

ЎЗБЕКИСТОН РЕСПУБЛИКАСИ ОЛИЙ ВА ЎРТА МАХСУС ТАЪЛИМ ВАЗИРЛИГИ

"ТОШКЕНТ ИРРИГАЦИЯ ВА ҚИШЛОҚ ХЎЖАЛИГИНИ МЕХАНИЗАЦИЯЛАШ МУХАНДИСЛАРИ ИНСТИТУТИ" МИЛЛИЙ ТАДҚИҚОТ УНИВЕРСИТЕТИ

"ҚИШЛОҚ ВА СУВ ХЎЖАЛИГИНИНГ ЗАМОНАВИЙ МУАММОЛАРИ"

мавзусидаги анъанавий XXI - ёш олимлар, магистрантлар ва иқтидорли талабаларнинг илмий - амалий анжумани

21

XXI - traditional Republic scientific - practical conference of young scientists, master students and talented students under the topic

"THE MODERN PROBLEMS OF AGRICULTURE AND WATER RESOURCES"

МАҚОЛАЛАР ТЎПЛАМИ

OʻZBEKISTON RESPUBLIKASI OLIY VA OʻRTA MAXSUS TA'LIM VAZIRLIGI

"TOSHKENT IRRIGATSIYA VA QISHLOQ XOʻJALIGINI MEXANIZATSIYALASH MUHANDISLARI INSTITUTI" MILLIY TADQIQOT UNIVERSITETI

"QISHLOQ VA SUV XOʻJALIGINING ZAMONAVIY MUAMMOLARI" mavzusidagi an'anaviy XXI – yosh olimlar, magistrantlar va iqtidorli talabalarning ilmiyamaliy anjumani

MAQOLALAR TO'PLAMI

TASHKILIY QOʻMITA TARKIBI

1.	Mirzayev B.S.	Rais, "TIQXMMI" MTU rektori, t.f.d, professor				
2.	Sultanov T.Z.	Rais oʻrinbosari, Ilmiy ishlar va innovatsiyalar boʻyicha prorektor, t.f.d., professor				
3.	Xudayarov. B.A.	Rais oʻrinbosari, oʻquv ishlari boʻyicha prorektor, t.f.d., professor				
4.	Choriyev R.K.	Rais oʻrinbosari, Yoshlar masalalari va ma'naviy-ma'rifiy ishlar boʻyich prorektor, p.f.d, dotsent				
5.	Saloxiddinov. A.T.	Rais oʻrinbosari, xalqaro hamkorlik boʻyicha prorektor, t.f.d., professor				
6.	Xasanov B.U.	Rais oʻrinbosari, moliya-iqtisod ishlari boʻyicha prorektor, professor				
	A'zolar					
7.	Qoʻziyev U.T.	Ilmiy-tadqiqotlar, innovatsiyalar va ilmiy-pedagog kadrlar tayyorlash boʻlimi boshligʻi, dotsent				
8.	Yangiyev A.A.	Magistratura boʻlimi boshligʻi, t.f.d., professor				
9.	Fatxullayev A.M.	GM fakulteti dekani, t.f.d., dotsent				
10.	Xasanov B.B.	GTQ fakulteti dekani, t.f.d., professor				
11.	Shovazov Q.A.	QXM faulteti dekani, t.f.n., dotsent				
12.	Norov B.X.	GIM fakulteti dekani, t.f.n., dotsent				
13.	Isakov A.J.	QSXET fakulteti dekani, t.f.d., professor				
14.	Narbayev Sh.K.	YRB fakulteti dekani, (PhD)				
15.	Xakimov R.	SXTE va B fakulteti dekani, dotsent				
16.	Xamidov Sh.X.	Bosmaxona mudiri				
17.	Irisov F.Q.	Kasaba uyushmasi raisi				
18.	Xolmatov Z.M.	Iqtidorli talabalarning ilmiy tadqiqot ishlarini tashkil etish (ITITITE) boʻli boshligʻi, kotib				
19.	Akbarov D.M.	Doktorant				
20.	Ozodov E.O.	Doktorant				
21.	Xurramov M.X	ITITITE boʻlimi xodimi				
22.	Rasulov D.D.	"O'zbekiston yoshlar ittifoqi" universitet BT yoshlar yetakchisi				
23.	Burxonova M.	Magistratura 2 bosqich talabasi				
24.	Hasanov A.	GM fakulteti 4 bosqich talabasi				
25.	Sharipov Sh.	GTQ fakulteti 4 bosqich talabasi				
26.	Shonazarova A.	SXTE va B fakulteti 3 bosqich talabasi				
27.	Qodirov S.	Magistratura 1 bosqich talabasi				
28.	Djalilov S.	Magistratura 1 bosqich talabasi				
29.	Norqoʻziyeva N.	Magistratura 1 bosqich talabasi				
		·				

25.	Мирзаева Д.Н. ТошДТУ, магистрант. Алимова Ф.А. ТошДТУ, техника фанлари номзоди, доцент	Майда уруғларни экиш муаммосининг бугунги холати Ва истиқболдаги ечимларига оид	843
26.	К.Шавазов-к.т.н., доцент, Р.Райимов- 2-боскич М-119 магистрант "ТИИИМСХ" Национальный исследовательский университет	Обоснование технологических параметров дисковых почвообрабатывающих рабочих органов	847
27.	Худаяров Б. проф.магистрант Шарипов Л. "ТИИМСХ" Национальный исследовательский университет	Особенности стебля сахарного сорго в отделении сока	851
28.	Игамбердиев А.К. д.т.н. профессор Усманов Э, Усманова Г.докторанты Мирабдуллаев Ш.Д. магистрант 1-курса МСХ Олтинбаев Т.А. "ТИИИМСХ" Национальный исследовательский университет,	Оценка физических свойств почв узбекистана	855
	студент		
29.	К. Усмонов- изланувчи, Ж. Қўзибоев –талаба	Парранда чикиндисини анаэроб қайта ишлаш	862
30.	Расулов Ф.Ф.магистрант Омонов Н.Н. т.ф.ф.д. (PhD) ТошДТУ	Пахта териш аппарати барабани харакатини модделлаштириш ва параметрларини оптималлаштириш	865
31.	Оринбаев П.Ф. ҚХМИТИ- таянч докторанти	Полиз экинлари уруғларини экиш технологияларининг тахлили	870
32.	Бердирасул М.Х. т.ф.д., профессор, Лапасов А.Р. ҚХМ 3-босыич 306-гурух факултети Қва СХТСервис йўналиши талабаси. "ТИҚХММИ" Миллий тадкикот университети	Республикада фермерларимиз ғўзапояни йиғиб олиши	874
33.	Махмудова М.М. "ТИИИМСХ" Национальный исследовательский университет Бухарского института	Свойства воды используемых в системе охлаждения автотракторных двигателей.	877
34.	Рузикулов Ж.У. Сафаров Х. С. Курбанбаев С.С. "ТИИИМСХ" Национальный исследовательский университет Бухарский институт	Теоритические предпосылки определения тяглого сопротивления канавокопателя с дисковыми ножами.	880
35.	Нажмитдийнов А.Е. магистрант "ТИҚХММИ" Миллий тадқиқот университети	Трактор двигатели совутиш тизими радиаторининг ишлашига таъсир этувчи омиллар	884
36.	Н.А. Холикова- Доцент С. М. Базарбаева- 1-курс 105-гурух Талаба. И. Таджибаев, Э. Кенжебаева "ТИҚХММИ" Миллий тадкикот университети	Тракторларга техник хизмат кўрсатиш пунктининг технологик лойихаси, курилма ва ускуналар таркибини танлаш.	886
37.	Норчаев Д. Ртехника фанлари доктори. Норчаев Ртехника фанлари номзоди, доцент Халикулов М. А.1-курс таянч доктаранти. ҚХМИТИ. Холикулов М. А. Гулистон Давлат Университети 4-курс талабаси	Универсал илдиз мева ковлашгичнинг конструктив схемасини ишлаб чикиш	891
38.	Бердимуратов П. Т. PhD доцент: Студент: Хўжамкулов Ж.Б.4-курс 404-гурух "ТИИИМСХ" Национальный исследовательский университет	Устойчивости хода формовщика хлопковой сеялки	894

УСТОЙЧИВОСТИ ХОДА ФОРМОВЩИКА ХЛОПКОВОЙ СЕЯЛКИ

PhD доцент: Бердимуратов Парахат Тажимуратович, Студент: Хўжамқулов Жавлонбек Бахтиёр ўгли Национального исследовательского университета "ТИИИМСХ"

Аннотация:

Целью исследования является анализ устойчивости хода формовщика хлопковой сеялки. Рассмотрена продольная устойчивость формовщика в неподвижной системой координатв зависимости от действующих сил на него, а также его конструктивных параметров. Получено уравнение для определения угловых отклонений поводков параллелограмной системы крепления от начального положения под действием приложенных к формовщику сил, конструктивных параметров секции и неровности поверхности почвы. Установлено, что на колебание звеньев параллелограммного механизма основное влияние оказывают вес от массы системы формовщика, силы сопротивления почвы, первоначальный угол наклона звеньев и сила давления пружины. Устойчивость работы формовщика обеспечивается в основном за счет изменения силы давления пружины.

Введение. Известно, что одним из основных критериев оценки качества работы, машин является соответствие показателей технологического процесса, выполняемого машиной, агротехническим требованиям [1]. Поэтому важно, чтобы эти показатели были достаточно математически обоснованы и взаимоувязаны. Поэтому нами изучены теоритеческие вопросы устойчивости движения формовщика хлопковой сеялки.

Целью исследования является анализ устойчивости хода формовщика хлопковой сеялки.

Материалы и методы. В мире ведущее место занимает разработка и внедрение почвоохранных технологий и технических средств [2, 3] при возделывании сельскохозяйственных культур. Для устранения отрицательного влияния обильных осадков на всхожесть семян путем исключения попадания дождевого потока в семенное ложе нами была разработана технология и специальное устройство к хлопковой сеялке, которое одновременно с посевом формирует гребня с минимально допустимой высотой [4, 5, 6].

Результаты и обсуждения. При поступательном движении формовщика на него действуют следующие силы: сила тяжести G, приложенная на расстоянии X_G от точкиO; сила Q от давления пружины; горизонтальная и вертикальнаясоставляющие сопротивления формовщика R_x и R_z ; сила тяги P, приложенная паралельно к звеньям параллелограмной подвески. Симметричность формы формовщика обусловливает действие на него сил в одной вертикальной плоскости.

При рассмотрении устойчивости движения формовщика воспользуемся методикой расчета Т.С.Набиева, разработанной им для определения устойчивости движения рабочих органов хлопкового культиватора.

Продольную устойчивость формовщика рассмотрим в неподвижной системой координат XOZв зависимости от действующих сил на него, а также его конструктивных параметров. При этом ось OX иOZнаправим как показано на рис.1.

Координаты центра тяжести X_0 и Z_0 формовщика в начальный момент движения имеет следущий вид

$$\begin{cases} X_0 = X_R + \frac{L_x}{2} - X_G, \\ Z_0 = h_{\phi} + Z_G. \end{cases}$$
 (1)

При равномерном движении сеялки через некоторое время t сеялка переместится в направлении оси OX на величину $V_n t$. В это время формовщик под действием возмущающего момента M получит угловое перемещение, равное φ . Тогда центр тяжести секции переместится от положения T (X_0 ; Z_0) в положение T_1 (X_1 ; Z_1), координаты которых определяются следующими выражениями:

$$\begin{cases} X_{1} = V_{II}t + X_{R} + \frac{L_{x}}{2} - X_{G} + l\sin\varphi_{0} - l\sin(\varphi_{0} + \varphi) \\ Z_{0} = h_{\phi} + Z_{G} + l\cos\varphi_{0} - l\cos(\varphi_{0} + \varphi). \end{cases}$$
(2)

Проекции скорости перемещения центра тяжести формовщика в этом случае:

$$\dot{X}_1 = V_{II} - l\dot{\varphi}\cos(\varphi_0 + \varphi)$$

$$\dot{Z}_1 = l\dot{\varphi}\sin(\varphi_0 + \varphi) \tag{3}$$

При условии V_{Π} =const система будет иметь одну степень свободы.

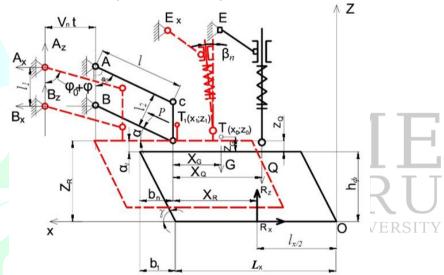


Рис.1. Схема перемешения секции формовщика под влиянием действующих сил

Примем за обобщенную координату угловое перемещение φ звеньев параллелограммного механизма секции формовщика. При этом задача устойчивости движения сводится к определению φ как функция времени. Для составления дифференциального уравнения движения формовщика воспользуемся уравнением Лагранжа второго рода, который имеет следующий вид [11,12,13]

$$\frac{d}{dt}\left(\frac{dT}{d\dot{\varphi}}\right) - \frac{dT}{d\varphi} + \frac{d\Pi}{d\varphi} = Q_{\varphi},\tag{4}$$

где T — кинетическая энергия системы; Π — потенциальная энергия пружины регулятора заглубленияформовщика; Q_{θ} — обобщенная сила.

Кинетическую энергию данной системы определим по известному уравнению

$$T = \frac{1}{2}mV^2 + \frac{1}{2}J_0\dot{\varphi}^2,\tag{5}$$

где m — масса секции формовщика; V — поступательная скорость центра тяжести секции формовщика; J_0 — момент инерции секции формовщика относительно оси, проходящей через центр тяжести перпендикулярно к продольно-вертикальной плоскости.

Учитывая, что $V^2 = \dot{X}_1^2 + \dot{Z}_1^2$ и сучетомзначения X_1 и Z_1 из уравнений (3) Т.С.Набиевым получены

$$T = \frac{1}{2} m \left[V_{II}^2 - 2V_{II} l \dot{\varphi} \cos(\varphi_0 + \varphi) + l^2 \cdot \dot{\varphi}^2 \right] + \frac{1}{2} J_0 \cdot \dot{\varphi}^2, \quad (6)$$

$$\frac{dT}{d\dot{\varphi}} = mV_{II}l\dot{\varphi}\sin(\varphi_0 + \varphi),\tag{7}$$

$$\frac{d}{dt}\left(\frac{dT}{d\dot{\varphi}}\right) = m\left[V_{\Pi}l\dot{\varphi}\sin(\varphi_0 + \varphi) + l^2\ddot{\varphi}\right] + J_0 \cdot \ddot{\varphi}.$$
 (8)

Потенциальная энергия пружины определяется следующей зависимостью [10]

$$\Pi = \frac{Z\Delta l^2}{2},$$
(9)

где Z – жесткость пружины; Δl – величина деформации пружины при отклонении секции от начального положения.

Значение Δl определяется по следующему выражению [10]:

$$\Delta l = l_Q \varphi. \tag{10}$$

Тогда

$$\frac{d\Pi}{d\varphi} = Zl_{\varrho}^2 \varphi. \tag{11}$$

После подставления значения кинематических и потенциальных энергий в уравнении (4) и упрощения получено[10]

$$J_n \ddot{\varphi} + Z l^2 \varphi = Q_{\varphi}, \qquad (12)$$

Для определения обобщенной силы Q_{φ}^{NEE} Т.С.Набиевымвоспользовано уравнение виртуальной работы приложенных к рабочему органу сил [10]:

$$M\delta\varphi = Q_{\alpha}\delta\varphi,\tag{13}$$

здесь $M=Q_{\varphi}$, где M —суммарный (возмущающий) момент приложенных к рабочему органу сил относительно точки его крепления к раме сеялки.

Из рис.1 имеем

$$M = R_x \left[l \cos(\varphi_o + \varphi) + h_\phi + a_1 \right] - R_z \left[l \sin(\varphi_o + \varphi) + \frac{L}{2} + b_1 - b_n \right] - G \left[l \sin(\varphi_o + \varphi) + X_G \right] + Q \cos\beta \left[l \sin(\varphi_o + \varphi) + X_G \right] + Q \sin\beta \left[a - Z_O + l \cos(\varphi_o + \varphi) \right] + A_x l_1,$$

$$(14)$$

где R_x и R_Z — горизонтальная и вертикальная составляющие сопротивления формовщика; l — длина продольных звеньев параллелограммного механизма; h_ϕ —глубина хода формовщика; β —угол наклона поводка; G— вессекции формовщика; A_x —горизонтальная составляющая реакции верхнего шарнира A_x крепления параллелограммного механизма к раме сеялки.

Реакция A_x может быть выражена через известные силы R_x , R_z ,G и Q.

Из условия равновесия имеем:

$$A_z + B_z - G - Q - R_z = 0$$
,

$$A_x + B_x - R_x = 0.$$

Допуская $A_z = B_z$ и $A_x = B_x$ имеем

$$2A_x - G - Q - R_x = 0$$

$$2A_x - R_x = 0,$$

отсюла

$$A_z = \frac{G + Q + R_z}{2}; \qquad A_x = \frac{R_x}{2}$$
 (15)

Известно, что глубина хода формировщика h_{ϕ} , в том числе формовщика меняется в зависимости от профиля поверхности почвы, то эту зависимость можно записать в следующем виде [10]:

$$h_{t} = h_{o} \left[1 + (\eta - 1) Cos \rho t \right], \tag{16}$$

здесь

$$\rho = \frac{2\pi}{T}, \qquad V_{II}T = S, \ \eta = \frac{h_{\text{max}}}{h_0} \ge 1,$$

где h_{\max} — максимальнаявеличина глубины хода формовщика; h_0 — средняя величина глубины хода; ρ — частота колебания неровностей поверхности почвы; T — период колебания; V_{II} — скоростьдвижения агрегата.

Известно, что при η =1, h_t =const= h_0 .

С учетом выражения (15) и (16) и после некоторых упрощений уравнение (14) можно записать в следующем виде

$$M = (R_x l \cos \varphi_o - R_z l \sin \varphi_o - G l \sin \varphi_o - Q l \cos \beta \sin \varphi_o + Q l \sin \beta \cos \varphi_o) \cos \varphi -$$

$$+ \left\{ R_x Z_k + R_x h_o \left[1 + (\eta - 1) \cos \rho t \right] - R_x a - R_z \left(\frac{L}{2} + b_1 + b_n - G X_G + Q X_a + Q \sin \beta (a - Z_Q) + A_x l_1 \right\}.$$

Для упрощения (17) воспользуемся методикой Т.С.Набиева и введем следующие обозначения:

$$A_{1} = R_{x}l\cos\varphi_{o} - R_{z}l\sin\varphi_{o} - Gl\sin\varphi_{o} - Ql\cos\beta\sin\varphi_{o} + Ql\sin\beta\cos\varphi_{o};$$

$$A_z = R_x l \sin \varphi_o + R_z l \cos \varphi_o + G l \cos \varphi_o + Q l \cos \beta \cos \varphi_o + Q l \sin \beta \sin \varphi_o;$$

$$A_{3} = R_{x}Z_{k} + R_{x}h_{o}\left[1 + (\eta - 1)\cos\rho t\right] - R_{x}a - R_{z}\left(\frac{L}{2} + b_{1} - b_{n}\right) - GX_{G} + QX_{Q} + Q\sin\beta(a - Z_{Q}) + A_{x}l_{1}.$$

Тогда (17) примет вид
$$M = A_1 \cos \varphi - A_2 \sin \varphi + A_3$$
 (18)

После подстановки значения возмущающего момента M в уравнение (12), получим:

$$J_n \ddot{\varphi} = A_1 \cos \varphi - A_2 \sin \varphi - z l_a^2 \varphi + A_3 \tag{19}$$

Т.С.Набиевым после интегрирования уравнения (19) и некоторых математических преобразований получено следующая зависимость для определения углового перемещения φ

$$\varphi = \frac{A_1 + A_3}{A_2 + z l_a^2} \left(1 - \cos \sqrt{\frac{A_2 + z l_a^2}{J_n}} t \right)$$
 (20)

Отклонение продольных звеньев параллелограммного механизма формовщика сеялки от начального положения при заданных возмущающих силах происходит по (20).

Подставив значения A_1 , A_2 и A_3 в уравнение (20) имеем

$$\varphi = \frac{R_x \left[l\cos\varphi_0 + Z_k + h_0\left(1 + \left(\eta - 1\right)\cos\rho t\right) - a\right] - R_z \left[l\sin\varphi_0 + \frac{L}{2} + b_1 + b_n\right] - l\left[R_x\sin\varphi_0 + R_z\cos\varphi_0 + G\cos\varphi_0 + Q\cos(\beta - \varphi_0)\right] + l\left[R_x\sin\varphi_0 + R_z\cos\varphi_0 + G\cos\varphi_0 + Q\cos(\beta - \varphi_0)\right] + l\left[R_x\sin\varphi_0 + R_z\cos\varphi_0 + G\cos\varphi_0 + Q\cos(\beta - \varphi_0)\right] + l\left[R_x\sin\varphi_0 + R_z\cos\varphi_0 + G\cos\varphi_0 + Q\cos(\beta - \varphi_0)\right] + l\left[R_x\sin\varphi_0 + R_z\cos\varphi_0 + G\cos\varphi_0 + Q\cos(\beta - \varphi_0)\right] + l\left[R_x\sin\varphi_0 + R_z\cos\varphi_0 + G\cos\varphi_0 + Q\cos(\beta - \varphi_0)\right] + l\left[R_x\sin\varphi_0 + R_z\cos\varphi_0 + R_z\cos\varphi_0 + Q\cos(\beta - \varphi_0)\right] + l\left[R_x\sin\varphi_0 + R_z\cos\varphi_0 + R_z\cos\varphi_0 + Q\cos(\beta - \varphi_0)\right] + l\left[R_x\sin\varphi_0 + R_z\cos\varphi_0 + R_z\cos\varphi_0 + Q\cos(\beta - \varphi_0)\right] + l\left[R_x\cos\varphi_0 + R_z\cos\varphi_0 + R_z\cos\varphi_0 + R_z\cos\varphi_0\right] + l\left[R_x\cos\varphi_0 + R_z\cos\varphi_0 + R_z\cos\varphi_0 + R_z\cos\varphi_0\right] + l\left[R_x\cos\varphi_0 + R_z\cos\varphi_0 + R_z\cos\varphi_0\right] + l\left[R_x\cos\varphi_0 + R_z\cos\varphi_0 + R_z\cos\varphi_0\right] + l\left[R_x\cos\varphi_0 + R_z\cos\varphi_0\right] + l\left[R_x\cos\varphi_0\right] + l\left[R_x\cos\varphi$$

$$\frac{-G[l\sin\varphi_0 + X_G] - Q[l\sin(\beta - \varphi_0) + X_a - \sin\beta(a - Z_a)] + A_x a_1}{+zl_a^2} \times$$
(21)

$$\times \left[1 - \cos \sqrt{\frac{l[R_x \sin \varphi_0 + R_z \cos \varphi_0 + G \cos \varphi_0 + Q \cos(\beta - \varphi_0)] + zl_a^2}{J_n}}t\right].$$

Анализ уравнения (21) показывает, что на величину φ основное влияние оказывают вес G от массы системы, силы сопротивления почвы, угол наклона звеньев φ_o и сила Q от давления пружины. Увеличение давления пружины приводит к уменьшению амплитуды колебаний параллелограммного механизма формовщика.

Таким образом, устойчивый ход формовщика можно достичь путем изменения сил давления пружины и угла наклона звеньев. Практически устойчивость хода формовщика обеспечивается в основном за счет изменения силы давления пружины в зависимости от условий работы.

Выводы. 1. Полученное уравнение колебания показали, что на колебание звеньев параллелограммного механизма основное влияние оказывают вес от массы системы формовщика, силы сопротивления почвы, первоначальный угол наклона звеньев и сила давления пружины. 2. Устойчивость работы формовщика обеспечивается в основном за счет изменения силы давления пружины.

Использованная литература: CH UNIVERSITY

- [1] Василенко П.М., Бабий П.Т. Культиваторы. Киев, 1961. 24 с.
- [2] Mirzaev, B., Mamatov, F., & Tursunov, O. (2019). A justification of broach-plow's parameters of the ridge-stepped ploughing. E3S Web of Conferences, https://doi.org/10.1051/e3sconf/20199705035.
- [3] Mirzaev, B., Mamatov, F., Avazov, I., & Mardonov, S. (2019). Technologies and technical means for anti-erosion differentiated soil treatment system. E3S Web of Conferences, https://doi.org/10.1051/e3sconf/20199705036.
- [4] Mamatov F., Mirzayev B., Shoumarova M., Berdimuratov P., Khodzhaev D. Comb former parameters for a cotton seeder // International Journal of Engineering and Advanced Technology (IJEAT). Volume-9 Issue1, October 2009. DOI: 10.35940/ijeat.A2932.109119.
- [5] Berdimuratov P.T., Mamatov F.M. Improving the combing technology and tool for sowing the cotton // European science review Austria, 2018. N 1. P. 237-239.
- [6] Утепбергенов Б.К., Бердимуратов П.Т., Жумамуратов Д.К. Обоснование оптимальных параметров грядок для сева хлопчатника на их гребни // Вестник Каракалпакского отделения Академия наук республики Узбекистон, Нукус, 2017. № 1(246). Б.34-36.
- [7] Долматов Э.В. Влияние параметров механизма подвески рабочих органов культиваторов на устойчивость их хода по глубине. Труды ВИМ, том 62, Москва, 1970. С.143-146.
- [8] Джуманиязов П. Некоторые вопросы исследованиечетырехзвенного механизма/ с упругой связью/ хлопкового культиватора. дис. ... канд. техн. наук. Ташкент, 1969.
- [9]Иргашев Х.И. Исследование рабочих органов культиватора для обработки защитных зон рядков хлопчатника. Ташкент, 1964. 115 с.
- [10] Набиев Т.С. Исследование и обоснование параметров регулятора заглубления рабочих органов культиватора для повышения качества междурядной обработки хлопчатника: Дис. ... канд. техн. наук. Ташкент: 1975. 123 с.
 - [11] Пановко Я.Г. Введение в теорию механических колебаний. М., -1971.-334 с.
- [12] Соколов В.М. Исследование работы сошниковой системы посевных машин в почвенных условиях полесья. Автореф. дис. ... канд. тех. наук . Киев: 1962.
 - [13] Фильчаков П.Ф. Справочник по высшей математике. Киев, 1973.