Bayesian methods for combining climate forecasts

David B. Stephenson, Sergio Pezzulli, Caio Coelho (*) Francisco J. Doblas-Reyes, Magdalena Balmaseda

1. Introduction

Conditioning and Bayes' theorem
 Results

(*): Department of Meteorology, The University of Reading

1. Introduction

Motivation

- Empirical versus dynamical forecasts?
- Why not combine both types of forecast in order to use ALL possible information?
- Ensemble forecasts + probability model → probability forecasts
- Use sample of ensemble forecasts to update historical (prior) probability information (post-forecast assimilation)

El Nino – Southern Oscillation

Increased Convection

- Big El Nino events in 1982/3 and 1997/8
- La Nina/normal conditions since 1998
- El Nino event predicted for end of 2002

a Charles

Recent sea temperature anomalies 16 Sep 2002

NOAA 50KM GLOBAL ANALYSIS: SST - Climatology (C), 9/16/2002 (white regions indicate sea-ice)

FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR

C

2002

Forecast production date: 14 Sep 2002

€ Sep 2002-Feb 2003

DATA

Sea Surface Temperatures (SST) "at" location Nino 3.4 (5S - 5N, 170W - 120W)

December means of Nino 3.4:

- Reynolds SST : 1950-2001
- ECMWF DEMETER ensemble forecasts: 1987-1999

Some notation ...

- Observed Dec Nino-3.4 θ_t
- Ensemble mean forecast X_t
- Ensemble standard deviation S_X
- Normal (Gaussian) probability forecasts:

 $\hat{\theta}_{t} \sim N(\hat{\mu}_{t}, \hat{\sigma}_{t})$ $\hat{\mu}_{t} = \text{forecast mean value}$ $\hat{\sigma}_{t} = \text{forecast uncertainty}$

2. Conditioning and Bayes theorem

Probability density functions (distributions)

Marginal distributions

 $p(x^*) = \int p(x^*, y) \, dy$

Conditional distributions

× _A

Conditional-chain Rule

p(y) p(x|y) = p(x, y) = p(x) p(y|x)

Bayes Theorem

p(x|y) = p(x, y) / p(y) $\propto p(x, y)$ = p(x) p(y|x)

Thomas Bayes 1701-1761

An Essay towards Solving a Problem In the Doctrine of Chances. Philosophical Transactions of the Royal Society, 1763

The process of belief revision on any event W (the weather) consists in updating the probability of W when new information F (the forecast) becomes available

 $p(W | F) \propto p(W) p(F | W)$

 $p(W) = N(\mu, \sigma^2)$

 $p(\mathbf{F} | \mathbf{W}) = \mathbf{N}(\alpha + \beta \mathbf{W}, \gamma \mathbf{V})$

The Likelihood Model

 $X_{t} \mid \theta_{t} \sim N(\alpha + \beta \theta_{t}, \gamma V_{t})$

3. Forecast results

Coupled model forecasts

 \rightarrow Note: many forecasts outside the 95% prediction interval!

Combined forecast

 \rightarrow Note: more forecasts within the 95% prediction interval!

Mean likelihood model estimates

$$\hat{\alpha} = 6.27 \pm 1.44^{\circ}C$$

$$\hat{\beta} = 0.75 \pm 0.05$$

$$\hat{\gamma} = 7.05 = m/m'$$
December likelihood model

- ensemble forecasts too cold on average (alpha>0)
- ensemble forecast anomalies too small (beta<1)
- ensemble forecast spread underestimates forecast uncertainty

Forecast statistics and skill scores

Forecast	MAE (deg C)	Skill Score	Uncertainty
Climatology	1.16	0%	1.19 deg C
Empirical	0.53	55%	0.61
Ensemble	0.57	51%	0.33
Combined	0.31	74%	0.32
Uniform prior	0.37	68%	0.39

Note that the combined forecast has: ->A large increase in MAE (and MSE) forecast skill ->A realistic uncertainty estimate

Conclusions and future directions

- Bayesian combination can substantially improve the skill and uncertainty estimates of ENSO probability forecasts
- Methodology will now be extended to deal with multi-model DEMETER forecasts
- Similar approach could be developed to provide better probability forecasts at medium-range (Issues: non-normality, more forecasts, lagged priors, etc.).

Coupled Model Ensemble Forecast

Ensemble Forecast and Bias Correction

Climatology

Climatology + Ensemble

Coupled-Model Bias-Corrected Ensemble Forecast

Coupled-Model Bias-Corrected Ensemble Forecast

time (years)

Empirical Regression Model + Ensemble

b) Standardised forecast error

