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Abstract. Many agricultural sectors evaluate what advancements can be 
incorporated into their businesses to offer management support as 
technology keeps developing and advancing. This is especially essential to 
the wine business, as climate change and fluctuating atmospheric conditions, 

compacted seasons, drought, heat, labour shortages, and increasing 
production costs are all posing challenges to farmers in various parts of the 
world. This article aims to highlight different applications of viticulture 
based on digital techniques. The research will evaluate how these techniques 
offer opportunities for winemakers in response to increased environmental 
problems. The application of various proximal and remote sensing 
technologies has enhanced the knowledge of vineyard variation regarding 
geographical disparities and sequential dynamics and the underlying reasons 
for such variation. The study shows how knowing this information allows 
winemakers to use ideas more effectively through specific applications and 
harvest fruit packages strategically based on yield and/or fruit quality 

requirements and product requirements. Reduced input costs, higher 
efficiencies, and a better end product are all economic benefits of each of 
these outcomes. Since smart sensing techniques have an immense 
opportunity for producers at all stages, their implementation and regular use 
will be centered on accessible operating system and devices and the cost of 
integrating decision-support systems on a field scale. Data rights and 
security, especially when data is obtained through third parties, is a problem 
that must be addressed in the coming years to enable the widespread 
adoption of such technology. 

1 Introduction 

Many agricultural sectors evaluate what advancements can be incorporated into their 

businesses to offer management support as technology keeps developing and advancing 

(Fountas, Espejo-García, Kasimati, Mylonas, & Darra, 2020). This is especially essential to 

the wine business, as climate change and fluctuating atmospheric conditions, compacted 

seasons, drought, heat, labour shortages, and increasing production costs are all posing 

challenges to farmers in various parts of the world (Koufos, Mavromatis, Koundouras, & 
Jones, 2020; Soar, Sadras, & Petrie, 2008). As a result, there is a growing need to analyze 
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vineyard management approaches by regularly monitoring biophysical factors and grapevine 

performance. A set of technology is now accessible that allows winemakers to access and use 

precise data and information about their vineyards as a basis for making the best decisions 

possible in terms of keeping productive while also remaining environmentally and financially 

viable. This toolkit includes remote and proximal sensing technologies, GPS, GIS, 

geostatistics, AI, and DSS. Precision or digital viticulture are often used in the viticulture 

industry to denote the wise development and deployment of such techniques (Ammoniaci, 

Kartsiotis, Perria, & Storchi, 2021). 
In wine grape production systems, non-invasive sensing techniques like as spectroscopy, 

MSI, HSI, Chl fluorescence, thermography, ER, LiDAR, and CV can be used to collect 

essential data about the vineyard and the plants growing within it (Fountas, Mylonas, et al., 

2020). They can be utilized as transportable sensors or installed on or integrated into ground-

based platforms including piloted vehicles, automated robotic systems, and machinery, as 

well as aerial platforms like satellites, light aircraft, and UAVs or drones (Matese & Di 

Gennaro, 2018; Matese et al., 2015). Moreover, the broad availability of cellphones and 

"apps" has revolutionized the way producers can access and measure vine performance and 
fruit qualities in the vineyard. Many vineyard operations will likely be mechanized in the 

future thanks to the employment of specially built robotic devices with non-invasive sensing 

technology (Matese et al., 2015; Suarez et al., 2021). 

Grape producers can track change in vine parameters such as canopy size (Sanz et al., 

2018), as well as water (Gutiérrez, Diago, Fernández-Novales, & Tardaguila, 2018) and 

nutritional status (Diago et al., 2016), yield (Aquino, Millan, Diago, & Tardaguila, 2018), 

grape composition (Gutiérrez, Tardáguila, Fernández‐Novales, & Diago, 2019), and disease 

infection (Mahlein et al., 2019) using these spatially enabled digital technologies. The 
potential to trace the geographical distribution in the vine, soil and geographical aspects 

across vineyards also allows wine makers to more efficiently apply inputs like fertilizers, 

sprays, and irrigation water through targeted applications, as well as harvest fruit parcels 

selectively according to different yield and/or fruit quality standards and product 

specifications (Bramley, Ouzman, & Trought, 2020). 

The purpose of this article is to highlight different applications of viticulture based on 

digital techniques, either locally available or under process. The research will evaluate how 

these techniques offer opportunities for grape production and winemakers in response to 
increased environmental problems, including alterations in climatic and soil conditions. The 

goal is to enhance the working capacity of the procedures involved in winemaking and reduce 

production costs. The research will also highlight the operation of different sensing 

techniques and the possible implication of artificial intelligence in viticulture. 

2 Methods 

The present and future implementation of sensing techniques in viticulture are deliberated in 

terms of soil characteristics and quality, biomass yield, canopy architecture, nutrient and 
water status, pests and diseases, agricultural prediction, yield and fruit composition, vineyard 

sampling, targeted management, and selective harvesting. Table 1 summarizes the main 

opportunities and challenges of these technologies in viticulture. 

Table 1. Present and future implementation of sensing technologies in viticulture 

Vinicultural 

application 

Key opportunities Key challenges 

Evaluation of soil 

characteristics and 

quality 

• Retain soil quality and 

prevent soil pollution  

•Implementation of low-cost 

DSM technique  

• Temporal precision  
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• Properly detect and track soil 
variation at a lower cost  

• Evaluate Soil organic carbon 

(SOC) and soil total nitrogen 

(STN) accumulation and 

dynamical variations 

• Time frequency of data  
• Accurate temporal 

distribution prediction 

Foliage architecture, 

vegetative 

development, and 
nutritional state 

• Enhance fruit microclimate 

by enhanced canopy 

management procedures 
• Minimize input costs (e.g. 

fertilizer, fungicides, water) 

• Create diagnostic tools that 

are physiologically aligned 

•High variation within 

vineyard development    

• Dense canopies  
• Canopy separation  

• Artificial intelligence 

restrictions 

Identification and 

management of pests 

and diseases 

• Enhance pest and disease 

monitoring and management  

• Offer early warnings 

regarding pest and disease 

problems  
• Limit the usage of 

insecticides and pesticides 

• Inadequate equipment to 

examine the whole canopy and 

provide therapy right away (if 

required) 

• Symptoms that are similar 
among infections and/or 

illnesses 

Vine water status  • Recognize the signs and 

symptoms of water stress  

• Increase the effectiveness 

with which water is used  

• Conserve energy 

• Establishing stress 

thresholds at various degrees 

of stress  

• Observing frequency over 

time 

Crop predictions and 

yield attributes 

• Enhance winery logistics and 

lower risks and expenses 
associated with wine 

production 

• Identifying the relevant 

clusters  
• High variance 

• Obstruction issues 

Fruit composition and 

qualities  

• Have a better knowledge of 

the composition of fruits before 

harvesting 

• Data resulting mainly from 

the skin rather than the pulp  

• Includes only a few fruit 

chemicals  

• Fruit must be apparent 

Sample selection from 

vineyards  

• Make all vineyard sample 

tasks more accurate (e.g. 
maturity, yield, nutrition) 

• Field testing and huge 

datasets are still required 

Targeted management  • Achieve sustainable 

assessment while reducing 

expenses through smart input 

application on the go 

• Needs floating rate 

application technique 

• Environmental impact 

standards must be devised 

Careful harvesting  • Increase the quality of wine 

and the items used in wineries 

• Develop wines with certain 

wine profiles in mind 

• Machines with on-board bins 

or supplementary bins pulled 

by chaser tractors are required  

• Selective harvesting 

machinery is not required 

 

Several different techniques can be applied to improve wine production and minimize the 

possible environmental impacts in the viticulture industry. Some of the techniques are listed 

below. 

1. Spectroscopy 
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Spectrometers can measure spectral reflectance. The VIS (400–750 nm) and NIR (750–

2500 nm) spectral wavelengths are essential in agricultural production systems since they 

have numerous applications. Many organic compounds undergo electronic transitions in the 

visible range, altering characteristics such as colour. As a result, this spectral region is 

frequently employed to evaluate pigments in grapevine leaves and fruit. Soil characteristics 

can also be assessed using spectroscopy-based technology (Schirrmann, Gebbers, & Kramer, 

2013). 

2. Multispectral imaging 

Unlike traditional spectroscopy, which records the reaction of small spot size to a 

continuous spectrum, MSI monitors radiation in a small number of short frequencies, usually 

four or six (e.g. RGB and NIR). Filters or instruments that are sensitive to specific frequencies 

can be used to separate wavelengths. Spectral indicators are generally associated with 

photosynthetically active biomass in agricultural production, which might be linked to plants' 

size and/or health. The NDVI and PCD indicators are the most extensively used spectral 
indicators in viticulture (Hall, Lamb, Holzapfel, & Louis, 2011). Several researches have 

evaluated the uses of remote sensing vegetation indicators in viticulture (Giovos, 

Tassopoulos, Kalivas, Lougkos, & Priovolou, 2021; Matese & Di Gennaro, 2021). 

3. Hyperspectral imaging 

Hyperspectral imaging (HIS) is also a useful tool for assessing foods and crops (Y. Liu, 

Pu, & Sun, 2017). The fundamental difference between HIS and MSI is spectral resolution. 
HSI generates the spectra of all pixels of an item by dealing with smaller wavelengths 

throughout a continuous spectral range. HIS sensors gather data in the form of a series of 

'pictures,' each of which represents a certain wavelength range of the electromagnetic 

spectrum (Grahn & Geladi, 2007). The major benefit of HSI over MSI is that the user does 

not need previous item information because a whole spectrum is acquired at each geographic 

place. The fundamental drawback of HIS against MSI is expense and complexity; however, 

rapid technological advancements are projected to alleviate this restriction with the 

development of faster processors, more delicate sensors, and larger data storage devices. 
Because HSI is still a relatively new approach, its full potential has yet to be exploited. New 

technologies such as deep learning are being tested (Paoletti, Haut, Plaza, & Plaza, 2019). 

4. Chlorophyll fluorescence 

Different paths determine the technology's premise that light energy received by Chlorine 

molecules in living plant tissues can take. The Chlorine fluorescence screening method, 

which is centered on the output characteristic of UV-absorbing phenolic content in leaf 

epidermises and fruit skins screening under laying Chlorine, has become especially helpful 
in agriculture as a method to observe dietary factors and dyes (Agati et al., 2013). Portable 

sensors that may be utilized manually or attached to moving vehicles  have expanded the 

technique to field research. 

5. Thermography 

Another technique with opportunities for agricultural uses is infrared thermography. 

Thermography has mostly been used to regulate the water condition of plants. The use of 
thermographic methods is based on the fact that as water is lost through stomata, the 

temperature of the leaf drops. When stomata are closed, transpiration ceases, and leaf 

temperature rises. Leaf temperature is connected to stomatal conductance when external 

conditions are constant; hence canopy temperature has long been recognized as an indicator 

of plant water. On the other hand, changing climatic circumstances have an impact on crop 

canopy temperature (Maes & Steppe, 2012). Thermal stress indicators such as the Crop Water 

Stress Index (CWSI) and the infrared thermography (Ig) have been created to compensate for 

the influence of environmental changes on canopy temperature. 

6. LiDAR 
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LiDAR is a measuring method that uses pulsed laser beams to illuminate an object and a 

sensor to detect the scattered waves. The target can then be digitally 3-D reconstructed using 

different laser return timings and frequencies. LiDAR, also known as laser scanning or 3-D 

scanning, has been used on the ground, air, and mobile devices. LiDAR can offer information 

across broad areas when used from the air (Maes & Steppe, 2012). It may be mounted on 

ground-based vehicles and used to measure plant traits and architecture. 

7. Computer vision 

Computer vision (CV) is described as a system that captures, analyzes, evaluates, and 

separates data from photographs in order to offer numerical or symbolic information, such as 

the assessment or forecasting of significant attributes of the selected object, in a quick, 

contactless, repeatable, and precise way (Grimm et al., 2019). CV is a set of AI techniques 

whose goal is to enable a system to 'interpret' an image, or more accurately, to 'build clear, 

coherent descriptors of physical objects from photographs'. CV provides an automated 

method for assessing the qualities of a target object in a quick, contactless, consistent, and 
precise manner (Blasco, Aleixos, & Moltó, 2003). Fault recognition, colour prediction, shape 

and size assessment are only a few aspects for which image analysis can offer a valid and 

accurate evaluation (Cubero, Aleixos, Moltó, Gómez-Sanchis, & Blasco, 2011). 

8. Robots 

Robots are ground-based systems that have the ability to transform all types of 

agricultural systems, particularly viticulture (Fountas, Mylonas, et al., 2020; Saiz-Rubio & 
Rovira-Más, 2020; Vougioukas, 2019). LiDAR scanners are rapidly employed as guidance, 

vehicle speed, and security sensors in automation and robots. These robots are expected to 

meet all safety requirements, have stable autonomous navigation, and display the needed 

capacity for precise all-terrain operations. GRAPE is a robot that distributes pheromone 

dispensers on its own. Harvesting is another viticulture task that will be mechanized thanks 

to Bacchus and other prototypes being developed around the world (Vrochidou et al., 2021). 

AI may be quite beneficial since it can translate data into various bits of information that 

grape growers can use to make informed decisions. Even at small sizes, all of the sensing 
techniques and platforms outlined earlier combine to provide a high data collecting 

competence for today's grape producer. Nevertheless, consistent research advancement will 

be required. Many additional uses and developments must be explored to understand better 

how to model the crop into accurate statistics and extract more information. Furthermore, 

while this information is important to grape producers for farming methods, it has both direct 

and indirect environmental uses since crop data offers accurate management of ecologically 

crucial resources like water and soil. 

Machine learning (ML) is the most popular discipline for automating knowledge in 
agriculture, particularly viticulture (Cai et al., 2019; Fuentes et al., 2018). ML is at the heart 

of AI, and it's defined as the study of getting computers to learn on their own, in most 

circumstances so that they can turn data into meaningful information (Jordan & Mitchell, 

2015). As a result, by combining machine learning with the wide number of data collecting 

choices already accessible, grape growers and winemakers can deploy data-driven solutions 

to improve and optimize their production processes. This is accomplished through training, 

which entails the creation of mathematical models that are fed by data. In the case of machine 

learning, there are numerous processes involved. 
The first stage is gathering data and organizing it into a collection of samples (X, or 

independent variable in statistical language), each of which contains two or more variables 

(xi, or features or attributes) that define some aspect of the samples. In order to find any 

correlations between X and y, each sample is linked to a parameter of interest (y, dependent 

variable, also called as the standard variable). The approach is known as supervised learning 

when all samples are labeled. Semi-supervised learning is the method of training without 

labels on some data (Jordan & Mitchell, 2015). For example, when utilizing spectroscopy, 
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the complete spectrum can be discretized into equally spaced variables due to specific 

frequencies, spatial frequency indices or major components (Jordan & Mitchell, 2015). CV 

feeds the algorithms the matrices that describe the images (using the three common colour 

components or one channel). Hyperspectral imaging, which combines imaging and 

spectroscopy, can be employed in both dimensions (Bendel et al., 2020). 

After all of the data has been properly formatted and treated, the following stage is to 

train the models that are at the heart of machine learning (i.e., training models using 

algorithms fed by data). The most difficult phase, and the one that necessitates user 
experience, is model training. This is because it is vital to understand the many algorithms 

that can be employed, their benefits and drawbacks, and the best option for the data available. 

Many machine learning methods have been used in viticulture to achieve various goals. Such 

as SVMs for detection of diseases, grape varieties classification, and yield forecasting, an 

optimal algorithm for disease identification using imagery, deep learning for image 

classification in vineyards and hyperspectral data evaluation for disease detection (Bendel et 

al., 2020). Different deep learning methods, including convolutional neural networks (Barré 

et al., 2019; Hsieh & Kiang, 2020), autoencoders(Karim et al., 2020; Yu, Lu, & Liu, 2018), 
and recurrent neural networks (Chen, Xiao, Zhang, Xie, & Wang, 2020; L.-W. Liu, Hsieh, 

Lin, Wang, & Lin, 2021; Mouatadid, Adamowski, Tiwari, & Quilty, 2019), have been 

employed to construct advanced models for precision agriculture. 

After a model has been tweaked, trained, and verified, it can be utilized for additional 

purposes. Such as, in digital viticulture, this would imply combining a sensor and a system 

with the trained model incorporated. The model would acquire a steady stream of data from 

the sensor and generate predictions grounded on the learned directions and relations. 

However, because this is also a data-gathering procedure, it is feasible to take benefit of this 
and repeat the process using the freshly collected data. It's vital to remember that a model's 

output isn't the goal but rather a tool for making better judgments. 

3 Conclusion 

This article presents a complete analysis of various digital non-invasive techniques in the 

grape and wine industry that are either in progress or are now in use. To address present and 

future concerns such as climate change, the environment, waste, labour shortages, and rising 

production costs, one must enhance resource use effectiveness in all agricultural systems. 
The application of various proximal and remote sensing technologies has enhanced the 

knowledge of vineyard variation in terms of geographical disparities and sequential dynamics 

and the underlying reasons for such variation. The study shows how knowing this information 

allows grape growers and winemakers to use inputs more effectively through specific 

applications and harvest fruit packages strategically based on yield and/or fruit quality 

requirements and product requirements. Reduced input costs, higher efficiencies, and a better 

end product are all economic benefits of each of these outcomes. It's challenging to show that 

precise and digital viticulture and associated technology improve the environment. There are 
no reported examples from the grape and wine industries till today. Nevertheless, given the 

rising control of chemical usage in agriculture and the continued commercialization of 

machinery equipped with VRA technology and sensors to quantify canopy size, 

environmental benefits are unavoidable. 

One of the main goals of digital viticulture is to provide grape growers and winemakers 

with precise data, pictures, and maps in real-time to help them manage their vineyards more 

efficiently and sustainably. Even though many digital apps are currently accessible, the rapid 

and accurate analysis and interpretation of data that is required for immediate adoption 
necessitate monitoring and integration at the vineyard. Since smart sensing techniques have 

an immense opportunity for producers at all stages, their implementation and regular use will 
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be centered on accessible operating system and devices and the cost of integrating decision-

support systems on a field scale. IoT, data science, AI, and automation can all assist producers 

in overcoming obstacles in the vineyard. Data rights and security, especially when data is 

obtained through third parties, is a problem that must be addressed in the coming years to 

enable the widespread adoption of such technology. 

References 

1. G. Agati, L. Foschi, N. Grossi, L. Guglielminetti, Z. G. Cerovic, M. Volterrani, 
Fluorescence-based versus reflectance proximal sensing of nitrogen content in 

Paspalum vaginatum and Zoysia matrella turfgrasses. European Journal of Agronomy, 

45, 39–51 (2013). 

2. M. Ammoniaci, S.-P. Kartsiotis, R. Perria, P. Storchi, State of the art of monitoring 

technologies and data processing for precision viticulture. Agriculture, 11(3), 201 

(2021) 

3. A. Aquino, B. Millan, M.-P. Diago, J. Tardaguila, Automated early yield prediction in 

vineyards from on-the-go image acquisition. Computers and Electronics in Agriculture, 

144, 26–36 (2018) 

4. P. Barré, K. Herzog, R. Höfle, M. B. Hullin, R. Töpfer, V. Steinhage, Automated 

phenotyping of epicuticular waxes of grapevine berries using light separation and 

convolutional neural networks. Computers and Electronics in Agriculture, 156, 263–

274 (2019) 

5. N. Bendel, A. Backhaus, A. Kicherer, J. Köckerling, M. Maixner, Detection of two 

different grapevine yellows in Vitis vinifera using hyperspectral imaging. Remote 

Sensing, 12(24), 4151 (2020) 

6. J. Blasco, N. Aleixos, E. Moltó, Machine vision system for automatic quality grading 

of fruit. Biosystems Engineering, 85(4), 415–423 (2003) 

7. R. G. V. Bramley, J. Ouzman, M. C. T. Trought, Making sense of a sense of place: 

precision viticulture approaches to the analysis of terroir at different scales: This article 

is published in cooperation with the XIIIth International Terroir Congress November 

17-18 2020, Adelaide, Australia. Guest editors: Cassandra Collins and Roberta De Bei. 

Oeno One, 54(4), 903–917 (2020) 

8. Y. Cai, K. Guan, D. Lobell, A. B. Potgieter, Integrating satellite and climate data to 

predict wheat yield in Australia using machine learning approaches. Agricultural and 

Forest Meteorology, 274, 144–159 (2019) 

9. P. Chen, Q. Xiao, J. Zhang, C. Xie, B. Wang, Occurrence prediction of cotton pests 

and diseases by bidirectional long short-term memory networks with climate and 

atmosphere circulation. Computers and Electronics in Agriculture, 176, 105612 (2020) 

10. S. Cubero, N. Aleixos, E. Moltó, J. Gómez-Sanchis, J. Blasco, Advances in machine 

vision applications for automatic inspection and quality evaluation of fruits and 

vegetables. Food and Bioprocess Technology, 4(4), 487–504 (2011) 

11. M. P. Diago, C. Rey‐Carames, M. Le Moigne, E. M. Fadaili, J. Tardáguila, Z. Cerovic, 

Calibration of non‐invasive fluorescence‐based sensors for the manual and on‐the‐go 

assessment of grapevine vegetative status in the field. Australian Journal of Grape and 
Wine Research, 22(3), 438–449 (2016) 

12. S. Fountas, B. Espejo-García, A. Kasimati, N. Mylonas, N. Darra, The future of digital 

agriculture: technologies and opportunities. IT Professional, 22(1), 24–28 (2020) 

, 010 (2023)E3S Web of Conferences

IPFA 2023
https://doi.org/10.1051/e3sconf/20234520103737 452

7



13. S. Fountas, N. Mylonas, I. Malounas, E. Rodias, C. Hellmann Santos, E. Pekkeriet, 

Agricultural robotics for field operations. Sensors, 20(9), 2672 (2020) 

14. S. Fuentes, E. Hernández-Montes, J. M. Escalona, J. Bota, C. G. Viejo, Automated 

grapevine cultivar classification based on machine learning using leaf morpho-

colorimetry, fractal dimension and near-infrared spectroscopy parameters. Computers 

and Electronics in Agriculture, 151, 311–318 (2018) 

15. R. Giovos, D. Tassopoulos, D. Kalivas, N. Lougkos, A. Priovolou, Remote sensing 

vegetation indices in viticulture: A critical review. Agriculture, 11(5), 457 (2021) 

16. H. Grahn, P. Geladi, Techniques and applications of hyperspectral image analysis. 

John Wiley & Sons (2007) 

17. J. Grimm, K. Herzog, F. Rist, A. Kicherer, R. Toepfer, V. Steinhage, An adaptable 

approach to automated visual detection of plant organs with applications in grapevine 

breeding. Biosystems Engineering, 183, 170–183 (2019) 

18. S. Gutiérrez, M. P. Diago, J. Fernández-Novales, J. Tardaguila, Vineyard water status 

assessment using on-the-go thermal imaging and machine learning. PLoS One, 13(2), 

e0192037 (2018) 

19. S. Gutiérrez, J. Tardáguila, J. Fernández‐Novales, M. P. Diago, On‐the‐go 

hyperspectral imaging for the in‐field estimation of grape berry soluble solids and 

anthocyanin concentration. Australian Journal of Grape and Wine Research, 25(1), 

127–133 (2019) 

20. A. Hall, D. W. Lamb, B. P. Holzapfel, J. P. Louis, Within-season temporal variation in 

correlations between vineyard canopy and winegrape composition and yield. Precision 

Agriculture, 12(1), 103–117 (2011) 

21. T.-H. Hsieh, J.-F. Kiang, Comparison of CNN algorithms on hyperspectral image 

classification in agricultural lands. Sensors, 20(6), 1734 (2020) 

22. M. I. Jordan, T. M. Mitchell, Machine learning: Trends, perspectives, and prospects. 

Science, 349(6245), 255–260 (2015) https://doi.org/10.1126/science.aaa8415 

23. A. M. Karim, H. Kaya, M. S. Güzel, M. R. Tolun, F. V. Çelebi, A. Mishra, A novel 

framework using deep auto-encoders based linear model for data classification. 

Sensors, 20(21), 6378 (2020) 

24. G. C. Koufos, T. Mavromatis, S. Koundouras, G. V. Jones, Adaptive capacity of 

winegrape varieties cultivated in Greece to climate change: current trends and future 

projections. Oeno One, 54(4), 1201–1219 (2020) 

 

 

 

, 010 (2023)E3S Web of Conferences

IPFA 2023
https://doi.org/10.1051/e3sconf/20234520103737 452

8


	1 Introduction
	2 Methods
	3 Conclusion
	References



