On the use of statistics in complex weather and climate models

Andreas Hense Meteorological Institute University Bonn

Together with..

- Heiko Paeth (Bonn)
- Seung-Ki Min (Seoul)
- Susanne Theis (Bonn)
- Steffen Weber (Bonn, WetterOnline)
- Monika Rauthe (Bonn, now Rostock)
- Rita Glowienka-Hense

Overview

- Some general remarks concerning complex models of the atmosphere / the climate system and statistics
- Use of statistics in numerical weather prediction
 - ensemble prediction
 - calibration
- Use of statistics in climate change simulations
 - Defining a signal and its uncertainty
 - Detecting a signal in observations

- Randomness in the climate system / atmosphere originates from highdimensionality and nonlinear scale interactions
- Randomness in climate models and NWP models arises additionally
 - from parametrizations
 - from model selection and construction

- Modelling a high dimensional system requires scale selection in space κ and time τ
- Simulation time $T < \tau$ a NWP / initial condition problem
- $T >> \tau$ climate problem
- Urban/Micro climatology $T \sim 1 d, \tau \sim \min or h$
- climate simulations embedded into NWP
- detailed precipitation with $T \sim 10 d$

- The deterministic view
 - e.g. wrong NWP forecast due to model errors
 - e.g. Any modeled climate change in a climate simulation with perturbed greenhouse gase forcing is due to this external forcing.
- More illustrative:
 - ,,We predict in two days advance the sunny side of the street"
 - "We predict in two days advance which tennis court in Wimbledon will have rain"

June 17th 2003

Spruce VI

- General formulation of the problem
 - Analysis of the joint pdf of simulations *m* and observations *o*
 - $-p(\boldsymbol{m}|\boldsymbol{o})$ for model validation and selection
 - description of the observation process, mapping of o on m with some unknown parameterset χ
 - maximize $p(m, \chi | o)$: calibration, model output statistics MOS

NWP examples

- The generation of model ensemble
 - with precipitation as a (notoriously) difficult variable
 - generation of precipitation is at the end of a long chain of interactions
 - involves scales from the molecular scale up to relevant atmospheric scales 1000 km
 - highly non Gaussian
 - positive definite
 - most probably fat tailed

Generation of NWP ensembles

- Sampling uncertainty in initial conditions
- Sampling uncertainty in boundary conditions
 - physical bc at Earth's surface
 - numerical bc
- Sampling uncertainty in parameter constellations
- Using the limited area weather forecast model of the German Weather Service DWD (7km * 7km, 35 vertical layers, 177 * 177 gridpoints)

Numerical weather prediction is a scenario description of future states of the atmosphere

Sampling of parameter uncertainty: NWP models become stochastic models

$$H = -D\vec{\nabla}T_{lc}$$

$$rac{\partial T}{\partial t} \sim - ec
abla (D ec T_{lc})$$

$$D = \bar{D} + D'$$

 $D' \in NV(0, \sigma_D)$

Sampling uncertainty in initial conditions

Deterministic forecast

10 member ensemble std deviation

June 17th 2003

June 17th 2003

Calibration of weather forecasts MOS

- Weather forecasts NMC on a 1° * 1° grid
- single station observations every three hours
- not a fully developed Bayesian scheme yet
- but
 - multiple correlation with stepwise regression to select large scale predictands
 - and cross validation

Climate change model simulations

- Predicting changes of climate statistics *p(m,t)* due to changes in physical boundary conditions
 - changes in *p(m,t)* relative to *p(m,t₀)* due to increasing greenhouse gase concentrations e.g.
 CO₂(t) and other anthropogenic forcings
 - changes in p(m,t) relative to $p(m,t_0)$ due to solar variability, volcanic eruptions (natural forcings)
 - distinguish between anthropogenic and natural forcing effects

Climate change model simulation classical view

- Compare modeled anthropogenic changes with observed changes
 - if projection of observed changes onto modeled changes are larger than an unforced background noise level: reject Null hypothesis of unforced climate variability
 - requires the assumption of a "significant" model change
 - which time/space scales and variables allow for these significant changes?

Climate change simulation with GHG forcing

- Sampling uncertainty in initial conditions
 - ensemble simulations (typically 5 or 6 members)
- Sampling inter-model uncertainty
 - two model example: ECHAM3/T21 and HADCM2
 - multimodel example: 15 different models from IPCC data server

Climate change simulations with GHG forcing

- Two model case: precipitation and near surface temperature
- multi model case: Arctic oscillation/North Atlantic oscillation as a driving agent for regional climate variability in Europe
- classical 2-way analysis-of-variance

$$-x_{i,l,k} = a + b_j + c_l + d_{i,l} + e_{i,l,k}$$

- $-b_i$: common GHG signal as function of time i
- $-c_l$: bulk inter-model differences
- $-d_{i,l}$: inter model-differences in GHG forcing

2W-ANOVA of CO2 scenario ensembles: annual means of T2M

influence of different models

influence of different forcings

influence of common forcing (CO2)

influence of internal variability

2W-ANOVA of CO2 scenario ensembles: annual sums of PRE

influence of common forcing (CO2)

influence of different models

influence of different forcings influence of internal variability

June 17th 2003

Spruce VI

2W-ANOVA of CO2 scenario ensembles: 10-year filtered annual sums of PRE

ECHAM3/LSG vs. HADCM2, 1880-2049, globe

influence of common forcing (CO2)

influence of different forcings

influence of internal variability

Superensemble EOF1 (20.3 %)

 EOF1 correlation:
 0.97

 Super. trend (1974-2013):
 0.86 hPa/100a

 NCEP trend (1954-1993):
 2.23 hPa/100a

 PC1 correlation (trend periods):
 0.88

June 17th 2003

Climate change model simulations Bayesian view

- Available a set of hypothesis /scenarios h_i
 - unforced variability *i=1*
 - GHG forced
 - GHG + sulphate aerosol forced
 - solar/volcanic forced
- for each hypothesis / scenario we have a prior O(h_i)
- Selection of h_i based on a given observation
 - computation of Bayes factor from likelihood
 - decision based on posterior $p(h_i|o)$

Climate change model simulations Bayesian view

- 2-dimension example: using Northern hemisphere mean temperatures near surface and lower stratosphere
- observations 1979 1999 moving annual means
- model signal: linear change between 1990-2010 in model year 2000
- 5 member ensemble ECHAM3/T21 GHG only
- 3 member ensemble ECHAM3/T21 GHG+S-Ae

June 17th 2003

Spruce VI

Conclusion

- Weather prediction and climate system models simulate parts of the real Earth system
 - starting from these complex models: need to introduce statistical aspects at various levels
 - starting from observations: pure data-based models need a guidance: use physics / chemistry of complex models
- we need quantitative statements about **future changes and their uncertainties** of the real system either the next day, the next decade or century

