Комплексное использование и охрана водных ресурсов

15 и 16 - лекции

Санитарный попуск - участник ВХК. Понятие экологического стока

Маматов Собитжон, старший преподаватель кафедры «Экология и управления водными ресурсами»

План лекции

- 1. Определение санитарного попуска.
- 2. Нормативные основы санитарного попуска.
- 3. Объем и качество вод при санитарном попуске.
- Понятие экологического стока, его отличие от санитарного попуска.
- 5. Методы установления экологического стока.
- Примеры успешной реализации экологического стока на реках.
- 7. Выводы. Экологический сток вместо санитарного попуска.

Санитарный попуск

- ▶ В целях поддержания благоприятной экологической ситуации и требуемого качества воды в нижнем течении реки предусматривается специальные попуски минимального объема воды по стволу реки, который называется санитарным попуском воды.
- ▶ С странах бывшего советского союза объем санитарного попуска воды устанавливался согласно требований СанПин 3907-65 "Санитарные правила проектирования, строительства и эксплуатации водохранилищ" (1.07.1985 г.).

В соответствии с СанПиН 3907-85:

- ▶ 1.11. Санитарный попуск минимальный расход воды, обеспечивающий соблюдение нормативов качества воды и благоприятные условия водопользования в нижнем бъефе водохранилища.
- ➤ 4.2. При комплексном использовании водохранилищ создание требуемых санитарно-гигиенических условий в нижних бьефах обеспечивается специальными санитарными попусками.

Величина минимального санитарного попуска должна быть не менее минимального среднесуточного расхода водотока в бытовом гидрологическом режиме летней и зимней межени года 95 % обеспеченности.

В соответствии с СанПиН 3907-85

▶ 4.3. В нижних бьефах каскада водохранилищ, в связи с особо сложными гидрологическими условиями, величина минимального санитарного попуска должна обеспечивать скорость течения не менее минимальной, имевшей место до сооружения гидроузла. При этом величина минимального санитарного попуска должна удовлетворять требованиям, изложенным в п.4.2.

Отсутствие стокового течения в зоне нижнего бьефа ГЭС - ЗАПРЕЩАЕТСЯ.

4.4. В режиме попусков следует поддерживать максимально возможную равномерность. Недопустимы резкие колебания уровней и скоростей течения в зоне нижнего бьефа в течение суток.

Объем и качество вод при санитарном попуске

Годовой объем санитарного попуска определяется зависимостью:

$$\boldsymbol{W}_{\mathrm{cah}} = \boldsymbol{Q}_{\mathrm{cah}} * \boldsymbol{t}_{\mathrm{c}}$$

здесь, $Q_{\text{сан}}$ – минимальный расход воды в реке, м³/с; t_{c} – количество секундов в среднем году (t_{c} =31,5576x10 6).

Качество воды в нижнем створе реки при санитарном попуске:

$$C_{\text{\tiny J.K}} = \frac{W_0 * C_0 + W_1 * C_1 + W_2 * C_2 + \dots + W_n * C_n}{W_0 + W_1 + W_2 + \dots + W_n}$$

здесь, W_0 , C_0 – объем и качество воды транзитного стока,

 W_1 , W_2 , W_n — объемы сточных вод, отводимых различными водопотребителями в ствол реки, м 3 /год;

 C_1 , C_2 , C_n — качество сточных вод, отводимых различными водопотребителями в ствол реки, г/м 3 .

Понятие экологического стока, его отличие от санитарного попуска, примеры успешной реализации

Различные подходы к определению попусков воды

- Во многих странах мира вместо санитарного попуска используется термин экологический сток.
- В законодательстве таких стран, как Австралия, США, ЮАР и Кения в основу определения объемов экологического стока заложен подход, предусматривающий поддержание благоприятного экологического состояния окружающей среды и биологического разнообразия в бассейне реки.
- В таких документах Европейского Союза, как "Водная Директива" и "Схема комплексного использования водных ресурсов бассейна реки Дунай" в основу определения понятия попусков воды заложены подходы обеспечивающие благоприятную работу водного транспорта и сохранения биологического разнообразия в бассейнах рек.

Международное определение понятия экологический сток

- Международное определение экологического стока (environmental flow) приведено в Брисбенской декларации (Brisbane Declaration) принятой по итогам X Международного речного симпозиума, посвященного вопросам экологического стока, который состоялся в г. Брисбен, Австралия, 3–6 сентября 2007 г. В симпозиуме приняли участие более 800 участников из 57 стран.
- Экологический сток определяет количественные, качественные и временные характеристики речного стока, необходимые для поддержания функционирования пресноводных экосистем, обеспечения условий для благополучного проживания населения, которое зависит от состояния этих экосистем (Брисбенская декларация, 2007).

Экологический сток

- ✓ Экологический сток это часть естественного стока, которая должна оставаться в реке в результате безвозвратного изъятия водных ресурсов или регулирования водного режима ниже по течению от места воздействия на реку для обеспечения устойчивых условий развития и функционирования пресноводной экосистемы (Дубинина, 2001).
- ✓ Подразумевается, что экологический сток должен базироваться на естественном состоянии речной экосистемы и быть приближенным к естественному режиму стока рек.

Отличие экологического стока от санитарного попуска

- Санитарный попуск направлен на обеспечение благоприятной санитарно-эпидемиологической, рыбо-хозяйственной и водно-транспортной обстановки в нижнем течении рек;
- **Экологический сток** направлен на сохранение естественной экологической обстановки и среды обитания, обеспечение биологического разнообразия во всем бассейне реки.
- Ели санитарный попуск устанавливает только минимальное значение стока, то экологический попуск устанавливает как нижнюю, так и верхнюю границу стока, более того во взаимосвязи со временем.
- В мировой практике существуют более 200 методов по определению (установлению) экологического стока.

Обычно их включают в 5 направлений (или групп):

Группы методов по определению экологического стока

- 1. Гидрологических обоснований (Hydrology-based Assessment);
- 2. Выявления функциональных связей (Functional Analysis);
- 3. Гидравлических оценок (Hydraulic Rating Methods);
- 4. Моделирование среды обитания (Habitat Simulation Methodologies);
- 5. Комплексные методы (Holistic Methodologies).

Методы гидрологических обоснований

- Подразумевают использование гидрологических показателей, основанных на статистических свойствах режима естественного стока.
- Очень распространены при определении экологического стока на малоизученных реках.
- Экологический сток рассчитывается как доля от среднегодового стока реки или среднемесячных расходов.
- Подход основан на допущении, что поддержание определенной доли естественного стока сможет удовлетворить экологические потребности.

Методы выявления функциональных связей

- Методы выявления функциональных связей основаны на определении связей между гидрологическими и экологическими факторами состояния речной экосистемы.
- Примером является так называемая «методология построения блоков» (Building Block Methodology), разработанная в Южной Африке.
- В речном режиме выделяются некоторые основные элементы (блоки), включающие характеристики меженного и многоводного периодов.
- Допустимый режим стока для поддержания экосистем определяется с учетом этих блоков.

Методы гидравлических оценок

- Методы гидравлических оценок основываются на сведениях об исторических экстремумах стока или на его значениях, критических для биотопов.
- Строится зависимость качества среды обитания биотопов от гидравлических параметров, таких как смоченный периметр, скорость течения и др.
- Значение экологического стока представляется либо в виде расхода, представляющего оптимальный минимальный сток, либо как фиксированный процент стока, ниже которых условия среды обитания ухудшаются.

Методы моделирования среды обитания

- Основываются на моделировании связей между расходами воды и подходящими условиями для среды обитания организмов. Условия обитания непосредственно определяют требования к экологическому стоку.
- Экологический сток представляется как кривые зависимости среды обитания от расходов воды.
- Взаимосвязь между стоком, средой обитания и организмами может быть описан связями физических свойств реки
- Например, зависимость физических условий, необходимых для нормального и стабильного функционирования экосистемы от глубины и скорости течения.
- В итоге по заданному значению стока моделируется соответствующие ему изменения водных экосистем.

Комплексная методология

- Методология включает в себя гидрологические, гидравлические методы, а также применение методов моделирования среды обитания гидробионтов.
- Методология учитывает целостный экосистемный подход при определении величины экологического стока.

Таким образом, все вышеперечисленные подходы направлены на определение количественных характеристик водного потока, необходимого для стабильного функционирования пресноводной экосистемы.

Успешные примеры реализации экологического стока на реках ЕС

- ✓ Река Нумедальслаген (Норвегия): обеспечение минимального экологического стока и реконструкция части гидротехнических сооружений;
- ✓ Река Норалан (Швеция): ликвидация плотины, восстановление естественных функций реки путем внедрения экологического стока и восстановление пойменных территорий в нижнем бьефе плотины;
- ✓ Река Ла фонтальер (Франция): оптимизация режима выработки электроэнергии с соответствующей оптимизацией экологического стока.

Успешные примеры реализации экологического стока на реках США

✓ Река Пенобскотт (штат Мен): В результате зарегулирования реки плотинами уже более 100 лет большинство миграций (12 проходных видов рыб) были блокированы.

Решение: Ликвидация трех плотин в нижнем течении реки на основном русле. Выработка электрической энергии переключена на шесть ГЭС, расположенных на притоках.

Результат: Улучшены рыбопропуски и режимы экологического стока на двух других плотинах основного русла. Хотя установленная мощность ГЭС во всем бассейне снизился на 4%, достигнуто возврат рыбы в ранее утраченные места обитания.

Успешные примеры реализации экологического стока на реках США

✓ Река Роаноке (штат Северная Каролина): Существовали два ГЭС и один многофункциональный гидроузел. При пиковых нагрузках попуски водохранилищ затапливали пойменные леса нижнего бьефа. Деревья стали высыхать. Площадь леса стал уменьшаться.

Решение: Были изменены режимы работы ГЭС, соответственно периоды интенсивных водосбросов с водохранилищ. С 2005 года идет восстановление режима, приближенного к естественному.

Результат: Созданы условия для укоренения и роста деревьев. Леса начали восстанавливаться.

Успешные примеры реализации экологического стока на реках США

✓ Река Саванна (штаты Джорджия и Южная Каролина): Существовали три крупных водохранилища многоцелевого назначения. В результате их работы уменьшилась популяция местного короткорылого осетра.

Решение: Были изменены режимы попусков воды из водохранилища Тормонд. В начале максимальные сбросные расходы были снижены (с 2500–6000) до 450 м³/с. В 2006 году были реализованы попуски в нижний бьеф с величиной расхода 850 м³/с. Для предотвращения затопления города Аугустин построен обводной канал. Экологические попуски осуществлялись с учетом температурного режима.

Результат: Созданы условия для восстановления популяции рыбы - местного короткорылого осетра. Популяция стал восстанавливаться.

Заключение

- Необходимо отказаться от понятия санитарный попуск и в водохозяйственных проектах вместо санитарного оперироватья понятием экологический сток.
- Внедрение подхода экологического стока в практику водного хозяйств будет способствовать сохранению устойчивости экосистем и биоразнообразия.
- Особенно, в условиях совместного использования водных ресурсов трансграничных водотоков позволит оптимизировать эксплуатацию работы водохранилищ расположенных в верхних течениях рек на территории соседных стран. Уменьшить затраты Узбекистана, Казахстана и Туркменистана по преодолению последствий от несогласованных сбросов (попусков) воды в зимнее время.