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Abstract  The clean Water Supply provision is one of 
the major factors greatly contributing to the socioeconomic 
transformation of a country. However, many countries 
have problems in fulfilling the water demand of the 
continuously growing population and populated areas due 
to the high level of water losses in distribution networks. 
Optimization of water distribution system design is one of 
critical research fields, which has been extremely 
productive. Its primary focus is to minimize the cost of a 
proposed pipe network infrastructure. The paper presents 
the results of research on the development of a new 
analytical design method that allows creating new water 
distribution systems or strengthening, expanding and 
rehabilitating existing water distribution systems, inclusive 
of design timing, parameter uncertainty, water quality, and 
other operational considerations.  The method is based on 
the solution of hydraulic problem of a linear pipeline and 
the use of the newly developed software set for studying 
hydraulic processes. The solution is determined in the 
Mixed Integer Programming - MIP and Discontinuous 
Nonlinear Programming - DNLP connection modes. As 
research results show it is possible to expand and solve the 
problems of finding the locations of branching optimal 
lines connecting the sources (main distribution systems) 
and consumers. The task set and its solution opens a whole 
range of opportunities for its successful application in the 
most diverse branches of science and production. 

Keywords  Path, Hamilton Circle, Water Supply 
Systems, Pipelines, Analytical Method, Hydraulic 
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1. Introduction
The growth of productive forces, exceptional in scale 

and rate, outlined by the State Resolutions, has determined 
a wide scope of hydroeconomic construction to supply 
water to populated areas, industrial enterprises, agriculture 
and other water consumers. Of the known raw materials, 
water is the most involved in the spheres of material 
production. 

Definition symbols and basic graph-theory theorems, 
Graph G is a collection of two sets: vertices V and edges E, 
between which the incidence relation is defined. Each edge 
e of E is incident equal to two vertices v', v", which it 
connects. The vertex v' and the edge e are called incident to 
each other, and the vertices v' and v '' are called adjacent 
ones. It is common to write v', v'' of G and e of G. If 
|V(G)|=n, |E(G)|=m, then graph G is an (n, m) graph, where 
n is the order of the graph , m is the size of the graph. The 
edge (v', v'') can be oriented and have a beginning (v') and 
an end (v'') (an arc in the digraph)[1,2]. 

Problem of constructing optimal supply network for 
consumers and resource producers: In practice, it is often 
necessary to solve the problem of building supply networks 
for a group of spatially scattered consumers. These 
networks may be gas, electricity, Internet information 
networks, passage of ground and air transport and so on. 
Here we are interested in the problem of building a water 
supply network. 

Statement of the problem is in relation to water supply 
issues. Let us assume that the coordinates of the location of 
a group of water consumers and water sources are known. 
It is assumed that the pipelines are capable to supply water 
to all consumers and the water withdrawal is so small that 
there are no such phenomena as insufficient pressure in the 
system or a lack of water in the water supply system 
[3,4,5,13]. 

It is necessary to connect all consumers to a water source 
in such a way as to provide the minimal total length of 
pipelines and minimal costs [3,4]. 
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2. Materials and Methods 
This problem in combinatorial science is called the 

"traveling salesman problem". A path of minimal length 
connecting all given points is called the Hamilton cycle. 
This problem in its classical statement for the first time was 
described in 1832 in a book titled "The travelling salesman 
- how he should behave and what he must do to deliver the 
goods and be successful in his affairs – an advice of old 
courier". The book described the problem itself, but the 
mathematical apparatus for its solution was not yet known. 
Since then, the problem has gained an official name 
"Traveling salesman problem", abbreviated TSP. The 
name "Traveling salesman problem," was suggested by 
Gasler Whitney of the Princeton University [6,7,8]. 

Particular attention and notable success in solving this 
problem were achieved in1980-s in connection with rapid 
development of computer technology. It is interesting that 
sometimes solutions were close to optimal, but not optimal. 
Many iterative algorithms have also been developed 
[2,3,4,5]. 

In connection with practical importance of this problem, 
the algorithms have their own names: full search, random 
search, nearest neighbor method, the method of including 
the nearest city, the cheapest inclusion method, the 
minimal spanning tree method, the annealing simulation 
method, the branches and borders method, the elastic 
network method.  

Mathematical model of the TSP or the model of finding 
the Hamilton cycle [8,9,10] in the classical notation 
consists of a group of equations 

𝐹 = ∑ ∑ 𝐶𝑖𝑗 ∙ 𝑋𝑖𝑗𝑁
𝑗=1

𝑁
𝑖=1  → min            (1) 

∑ 𝑋𝑖𝑗 = 1𝑁
𝑗=1                      (2) 

∑ 𝑋𝑖𝑗 = 1𝑁
𝑖=1                      (3) 

𝑈𝑖 − 𝑈𝑗 + 𝑁 ∙ 𝑋𝑖𝑗 < 𝑁 − 1              (4) 

Where 
𝑁 - is the total number of points connected by the 
Hamilton cycle, 
𝑖 - is the index of the point in the Hamilton cycle at 
𝑖 = 1. . 𝑁, 
𝑗 - is the index of the point in the Hamilton cycle at 
j= 1. . 𝑁, but 𝑖 ≠ 𝑗, 
𝐶𝑖𝑗 - is the distance from point 𝑖 to point 𝑗, 
𝐹 - is the function to be minimized, 
𝑋𝑖𝑗  - is a variable at  𝑋𝑖𝑗 = 1 , characterizing the 
presence of transition from point 𝑖 to point 𝑗 or the 
absence of transition from point 𝑖  to point 𝑗  at   
𝑋𝑖𝑗 = 0, 𝑋𝑖𝑗 can take the values of a zero or a unit, 
𝑈𝑖 ,𝑈𝑗  - is the order of visiting the point, 𝑗, at 𝑖 ≠ 𝑗 

 The first equation does not need clarification due to 
its logic and simplicity. 

 The second equation requires one path from each 
point to another point. 

 The third equation requires the path to each point 
from any other node. 

 The fourth inequality is somewhat difficult to 
perceive and it serves to ensure that there is only 
one Hamilton cycle and no small and loosely 
coupled loops (small cycles) appear. The meaning 
of the fourth equation is that when moving around 
in a circle, there is a growing order of visiting the 
point. At the number of points in the cycle equal to 
N, the inequality is satisfied, since one of the points 
will be the last in the cycle. At the number of points 
less than N, the same point can have a different 
visiting order and inequality (4) will not be 
satisfied. The effect of inequality (4) on the 
inadmissibility of small cycles has been widely 
investigated using classical combinatorial and 
algebra methods. It is the basis of all solution 
algorithms developed and applied in practice. 

For the practical problem of optimal construction of 
water supply network for a group of consumers the 
Hamilton cycle may not be as optimal as it will be shown in 
the following examples. Lines connecting water consumers 
can branch. That is, the consumer may get water from one 
line but more than one line can leave the consumer. There 
may be simultaneously non-overlapping cyclic link-ups 
and branches connecting the lines of water consumers. To 
find the minimal water supply chains for consumers, a 
more generalized model is built based on (1), (2), (3), (4) 
models and the solution is shown. 

Define the variable  𝑋𝑖𝑗 as a variable  𝑋𝑖𝑗𝑡, depending on 
the number of the visiting time interval denoted by symbol 
𝑡. Obviously, the number of intervals for consecutive visits 
of each of N points will require a maximum of N time 
intervals, that is 𝑡 = 1. . 𝑁. 

Write the equations of the TSP modified model by the 
following group of equations 

𝐹 = ∑ ∑ ∑ 𝐶𝑖𝑗 ∙ 𝑋𝑖𝑗𝑡𝑁
𝑡=1

𝑁
𝑗=1

𝑁
𝑖=1            (5) 

∑ ∑ ∑ 𝑋𝑖𝑗𝑡 = 𝑉𝑁
𝑡=1

𝑁
𝑗=1

𝑁
𝑖=1               (6) 

Where V - is the number of interconnected network 
points. It's obvious that V⦤N. 

∑ ∑ 𝑋𝑖𝑗𝑡 ⦤1𝑁
𝑡=1

𝑁
𝑗=1                 (7) 

∑ ∑ 𝑋𝑖𝑗𝑡 ⦤1𝑁
𝑡=1

𝑁
𝑖=1                 (8) 

∑ 𝑋𝑗,𝑖,𝑡−1 
𝑁
𝑗=1 = ∑ 𝑋𝑖,𝑗,𝑡 

𝑁
𝑗=1 , 𝑖 ∉ 𝑆         (9) 

Provided that i≠j and i does not belong to some 
pre-determined point or even a group of points, as 
discussed below. This fixed point is associated with the 
source of water "S" or the start of the path. 

So, "S" is the subset of sources from the common set of 
points " 𝑖" or " 𝑗". Let the water source be at the point " j1". 
Equations (5) -> (9) Z are written according to the rules of 
the GAMS [11,12,13] optimization system and are 
presented without any transformations. The optimization 
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mode of MIP and solver "CPLEX" are used. A special 
VBA script is written to graphically display the optimal 
solution in the MICROSOFT EXCEL environment. Time 
of the Hamilton cycle for 16 arbitrary points is 2 seconds 
on a 2-GHz processor machine. This shows not only the 
working capacity, but also the efficiency of the 
constructed mathematical model. 

 

Figure 1.  Hamilton cycle at 16 arbitrarily chosen points (V=16, N=16) 

Solution by an independent method yields the result 
1426.686 and the same result is obtained when solving 
model (5) -> (9). It is important to note that if to set V <N 
=16, then some of the nodes do not get into the cycle and 
this will be an optimal elimination of the most remote 
nodes from the cycle. Obviously, the classical statement of 
the TSP cannot do this. If to add inequality (10) to the 
model (5) -> (9), then there will appear greater certainty in 
the TSP solution. This inequality prohibits a return to the 
start point of an open loop, which according to equation (9) 
can begin only at a point belonging to a set of source points. 

∑ ∑ 𝑋𝑖𝑗𝑡 = 0𝑁
𝑡=1

𝑁
𝑖=1 , 𝑗∊ S             (10) 

 

Figure 2.  Open loop at 16 arbitrarily selected points (V=15, N=16) 

Figure 2 shows that all points are connected to the 
source and the length of the links is 1211.615; this path is 
undoubtedly shorter than the Hamilton cycle shown in the 
figure by dotted lines. The end of the path is determined 
automatically, and it is optimally located. In this case, this 
is the right lower corner of the drawing (see Fig. 2). 

It is easy to add to model (5) -> (10) the equations that 
force the path to end at a pre-determined point. For a set 
of points of the path end, we introduce the symbolic name 
Ԑ.  

Equation (11) denotes that no one line leaves the point 
if it belongs to the set Ԑ. 

∑ 𝑋𝑖𝑗𝑡 = 0𝑁
𝑗=1 , 𝑖∊ Ԑ             (11) 

For the case V <N (part of the points does not 
participate in the path formation), it is necessary to add an 
equation that causes the end point to be the part of the 
optimal path. Otherwise, the path can be determined 
without the point from which further motion is prohibited. 
The version "Nothing comes out of the point and nothing 
goes into the point" is satisfied. In other words, the point 
may be outside the optimal path. 

∑ ∑ 𝑋𝑖𝑗𝑡 = 1𝑁
𝑡=1

𝑁
𝑖=1 , 𝑗∊ Ԑ           (12) 

Figure 3 shows the optimal path with a fixed start and 
end. It is seen that the path has changed. The path became 
longer than the path with a free end (see Fig.2 
L=1211.615) and is 1260.571 without the last additional 
section 148.216. 

 

Figure 3.  Open loop at 16 arbitrarily selected points (V=16, N=17) A 
path length of 148.216 to the end point is added 

If the coordinates of end and start points are set equal, 
then the mathematical model (5) - (12) results in the 
Hamilton cycle. It is necessary to remember that the 
starting point of the cycle and the end of the cycle, even if 
they are spatially coincident, will still be two different 
points belonging to different subsets. 
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Organization of the model, more general than the 
classical one, allows to solve an additional range of 
problems. Suppose that it is possible to organize two or 
more optimal cycles or optimal (open) cycles having one 
starting point. Let's make the model start a cycle from 
each of the two starting points, and let the coordinates of 
the two starting and two end points coincide. First of all, it 
is stated that there are no two optimal cycles instead of 
one optimal Hamilton cycle. One of the cycles always 
degenerates to zero (there is a direct link between starting 
and end points) and the remaining cycle turns into a 
Hamilton cycle. Even the order of the model to the 
impossibility of zeroing the cycles leads to the formation 
of a cycle containing only one point. It is possible to draw 
a conclusion that has not yet been proven mathematically 
- the hypothesis that the Hamilton cycle is a minimally 
possible closed cycle from the group of cycles having one 
common point. The group has a total length greater than 
the Hamilton cycle. An example of the degeneration of a 
cycle into a single point is shown in Figure 4. 

 

Figure 4.  Example of the cycle degeneration to a single point at the 
prohibition of the formation of a zero link of initial and final points 

The model behaves quite differently when searching for 
optimal paths with fixed ends of branches and free ends of 
branches, provided that the start points of the branches 
coincide. Figure 5 shows the optimal locations of open 
cycles with fixed start points and with free end points. 

 

Figure 5.  Optimal locations of open cycles with fixed start points and 
free end points at a single start point of the branches 

As seen the branches at fixed end points give result 
worse than the Hamilton cycle would have given. But an 
open loop or two open loops with free end points are 
always better than the Hamilton cycle and this can be 
proved mathematically. Indeed, if to remove one of the 
segments from the Hamilton cycle the result will be one or 
two open cycles less in sum than the Hamilton cycle; this 

is obvious due to the removal of one of the arcs of the 
graph. If the obtained branches are minimal in length, then 
the statement is proved. If the branches obtained are not 
minimal, then there is an even smaller branch or a pair of 
branches, which are surely smaller than the Hamilton 
cycle and the statement, is proved for the entire set of 
options. 

Theoretical results obtained allow us to solve practical 
problems, which until now have been solved on the basis 
of personal preferences of the developers and planners. 
The general TSP does not allow to solve in the optimal 
way the problem of connection of water consumers to 
water sources. For example, the TSP could not solve the 
following problem: there is a constructed pipeline with 
water. There are three points of connection to this pipeline. 
There are a number of water consumers. The task is to 
connect water consumers to the pipeline using a minimum 
number of connecting pipes. Model (5) - (12) easily solves 
this problem, and the example is shown in Figure 6. The 
final consumer can be specified or selected by the model 
automatically and in an optimal way. 

 

Figure 6.  Connection of groups of consumers to the existing pipeline 
with three optimal open cycles with a specified location of final 
consumers 

However, in practice, the construction of water supply 
networks requires an increased reliability of water supply 
to consumers. This may be achieved by the condition of 
constructing ring networks - cycles in mathematical 
definition, in which each consumer can receive water 
from two directions. Sometimes a situation may arise 
when two consumers can not be connected to a pipeline 
due to relief of the terrain or the presence of structures 
hindering the supply. This practical problem is easily 
solved by model (5) - (12). 

Enter into the scheme more than one start of the cycle 
and exactly the same number of the ends of the cycle. 
That is, there may be "M" number of cycles. The ends of 
the cycle and the starting points of the cycle must be the 
same. It seems that on the basis of above-stated, we would 
obtain a single cycle - the Hamilton cycle, the remaining 
("M-1") cycles must degenerate into zeros.  

But this will happen if “N” intervals of time are used 
for "N" points, that is t=1..N. 
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If the number of calculated time intervals "𝑁𝑜" will be 
subject to inequality. 

𝑡 = 1. . 𝑁𝑜  and 𝑁
𝑀
≤ 𝑁𝑜 ≤ 𝑁         (13) 

Then it is possible that the number of optimal ring 
cycles will be more than one cycle, since the cycle will 
contain no more than "𝑁𝑜" Hamilton points. The value 
No will determine the maximum number of consumers in 
one cycle. At 𝑁𝑜 = 𝑁 one Hamilton cycle is obtained. At 
𝑁𝑜 = 𝑁

𝑀
 we would have M cycles with an approximately 

equal number of consumers 𝑁𝑜  in each cycle. Why 
approximately? Because 𝑁

𝑀
 will not always be an integer 

and the value 𝑁
𝑀

 shows the maximum permitted number 
of consumers in one cycle. For example: 22 consumers at 
3 cycles at a number of time intervals equal to 8 can be 
distributed in cycles as follows 8 +8 + 6 = 8 +7 + 7 = 8 
+6+8=7+7+8 and so on. 

Figure 7 shows three path (three cycles) optimal (in 
terms of the pipe length) water supply system, under 
assumption that the path can supply no more than 11 
consumers. 

 

Figure 7.  Connection of groups of 11 consumers to the existing 
pipeline in three optimal cycles; with the prohibition of link "j12" - "j21" 
and without the prohibition 

Figure 7 shows that if the link "j12" - "j21" between the 
consumers is prohibited then the three links are 
reconfigured and the point "j11" previously related to 
"j13" and "j10" turns out to be related to the points "j12" 
and "j21". The prohibition can be introduced into scheme 
by direct indication on the absence of a forbidden link or 
by increasing the path between the points to large values 
for which such a prohibition is introduced. It should be 
noted that other cycles have not changed. This is 
understandable since they are optimal. 

In practice a problem of connecting distributed 
consumers to a single source often arise; the connection is 
allowed not only by sequential traversing of all consumers 
by any path, but also by branching. 

To do so, it is necessary to slightly modify equations (9) 
and (10) in the form of (14) and (15) 

𝑀𝑖 ∙ ∑ 𝑋𝑗,𝑖,𝑡−1 
𝑁
𝑗=1 ≥ ∑ 𝑋𝑖,𝑗,𝑡 

𝑁
𝑗=1 , 𝑖 ∉ 𝑆      (14) 

∑ ∑ 𝑋𝑖𝑗𝑡 ≤ 𝐾𝑠𝑁
𝑡=1

𝑁
𝑗=1 , 𝑗∊ S            (15) 

Where 𝑀𝑖  is the permitted number of branches at the 
point i, 𝐾𝑠 is the permitted number of connections to the 
source. 

Equation (14) by mathematical formulas describes the 
fact that outgoing branches can be four times larger than 
the incoming ones. Equation (15) is so simple that it does 
not need an explanation. A series of calculations with 
different values of  𝑀𝑖 and 𝐾𝑠 has been carried out. The 
results are shown in Figure 8; they correspond to the 
parameters  𝑀𝑖 = 4 and 𝐾𝑠.=4. 

 

Figure 8.  Optimal system connecting a group of points to one source 

As the check-up has shown the permission for 4 
branches starting from one point and 4 branches leaving 
the source is excessive. The optimum is observed at two 
branches and two branches leaving the source are 
sufficient. The branching system turned out to be better 
than the Hamilton cycle and is optimal from the point of 
view of minimizing the segments connecting 27 points of 
this scheme. 

Four branches or even three on a given spatial scheme 
of point’s arrangement are not optimal. 

By combining equations (5) - (15) into different groups, 
it is possible to find optimal schemes connecting the 
consumers to the sources. These are closed loops, open 
loops with fixed and free end points. This is a path with 
given number of consumers. These are branching schemes. 
The trivial TSP problem of one optimal path - the 
Hamilton cycle - is extended mathematically and more 
adequately corresponds to the practical tasks of logistics. 

3. Conclusions 
1. The task solved within the framework of this 

research will allow creating optimal water supply 
systems not only across the whole range of 
influencing parameters of pipelines but also in 
spatial arrangement of the pipelines. The solution 
is determined in the Mixed Integer Programming - 
MIP and Discontinuous Nonlinear Programming = 
DNLP connection modes. 

2. The set and solved task opens up a whole range of 
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possibilities for its use in various fields of science 
and production: electrical networks; network of 
Internet connections, and many others. It is quite 
possible to expand and solve the problem of 
finding the location of branching optimal lines 
connecting the sources and consumers. 

3. The solved task also creates significant 
opportunities in design of roads and interchanges; 
in planning acceptable routes for flights and in the 
absence of direct flights. 

4. New statement of the TSP problem will 
undoubtedly entail the development of new 
solution algorithms, which may well prove to be 
more efficient and just as successful as the one 
proposed in this article using the GAMS 
optimization system. 
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