

Национальный исследовательский университет «Ташкентский институт инженеров ирригации и механизации сельского хозяйства» НИУ- «ТИИИМСХ»

Дисциплина:

Транспорт в сельском и водном хозяйстве

Тема

1

Состав тракторного Транспорта.

БЕРДИМУРАТОВ ПАРАХАТ ТАЖИМУРАТОВИЧ

Доцент кафедры «Управление инженерными системами»

ЛЕКЦИЯ - 10. СОСТАВ ТРАКТОРНОГО ТРАНСПОРТА

План:

- 1. Алгоритм расчёта рационального состава МТА.
- 2. Расчёт состава тракторного транспортного агрегата.

Литература

- 1. А.В.Гордеенко и др. Расчёт эксплуатационных, технико-экономических и технологических показателей работы МТА. Горки-2017.
- 2. А.В. Головкин. Автомобильные перевозки в с/х производстве, Курс лекций, Тюмень 2012
 - 3. М.С.Ходош. Грузовые автомобильные перевозки. М.,Транспорт. 1980.
 - 4. Ю.И.Наумов Машина-трактор паркидан фойдаланиш Тошкент, Мехнат, 1985.

Алгоритм расчёта рационального состава МТА.

От эффективности использования как отдельных агрегатов, так и всего МТП непосредственно зависят количество и качество производимой сельскохозяйст-венной продукции, затраты соответствующих ресурсов и в конечном счёте экономическое благополучие всего хозяйства.

Уровень механизации производственных сельскохозяйственных процессов зависит не только от количество новых машин, но и от умелого и рационального использования их.

Расчёт потребного количества технических средств для выполнения определенного объёма сельскохозяйственных работ необходим, прежде всего, для осуществления качественной организации и управления той или иной отраслью СХП.

Указанный расчёт может быть осуществлён с высоким качеством только при условии отличного знания и умения определять эксплуатационные характеристики тракторов и агрегатируемых машин, их рациональные составы исходя из конкретных условий работы.

Расчёт состава МТА при заданной марке СХМ выполняется в нижеприведённой последовательности.

- По техническим характеристикам СХМ определяют рабочую ширину захвата В_р, вес G_м и диапазон агротехнически допустимых рабочих V_p скоростей машины заданной марки.
- 2. Определяют тяговые сопротивления *R* (кН) машины по следующим формулам:

для пахотных агрегатов

$$R_{nn} = k_o \cdot a \cdot b \cdot n + G_{nn} \cdot \sin \alpha, \qquad //// \qquad (1)$$

где k_0 – удельное сопротивление почвы при пахоте, к \mathcal{W} м² (табл.1);

а – глубина вспашки, м;

b – ширина захвата одного корпуса плуга, м

п – число корпусов плуга, шт;

 G_{nn} – вес плуга, кH;

угол наклона участка поля, град.

Средние значения удельного сопротивления сельскохозяйственных машин и орудий (для учебных целей)

Сельскохозяйственные машины и орудия	Удельное сопротивление	
	К _{пл} , кН/м²	К _о , кН/м
Плуги при вспашке почв: легких средних тяжелых очень тяжелых	28 45 67 100	
Бороны дисковые		1,7
Культиваторы: для сплошной обработки для междурядной обработки окучники		2,1 1,5 1,6
Агрегаты комбинированные почвообрабатывающие		2,4
Сеяльки рядовые		1,35
Косилки навесные прицепные		0,8 1,1
Пресс-подборщики		0,4

для непахотных агрегатов, рабочие органы которых взаимодействуют с почвой или растениями (бороны, сеяльки и др.)

$$R_{M} = k_{o} \cdot B_{p} + G_{M} \cdot \sin \alpha, \tag{2}$$

где K_0 — удельное сопротивление машины или орудия, кН/м (табл.1);

Вр – рабочая ширина машины, м;

п — число корпусов плуга, шт;

 G_{M} — вес машины, кН.

для машин, имеющих привод от ВОМ трактора (косылки, опрыскиватели, разбрасыватели и др

$$R_{np} = R_{M} + R_{BOM}, \tag{3}$$

где R_{M} — тяговое сопротивление машин с рабочими органами, не приводимыми в действие от ВОМ, определяемое по формуле (2) или сопротивлению качению колес машины с грузом, кH:

$$R_{\rm M} = G_{\rm M} (f + \sin \alpha), \tag{4}$$

где f – коэфф. сопротивления качению колес машины (по стерне – 0,09; пару – 0,13; зяби – 0,15, полю, подготовленному под посев – 0,16);

R_{BOM} - сопротивление, эквивалентное мощности, расходуемой через ВОМ, кН:

 R_{BOM} - сопротивление, эквивалентное мощности, расходуемой через BOM, кН:

$$R_{BOM} = \frac{3.6N_{BOM}\eta_{M}}{V_{p}\eta_{BOM}}$$
 (5)

где N_{BOM} – мощность на привод рабочих органов СХМ, кВт (табл.2); определяемое по формуле (2) или сопротивлению качению колес машины с грузом, кН

 $nall_{M}$ – коэфф. полезного действия (КПД) трансмиссии трактора;

 V_{p} – рабочая скорость агрегата, км/ч.

Тяговое сопротивление агрегата R_{aap} (кН), включающего несколько однотипных машин, рассчитывается по формуле

$$R_{aap} = n_{M}(k_{o} \cdot B_{p} + G_{M} \cdot sine) + R_{cu}, \qquad (6)$$

где **п**_м – число машин в агрегате, шт.;

 R_{cu} — тяговое сопротивление сцепки, кH, которое рассчитывают по формуле (4), подставляя G_{cu} вместо G_{M} .

Мощность на привод рабочих органов машин

Сельскохозяйственные машины	Значение <i>N_{вом},</i> кВт
Разбрасыватель органических удобрений	14,72
Разбрасыватель минералных удобрений	12,5
Картофелесажалка	5,15
Косилка	7,0
Косилка измельчитель	22,1
Сеялка пневматическая	10,2
Фреза почвообрабатывающая	27,2
Картофелекопатель	23,6
Опрыскиватель	12,1
Пресс-подборщик	9,5

3. По найденному тяговому сопротивлению R машины (агрегата) определяют необходимое тяговое усилие $P_{\kappa p}$ трактора. Для этого в зависимости от вида выполняемой работы задаются значением коэффициента Π в пределах:

$$0.85 < (\eta = \frac{R}{P_{\kappa p}}) < 0.96 \tag{7}$$

и вычисляют $P_{\kappa\rho}$ (кH) по формуле

$$P_{\kappa p} = \frac{R}{\eta}.$$
 (8)

Полученное число является расчетным значением тягового усилия трактора, необходимого для работы в агрегате с данной машиной.

3. По расчетному значению $P_{\kappa p}$ и диапазону рабочих скоростей V_p машины, пользуясь тяговыми характеристиками тракторов выбирают тип и марка трактора.

Если участок поля с неровным рельефом, тогда номинальное значение тягового усилия трактора:

$$P_{\kappa p}^{H} = P_{\kappa p} + G_{mp} \sin \alpha,$$
 (9)

где G_{mp} – вес трактора кH; α – угол наклона участка поля, град.

В этом случае показатель рациональности агрегата n вычисляется по формуле

$$\eta = \frac{\kappa}{(P_{\kappa p}^{H} - G_{mp} \sin \alpha)}.$$
 (10)

5. Рациональность составленного агрегата проверяется по формулам (7) или (10).

Окончательно записывается рациональный состав МТА: марка трактора, марка агрегатируемой машины, рабочая скорость V_{ρ} и тяговое усилие $P_{\kappa\rho}$.

Расчёт состава тракторного транспортного агрегата

Прицепы агрегатируются с трактором двумя способами:

- простым с одним прицепом;
- эшелонированным с двумя или несколькими прицепами.

Транспортные тракторные агрегаты в основном применяются для транспортировки грузов на труднопроходимых участках местности. Поэтому основным условием составления транспортных тракторных агрегатов является условие проходимости.

Расчёт состава тракторного транспортного агрегата выполняется в следующей последовательности.

1. Определяется максимальная сила сцепления $P_{\scriptscriptstyle c_{
m max}}$ на самом труднопроходимом участке для колесных тракторов с одним ведущим мостом по зависимости

$$P_{c_{\max}} = \frac{\mu \cdot G_{mp} \cdot (L - a) \cdot \cos \alpha}{L - \mu \cdot r_{\kappa}}$$

а для тракторов со всеми ведущими колесами

$$P_{c \max} = \mu \cdot \mathcal{G}_{mp} \cdot \cos \alpha$$

где μ - коэффициент сцепления;

 G_{mp} — вес трактора, кН;

L – продольная база трактора, м;

а — расстояние от центра тяжести трактора до вертикальной плоскости,
 проходящей через геометрическую ось качения ведущих колес, м;

α – угол наклона участка поля, град.

 $r_{\scriptscriptstyle K}$ — радиус качения колеса, м.

2. Сравнивается величина касательной силы трактора P_{κ} на первой передаче и максимальная сила сцепления $P_{c_{\max}}$. По наименьшей из них, которая и будет движущей силой $P_{\mathcal{I}}$, определяется максимальный вес транспортного тракторного поезда:

Национальный исследовательский университет «Ташкентский институт инженеров ирригации и механизации сельского хозяйства» НИУ- «ТИИИМСХ»

СПАСИБО ЗА ВНИМАНИЕ!

БЕРДИМУРАТОВ ПАРАХАТ ТАЖИМУРАТОВИЧ

Доцент кафедры «Управление инженерными системы» + 998 (71) 237 0586

<u>b_parakhat@mail.ru</u>

+ 998 (97) 157-69-88