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Abstract. Existing and applied in practice to solve the aerodynamics and hydrodynamics problems finite-
difference schemes ensure that the laws of conservation of matter and energy only in limited configurations of 
velocity fields.  In other cases, there are balance errors, which are currently accepted as the norm, and special 
algorithms of recalculation have been developed to reduce them. Additional calculations are labor-intensive, and 
when solving small-scale problems, balance errors can completely distort the calculation results. This article 
attempts to solve two-dimensional hydrodynamic problems using a new finite-difference computational scheme 
previously developed by the authors, based on the non-divergent form of recording the transfer and conservation 
equations. Initially, the scheme was developed and tested in one-dimensional space and showed complete 
conservativity, stability, transportability and adequacy. To solve two-dimensional problems, a transformation of 
the proposed scheme was performed. The solution of the test problems and comparison with the calculation results 
of other known schemes showed that in two-dimensional space the proposed scheme surpasses the results obtained 
by the HEC-RAS and Courant-Isakson-Reese schemes. The proposed scheme makes it possible to use the 
maximum possible time steps in the calculations, and the resulting scheme viscosity has minimal values. This 
property of the scheme makes it possible to apply it to solve small-scale aerodynamic and hydrodynamic 
problems. 

1. Introduction
When solving problems about the motion of a coherent medium, the main requirement is to ensure the laws of 
conservation of matter [2, 4, 10, 13, 14, 15, 24]. Also, the calculation schemes used must have computational 
stability, adequacy, and transportability [3, 7, 8, 23, 24]. For calculations of this type, equations based on the laws of 
conservation of momentum of motion and mass are used [5, 6, 8].  Usually, finite-difference schemes [12, 22, 27, 
28, 29], usually the Courant-Isakson-Reese scheme [11] and its modifications, are used as the mathematical 
expression of these equations. However, all existing and applied in practice finite-difference schemes are limited in 
their application, since they do not provide an exact execution of the laws of conservation of momentum and matter 
at any configurations of velocity fields. 
This limitation has led to the introduction of a number of simplifications in approximate calculations, and the 
calculation error is taken for granted, although the presence of such an error causes a loss of conservativity and puts 
the results of calculations in doubt.  
The concept of "balance error" has even been introduced into various calculation tools and an algorithm of steps to 
reduce the mass-energy balance error has been developed. One of the methods of non-conservativity reduction used 
in fluid mechanics [1, 5, 24] is the reduction of the computational grid step in the whole computational domain or 
only in the area of conservativity loss.  
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Hydrodynamicists in many countries of the world use the HEC-RAS system to solve two-dimensional 
hydrodynamic problems [5, 9], which is officially used in the USA (https://www.hec.usace.army.mil) for calculation 
of hydromechanical processes and subsequent justification of insurance payments. 
Let's consider how accurate results this system can give. Figure 1 shows a scan of the automatically generated listing 
for the calculation of possible flooding of territories in case of a dam break on the Kravfish River.  The step of the 
calculation grid is 15 by 15 meters. 

 

 
Fig. 1. A scan of the HEC-RAS program listing for the calculation of the dam break on the Kravfish River 

When examining the output of the text information in detail, a serious error can be detected. In Fig. 1 we can notice 
that in the last 7 lines a water balance error appeared: the amount of water at the outlet of the calculation area is 
greater than the amount of water at the inlet. Since the listing comes out in automatic mode, we conclude that this 
error is inherent and legitimized in this program, despite the obvious violation of the law of conservation of mass. If 
the error is very large, recalculations are performed on the grid with a smaller step. Repeated successive calculations 
take an enormous amount of labor and time. In particular, it took 6.5 hours to perform the calculation of the 
Wisconsin River levee breach using a 9th generation computer. The number of calculations attempts before a 
satisfactory result is obtained depends on the intuition and skill of the computational fluid mechanic.  
When using such computational schemes to solve the aerodynamics problem, especially at small scales (for 
example, estimates of air circulation in urban areas), the main parameters are the minimum changes in air density 
and humidity. Therefore, an error in the calculation for such problems can lead to incorrect determination of the type 
of air mass circulation, i.e. the whole calculation can become erroneous.   
Thus, we can conclude that calculations performed with a predetermined error can give only approximate results, 
and with violations of the fundamental laws of physics on the conservation of matter and energy. 
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A finite-difference scheme providing an exact execution of the laws of conservation of mass [25, 26] was proposed 
at TIIAME NRU and tested on calculations for one-dimensional space. A comparison of the results with the best 
known and most common calculation schemes [1, 24] showed that the proposed scheme is fully conservative, stable, 
transportable, and adequate [25, 26]. The purpose of this paper was to check the possibility of applying the proposed 
scheme for calculations in two-dimensional space. 
 
2. Materials and Methods 
The basic calculation method was the previously published scheme [25, 26] for one-dimensional space.  The 
equation of matter transfer can be written in the form: 
 

                                                             (1) 
Or in the form: 
 

                                                              (2) 
 
Where: S - concentration of substance in a unit of space, V - velocity of substance movement, t - time, x - spatial 
coordinate. 
A recording form of equation (1) is a basis for most used finite difference schemes [12, 16-18, 19] which are called 
"divergent" [16, 17, 18], because they are based on a divergent recording form of equations of conservation of 
substance and energy. The basis of the new scheme for calculating the transfer and conservation of matter [25, 26] 
was not the divergent, but the expanded form of recording (2) of the transfer and conservation equations. Usually, 
the finite-difference analogues of this form of notation led to an exponential growth of accumulated errors, which 
caused an emergency stoppage of calculations. For this reason, this form of notation is practically not used in 
calculations and is very poorly studied. However, it is on the basis of this form of recording the conservation and 
transfer equations that a new finite-difference scheme of the TIIAME NRU [24] was developed.   
In [25, 26] it is shown how equation (2) can be solved for one-dimensional space. To solve it, scheme (3) was 
applied: 

, 
, 
, 

,                                                                                           (3) 

 

Where: Ut,i, Wt,i - some newly introduced variables computed through the value of the velocity of matter 
movement, depending on the sign of that velocity. 

Testing of scheme (3) has shown that its computational characteristics exceed those of the most widely used finite-
difference Courant-Isakson-Reese schemes [6, 20, 21, 24] and their modifications.  
To analyze the behavior of the scheme (3) in two-dimensional space, the following conditions were assumed. 
The computational domain has a rectangular shape (Fig. 2). In it, we set two contiguous circular trajectories of 
motion, their velocity field is shown by arrows 3 in the figure. The velocity in the field of motion is taken equal to 
1m/s. In one of the points on each circular trajectory of motion, set the concentration of substance equal to 1 and 
located symmetrically on each circular trajectory of motion. The cells in which, at the initial moment of time, the 
concentration of substance was set equal to 1 are highlighted in red. Complete symmetry of circular trajectories in 
the test problem is introduced to check the most important property of any finite-difference schemes - invariance. 
Approximate calculation schemes should give results that do not depend on the direction of coordinate axes. The 
loss of invariance makes any calculation scheme unacceptable for practical use.  
Let us perform the calculation with a time step slightly smaller than the Courant-Levy condition allows, so that we 
can observe the manifestation of the scheme viscosity. We take 0.9 part of the maximum possible time step. 
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3. Results and Discussion 
Figures 2, 3 and 4 show the distribution of matter in circular motions. Cells in which, at the initial moment of time, 
the presence of a unit of substance was set are marked in red. Obviously, the sum of the substance in the calculation 
area must always be equal to two.  
Figure 2 shows the distribution of substance at 30-time steps (27 sec. of process) when applying the finite-difference 
directed difference scheme for the two-dimensional transfer and conservation of substance equation written in the 
form 

                                           (4) 
In the results of the calculation (Fig. 2) we can detect a loss of conservativity. The initial amount of matter in two 
units increased to 6.22. However, this result is adequate to the physics of the process and the matter moves along 
circular trajectories. The loss of conservativity goes in the direction of appearance of matter in the system and this 
means an emergency stop of the calculation process in the future due to the appearance of very large numbers. This 
is one of the main reasons, which immediately forced the computational fluid mechanics to avoid the form of the 
conservation equation in the form (4) for the development of approximate finite-difference calculation schemes. 
Next, let us perform the solution using the Courant-Isakson-Reese finite-difference scheme written in the divergent 
form (5): 

                                               (5) 
 
Figure 3 shows the result of the calculation by formula (5) of the distribution of the substance for 30 steps in time. In 
the results of the calculation (Fig. 3) one can see both the loss of conservatism and the loss of adequacy of the 
calculation to the real physical process. Indeed, in the beginning the substance was 2 units, but after 30 iterations the 
substance became 0.66 units. Loss of adequacy is very noticeable on cells adjacent to cells of flow reversal. There 
the concentration becomes a negative value. 
 

Fig. 2. Application of directed differences for the equation of transport and conservation of matter written in the form (4) 
 

Figure 4 shows the distribution of matter by 30 steps in time when solving the problem with the help of a new finite-
difference scheme of directional differences for the equation of transfer and conservation of matter [25, 26]. To 
perform the solution, the TIIAME NRU scheme written in the form (4) was generalized to the two-dimensional 
space in the form (6). The same generalization can be performed similarly for three-dimensional space. 
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Fig. 3. Application of directed differences to the transfer equation written in divergent form (5) 
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,                                                                           (6) 
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where UXt,i,j, WXt,i,j, UYt,i,j, WYt,i,j are some newly introduced variables, calculated through the value 
of the velocity of the substance, depending on the sign of this velocity.  

According to the calculation results shown in Fig. 4 shows that the application of the investigated calculation 
scheme (6) provides accurate implementation of the law of conservation of matter, has transportability, stability in 
calculations, adequacy and invariance.  
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Fig. 4. Application of the finite-difference scheme developed in SRIIMSH for the equation of transfer and conservation 

of matter (2) in two-dimensional space. 
 

Comparison of results obtained for three variants of solution is presented in fig. 5. Combined diagram of substance 
distribution for 30 intervals of time. 

 
Fig. 5. Combined graph of the substance distribution for the 30th time interval calculated by three different finite-

difference schemes (4), (5) and (6) along their circular motion path. 
 
A time step of 0.9 of the maximum possible steps determined by the Courant-Levy criterion provided a manifestation 
of the scheme viscosity. But this time step turned out to be too large for the Courant-Isakson-Reese scheme. Figure 5 
clearly shows the appearance of "cogged" instability, which disappears when the time step is reduced to half of the 
maximum possible. However, the circuit viscosity at such a small time step significantly distorts the result. The 
matter is as if smeared along the trajectory of its motion. That is, obtaining an exact solution when applying the 
Courant-Izakson-Reese scheme in two-dimensional space and in this configuration of the velocity field is in principle 
impossible already at a time step equal to 0.9 of the maximum possible.  
The scheme (6) proposed by the authors easily copes with the task of obtaining the exact solution by approximate 
calculation. 
 
4. Conclusions 
1. Testing of the finite-difference scheme adapted for the two-dimensional space previously developed at TIIAME 

NRU has shown that this scheme fully ensures observance of the laws of conservation of matter and energy. This 
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4. Conclusions 
1. Testing of the finite-difference scheme adapted for the two-dimensional space previously developed at TIIAME 

NRU has shown that this scheme fully ensures observance of the laws of conservation of matter and energy. This 

scheme meets all the requirements to the schemes for approximate calculation of the equations of transfer and 
conservation of mass and energy, has the properties of conservativeness, transportability, stability in calculations, 
adequacy and invariance. The results of calculations according to the proposed scheme exceed the capabilities of 
usually used similar schemes for the two-dimensional space.    

2. The stability of calculations according to the calculation scheme proposed by the authors at the maximum 
possible time steps with a minimum manifestation of the scheme viscosity allows using this scheme for 
calculations of air microcirculation in urban areas. It is expected that the proposed finite-difference scheme will 
be especially effective in calculating small-scale atmospheric circulation determined by small deviations of 
humidity, temperature, and pressure from mean values.  

3. In addition, since the proposed scheme does not produce errors in the mass balances, its use will significantly 
reduce the time and labor intensity of the calculations, as there will be no need for additional calculations with 
changes in the size of the calculation grid. 
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