ПРЕДМЕТ:

Гидрология

TEMA 15

Гидрологический режим водохранилищ

НАЗАРАЛИЕВ ДИЛШОД ВАЛИДЖАНОВИЧ

Доцент кафедры Гидрологии и гидрогеологии

ПЛАН ТЕМЫ:

- Водный режим водохранилищ
- □ Особенности водного баланса водохранилищ в зоне умеренного климата

Водный режим водохранилищ это цикличные изменения объема воды, течений, уровня и т.п.

Водный режим водохранилища в некоторой степени находится под контролем человека, так как имеет рукотворные инструменты осуществления регулирования.

С другой стороны он зависит от гидрографической системы того речного бассейна, к которому принадлежит данный искусственный водоем.

При этом водный режим водохранилищ сочетает в себе черты речного и озерного режимов одновременно.

Зоны временного подпора и верхняя часть водохранилища больше соответствует речному водному режиму, остальная часть водоема включает уже озерные черты.

К основным параметрам режима водохранилища относится его:

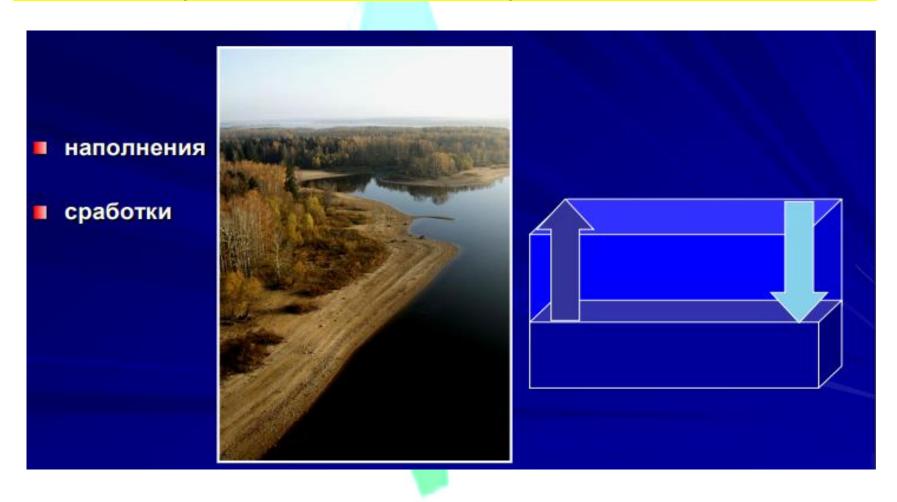
- 🔲 объем и
- 🖵 уровень воды.

Путем периодического наполнения полезного объема водохранилища и спуска аккумулированной воды для:

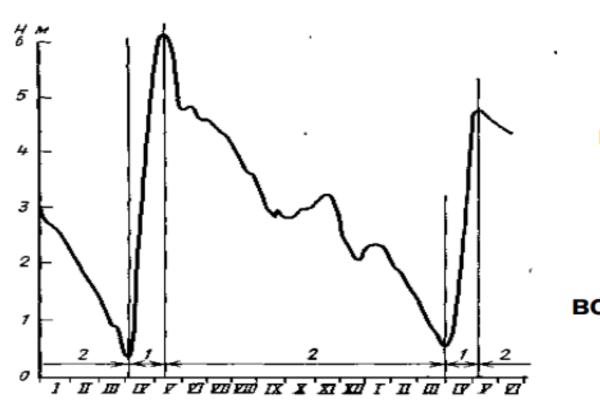
- □ питания систем орошения,
- □ промышленных объектов и т.п. осуществляется основное регулирование его водного режима.

Любые колебания параметров объема и уровня воды, являются контролируемыми человеком явлениями, и могут зависеть от многих факторов как бытового, так и природно-климатического характера.

□ равнинные водохранилища сезонного использования имеют колебания уровня воды в диапазоне 5-7 метров ,
 □ горные водоемы могут достигать 50-80 метров.

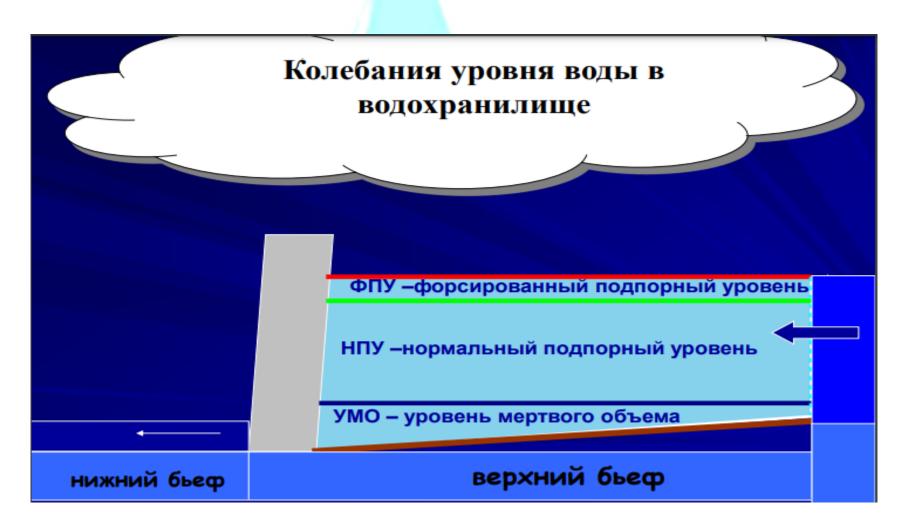

Интенсивность изменения уровня достигает пика в периоды половодья и других значимых гидрологических явлений. При этом основной зоной выраженных колебаний уровня воды является приплотинная область.

На равнинных водохранилищах (особенно мелких) колебания уровня воды имеют сгонно-нагонных характер.


Особенно это прослеживается в периоды сильного ветра, который имеет направление вдоль искусственного водоема с многочисленными отмелями.

Характерные периоды уровенного режима водохранилищ

Характерный ход уровней воды в водохранилище


1-

период наполнения,

2.

период сработки водохранилища

Колебания уровня воды в водохранилище

Объемы воды в водохранилище

■ полный объем V

$$V = V_{\Pi} + V_{M}$$

■ полезный объем V_п

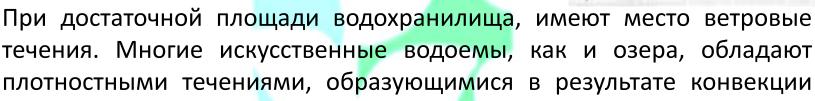
$$V_{\Pi} = V - V_{M}$$

■ мертвый объем V_м

резервный объем

$$V_p = V_{\Phi\Pi\mathcal{Y}} - V_{H\Pi\mathcal{Y}}$$

Причины изменения во времени объема водохранилищ


- заиление отложение в водоеме мелких фракций взвешенных наносов (4)
- занесение аккумуляция в водоеме влекомых наносов (3)

Течения в водохранилищах

Течения в водохранилищах обычно сопоставимы с озерной динамикой, хотя отличаются более сложной географией и структурой.

Как правило, основные течения развиваются вдоль русел затопленных рек. Зоны заливов и отмелей при этом обладают ярко выраженными застойными процессами.

слоев воды имеющих разную температуру.

В водохранилищах обычно наблюдаются два вида течений: сточное (постепенно ослабевающее от верхнего участка к плотине) и береговое (ветроволнового происхождения)

Типы течений в водохранилищах

- **■** стоковые
- фрикционные (ветровые)
- компенсационные
- плотностные

Волнения на поверхности водохранилищ

Волнения на поверхности водохранилищ зависят от их площади. Крупные водоемы могут создавать волны до 2-3 метров в высоту.

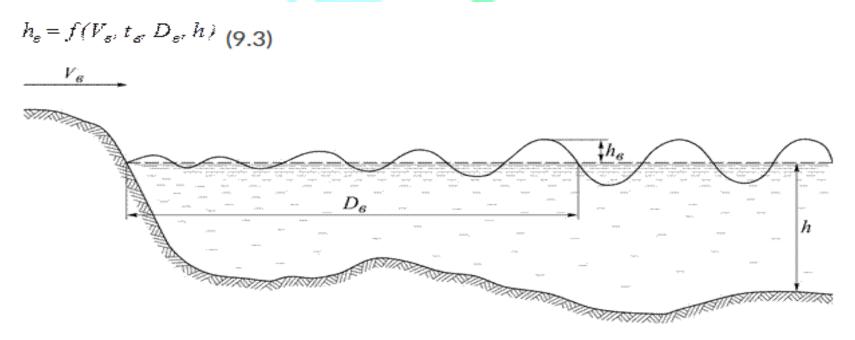


Рис. 9.6. Волновой режим водохранилища

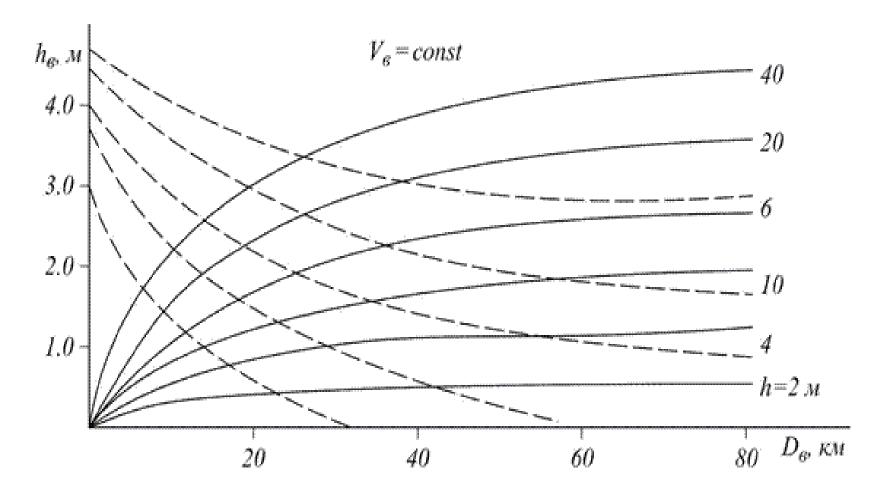


Рис. 9.7. Номограмма расчета высоты волны по Браславскиму:

сплошные линии при увеличении глубины потока; пунктирные линии при уменьшении глубин от берега

Особенности водного баланса водохранилищ в зоне умеренного климата

- в приходной части баланса (ПЧБ) преобладает приток речных вод
- осадки формируют не более 2-3% ПЧБ
- в расходной части баланса (РЧБ) доминирует сброс воды в нижний бьеф
- на испарение приходится не более 10% РЧБ

Водный баланс водохранилища

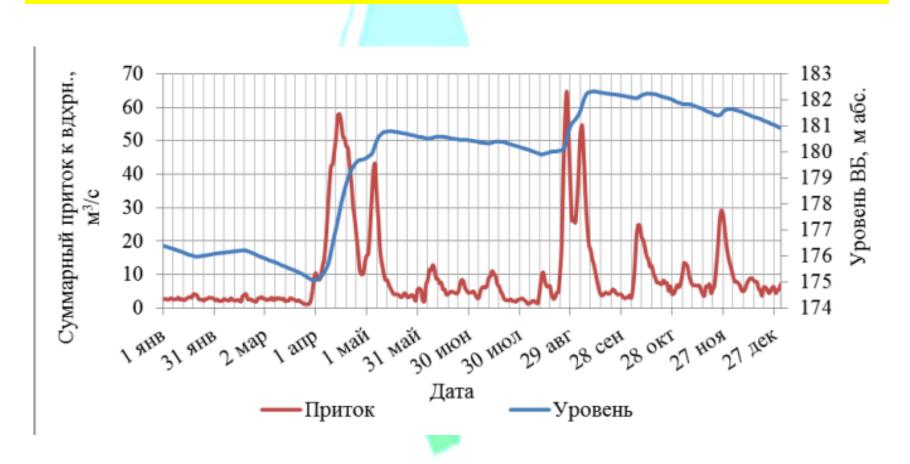
▶ Водные балансы водохранилищ составляются за декадный, месячный и годовой интервалы времени и имеют вид:

$$Q_{\text{п}} + Q_{\text{п.подз.}} + Q_{\text{сбр.}} + P - (Q_{\text{o}} + Q_{\text{гр.}} + Q_{\text{заб.}} + E_{\text{вдхр.}}) =$$

$$= \Delta S_{\text{вдхр.}} + \Delta S_{\text{русл.}} + \Delta G + \Delta S_{\text{сн.}} \pm \eta$$

Q_п – приток в водохранилище поверхностных (речных) вод

 $Q_{\text{п.подз}}$ – приток подземных вод, не дренируемых реками


 $Q_{\text{сбр}}$ — возвратные (сбросные) воды, т. е. воды, непосредственно поступающие в водохранилище (минуя реки, сток которых учитывается элементом $Q_{\text{п}}$) после использования на орошение земель, водоснабжение населенных пунктов и т. д.

Р - осадки, выпадающие на зеркало водохранилища

Q₆ - воды из водохранилища через сооружения замыкающего гидроузла (турбины, водосливные отверстия, шлюзы, рыбоходы, бревноспуски, ледосбросы, а также потери воды на утечку и фильтрацию через эти сооружения)

Гидрограф суммарного притока к водохранилищу за год с указанным ходом уровня

Интенсивность водообмена в водохранилищах

- коэффициент условного водообмена К_в =1-10 год⁻¹
- **■** период водообмена τ = K_e^{-1} =1-12 месяцев
- для наиболее крупных водохранилищ
- τ =4-6 месяцев (вдхр. Насера, Кариба, Братское)

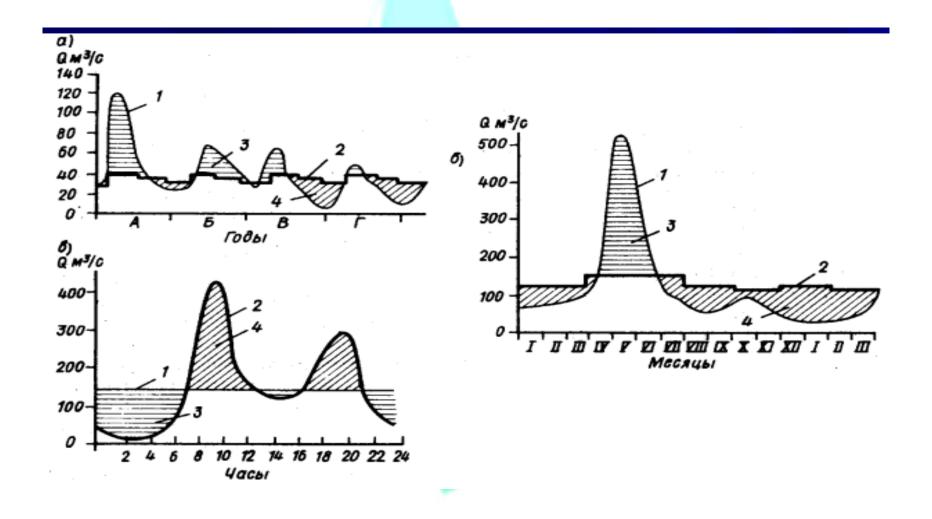
Влияние водохранилищ на реки и природную среду

- изменение величины речного стока
- изменение внутригодового распределения речного стока
- изменение режима подземных вод
- гидробиологические изменения
- микроклиматические изменения
- тектонические изменения

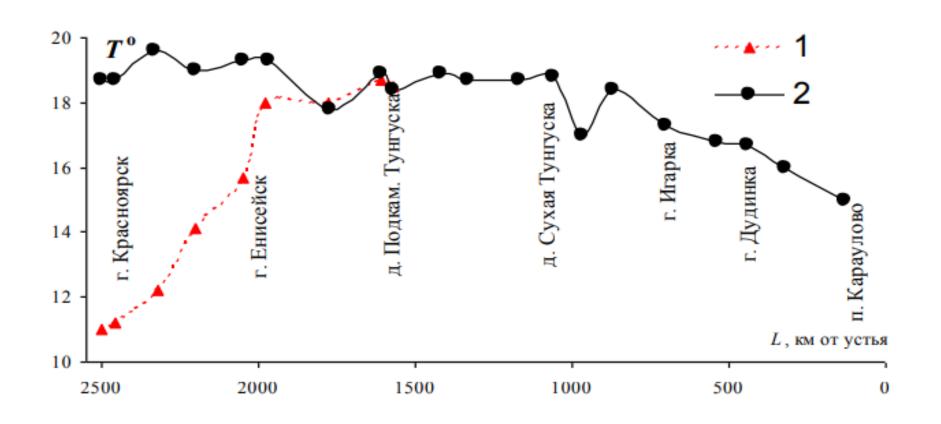
Динамические изменения

- уменьшается скорость потока выше и возрастает ниже плотины
- замедляется период водообмена

 в 1980 г. замедление водообмена достигло 5,2 раз

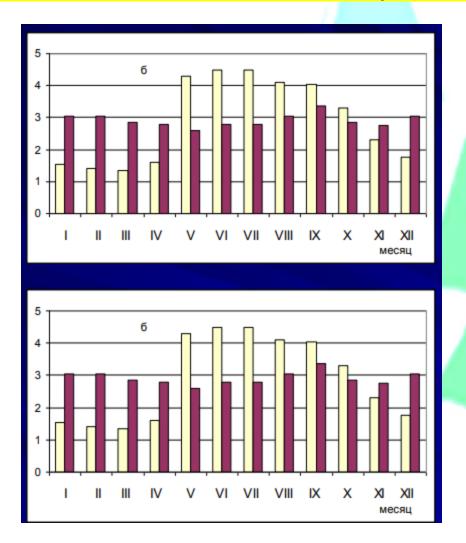

Изменения речного стока

- в зонах недостаточного увлажнения уменьшается сток воды
- уменьшается сток наносов
- снижается содержание в воде химических веществ, в т.ч. токсичных веществ
- увеличивается содержание биологических субстанций (биомасса)
- сложные изменения стока теплоты


Изменения внутригодового распределения стока

- увеличение меженного стока
- уменьшение максимальных расходов воды
- увеличение зимних и понижение летних температур воды
- уменьшение меженного стока взвешенных наносов
- увеличение минерализации воды в период половодья

Влияние водохранилищ на сток воды и его внутригодовое распределение


Современное (1) и фоновое (2) изменение температуры воды водохранилища

Особенности влияния водохранилищ на речной сток

- регулирование стока влияет на величину речного стока
- максимальное воздействие водохранилища оказывают на внутригодовое распределение стока
- степень влияния водохранилищ на речной сток зависит от типа регулирования стока

Гидрографы среднегодового стока рек в створах плотин (а) и (б) ГЭС до и после зарегулирования реки.

Режимы стока: 1 — естественный, 2—зарегулированный

Степень влияния водохранилищ на средний многолетний сток воды в различных природных условиях

Регион	Степень	
	изменения стока	
	воды,%	
север ЕТР	0,8-1,0	
юг ETP	10-30	
Средняя Азия	70-80	

Изменение стока воды [®]W, взвешенных наносов [®]WR, ионного стока [®]Wp, стока теплоты [®]Wq под влиянием водохранилищ

Изменение стока воды ΔW , взвешенных наносов ΔW_R , ионного стока ΔW_p , стока теплоты ΔW_q под влиянием водохранилищ

Река	ΔW,%	ΔW _R ,%	ΔW_p ,%	ΔW_q ,%
Волга	~ 0	-68	7	-1÷-3
Сулак	-10	-86,2	> 10	-5– -10

Соотношение многолетнего хода зимних расходов воды в НБ ГЭС (1) и в нижнем течении реки (2)

Водохранилища ГЭС

Комплексное значение водохранилищ

ЭНЕРГЕТИКА

Запас воды, аккумулированный в водохранилищах, предназначается в первую очередь для гарантированной выработки электроэнергии на ГЭС в зависимости от объема накапливаемой воды.

Создание водохранилищ дает возможность максимально использовать проектную мощность гидроэлектростанций. Например, на Рыбинском водохранилище вырабатывается от 0,8 до 1,3 млн. киловатт часов электроэнергии.

ТРАНСПОРТ

Созданные при гидроузлах комплексного назначения водохранилища дают возможность увеличить количество транспортных и пассажирских речных перевозок, так как на водохранилищах обеспечиваются стабильные в течение всей навигации гарантированные судоходные глубины. Свыше 60% всего объема перевозок по внутренним водным путям страны осуществляется по водохранилищам.

ИРРИГАЦИЯ

Построенные в бассейнах рек водохранилища ГЭС создают необходимые условия для орошения сельскохозяйственных земель. Регулирование стока рек помогает оросить около 240 млн. га земли, которая дает половину сельскохозяйственной продукции мира. Примером являются водохранилища в бассейнах рек Волги, Днепра, Амударьи, Сырдарьи.

Водохранилища ГЭС

Комплексное значение водохранилищ

Инженерная защита ценных сельскохозяйственных земель

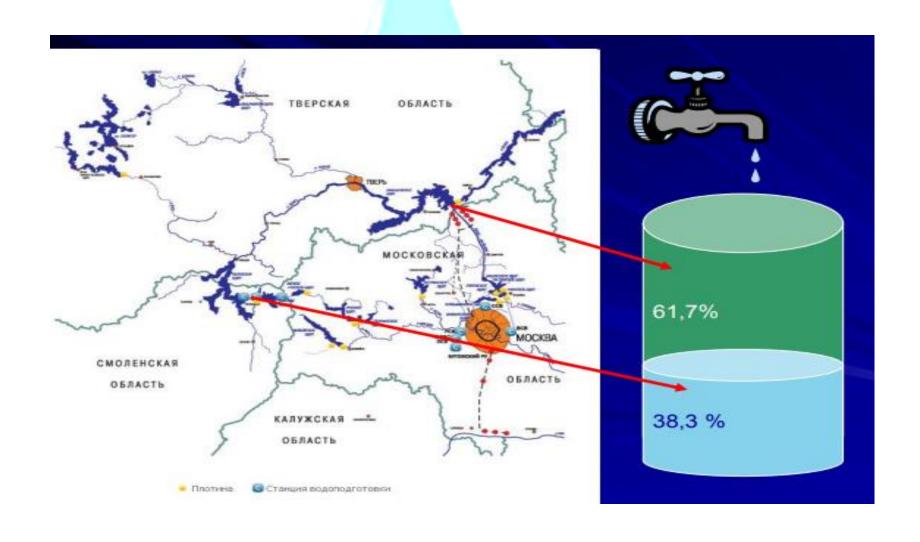
При создании водохранилищ выполняется инженерная защита ценных сельскохозяйственных земель, что заметно снижает возможный ущерб от затоплений. Гидроузлы на ГЭС позволяют регулировать и контролировать сток воды, ликвидируя катастрофические наводнения, маловодья, сели.

Борьба с загрязнениями

Большие массивы воды в водохранилищах позволяют более полно разбавлять загрязнения: изымать и переводить в донные отложения вредные ингридиенты (тяжелые металлы, пестициды, нефтепродукты), поступающие в реки со сточными водами промышленных и коммунальных предприятий с сельхозугодных и урбанизированных территорий. Качество воды в водохранилищах выше по показателям прозрачности, цветности, содержания взвешенных веществ и количеству сапрофитных бактерий.

Водоснабжение

Водохранилища, созданные при гидроузлах комплексного назначения с соблюдением требований Санитарных правил, также используются как источник хозяйственно-питьевой воды и водоснабжения.


Рыболовство

Водохранилища создают условия для разведения и ловли рыбы, причем уловы рыбы на водохранилищах на порядок выше, чем на речных участках. На Рыбинском водохранилище вылавливается в среднем 1466 тонн рыбы.

Туризм

Водохранилища являются одним из привлекательных мест отдыха: на многих благоустроены пляжи, проводятся парусные регаты, дайвинг, теплоходные экскурсии (Волжские водохранилища).

Водохранилища и водоснабжение

Водохранилища и водный транспорт

Опасные процессы и выгоды, связанные с водохранилищами

- потеря земель для с/х использования
- снижение стока
- подтопление местности
- размыв берегов и дна
- остепнение пойм ниже ГЭС
- проблемы нереста проходных рыб

- решение проблем водоснабжения
- наличие дешевой энергии
- предупреждение заторов
- надежность работы водного транспорта
- рекреационные удобства
- повышение биопродуктивности
- защита от наводнений

