point 1
Do = pressure at point 2, which is at a large distance away from the source. The velocity will
be zero at point 2. [Refer to equation (5.39)]
Applying Bernoulli's equation, we get

2 _ 2
P P o PPo)__m
pg 28 pg P8 2g

2
u
or ®-po)=- P-4
2
But from equation(5.39), u,= 4
27r

Substituting the value of u, in the above equation, we get

oo (2]

_ pa’
8nr?
In the above equation, p and g are constants.
The above equation shows that the pressure is inversely proportional to the square of the radius
from the source.

...(5.42)

» 5.15 SINK FLOW

The sink flow is the flow in which fluid moves radially
inwards towards a point where it disappears at a constant rate.
This flow is just opposite to the source flow. Fig. 5.36 shows Y
a sink flow in which the fluid moves radially inwards towards
point O, where it disappears at a constant rate. The pattern of
stream lines and equipotential lines of a sink flow is the same /

as that of a source flow. All the equations derived for a source Sink / \
A

flow shall hold to good for sink flow also except that in sink
flow equations, ¢ is to be replaced by (- g).

Problem 5.33 Plot the stream lines for a uniform flow of :
(i) 5 m/s parallel to the positive direction of the x-axis and Fig.5.36 Sink flow
(ii) 10 m/s parallel to the positive direction of the y-axis. (Flow toward centre)

Solution. (i) The stream function for a uniform flow parallel to the positive direction of the
x-axis is given by equation (5.31) as

y=UXy

The above equation shows that stream lines are straight lines parallel to the x-axis at a distance y

from the x-axis. Here U = 5 m/s and hence above equation becomes as
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Yy =Sy
For y=0, stream function y =0
For y= 0.2, stream function y =5 x0.2 = 1 unit
For y= 0.4, stream function y =5 X 0.4 = 2 unit
The other values of stream function can be obtained by substituting the different values of y. The
stream lines are horizontal as shown in Fig. 5.36 (a).

Y
0.8 e
y=08 v=4
0.6 > =
y=06 V=3
0.4 —
y=04 v=2
0.2 _—
y=02 v=1
0 > >
y=0 v=0 X
Fig. 5.36 (a)

(ii) The stream function for a uniform flow parallel to the positive direction of the y-axis is given by
equation (5.37) as
y=-UXx
The above equation shows that stream lines are straight lines parallel to the y-axis at a distance x
from the y-axis. Here U = 10 m/s and hence the above equation becomes as

y=-10xx

The negative sign shows that the stream lines are in the downward direction.

For x=0, the stream function Yy =10

For x= 0.1, the stream function Wy =-10x0.1 =- 1.0 unit

For x= 0.2, the stream function W =- 10X 0.2 =- 2.0 unit

For x= 0.3, the stream function W =- 10X 0.3 =— 3.0 unit

The other values of stream function can be obtained by substituting the different values of x. The

stream lines are vertical as shown in Fig. 5.36 (b).
YA

- 9 0

I I I
> |5 [z |5
/ Y Y /

0
x=0.1
x=0.2
x=0.3

0 01 02 03
Fig. 5.36 (b)
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Problem 5.34 Determine the velocity of flow at radii of 0.2 m, 0.4 m and 0.8 m, when the water
is flowing radially outward in a horizontal plane from a source at a strength of 12 m?/s.

Solution. Given :
Strength of source, g = 12 m?/s
The radial velocity u, at any radius r is given by equation (5.39) as

q
U, =—
" 2mr
12
When r=0.2 m, u,= ——— = 9.55 m/s. Ans.
2n x 0.2
12
When r= 0.4 m, u,= ——— = 4.77 m/s. Ans.
2 x 0.4
12
When r= 0.8 m, u,= ——— = 2.38 m/s. Ans.
2t x 0.8

Problem 5.35 Two discs are placed in a horizontal plane, one over the other. The water enters at
the centre of the lower disc and flows radially outward from a source of strength 0.628 m?/s. The
pressure, at a radius 50 mm, is 200 kN/m?. Find :

or

(i) pressure in kN/m® at a radius of 500 mm and

(ii) stream function at angles of 30° and 60° if = 0 at 8 = 0°.
Solution. Given :
Source strength, q=0.628 m%s
Pressure at radius 50 mm, p, = 200 kN/m? = 200 x 10° N/m*
(i) Pressure at a radius 500 mm
Let  p, = pressure at radius 500 mm

(u,); = velocity at radius 50 mm

(u,), = velocity at radius 500 mm
The radial velocity at any radius r is given by equation (5.39) as

_ 4
Y= o
When r=50mm=0.05m, (u,),= _0628 =1.998 m/s ~ 2 m/s
21 x 0.05
When r=500mm=05m, (u,),= 0628 =0.2 m/s
2t %X 0.5

Applying Bernoulli’s equation at radius 0.05 m and at radius 0.5 m,

2 2
ﬂ_'_ (ur)l _ &_'_ (ur)z
pg 28 pg  2g
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3 2 2
200 x 10 +2__ D> +O.2

or =
1000 2 1000 2
or 200+ 2= P2 4002
1000
or P2 _ 202 - 0.02 =201.98

1000
. p, = 201.98 x 1000 N/m? = 201.98 kN/m>. Ans.
(if) Stream functions at 6 = 30° and 6 = 60°
For the source flow, the equation of stream function is given by equation (5.40) as

Y= i.e, where 0 is in radians
21

When 6 = 30°, v = 0628 X 30xm ( 0=30°= 0xm radians)
21 180 180
= 0.0523 m%s. Ans.
When 6 = 60°, _ 0628 60 _ 0.1046 m%/s. Ans.
2n 180

» 5.16 FREE-VORTEX FLOW

Free-vortex flow is a circulatory flow of a fluid such that its stream lines are concentric circles.
For a free-vortex flow, ug X r = constant (say C)
Also, circulation around a stream line of an irrotation vortex is

F'=2nrxug=2nxC (o rxug=0)
where ug = tangential velocity at any radius r from the centre.
o
2nr

The circulation T is taken positive if the free vortex is anticlockwise.
For a free-vortex flow, the velocity components are

r
ug=—— and u, =0
7 onr r
Equation of Stream Function

By definition, the stream function is given by

- 1
g = NV and u, = Loy [See equation (5.124)]
or r 00
In case of free-vortex flow, the radial velocity (u,) is zero. Hence equation of stream function will
be obtained from tangential velocity, ug. The value of ug is given by

P
" oy

Equating the two values of uy, we get
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— ﬂ = L or d\‘] = Ldr
or 27r 27r

Integrating the above equation, we get
de: J—Ldr=(—£)‘[ldr
2nr 2n/)d r

r
or Y= (— E) log,r ( % is a constant term) ...(5.43)

The above equation shows that stream function is a function of
radius. For a given value of r, the stream function is constant. Hence
the stream lines are concentric circles as shown in Fig. 5.37. Stream
Equation of potential function. By definition, the potential " lines
function is given by,

_ Lo

Ug = 30 and u,= g—‘f [See equation (5.9A4)]

r
Here u, = 0 and uy = T Hence, the equation of potential Fig. 5.37
r

function will be obtained from ug.
Equating the two values of ug, we get

r
la_q):_r or dq)zr,—r .do=—4d6
rod 2mr 27r

2n
Integrating the above equation, we get

[a0 = j%de or 0= %J%:%ﬁ .(5.44)

The above equation shows that velocity potential function is a function of 0. For a given value of 0,
potential function is a constant. Hence equipotential lines are radial as shown in Fig. 5.38.

Velocity potential
lines
L
6, g
\\d}(\ Il %
€4 @ 7
0=m 0=0
&
%A P
%// i N\ )/?.
5 “z
[
D

Fig. 5.38 Potential lines are radial.
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» 5.17 SUPER-IMPOSED FLOW

The flow patterns due to uniform flow, a source flow, a sink flow and a free vortex flow can be
super-imposed in any linear combination to get a resultant flow which closely resembles the flow
around bodies. The resultant flow will still be potential and ideal. The following are the important
super-imposed flow :

(i) Source and sink pair

(ii) Doublet (special case of source and sink combination)
(iii) A plane source in a uniform flow (flow past a half body)
(iv) A source and sink pair in a uniform flow

(v) A doublet in a uniform flow.

5.17.1 Source and Sink Pair. Fig. 5.39 shows a source and a sink of strength ¢ and (- q)
placed at A and B respectively at equal distance from the point O on the x-axis. Thus the source and
sink are placed symmetrically on the x-axis. The source of strength g is placed at A and sink of
strength (— g) is placed at B. The combination of the source and the sink would result in a flownet
where stream lines will be circular arcs starting from point A and ending at point B as shown in

Flg. 5.40.
\I/ \
A

B_- o

a

Source (q)

Fig.5.39 Source and sink pair.

A
Stream

lines

Source Sink
A B

Fig.5.40 Stream lines for source-sink pair.

Equation of stream function and potential function
Let P be any point in the resultant flownet of source and sink as shown in Fig. 5.41.
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Fig. 5.41
Let r, © = Cylindrical co-ordinates of point P with respect to origin O
x,y = Corresponding co-ordinates of point P
ry, 8, = Position of point P with respect to source placed at A
r,, 8, = Position of point P with respect to sink placed at B
o = Angle subtended at P by the join of source and sink i.e., angle APB.
Let us find the equation for the resultant stream function and velocity potential function. The

. . L . .0
equation for stream function due to source is given by equation (5.40) as y, = q2 L whereas due to
n

sink it is given by y, = (=49,)

. The equation for resultant stream function () will be the sum of

these two stream function.

Y=Y+
g9, (-492) -q
=40, [Z95% ) "9 ¢
2 2 21‘C(2 1)
=;—‘1.a [ o=6,-0, In triangle ABP, 0, + 0. + (180° — 6,)
T
=180° - o=0,-0,]
-q.0
- ..(545
. (5.45)

The equation for potential function due to source is given by equation (5.41) as ¢, = 2i log ,r; and
n

due to sink it is given as ¢, = ;_q log,r,. The equation for resultant potential function (¢) will be the
n

sum of these two potential function.

o=0,+0,

q -4
= Ey log,r, + (%) log,r,
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q q i
= — [log,r, — log r,] = — log (—J ...(5.46)

To prove that resultant stream lines will be circular arc passing through source and sink
The resultant stream function is given by equation (5.45) as
—-q.o
2

v = or % 0,-9,) (: o=0,-8,)

For a given stream line y = constant. In the above equation the term 2i is also constant. This
n

means that (8, — 0,) or angle o will also be constant for various positions of P in the plane.

To satisfy this, the locus of P must be a circle with AB as chord, having its centre on y-axis, as
shown in Fig. 5.40.

Consider the equation (5.45) again as

w:%a:%(erel) (. o=0,-0,)
= 516, -6;)
or (91_92)=21t_\|l
q

Taking tangent to both sides, we get

tan (6, — 6,) = tan (2”—“’) or 06 —tanb, _ .. (2’“") ()

q l+tan 6, .tan 0, q
But tan 0, = and tan 0,= — ..(5.464)
x+a x—a
Substituting the values of tan 6, and tan 8, in equation (),
y __
+ - 2
(cra) frod) _,, (20
1+ . q
(x+a) (x—a) "
—a)-vy(x+ 2 :
or y(x za) ] (x2 a ( Yy :
x“—a“+y q 0y
_ 2 '
of T2y (ﬂ :
x“—a" +y q 6, 0, : .
or —2ay _ 1 IA 0 B :
2_ 2, .2 a < a
X a“+y cot (21'5\") = |X ;I
q

Fig. 5.41 ()
or -d+ y2 = — 2ay cot (2“—“’)
q
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2
or P-at+ y2 + 2ay cot (ﬂ) =0
q
2, .2 2y 2
or x“+y"+2aycot| ——|-a"=0
q
or x>+ y2 + 2ay cot (M—WJ + a? cot? (2“—\“) - a? cot? (2“—\“) -a*=0
q q q

{Adding and subtracting a* cot’ (M—Wﬂ
q

2
or 2+ { y+ acot (ﬂ)} = a? + a? cot? (2“_‘")
q q
=d° {1 + cot? (M—WH
q
a* cosec? (2“—“’) { 1+ cot? (M—WJ = cosec’ (M—Wﬂ
q q q
2my\ | 2\ |
or 2+ [y + a cot (ﬂ)} [a cosec ( W)} ...(5.47)
q q

. . . . . . 2
The above is the equation of a circle* with centre on y-axis at a distance of + a cot (—W from
q

2
the origin. The radius of the circle will be a cosec ( W).
q

Similarly, it can be shown that the potential lines for the source-sink pair will be eccentric non-
intersecting circles with their centres on the x-axis as shown in Fig. 5.41 (b).

y Potential lines

Source

Fig. 5.41 (b) Potential lines for source sink pair (Potential lines are eccentric
non-intersecting circles with their centres on x-axis).

*The equation 2+ y2 = a’ is the equation of a circle with centre at origin and of radius ‘a’.
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Problem 5.36 A source and a sink of strength 4 m*/s and 8 m*/s are located at (- 1, 0) and (1, 0)
respectively. Determine the velocity and stream function at a point P (1, 1) which is lying on the
flownet of the resultant stream line.

Solution. Given :

Source strength, q,=4 m?/s

Sink strength, q,=8 m?/s

Distance of the source and sink from origin, a = 1 unit.

The position of the source, sink and point P in the flow field is shown in Fig. 5.42.

From Fig. 5.42, it is clear that angle 6, will be 90° and angle 6, can be calculated from right angled

triangle ABP.

The equation for stream function due to source is given by equation (5.40) as y, = %@1,
n
whereas due to sink it is given by y, = —q22—><92 The resultant stream function Y is given as
n
V=Y, + VW,
y
P(x.y)
(1.1
y
Source
(1.0
91 —|62 o
A 0 B
Sink
[ a=1 & a=1 = 1.0
< x >
Fig. 5.42
=41X91+(_42X92)=41X91_42xe2 (i)
2n 2n 2n 2
Let us find the values of 6, and 0, in radians. From the geometry, it is clear that the traingle ABP is
a right angled triangle with angle 6, = 90° = % x =L radians.
1
Also tan91=£=—=0.5
AB 2
or 0, = tan™' 0.5 = 26.56° = 26.56 X % radians = 0.463

Substituting these values in equation (i),

Y= Dy 0463 - L2 4T
2r 2r 2
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T 8 = 2 2
= — x 0463 - —x — =4 m-/s, g, =8 m/s
2n 2 2 a4 © )
= 0.294 - 2.0 = - 1.706 m?/s. Ans.
To find the velocity at the point P, let us first find the stream function in terms of x and y co-

ordinates. The stream function in terms of 6, and 0, is given by equation (i) above as

x 0 x 0
W=ql 1 _92%X9,

2n 2n
The values of 6, and 6, in terms of x, y and a are given by equation (5.46A) as
tan 6, = and tan 0, = Y
x+a x—a)
or 0, = tan”' Y and 6, =tan"! Y
x+a (x—a)

Substituting these values of 0, and 0, in equation (i), we get

\|/=itan‘1 Y —q—ztan‘1 Y
2n x+a 2x x—a
The velocity component u = 8_\|! and v=- 8_\|I
dy ox
ue OV
dy
N I TR N S PSP B
dy |27 x+a 2w x—a
T 1+( y j (x+a) 2m 1+( y j (x—a)
x+a x—a
g _(x+a)’ I a4, (-a I
=4 X . X

_E(x+a)2+y2 (x+a) o (x—a)2+y2 (x—a)

_ 4 (x+a) 4 (x=a)
21 (x+a)’ +y> 27 (x—a) +y°
At the point P(1, 1), the component u is obtained by substituting x = 1 and y = 1 in the above
equation. The value of a is also equal to one.

q 1+1 g (1-1)

D2 Do gD 24 2 00544 ms
2n 5 2n 2 5 2m 5
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oy
Now vV=—-—
ox
=—i q—ltan_1 Y —q—ztan_1 Y
ox | 2@ x+a 2xm x—a
i -1 -1
=_;1—1 ! ny( )le—g—zx ! 2><y( )2><1
1t1+( y J (x+a) 4 1+( y J (x—a)
i x+a x—a

L) N B N Gt S (—y)]

_E(x+a)2+y2 (x+a)2 g(x—a)2+y2 (x—a)2

a4 Yy _42 Yy
2n (x+a)2+y2 2n (x—a)2+y

2

At the point P(1, 1),

1 1
v = ix—zz_q_2x—22 Cra=1)
2 (1+1) +1° 2 (1-1)" +1
a1 4 1
2 5 2m 1
a1 6 A 18 070 1072 = - 1.145 mis?
2 5 2n 2m S5 2m

The resultant velocity, V = w/uz +v? = \/0.25442 + (—1.145)2 = 1.174 m/s. Ans.

Problem 5.37 For the above problem, determine the pressure at P(1, 1) if the pressure at infinity
is zero and density of fluid is 1000 kg/m3.

Solution. Given :

Pressure at infinity, D=0

Density of fluid, p = 1000 kg/m?>

The velocity* of fluid at infinity will be zero. If V,, = velocity at infinity, then V, = 0.

The resultant velocity of fluid at P(1, 1) = 1.174 m/s (calculated above)
or V=1.174 m/s.

Let p = pressure at P(1, 1)

Applying Bernoulli’s theorem at point at infinity and at point P, we get

2 2
o Vo _ pa + |4

pg 2¢ pg 28

2 2 2
or O+O=£+V— or O=£+V— or O=£+V—
pg 28 pg 28 p 2
2 2
or £ = - V—:— 1174 (- V= 1.174 m/S)
P 2 2

* From equation (5.39), the velocity at a distance ‘r’ from source or sink is given by u, = 2L At infinity,
r

r is very very large hence velocity is zero.
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2 2
or p=- 1‘1;4 Xp=-— w = — 689.14 N/m>. Ans.
5.17.2 Doublet. It is a special case of a source and sink pair (both of them are of equal strength)
when the two approach each other in such a way that the distance 2a between them approaches zero
and the product 2a . g remains constant. This product 2a . g is known as doublet strength and is
denoted by p.
Doublet strength, Lw=2a.q ...(5.48)

Let g and (- g) may be the strength of the source and the sink respectively as shown in Fig. 5.43.

Let 2a be the distance between them and P be any point in the combined field of source and sink.

P—_

Fig. 5.43

Let 0 is the angle made by P at A whereas (0 + 80) is the angle at B.
Now the stream function at P,

9 g q
=2 _ 1 9+60)=-—-L 806 ...(5.49
v 27 21c( +00) 27 ( )

From B, draw BC L on AP. Let AC = 8r, CP = r and AP = r + &r. Also angle BPC = 80. The angle
80 is very small. The distance BC can be taken equal to r X 80. In triangle ABC, angle BCA = 90° and
hence distance BC is also equal to 2a . sin 6. Equating the two values of BC, we get

rx 80 =2a.sin 0

50 = 2a.sin 0
r
Substituting the value of 80 in equation (5.49), we get
v=- q y 2asin O
21 r
= zixﬂ [ 2a.q =y from equation (5.48)] ...(5.50)
T r

In Fig. 5.43, when 2a — 0, the angle 80 subtended by point P with A and B becomes very small.
Also dr — 0 and AP becomes equal to r. Then
PD vy

sin@= —==
r

Also AP?=AD*>+ PD*> or rPP=x*+)
Substituting the value of sin 0 in equation (5.50), we get
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poy 1 Ly Ly 2_ 2, 2
S XTX—=— == voor=x"+
4 28 r r 21r? o (x2 + yz) ( )
...(5.504)
or x2+y2=—ﬁ or x2+y2+ﬁ=0

2wy 2y
The above equation can be written as

2 2 2
Pyt 2xyx M +( B J _( H J =0 {AddingandsubtraCting(LJ}

4y 4y 4y 4y
2 2
or 24 (y+Lj = (Lj (551)
4y 4y

The above is the equation of a circle with centre (O, LJ and radius . The centre of the

4y 4y
u

H from x-axis. As the radius of the circle is also equal to s
4y 4y
hence the circle will be tangent to the x-axis. Hence stream lines of the doublet will be the family of
circles tangent to the x-axis as shown in Fig. 5.44.

circle lies on y-axis at a distance of

Stream lines are circles
tangent to x-axis with
centre on y-axis

X-axis

Stream lines
y lines

Fig. 5.44 Stream lines for a doublet.

Potential function at P

Refer to Fig. 5.43. The potential function at P is given by

= % log, (r + or) + (— %) log r [Refer to equation (5.41)]
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q q q r+0r q ( Sr
=2 log, (r+d0r)- —log ,r=—1o =—1lo 1+—
2n g ( ) o B T on ge( r J 2n & r

q [Sr (81’)2 1 }
=L =4 = x=+.....
2| r r 2

4q &
2n -

2
{As S_r is a small quantity. Hence (ﬁ_rj becomes negligible}
r r

But in Fig. 5.43, from triangle ABC, we get S—r =cos 0
a

. Or = 2a cos 6
Substituting the value of dr, we get
o= 4. 2a cos 6
2r r
= 2L « C0s0 [ 2a X ¢ = |t from equation (i)] ...(5.52)
T r

In Fig. 5.43, when 2a — 0, the angle 86 becomes very small.
Also &r — 0 and AP becomes equal to r. Then
cos O = Q = X
AP r
Also AP? = AD* + PD?or r? = x* + y?
Substituting the value of cos 0 in equation (5.52), we get

q): Lx(ﬁ)xl:ixi

2n \r) r 2mn r?
n X 2_ .2, 2
=—X— [ ri=x"+y7]
2 (x2 + y2)
or ey X o e B Xy
2r ¢ 2n ¢
The above equation can be written as
2 2 2
- L£+ L R + y2 =0 Adding and subtracting B
2n ¢ \4md 4nd 4nd
2 2
or P . I ..(5.53)
4md 4md

The above is the equation of a circle with centre (4}1—('), O) and radius (L) The centre of the
T

circle lies on x-axis at a distance of ﬁ from y-axis. As the radius of the circle is equal to the
e

distance of the centre of the circle from the y-axis, hence the circle will be tangent to the y-axis.

2
* Expansion of log, (1 + x) =x + x? + ...
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Hence the potential lines of a doublet will be a family of circles tangent to the y-axis with their centres

on the x-axis as shown in Fig. 5.45.
Potential lines or
Potential lines ¢ lines are circles
with centre on x-axis
but tangent to y-axis

Fig.5.45 Potential lines for a doublet.
Problem 5.38 A point P(0.5, 1) is situated in the flow field of a doublet of strength 5 m%/s.
Calculate the velocity at this point and also the value of the stream function.
Solution. Given : Point P(0.5, 1). This means x = 0.5 and y = 1.0
Strength of doublet, w=>5m%s
(i) Velocity at point P
The velocity at the given point can be obtained if we know the stream function (y). But stream
function is given by equation (5.50A) as
n Y
v 2n 8 (x2 + y2)
The velocity components # and v are obtained from the stream function as

= ay ay E (xz +y2)
= —ii _ry ( Lis a constant term)
271 E)y (x2 + y2) 27

_m oy
X (x2+y2)2

[ %[y (x2 + yz)_l} =y[-1] [x2 + yz]_2 [2y]+(x2 + yz)_l.l

—2y? + 1 _—2y2+x2+y2_ x?—y?

(x2 + y2)2 (x2 + y2) (x2 + y2)2 (x2 + y2)2

and v:-aiz—i{_ix#}



232 Fluid Mechanics

kol oy J_m[ 2%y
21 Ox (x2+y2) o’ (x2+y2)2

Substituting the values of L =5 m?%s, x = 0.5 and y = 1.0, we get the velocity components as

_ 2_q2
e [Py ) slosor | s 0rs
(x +y) 2 (05 +1) 2n 1.25
and S U 2 -2x05x1]_5 [ —12}=_0.509
x +y 052+1) 125
Resultant velocity, V=ut+v? —\/( 0.382)” +(~0.509)" = 0.636 m/s. Ans.

(i) Value of stream function at point P

n y 5 1.0 5 1

T @S g
V=0 (x*+y%)  2m (057+1%) 2m 125
= - 0.636 m%/s. Ans.
Solution in polar co-ordinates
The above question can also be done in r, 0 (i.e., polar) co-ordinates. The stream function in r, 0
co-ordinates is given by equation (5.50) as
L sin®
=—-—X
V= 2r r
and velocity components in radial and tangential directions are given as

1 3y _1 a[ M sine}

()

00 rodelL 2n r

”
SRV VS A
- rx( 2n)xrae(sm6)

u,=

[ 2L is a constant term and also r is constant w.r. t. B:I
T

= ——><L cos 6 ...(i0)

and U )
B A I ) U (T
= ( sme) [J Py sin® (-1). —

usin@ .
® ———1saconstant w.r.t. r

=X ...(iii)
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Now r=yx?+y? =0.5% +12 =125
. y 1 x 05
sin@ = ==——= =0.894 and cos 0 = —=—— = 0.447
r /125 r 4125

Substituting the values of r, sin 8 and cos 0 in above equations (i), (if) and (iii), we get

__wsin®_ 5 084 _ _ 4.636 m¥s. Ans.

2K r 2n 4125

i =L xcos 0= - 2 x—— x0.447 = - 0.2845 m/s

"o2m r 2 (1.25)
and ue=_Lxsmze=—ix%=—0.569m/s
2n r 2 125

Resultant velocity, V= ,[u,z + ué

= {(-0.2845)" + (- 0.569)" = 0.636 mis. Ans.

Y

<V

(a)

(a) Uniform flow (b) Source flow

Half body Point P(x , y)

(r,e)
yﬁ:’
-9
/ 3 BW_Z
u B W
—
f/_r»
7 e‘x : =0
s‘{
|<_rs—>

wB"V:

[N]Fe}

Fig.5.46 Flow pattern resulting from the combination of a uniform flow and a source.

5.17.3 A Plane Source in a Uniform Flow (Flow Past a Half-Body). Fig. 5.46 (a) shows
a uniform flow of velocity U and Fig. 5.46 (b) shows a source flow of strength g. When this uniform
flow is flowing over the source flow, a resultant flow will be obtained as shown in Fig. 5.46. This
resultant flow is also known as the flow past a half-body. Let the source is placed on the origin O.
Consider a point P(x, y) lying in the resultant flow field with polar co-ordinates r and 6 as shown in
Fig. 5.46.
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The stream function (y) and potential function (¢) for the resultant flow are obtained as given
below :

y = Stream function due to uniform flow + stream function due to source

=U.y+ Ly .(5.54)
2r
=U.rsin 0+ 2i ) (*+ y=rsin 0) ..(5.544)
n
and ¢ = Velocity potential function due to uniform flow + Velocity potential function due to source
q q
=U.x+—log,r=U.rcos®+—log,r ...(5.54B
o o8 o O8e ( )

The following are the important points for the resultant flow pattern :

(i) Stagnation point. On the left side of the source, at the point S lying on the x-axis, the velocity of
uniform flow and that due to source are equal and opposite to each other. Hence the net velocity of the
combined flow field is zero. This point is known as stagnation point and is denoted by S. The polar co-
ordinates of the stagnation point S are rg and 7, where r; is radial distance of point S from O.

The net velocity (or resultant velocity) is zero at the stagnation point S.

loy 10 ( q ) [ . q ]
=T 2 |U.rsino+-L9 v y=U.rsin0+—20
= rae M o v 21

= l[U.rcose+i} =U.cos 0+ 4
r 27 2nr

At the stagnation point, 8 = 1t radians (180°) and r = rg and net velocity is zero. This means u, = 0
and vy = 0. Substituting these values in the above equation, we get

0= U . cos 180° + —— [ u,=0,0=180° and r = rg]
27rg
=—U+-—L o y=-12
27rg 27rg
q
or rg= —— ..(5.55
S= Sl (5.55)

From the above equation it is clear that position of stagnation point depends upon the free stream
velocity U and source strength g. At the stagnation point, the value of stream function is obtained
from equation (5.54A) as

— : q
y=U.rsin0+—.6
2r

For the stagnation point, the above equation becomes as

: o q
Yy, =U.rgsin 180° + ey x 0
['- At stagnation point, 8 = &t radians = 180° and r = ry]
=0+1-4 .(5.56)
2 2

The above relation gives the equation of stream line passing through stagnation point. We know
that no fluid mass crosses a stream line. Hence a stream line is a virtual solid surface.
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(i) Shape of resultant flow. At the stagnation point S, the net velocity is zero. The fluid particles
that issue from the source cannot proceed further to the left of stagnation point. They are carried
along the contour BSB’ that separates the source flow from uniform flow. The curve BSB’ can be
regarded as the solid boundary of a round nosed body such as a bridge pier around which the
uniform flow is forced to pass. The contour BSB’ is called the half body, because it has only the
leading point, it trails to infinity at down stream end.

The value of stream function of the stream line passing through stagnation point S and passing over

the solid boundary (i.e., curve BSB’) is y, = %
Thus the composite flow consists of :
(1) flow over a plane half-body (i.e., flow over curve BSB’) outside y = % and
(2) source flow within the plane half-body.
The plane half-body is described by the dividing stream line, Yy = %
But the stream function at any point in the combined flow field is given by equation (5.54) as

q
=U.y+—290
v Y 27

If we take y = % in the above equation, we will get the equation of the dividing stream line.

Equation of the dividing stream line (i.e., equation of curve BSB’) will be

1=U.y+i.eory.y=1_ie:z(l_ﬁ)
2 21 2 2n 2 T

)
or y= %( —;) (5.57)

From the above equation, the main dimensions of the plane half-body may be obtained. From this
equation, it is clear that y is maximum, when 0 = 0.

Hence At 6 =0, y is maximum and y_.. = % ... the maximum ordinate

b7 q Tt 1 q . ..
AtB=—, y=—|l-—.—|=— ... the ordinate above the origin

2 2U 2 m) 4U

q n . .
AtO=m, y=—|1-—1|=0 ... the leading point of the half-body
2U T
3r

Ato= T, y=-L (1 ——) =—-2 . the ordinate below the origin.

2 2U 2n 4U

The main dimensions are shown in Fig. 5.47.
(iit) Resultant velocity at any point
The velocity components at any point in the flow field are given by

u,= la—\V=li[U.rsin6+iO}
r o0 r do 2%
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= l{U.rcosO+i}=U.cose+i
r 2% 27r

Ordinate above the origin —

Leading q Ymax ~— 2U
point iU

Plane half-body

Fig. 5.47

The above equation gives the radial velocity at any point in the flow field. This radial velocity is due

to uniform flow and due to source. Due to source the radial velocity is 2i Hence the velocity due
nr

to source diminishes with increase in radial distance from the source. At large distance from the

source the contribution of source is negligible and hence free stream uniform flow is not influenced

by the presence of source.

0 d .
Ug=— 8—Y=—$[U.rsm6+%6:|

=—[U.sin®+0]=-Usin 6 [ 219 is constant w.r. t. r:l

T
Resultant velocity, V= ,[u,z + ué

(iv) Location of stagnation point
At the stagnation point, the velocity components are zero. Hence equating the radial and tangential
velocity components to zero, we get

u,=0 or Ucos®+ -1 =0 or Ucos®=- -1
2nr 2nr
or rcos®@=-—1_ But rcos@=x
27U
=_L
2nU
When  ug=0 or -Usinf=0 or sin@=0 as U cannot be zero
or 0=0 or nBut y=rsin 0 soy=0

Hence stagnation point is at (—ﬁ, O) , the leading point of the half-body.
T
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(v) Pressure at any point in flow field
Let  p, = pressure at infinity where velocity is U
p = pressure at any point P in the flow field, where velocity is V
Now applying the Bernoulli’s equation at a point at infinity and at a point P in the flow field, we get

2 2 2 2 _
P U" _p VU VP P _PmP
pPg 2¢ pg 28 28 28 pg pg P8
The pressure co-efficient is defined as

P — Do
Cp_lpUZ
2
v? v?
_pg{i'i} oo (Ut v
lpUz . p Po pg 28 28
2
U-v? V)2
A A Y ..(5.58
- (U) (5.58)

Problem 5.39 A uniform flow with a velocity of 3 m/s is flowing over a plane source of strength
30 m*/s. The uniform flow and source flow are in the same plane. A point P is situated in the flow
field. The distance of the point P from the source is 0.5 m and it is at an angle of 30° to the uniform
flow. Determine : (i) stream function at point P, (ii) resultant velocity of flow at P and (iii) location
of stagnation point from the source.

Solution. Given : Uniform velocity, U = 3 m/s ; source strength, ¢ = 30 m?/s ; co-ordinates of

point P are r = 0.5 m and 6 = 30°.
(i) Stream function at point P
The stream function at any point in the combined flow field is given by equation (5.54A)

w:U.rsin9+i9
2r

at point P, r = 0.5 m and 0 = 30° or % X T radians.

P
r
S 30
Source
—| 1.59m |«
Fig. 5.48

Stream function at point P,

y =3 x0.5 X sin 30°+£X(£xn)
2n \180
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=0.75 + 2.5 = 3.25 m%s. Ans.

(ii) Resultant velocity at P
The velocity components anywhere in the flow are given by

loy 1 8[ q :|

=——=——|U.rsin0+-—-—=90
“r r o8 r o060 e 27

=1[U.rcose+i}=U.cose+i

r 2% 27r

o 30 o
=3 xcos30°+ —— (- At P, r=20.5,0=30° qg=30)
2w x 0.5

=2.598 + 9.55 = 12.14
_ -y

and Ug = =—i[U.rsin6+2i.6}
T

or or
=-Usin®+0=-Usin 0
=-3xsin30°=-1.5

Resultant velocity, V= ,[u,z + ué
= 12142 +(-15)° = 12.24 m/s. Ans.

(iit) Location of stagnation point

The horizontal distance of the stagnation point S from the source is given by equation (5.55) as

q 30
rg=——=—""
2rU  2mx3

The stagnation point will be at a distance of 1.59 m to the left side of the source on the x-axis.
Problem 5.40 A uniform flow with a velocity of 20 m/s is flowing over a source of strength 10 m?/s.
The uniform flow and source flow are in the same plane. Obtain the equation of the dividing stream

line and sketch the flow pattern.
Solution. Given : Uniform velocity, U = 20 m/s ; Source strength, ¢ = 10 m?/s
(i) Equation of the dividing stream line
The stream function at any point in the combined flow field is given by equation (5.54A)

= 1.59 m. Ans.

\|1=U.rsin9+ie
2r

=20><rsin9+;—09 (*+ U=20m/s and g = 10 m%/s)
T

The value of the stream function for the dividing stream line is y = % Hence substituting y = % in

the above equation, we get the equation of the dividing stream line.
4 _20rsin 0+ g
2 2r

10
or —
2

=20rsin9+£9 (- g=10)
2n
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or 5=20rsin9+£9=20y+£9 (s rsin®=y)
2r 2r
10
20y=5-—96
Y 2r
or =i—£xi= .5—i ...(0)
20 2m 20 4r

The above relation gives the equation of the dividing stream line.
From the above equation, for different values of 0 the value of y is obtained as :

Value of © Value of y from (i) Remarks
0 0.25 m Max. half width of body
g 0.125 m The +ve ordinate above the origin
T 0 The leading point
3775 —0.125 m The —ve ordinate below the origin
2n - 025 m The max. —ve ordinate

(it) Sketch of flow pattern

For sketching the flow pattern, let us first find the location of the stagnation point. The horizontal
distance of the stagnation point S from the source is given by the equation,

o q _ 10
SU2rU 2mx20

Hence the stagnation point lies on the x-axis at a distance of 0.0795 m or 79.5 mm from the source
towards left of the source. The flow pattern is shown in Fig. 5.49.

=0.0795 m

250 m

A*x

Fig. 5.49

Problem 5.41 A uniform flow with a velocity of 2 m/s is flowing over a source placed at the
origin. The stagnation point occurs at (— 0.398, 0). Determine :

(i) Strength of the source, (i) Maximum width of Rankine half-body and
(iii) Other principal dimensions of the Rankine half-body.
Solution. Given :

Uniform velocity, U=2m/s
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Co-ordinates of stagnation point = (- 0.398, 0)

This means r; = 0.398 and stagnation point lies on x-axis at a distance of 0.398 m towards left of
origin. The source is placed at origin.

(i) Strength of the source

Let g = strength of the source

We know that rg= 4
2nU
or q=2nU X ry= 21 x 2 x 0.398 = 5.0014 m%s = 5 m%s. Ans.

(ii) Maximum width of Rankine half-body
The main dimensions of the Rankine half-body are obtained from equation (5.57) as

0
y= %(1—;) (i)

The value of y is maximum, when 8 = 0.

q 0 q 5
=—|l-——|=——=——=125m
Ymax 2U( n) 2U 2x2

Maximum width of Rankine body = 2 x y,,. =2 X 1.25 = 2.5 m. Ans.
(iit) Other Principal dimensions of Rankine half-body
Using equation (5.57), we get

q 0
=4 %
Y 2U( n)
)
At 8=Z, y=-2|1-32) =i[1-l}=i= > _0625m
2 2wl n lTwl 2w e

The above value gives the upper ordinate at the origin, where source is placed.
Width of body at origin = 2 X 0.625 = 1.25 m
At the stagnation point, the width of the body is zero.

1.25m
0.625 m J

0.398 |

Origin

Stagnation (Source is placed here)

point

/

Rankine half-body
Fig. 5.50
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5.17.4 A Source and Sink Pair in a Uniform Flow (Flow Past a Rankine Oval Body).
Fig. 5.51 (a) shows a uniform flow of velocity U and Fig. 5.51 (b) shows a source sink pair of equal
strength. When this uniform flow is flowing over the source sink pair, a resultant flow will be obtained
as shown in Fig. 5.51 (c). This resultant flow is also known as the flow past a Rankine oval body.

Source Sink

— \[/M) \J/M)
$
_—

Os
%
(9]
5
=
x

| | |
(a) Uniform flow Source < a > a |
(b) Source and sink pair
yA

I Rankine Oval Body

1

- P(x,y)

! I

: l(1 r// r2 |

I // :

1
—— NG 0 !

91 é{ A ,\e 5 L >
S, 0 X
|
—_——
Uniform
flow
(c)
Fig. 5.51
Let U = Velocity of uniform flow along x-axis

q = Strength of source
(- g) = Strength of sink
2a = Distance between source and sink which is along x-axis.

The origin O of the x-y co-ordinates is mid-way between source and sink. Consider a point P(x, y)
lying in the resultant flow field. The stream function () and velocity potential function (¢) for the
resultant flow field are obtained as given below :

y = Stream function due to uniform flow + stream function due to source
+ stream function due to sink

= \Vuniform flow + \Ijsource + \Vsink
(-9)

2n
(where 0, is the angle made by P with source along x-axis and 0, with sink)

q
=Uxy+—0,+ X0
Y 2r ! 2
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g9, 49, q
=UXy+—-—==UXxy+—(0,-0
Y 2 2 Y 2r ©1-6)
=Uxrsin 0+ % (6, - 6,) (-~ y=rsin ) ..(5.59)
and ¢ = potential function due to uniform flow + potential function due to

source + potential function due to sink

= q)uniform flow + q)source + q)sink

q )
=Uxx+ ey log,r + . log,r,
=UXrcos 0+ 21 [log,r, — log,r,] (v x=rcos0)
T
=UXrcos 0+ 4 log,_,r—1 ...(5.60)
2n r

The following are the important points for the resultant flow pattern :

(a) There will be two stagnation points S, and S,, one to the left of the source and other to the right
of the sink. At the stagnation points, the resultant velocity (i.e., velocity due to uniform flow, velocity
due to source and velocity due to sink) will be zero. The stagnation point S, is to the left of the source
and stagnation point S, will be to the right of the sink on the x-axis.

Let xg = Distance of the stagnation points from origin O along x-axis.

Let us calculate this distance xg.

For the stagnation point §,

(i) Velocity due to uniform flow = U

. : : =41
(ii) Velocity due to source = q . The velocity at any radius due to source = T
21 (x5 - a) For S, the radius from source = (xs — a)
(iii) Velocity due to sink = _~9 ['» AtS,, the radius from sink = (x5 + a)]
21 (x5 +a)

At point §,, the velocity due to uniform flow is in the positive x-direction whereas due to source and
sink are in the —ve x-direction.

g (-9

Th ltant velocity at §; = U -
e resultant velocity at S, 2n(xg—a) 2m(xs+a)

But the resultant velocity at stagnation point S; should be zero.

q q
U- =0
21t(xs—a)+21t(xs+a)

or U= 4 - 4

2n(xg—a) 2m(xg+a)
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=i{ 1 1 }=i{(xs+a)_(xs_a)}=i 2a
2n | (xs—a) (xg+a)| 2n| (xg—a)(xg+a) | 2m (xé_az)

or 2ogp=42
U
or x§=a2+ﬂ=a2[1+—q }
U nalU
q
Xe=a 1+ ...(5.61
5 ( naU) ( )

The above equation gives the location of the stagnation point on the x-axis.

(b) The stream line passing through the stagnation points is having zero velocity and hence can be
replaced by a solid body. This solid body is having a shape of oval as shown in Fig. 5.51. There will
be two flow fields, one within the oval contour and the other outside the solid body. The flow field
within the oval contour will be due to source and sink whereas the flow field outside the body will be
due to uniform flow only.

The shape of solid body is obtained from the stream line having stream function equal to zero. But
the stream function is given by equation as

: q
=UXrsin+—(6,-0
v o (08,-96y)
For the shape of solid body,y = 0

O=ersin9+%(91—92)

or ersinB:—%(Gl—%):%(92—91)
0, -0
,=i(_2 ) ..(5.62)
21 U sin 0

From the above equation, the distances of the surface of the solid body from the origin can be
obtained or the shape of the solid body can be obtained. The maximum width of the body (y,,,,) will
be equal to OM as shown in Fig. 5.52.

Fig. 5.52
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From triangle AOM, we have

oM
tan 9, = —
AO
or OM =AOQO tan 8, = a tan 9,
or Vmax = @ tan 9, ¢ OM =y, -..(5.63)
Let us find the value of 6,.
When the point P lies on M, then r = OM, = 90° = g
and 6,=180°-0, =7 -6, [Refer to Fig. 5.52]
[~ AM=BM .. Angle ABM = Angle BAM = 0,]

Substituting these values in equation (5.62), we get

q ((7“91)‘91) q (m-26,)

OM=— — =
2T ysin T 2w U
2
q(n-26,)
or Vmax = Tul [where OM = y, ]
2
or 2rUy s = q(m — 20)) or 210 _ - 26,
q
or 291=n—% or 91=£_%
q 2 q
Substituting this value of 0, in equation (5.63), we get
Vimax = @ tan [E - %} = a cot [%} ..(5.64)
2 q q

From the above equation, the value of y,., is obtained by hit and trial method till L.H.S. =R.H.S.In

this equation (%J is in radians.
q
The length and width of the Rankine oval is obtained as :
Length, L=2xuxg
=2xa (1+ d ) v xg=a (1+L) .(5.65)
Tal Tal
and Width, B =2 X Ymax
= 2a cot (%J .(5.66)
q

Problem 5.42 A uniform flow of velocity 6 m/s is flowing along x-axis over a source and a sink
which are situated along x-axis. The strength of source and sink is 15 m?/s and they are at a distance
of 1.5 m apart. Determine :
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(i) Location of stagnation points, (ii) Length and width of the Rankine oval
(iii) Equation of profile of the Rankine body.
Solution. Given : Uniform flow velocity, U = 6 m/s

Strength of source and sink, q=15 m?/s
Distance between source and sink, 2a=15m
a= H =0.75m
2

(i) Location of stagnation points (Refer to Fig. 5.51)
For finding the location of the stagnation points, the equation (5.61) is used.

x,=a (1+ ) ):0.75 1+— o 1076m
alU X 0.75%6

The above equation gives the distance of the stagnation points from the origin. There will be two
stagnation points.

The distance of stagnation points from the source and sink = x;,— a = 1.076 — 0.75 = 0.326 m. Ans.

(i) Length and width of the Rankine oval

Length, L=2xx,=2x1.076 =2.152 m.

Width, B =2 Xy, (D)

Let us now find the value of y_..

Using equation (5.64), we get

X 6 X
Ymax = @ €Ot (%J =0.75 cot (%} =0.75 cot (0.47 y,;,,)
q

=0.75 cot (0.411', ¥ max x@)
T

1
[ (0.47 y,., ) is in radians and hence (047 y, .. ) X 180 il be in degrees}
T

=0.75 cot (72 X y11a)°
The above equation will be solved by hit and trial method. The value of x; = 1.076. But x is equal
to length of major axis of Rankine body and y,,, is the length of minor axis of the Rankine body. The
length of minor axis will be less than length of major axis. Let us first assume y_,. = 0.8 m. Then

Vinax L.H.S. R.H.S.

0.8 0.8 0.75 cot (72 x 0.8)° = 0.75 cot 51.6° = 0.475

0.7 0.7 0.75 cot (72 x 0.7)° = 0.75 cot 50.4° = 0.577

0.6 0.6 0.75 cot (72 x 0.6)° = 0.75 cot 43.2° = 0.798

0.65 0.65 0.75 cot (72 x 0.65)° = 0.75 cot 46.8° = 0.704

0.67 0.67 0.75 cot (72 x 0.67)° = 0.75 cot 48.24° = 0.669 = 0.67
From above it is clear that, when y_ . = 0.67, then L.H.S. = R.H.S.

Ymax = 0.67 m

Substituting this value in equation (i), we get
Width, B=2 X y,.. =2 X 0.67 = 1.34 m. Ans.
(iit) Equation of profile of the Rankine body
The equation of profile of the Rankine body is given by equation (5.62) as
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r= $(92_91)=1_5(92_91) _ 0.398(0, - 6,)
2r Usin® 21 6Xsin0 sin 0

5.17.5 A Doublet in a Uniform Flow (Flow Past a Circular Cylinder). Fig. 5.53 (a)
shows a uniform flow of velocity U in the positive x-direction and Fig. 5.53 (b) shows a doublet at the
origin. Doublet is a special case of a source and a sink combination in which both of equal strength
approach each other such that distance between them tends to be zero. When the uniform flow is
flowing over the doublet, a resultant flow will be obtained as shown in Fig. 5.53 (c). This resultant
flow is known as the flow past a Rankine oval of equal axes or flow past a circular cylinder.

. Ans.

(a) Uniform flow

(b) Doublet

Potential lines Stream lines

R P
—>

X
y=0 iy e s, B v=e
S, S,
—_—
(c)
Fig. 5.53

The stream function (y) and velocity potential function (¢) for the resultant flow is obtained as
given below :

\ = stream function due to uniform flow + stream function due to doublet

=UXy+ (isine)
2mr

[Stream function due to doublet is given by equation (5.50) as = — 2L sin 9]
r
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=er><sin9—Lsin9 ('~ y=rsin0)
2xr
= (UXr—L) sin 0 .(5.67)
2nr
and ¢ = Potential function due to uniform flow + potential function due to doublet
=UXx+ L><—Cose
27 r
[From equation (5.52), potential function due to doublet = 2i « C0s6 ]
T r
=U><rcose+i><Cose (- x=rcos 0)
27 r
= (waL) cos 0 .(5.68)
2nr

Shape of Rankine oval of equal axes

To get the profile of the Rankine oval of equal axes, the stream line \ is taken as zero. Hence
substituting ¥ = 0 in equation (5.67), we get

0= (er—L) sin 6
21r

This means either sin6=0 or UXr- Mo 0
27nr

(i) If sin 6 = 0, then 8 = 0 and * T i.e., a horizontal line through the origin of the doublet. This
horizontal line is the x-axis.

@) If Uxr— =0, thenUxr=-"orr?=_H_
2nr 2nr 2rU
or r= JL = a constant as |l and U are constant.
2nU

Let this constant is equal to R.

r= J_ll =R
2rU

This gives that the closed body profile is a circular cylinder of radius R with centre on doublet. The
dividing stream line corresponds to Y = 0. This stream line is a circle of radius R. The stream line y = 0 has
two stagnation points S, and S,. At S, the uniform flow splits into two streams that flow along the

circle with radius R = J% , the two branches meet again at the stagnation point S, and the flow
n

continues in the downward direction. The uniform flow occurs outside the circle whereas the flow
field due to doublet lies entirely within the circle. The stream function for the composite flow is given
by equation (5.67) as
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n . 18 .
= |UXr- = —_
v ( r o )sm 0=U (r 21l:Ur) sin 6

2
=U (r—R—] sin 0 ( M RZJ .(5.69)
r

Velocity Components (u, and ug)
The velocity components at any point in the flow field are given by,

2 2
u,:la_W:li U r—R— sin 0 =1U r—R— cos 0
r do r do r r r

R2
=U|l-—5|cosB ...(5.70)
r
2 2
and up= - o2yl B gne|==v 1+2 |sine
or or r r
R2
=- U(1+—2] sin 0 .(5.71)
r
Resultant velocity, V= ul +ul ..(5.72)
On the surface of the cylinder, r = R
R2
u,=U I—F cos 0 [~ In equation (5.70), r = R]
=0
R2
and ug=-U {“F} sin @ =—2U sin 0 .(5.73)

—ve sign shows the clockwise direction of tangential velocity at that point. The value of uq is
maximum, when 8 = 90° and 270°.

At 0 = 0° or 180°, the value of ug = 0. Hence on the surface of the cylinder, the resultant velocity
is zero, when 8 = 0° or 180°. These two points on the surface of cylinder [i.e., at 8 = 0° and 180°]
where resultant velocity is zero, are known as stagnation points. They are denoted by S, and S,.
Stagnation point S, corresponds to 8 = 180° and S, corresponds to 8 = 0°.

Pressure distribution on the surface of the cylinder

Let Do = pressure at a point in the uniform flow far away from the cylinder and towards the
left of the cylinder [i.e., approaching uniform flow]
U = velocity of uniform flow at that point
p = pressure at a point on the surface of the cylinder
V = resultant velocity at that point on the surface of the cylinder. This velocity is equal to
Ug as u, is zero on the surface of the cylinder.
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. V=ug=-2Usin 6
Applying Bernoulli’s equation at the above two points,
2 2
P U _ PV
pg 28 pg 28

pe  U? =£+[—2Usin9]2

or —+— [+ V=ug=-2U sin 0]
pg 2g Pg 2g 0
2 2 .2
or &.FU_ - £+w
P2 p 2
_ 2 2 2
or M=U__w=l U? (1 - 4 sin’ 0)
P 2 2 2
or ll)_p°=1—4sin29
—pU?
> P
But 11) ~ Po is a dimensionless term and is known as dimensionless pressure co-efficient and is
_pU2
2
denoted by C,.
C,=E =1-4sin’e
_pU2
2
Value of pressure co-efficient for different values of 0
Value of 6 Value of C,
0 1-4sin”9 =1-0=1
2
30° 1 — 4 sin* 30° = -4><(1) -4 o110
2 4
90° 1-4sin290°=1-4x1=1-4=-3
150° 1—4sin2150°=1—4><%=1—1=0
180° 1-4sin”180°=1-0=1

At 0= 0 and 180°, there are stagnation points S, and S, respectively.

At 6= 30° and 150°, the pressure co-efficient is zero.

At 0= 90°, the pressure co-efficient is — 3 (i.e., least pressure)

The variation of pressure co-efficient along the surface of the cylinder for different values of 0 are
shown in Fig. 5.54.
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The positive pressure is acting normal to the surface and towards the surface of the cylinder
whereas the negative pressure is acting normal to the surface and away from the surface of the

cylinder as shown in Fig. 5.55.

LN §

0° 30° 60° | 90° | 120° 150° 180°
>0

Fig. 5.54

-ve
pressure

U +ve
pressure

Fig. 5.55

Problem 5.43 A uniform flow of 12 m/s is flowing over a doublet of strength 18 m*/s. The doublet
is in the line of the uniform flow. Determine :
(i) shape of the Rankine oval (ii) radius of the Rankine circle
(iii) value of stream line function at Rankine circle
(iv) resultant velocity at a point on the Rankine circle at an angle of 30° from x-axis
(v) value of maximum velocity on the Rankine circle and location of the point where velocity is max.
Solution. Given : U=12m/s; u=18 m%s

(i) Shape of the Rankine oval
When a uniform flow is flowing over a doublet and doublet and uniform flow are in line, then the

shape of the Rankine oval will be a circle of radius = ‘/MLU . Ans.
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(ii) Radius of the Rankine circle

R=r=\/ B 18 0488 m. Ans.
2rU 2t x 12

(iit) Value of stream line function at the Rankine circle
The value of stream line function (y) at the Rankine circle is zero i.e., y = 0.
(iv) Resultant velocity on the surface of the circle, when 6 = 30°
On the surface of the cylinder, the radial velocity (u,) is zero. The tangential velocity (ug) is given
by equation (5.73) as
Ug=—2U sin 6 = — 2 x 12 x sin 30° = — 12 m/s. Ans.

—ve sign shows the clockwise direction of tangential velocity at that point.

Resultant velocity, V= ful +ug =40° + (—12)2 = 12 m/s. Ans.

(v) Maximum velocity and its location
The resultant velocity at any point on the surface of the cylinder is equal to ug. But ug4 is given by,

ug=-2U sin 6
This velocity will be maximum, when 6 = 90°.
Max. velocity =-2U=-2x%12=-24 m/s. Ans.

Problem 5.44 A uniform flow of 10 m/s is flowing over a doublet of strength 15 m*/s. The doublet
is in the line of the uniform flow. The polar co-ordinates of a point P in the flow field are 0.9 m and 30°.
Find : (i) stream line function and (ii) the resultant velocity at the point.

Solution. Given: U=10m/s; w = 15m%s; r = 0.9 m and 6 = 30°.

Let us first find the radius (R) of the Rankine circle. This is given by

R=\/'l _ 15 oasgm
21U \2mx10

The polar co-ordinates of the point P are 0.9 m and 30°.
Hence r=0.9 m and 6 = 30°.
As the value of r is more than the radius of the Rankine circle, hence point P lies outside the
cylinder.
(i) Value of stream line function at the point P
The stream line function for the composite flow at any point is given by equation (5.69) as
P(0.9 m, 30°)
P

- (e
R 4

Fig. 5.56
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2
v = U(r—R—] sin 6

r

0.488>

10 (0.9 - J sin 30°(*- r= 0.9 m, R = 0.488 and 0 = 30°)

10(0.9 - 0.2646) x % = 3.177 m%/s. Ans.

(i) Resultant velocity at the point P
The radial velocity and tangential velocity at any point in the flow field are given by equations (5.70)
and (5.71) respectively.

2 4 2
u,=U (I—R—ZJ cos 0 =10 (I—OO§§ J cos 30° = 611 m/s
r .

+ve sign shows the radial velocity is outward.

2 4 2
and ug=-U (1+R—2] sin® =-10 (1+OO§§ J sin 30° = — 6.47 m/s
r .

—ve sign shows the clockwise direction of tangential velocity.

Resultant velocity,
V= ,/urz + ug
= J6.112 +(-647) =.,3733+44.86

= 8.89 m/s. Ans.

HIGHLIGHTS

1. If the fluid characteristics like velocity, pressure, density etc. do not change at a point with respect to
time, the fluid flow is called steady flow. If they change w.r.t. time, the fluid flow is called unsteady
flow.

v

Or (5) = 0 for steady flow and (%) # 0 for unsteady flow.

2. If the velocity in a fluid flow does not change with respect to space (length of direction of flow), the
flow is said uniform otherwise non-uniform. Thus,
ov

[a—) = (O for uniform flow and (?) # 0 for non-uniform flow.
s s

3. If the Reynolds number in a pipe is less than 2000, the flow is said to be laminar and if Reynold number
is more than 4000, the flow is said to be turbulent.

4. For compressible flow, p # constant
For incompressible flow, p = constant.

5. Rate of discharge for incompressible fluid (liquid), Q = A X v.

6. Continuity equation is written as A, v, = Ay, = Asv,.
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T

8.

10.

11.

12.

13°

14.

15.

16.

17

Continuity equation in differential form,

a_u+ @+ a_w = 0 for three-dimensional flow
ox dy oz
a_u+ i = (0 for two-dimensional flow.
ox dy

The components of acceleration in x, y and z direction are

ou ou ou du

. V—t+Ww—+—

’ ox ay dz ot
ov ’ v i v . v

Y ox  dy dz ot
ow ow ow ow

as V—+w—+—.

ox dy dz ot

The components of velocity in x, y and z direction in terms of velocity potential (¢) are

u =—a—¢,v=—a—¢ andw:—a—q).
ox dy 0z
The stream function (y) is defined only for two-dimensional flow. The velocity components in x and
y directions in terms of stream function are u = — 8_\|I and v = 3_\|1
ly X

Angular deformation or shear strain rate is given as

. 1|dv du
Shear strain rate = —| — + —
2|0dx Oy

Rotational components of a fluid particle are

o oLl _duf - _1low ov .m_i{a_u_a_q
T 2lox dy|l Y 2|9y 9z| Y 2|0z ox

Vorticity is two times the value of rotation.
Flow of a fluid along a curved path is known as vortex flow. If the particles are moving round in curved
path with the help of some external torque the flow is called forced vortex flow. And if no external
torque is required to rotate the fluid particles, the flow is called free-vortex flow.
The relation between tangential velocity and radius :

for forced vortex, v =wXxr,

for free vortex, v X r = constant.

2

v
The pressure variation along the radial direction for vortex flow along a horizontal plane, a—p= p—
r r
o . op
and pressure variation in the vertical plane —— = — pg.
Z

2 2.2 252
For the forced vortex flow, Z = y_or_o R
28 2 28
where Z = height of paraboloid formed
® = angular velocity.
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11.

For a forced vortex flow in a open tank.

Fall of liquid level at centre = Rise of liquid level at the ends.

In case of closed cylinder, the volume of air before rotation is equal to the volume of air after rotation.
If a close cylindrical vessel completely filled with water is rotated about its vertical axis, the total
pressure forces acting on the top and bottom are

Fr= P o'nR’
4

and Fg = F + weight of water in cylinder
where F ;= Pressure force on top of cylinder
Fy = Pressure force on the bottom of cylinder
® = Angular velocity
R = Radius of the vessel

w
p = Density of fluid = —.
8

2 2
For a free vortex flow the equation is B 3= B 25 g Z.
Pg 28 pg 28

EXERCISE

(A) THEORETICAL PROBLEMS

What are the methods of describing fluid flow ?
Explain the terms :
() Path line, (ii) Streak line,
(iii) Stream line, and (iv) Stream tube.
Distinguish between :
(i) Steady flow and un-steady flow, (i) Uniform and non-uniform flow,
(iif) Compressible and incompressible flow,
(iv) Rotational and irrotational flow, (v) Laminar and turbulent flow.
Define the following and give one practical example for each :

(1) Laminar flow, (ii) Turbulent flow,

(iit) Steady flow, and (iv) Uniform flow.

Define the equation of continuity. Obtain an expression for continuity equation for a three-dimensional
flow. (R.G.P.V, S 2002)
What do you understand by the terms : (i) Total acceleration, (if) Convective acceleration, and
(iti) Local acceleration ? (Delhi University, Dec. 2002)
(a) Define the terms :

(i) Velocity potential function, and (it) Stream function.

(b) What are the conditions for flow to be irrotational ?
What do you mean by equipotential line and a line of constant stream function ?
(a) Describe the use and limitations of the flow nets.
(b) Under what conditions can one draw flow net ?
Define the terms :
(i) Vortex flow, (ii) Forced vortex flow, and  (iii) Free vortex flow.
Differentiate between forced vortex and free vortex flow.
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14.

15.
16.
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22.
23.

24.

Derive an expression for the depth of paraboloid formed by the surface of a liquid contained in a
cylindrical tank which is rotated at a constant angular velocity ® about its vertical axis.
Derive an expression for the difference of pressure between two points in a free vortex flow. Does the
difference of pressure satisfy Bernoulli’s equation ? Can Bernoulli’s equation be applied to a forced
vortex flow ?
Derive, from first principles, the condition for irrotational flow. Prove that, for potential flow, both the
stream function and velocity potential function satisfy the Laplace equation.
Define velocity potential function and stream function.
Under what conditions can one treat real fluid flow as irrotational (as an approximation).
Define the following :

(i) Steady flow, (ii) Non-uniform flow,
(iii) Laminar flow, and (iv) Two-dimensional flow.
(a) Distinguish between rotational flow and irrotational flow. Give one example of each
(b) Cite two examples of unsteady, non-uniform flow. How can the unsteady flow be transformed to
steady flow ? (J.N.T. University, S 2002)
Explain uniform flow with source and sink. Obtain expressions for stream and velocity potential
functions.
A point source is a point where an incompressible fluid is imagined to be created and sent out evenly
in all directions. Determine its velocity potential and stream function.
(i) Explain doublet and define the strength of the doublet
(ii) Distinguish between a source and a sink.
Sketch the flow pattern of an ideal fluid flow past a cylinder with circulation.
Show that in case of forced vortex flow, the rise of liquid level at the ends is equal to the fall of liquid
level at the axis of rotation.
Differentiate between :

(i) Stream function and velocity potential function

(ii) Stream line and streak line and
(iii) Rotational and irrotational flows.

(B) NUMERICAL PROBLEMS

The diameters of a pipe at the sections 1 and 2 are 15 cm and 20 cm respectively. Find the discharge
through the pipe if velocity of water at section 1 is 4 m/s. Determine also the velocity at section 2.

[Ans. 0.07068 m3/s, 2.25 m/s]
A 40 cm diameter pipe, conveying water, branches into two pipes of diameters 30 cm and 20 cm
respectively. If the average velocity in the 40 cm diameter pipe is 3 m/s. Find the discharge in this pipe.
Also determine the velocity in 20 cm pipe if the average velocity in 30 cm diameter pipe is 2 m/s.

[Ans. 0.3769 m’/s, 7.5 m/s]

A 30 cm diameter pipe carries oil of sp. gr. 0.8 at a velocity of 2 m/s. At another section the diameter is
20 cm. Find the velocity at this section and also mass rate of flow of oil. [Ans. 4.5 m/s, 113 kg/s]
The velocity vector in a fluid flow is given by V= 2x°% — szyj + 4k.
Find the velocity and acceleration of a fluid particle at (1, 2, 3) at time, = 1.

[Ans. 10.95 units, 16.12 units]
The following cases represent the two velocity components, determine the third component of velocity
such that they satisfy the continuity equation :
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18.

() u=4x’,v= 4xyz (i) u = 4x> + 3xy, w= - 4xy —2yz.
2
[Ans. @Hyw=-8xz— 2x7% +f(x,y) (@Hv=-—8xy-— y7 + 3yz2 +f(x, z)]

Calculate the unknown velocity components so that they satisfy the following equations :
() u= 22, v= 2xyz, w=1? (iu= 23 + 2xy, w= 2 —4xz+ 2yz,v="? [Ans. () w=— 1xz— x4
. c 2. 2. ( 2 22 3 )

A fluid flow is given by : V= xy“i—2yz7j— | zy 3 k.

Prove that it is a case of possible steady incompressible fluid flow.

Calculate the velocity and acceleration at the point [1, 2, 3]. [Ans. 36.7 units, 874.50 units]

Find the convective acceleration at the middle of a pipe which converges uniformly from 0.6 m diameter

to 0.3 m diameter over 3 m length. The rate of flow is 40 lit/s. If the rate of flow changes uniformly from

40 lit/s to 80 lit/s in 40 seconds, find the total acceleration at the middle of the pipe at 20th second.
[Ans. .0499 m/s” ; .11874 m/s*)

The velocity potential function, ¢, is given by ¢ = X - yz. Find the velocity components in x and y

direction. Also show that ¢ represents a possible case of fluid flow. [Ans. u = 2x and v =— 2y]

For the velocity potential function, ¢ = - y2, find the velocity components at the point (4, 5).

[Ans. u =8, v=— 10 units]

A stream function is given by : y = 2x — 5y. Calculate the velocity components and also magnitude and

direction of the resultant velocity at any point. [Ans. # =5, v = 2, Resultant = 5.384 and 6 = 21° 48’]

If for a two-dimensional potential flow, the velocity potential is given by : ¢ = 4x(3y — 4), determine the

velocity at the point (2, 3). Determine also the value of stream function y at the point (2, 3).

[Ans. 40 units, \|!=6x2—4 (% y2 —4y),— 18}

The stream function for a two-dimensional flow is given by y = 8xy, calculate the velocity at the point

p(4, 5). Find the velocity potential function 6. [Ans. # = — 32 units, v = 40 units, ¢ = 4y2 — 4x7]

Sketch the stream lines represented by y = xy. Also find out the velocity and its direction at point (2, 3).
[Ans. 3.60 units and 6 = 56° 18.6” or 123° 42’]

For the velocity components given as : # = ay sin xy, v = ax sin xy.

Obtain an expression for the velocity potential function. [Ans. ¢ = a cos xy]

A fluid flow is given by : V= 10x% — 8x3yj.

Find the shear strain rate and state whether the flow is rotational or irrotational. [Ans. — 8xy, rotational]

The velocity components in a two-dimensional flow are :

u =8Jc2y—§y3 and v=—8xy3+%x3.

Show that these velocity components represent a possible case of an irrotational flow.

Ans. B_u+ﬂ=0’ ®, =0
ox dy

An open circular cylinder of 20 cm diameter and 100 cm long contains water upto a height of 80 cm. It

is rotated about its vertical axis. Find the speed of rotation when :

(i) no water spills, (i7) axial depth is zero. [Ans. (i) 267.51 r.p.m., (if) 422.98 r.p.m.]

A cylindrical vessel 15 cm in diameter and 40 cm long is completely filled with water. The vessel is open

at the top. Find the quantity of water left in the vessel, when it is rotated about its vertical axis with a
speed of 300 r.p.m. [Ans. 4566.3 cm?]



Kinematics of Flow and Ideal Flow 257

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

An open circular cylinder of 20 cm diameter and 120 cm long contains water upto a height of 80 cm. It
is rotated about its vertical axis at 400 r.p.m. Find the difference in total pressure force (i) at the bottom
of the cylinder, and (i) at the sides of the cylinder due to rotation.  [Ans. (i) 14.52 N, (ii) 2465.45 N]
A closed cylindrical vessel of diameter 15 cm and length 100 cm contains water upto a height of 80 cm.
The vessel is rotated at a speed of 500 r.p.m. about its vertical axis. Find the height of paraboloid
formed. [Ans. 56.06 cm]
For the data given in question 20, find the speed of rotation of the vessel, when axial depth is zero.
[Ans.891.7r.p.m.]
If the cylindrical vessel of question 20, is rotated at 950 r.p.m. about its vertical axis, find the area
uncovered at the base of the tank. [Ans. 20.4 cmz]
A closed cylindrical vessel of diameter 20 cm and height 100 cm contains water upto a height of 70 cm. The
air above the water surface is at a pressure of 78.48 KN/m?. The vessel is rotated at a speed of 300 r.p.m.
about its vertical axis. Find the pressure head at the bottom of the vessel ; (a) at the centre, and (b) at
the edge. [Ans. (a) 8.4485 m (b) 8.9515m]
A closed cylinder of diameter 30 cm and height 20 cm is completely filled with water. Calculate the total
pressure force exerted by water on the top and bottom of the cylinder, if it is rotated about its vertical
axis at 300 r.p.m. [Ans. F;=3924 N, Fg=531N]
In a free cylindrical vortex flow of water, at a point at a radius of 150 mm the velocity and pressure are
5 m/s and 14.715 N/cm?. Find the pressure at a radius of 300 mm. [Ans. 15.65 N/cmz]
Do the following velocity components represent physically possible flows ?
u=x*+72+ 5, v= y2 + zz, w=4xyz. [Ans. No.]
State if the flow represented by u = 3x + 4y and v = 2x — 3y is rotational or irrotational. [Ans. Rotational]
A vessel, cylindrical in shape and closed at the top and bottom, contains water upto a height of
700 mm. The diameter of the vessel is 200 mm and length of vessel is 1.1 m. Find the speed of
rotation of the vessel if the axial depth of water is zero.
Define rotational and irrotational flow. The stream function and velocity potential for a flow are given
by :
v = 2xy, ¢=x2—y2.
Show that the conditions of continuity and irrotational flow are satisfied.
For the steady incompressible flow, are the following values of u# and v possible ?
() u=4xy+ y2, v=6xy + 3x and (ii) u= 22 + yz, v=—4xy. [Ans. (i) No, (if) Yes]
Define two-dimensional stream function and velocity potential. Show that following stream function :
Y=6x—4y+Txy+9
represents an irrotational flow. Find its velocity potential. [Ans. 0 =4x+ 6y— 3.5¢% + 3.5y2 + C]
Check if ¢ = X - y2 + y represents the velocity potential for 2-dimensional irrotational flow. If it does,
then determine the stream function . [Ans. Yes, y = — 2xy + x]
If stream function for steady flow is given by y = (y2 - xz), determine whether the flow is rotational or
irrotational. Then determine the velocity potential ¢. [Ans. Irrotational, ¢ = — 2xy + C]
A pipe (1) 450 mm in diameter branches into two pipes (2) and (3) of diameters 300 mm and 200 mm
respectively as shown in Fig. 5.57. If the average velocity in 450 mm diameter pipe is 3 m/s, find :
(7) discharge through 450 mm dia. pipe and (ii) velocity in 200 mm diameter pipe if the average
velocity in 300 mm pipe is 2.5 m/s. (J.N.T.U., Hyderabad, S 2002)
[Hint. Given : d,; =450mm=0.45m,d,=300mm=0.3m
dy;=200mm=02m,V,=3m/s, V,=2.5m/s
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@

(i)
But
Also

0,=AV, = % (0.45%) x 3 = 0.477 m’s.

8
—
d4=450 mm
\d
3 :200

Fig. 5.57

0,=A4,V,= % (3% x2.5=0.176 m’/s
0,=0,+0;, - 0;=0,—0,=0477-0.176=0.301
0, =A%V, = % 025)x V;

0.301
Vy=— % = 9.6 m/s.]
T (0.22) 0.0314

4




