Питьевое водоснабжение

Лекция 14

Запасно-регулирующие сооружения. Резервуар чистой воды. Водонапорная башня

Маматов Собитжон Алижонович, старший преподаватель, Кафедра "Экология и управления водными ресурсами"

План лекции

- 1. Запасно-регулирующие сооружения и их разновидности.
- 2. Резервуары чистой воды. Виды.
- 3. Определение объема резервуара чистой воды.
- 4. Водонапорная башня.

Запасно-регулирующие сооружения

- ✓ В системах водоснабжения применяются запаснорегулирующие сооружения.
- ✓ Такими сооружениями являются резервуары чистой воды и водонапорные башнии.
- ✓ Резервуары чистой воды (РЧВ) предназначены для хранения излишек воды и обеспечения бесперебойной работы системы водоснабжения.
- ✓ Водонапорные башни, служат для хранения излишек воды и подпитки системы водоснабжения в часы максимального водоотбора.

Запасно-регулирующие сооружения

- ✓ Запасно-регулирующие сооружения служат для хранения определенного объема и регулирования расхода воды в сети.
- ✓ Запасно-регулирующие сооружения способствуют подаче воды в часы максимального водопотребления и создают возможности для уменьшения диаметров труб водоподачи до оптимальных значений.
- ✓ Запасно-регулирующие сооружения по выполняемой задаче делятся на:
 - √ сооружения для хранения воды;
 - ✓ сооружения для регулирования расходов воды;
 - ✓ на сооружения, выполняющие обе задачи одновременно.

Запасно-регулирующие сооружения – напорные

- ✓ Запасно-регулирующие сооружения разделяются на:
 - напорные;
 - безнапорные типы.
- ✓ Напорные запасно-регулирующие сооружения действуют одновременно как водонкопительные, так и сооружения по регулированию расхода воды, поставляемой в водопроводную сеть.
- ✓ Напорные сооружения обычно размещают в самой высокой точке местности. В этом случае напор в системе возникает также из-за разницы между уровнем земли в месте размещения сооружения и уровнем земли населенного пункта. В результате система работает под давлением. Пример – водонапорная башня.

Запасно-регулирующие сооружения безнапорные

- ✓ Безнапорные сооружения, содержащие определенный объем воды и регулирующие подачу воды, обычно размещаются перед насосной станцией второго подъема и служат для регулирования совместной работы водозабора, очистных сооружений и насосных станций.
- ✓ Безнапорные сооружения обычно служат только для хранения определенного количества воды.
- ✓ Резервуары чистой воды являются примером безнапорных водорегулирующих сооружений.

Резервуары чистой воды

- ✓ Резервуары чистой воды регулируют расходы воды насосных станций первого и второго подъема, а также,
- ✓ служит для хранения объема воды, необходимого для тушения пожара и ликвидации аварий.
- ✓ В резервуаре чистой воды, согласно требованиям ШНК, необходимый объем воды хранится в двух и более резервуарах, то есть количество резервуаров в системе водоснабжения бывает не менее двух.

Резервуары чистой воды - виды

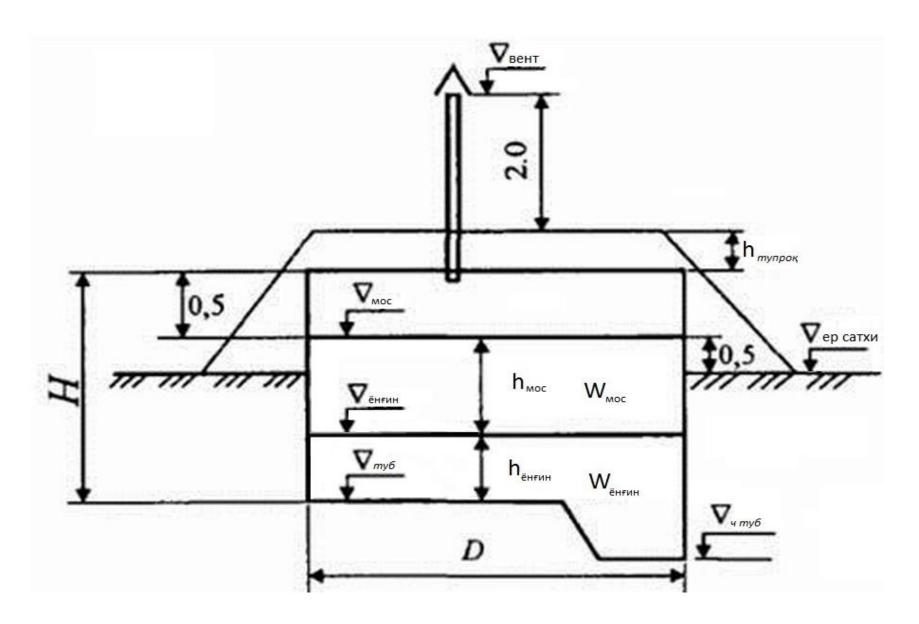


Схема резервуара чистой воды

Резервуар чистой воды - полный объем

Полный объем воды, хранящейся в резервуаре чистой воды определяется по зависимости:

$$W_{\text{рчв}} = W_{\text{рег}} + W_{\text{пож}} + W_{\text{ав}}$$

здесь,

 $\mathbf{W}_{\mathsf{per}}$ - регулирующий объем резервуара чистой воды, м 3 ;

 $\mathbf{W}_{\text{пож}}$ - объем воды, предназначенный для тушения пожаров, м³;

 \mathbf{W}_{ab} — аварийный объем воды, м³.

Резервуар чистой воды – регулирующий объем

Регулирующий объем резервуара чистой воды определяется по зависимости:

$$\mathbf{W}_{\mathrm{per}} = \frac{\mathbf{n} * \mathbf{Q}_{\mathrm{cyr}}}{\mathbf{100}}$$

здесь,

 n – показатель, определяемый на основе поступления и расхода воды в резервуаре;

 ${f Q}_{
m cyt}$ — суточный расход водопотребления, м $^3/{
m cyt}.$

Регулирующий объем резервуара чистой воды

Регулирующий объем резервуара чистой воды определяется в табличном виде:

Часы	Подача воды НС I, %	Забор воды НС II, %	Поступление воды в резервуар, %	Расход воды из резервуар а, %	Алгебраи- ческая сумма, %	Объем воды в резервуаре , %
1	2	3	4	5	6	7
0-1	4.17		+ (2-3)		4 (1)	
1-2	4.17		+ (2-3)		4 (1) + 4 (2)	
	4.17		+ (2-3)			
•••••	4.17			- (2-3)	∑4 (n) – 4 (i)	
22-23	4.17			- (2-3)		
23-24	4.17			-(2-3)		
	∑ = 100	Σ = 100			∑ = 0,0	

Резервуар чистой воды противопожарный объем

- ✓ Согласно требованиям ШНК в резервуарах чистой воды предусматриваются противопожарные объемы воды.
- ✓ Противопожарный объем резервуара чистой воды определяется по уравнению:

$$W_{\text{пож}} = N_{\text{пож}} * n * T * 3,6 = 15 * 1 * 3 * 3,6 = 162 \text{ M}^3$$

здесь: $N_{\text{пож}}$ – расход воды для тушения пожара,

$$N_{\text{пож}} = N_{\text{внутр}} + N_{\text{внеш}} = 5 + 10 = 15 \text{ л/c}$$

n — число одновременных пожаров (n =1);

Т – время для тушения пожара (Т = 3 часа)

Резервуар чистой воды – аварийный объем

- ✓ Согласно требованиям ШНК в резервуарах чистой воды предусматривается также, и аварийный объем воды.
- ✓ Его объем определяется исходя из количества израсходованной воды на момент аварии в сети.
- ✓ Если принимается двух ниточный водовод, то в системе можно не предусматривать аварийный объем воды.
- ✓ При этом, во время аварийных работ, количество подаваемой воды может быть сокращено до 30%.

Резервуар чистой воды – аварийный объем

✓ Аварийный объем резервуара чистой воды определяется по уравнению:

$$W_{aB} = 10\% \cdot Q_{CVT} = (10 \cdot Q_{CVT})/100$$
, M^3

здесь: Q_{сут}– суточный объем водопотребления,

Водонапорные башнии (ВБ) служать для:

- ✓ регулирования (сглаживания) неровностей в водопотреблении;
- ✓ хранения противопожарного объема воды;
- ✓ создания необходимого напора в водопроводной сети.

- ✓ Водонапорная башня состоит из трех частей:
 - 1) резервуар (бак);
 - 2) основание (ствол);
 - 3) защитное покрытие (шатер).
- ✓ Объем резервуара водонапорной башни и высота определяются на основе соответствующих расчетов.
- ✓ Объем резервуара водонапорной башни бывает 100-800 м³, а высота бывает до 30 м (10-40 м).

Водонапорная башня - объем

- ✓ Полный объем водонапорной башнии состоит из:
 - \succ регулирующий $\mathbf{W}_{\mathsf{per}}$
 - \succ противопожарный- $\mathbf{W}_{\mathsf{пож}}$,
- ightharpoonup неопорожняемый- $\mathbf{W}_{\text{неопор}}$ объемов воды.
- ✓ Общий объём башни складывается из суммы регулирующего, противопожарного и неопорожняемого объёмов:

$$W_{BG} = W_{per} + W_{noж} + W_{heonop}$$

Водонапорная башня – регулирующий объем

- ✓ Регулирующий объём водонапорной башни определяется на основании сопоставления графика водопотребления и графика работы насосной станции.
- ✓ Регулирующий объём определяется двумя способами:
 - табличным и;
 - > графическим.

Водонапорная башня – регулирующий объем

- ✓ Графическом способе интегралные графики водопотребления и работы насосной станции сопоставляются. При этом определяются объемы часового водопотребления и объемы воды подаваемой насосной станцией и они сопоставляются между собой.
- ✓ Регулирующий объем воды определяется как сумма недостающих и превышающих ординат в графиках.

Водонапорная башня – противопожарный объем

✓ В водонапорной башне содержится объем воды на тушение пожара в течение 10 минут, для обеспечения непрерывной подачи воды до момента запуска противопожарных насосов.

$$W_{\text{пож}} = N_{\text{пож}} * n * T * 3,6 = 15 * 1 * 0,167 * 3,6 = 9,0 \text{ M}^3$$

✓ В водонапорной башнии предусматрывается также объем неопорожнемый воды.