Лекция №8. Понятие вектора. Линейные действия над векторами. Проекция вектора на оси и компоненты. Скалярное произведение векторов и основные свойства.

Величина, которая характеризуется только своим численным значением, называется *скалярной*. Примерами скалярных величин являются вес, температура, площадь, длина. Величина, которая характеризуется не только своим численным значением, но и направлением, называется *векторной*. Примерами векторных величин являются скорость, ускорение, сила.

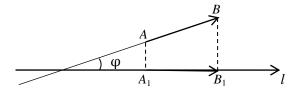
Вектором называется **направленный отрезок**. Если начало вектора находится в точке A, а конец вектора находится в точке B, то вектор обозначается \overline{AB} или просто \overline{a} . Длина вектора равна длине отрезка, соединяющего точки A и B. Если точки A и B совпадают, то длина вектора равна нулю и вектор называется **нулевым**. Вектор, длина которого равна единице, называется **единичным**.

Векторы называются коллинеарными, если ОНИ имеют одинаковые направления либо противоположно направлены. Два вектора называются равными, если они имеют одинаковые длины и одинаково направлены. Из определения равенства векторов следует, что при параллельном переносе вектора получается вектор, равный исходному. Следовательно, если некоторую точку в пространстве взять за общее начало, то от этой точки можно отложить все рассматриваемые векторы. В этом смысле все векторы ОНЖОМ рассматривать как свободные.

Если два вектора имеют одинаковые длины и противоположное направление, то они называются *противоположными*. Для вектора \bar{a} противоположный ему вектор обозначается \bar{a} .

Векторы, которые лежат в одной плоскости или в параллельных плоскостях, называются *компланарными*. Если компланарные векторы привести к одному началу, то они будут лежать в одной плоскости.

Пусть дана ось l и вектор \overline{AB} . Пусть начало A вектора проектируется в точку A_1 на оси l, а конец B вектора — в точку B_1 .



Рассмотрим вектор $\overline{A_1B_1}$. *Проекцией вектора* \overline{AB} на ось l называется число $|\overline{A_1B_1}|$, если направление вектора $\overline{A_1B_1}$ совпадает с направлением оси l, и число $-|\overline{A_1B_1}|$, если вектор $\overline{A_1B_1}$ и ось l имеют противоположные направления. Проекция вектора \overline{AB} на ось l обозначается $\Pi p_l \overline{AB}$. Обозначим через φ угол между вектором \overline{AB} и осью l. Тогда $\Pi p_l \overline{AB} = |\overline{AB}| \cdot \cos \varphi$.

Если в качестве оси l взять какой-либо вектор, то можно говорить о проекции одного вектора на другой. Например, проекция вектора \overline{AB} на вектор \overline{CD} равна $\Box \Box \overline{AB} = |\overline{AB}| \cdot \cos \varphi$, где φ — угол между векторами \overline{AB} и \overline{CD} . Иногда вместо выражения «проекция вектора \overline{AB} на вектор \overline{CD} » используют выражение «проекция вектора \overline{AB} на направление вектора \overline{CD} ».

Рассмотрим вектор \overline{AB} в прямоугольной системе координат. *Координатами* вектора \overline{AB} называются его проекции на координатные оси. Запись $\overline{a} = (x, y, z)$ означает, что вектор \overline{a} в пространстве имеет координаты x, y, z.

Два вектора $\bar{a} = (x_1, y_1, z_1)$ и $\bar{b} = (x_2, y_2, z_2)$ будут равны тогда и только тогда, когда равны их одноименные координаты, т. е.

$$\overline{a} = \overline{b} \iff \begin{cases} x_1 = x_2, \\ y_1 = y_2, \\ z_1 = z_2. \end{cases}$$

Пусть начало вектора задано точкой $M_1(x_1,y_1,z_1)$, а конец векто-ра — точкой $M_2(x_2,y_2,z_2)$. Тогда для определения координат вектора $\overline{M_1M_2}$ от координат конца вектора вычитаются координаты его начала, т. е. $\overline{M_1M_2}=(x_2-x_1,y_2-y_1,z_2-z_1)$.

В прямоугольной системе координат в пространстве единичные векторы направления осей Ox, Oy и Oz обозначим через \bar{i} , \bar{j} и \bar{k} . Эти единичные векторы, называемые *ортами*, составляют *прямоугольный базис*. Любой вектор $\bar{a} = (x, y, z)$ пространства может быть разложен единственным образом по *прямоугольному базису* \bar{i} , \bar{j} , \bar{k} , т. е. представлен в виде $\bar{a} = x\bar{i} + y\bar{j} + z\bar{k}$, где числа x, y, z — координаты вектора $\bar{a} = (x, y, z)$.

Пример 4. Даны точки $M_1(1,-3,5)$ и $M_2(4,2,-3)$. Найти координаты вектора $\overline{M_1M_2}$ и записать разложение этого вектора по ортам.

Решение. Если заданы координаты начала и конца вектора, то для определения координат вектора из координат его конца вычитаются координаты начала: $\overline{M_1M_2} = (4-1, 2-(-3), -3-5) = (3, 5, -8)$.

Разложение вектора по ортам имеет следующий вид: $\overline{M_1M_2} = 3\overline{i} + 5\overline{j} - 8\overline{k}$.

2. Линейные операции над векторами

Сложение, вычитание векторов и умножение вектора на число называются линейными операциями над векторами.

Пусть даны векторы $\bar{a}=(x_1,y_1,z_1)$ и $\bar{b}=(x_2,y_2,z_2)$. Суммой векторов \bar{a} и \bar{b} называется вектор $\bar{c}=\bar{a}+\bar{b}=(x_1+x_2,y_1+y_2,z_1+z_2)$,

т. е. при сложении векторов их одноименные координаты складываются. Аналогично $\bar{d} = \bar{a} - \bar{b} = (x_1 - x_2, y_1 - y_2, z_1 - z_2)$, т. е. при вычитании векторов их одноименные координаты вычитаются.

При умножении вектора на число каждая координата вектора умножается на это число: если $\bar{c}=a\bar{a}$, то $\bar{c}=(ax_1,ay_1,az_1)$. В этом случае вектор \bar{c} будет коллинеарен вектору $a\bar{a}$. Обозначим $\bar{c}=(x,y,z)$. Тогда из равенства $\bar{c}=a\bar{a}$ следует, что $x=ax_1$, $y=ay_1$, $z=az_1$. А это означает, что $\frac{x}{x_1}=\frac{y}{y_1}=\frac{z}{z_1}=a$. Таким образом, если два ненулевых вектора коллинеарны, то их одноименные координаты

пропорциональны. Верно и обратное: если одноименные координаты двух векторов пропорциональны, то эти векторы коллинеарны.

Пример 5. Даны векторы $\bar{a}=(2,-3,1)$ и $\bar{b}=(1,-1,0)$. Найти координаты вектора $2\bar{a}-3\bar{b}$.

Решение. Так как при умножении вектора на число каждая координата вектора умножается на это число, а при вычитании векторов вычитаются их соответствующие координаты, то

$$2\overline{a} - 3\overline{b} = (2 \cdot 2 - 3 \cdot 1, 2 \cdot (-3) - 3 \cdot (-1), 2 \cdot 1 - 3 \cdot 0) = (1, -3, 2)$$
.

Пример 6. При каких значениях m и n векторы $\bar{a} = (3, 2, m)$ и $\bar{b} = (6, n, 10)$ коллинеарные?

Решение. Если векторы коллинеарные, то их координаты пропорциональны: $\frac{3}{6} = \frac{2}{n} = \frac{m}{10}$. Тогда $\frac{2}{n} = \frac{1}{2}$ и $\frac{m}{10} = \frac{1}{2}$, т. е. n = 4 и m = 5.

3. Скалярное произведение векторов

Скалярным произведением векторов \bar{a} и \bar{b} называется число, равное произведению длин этих векторов на косинус угла между ними: $\bar{a} \cdot \bar{b} = |\bar{a}| \cdot |\bar{b}| \cdot \cos \varphi$.

Tak kak $|\overline{a}| \cdot \cos \varphi = \Pi p_{\overline{b}} \overline{a}$, a $|\overline{b}| \cdot \cos \varphi = \Pi p_{\overline{a}} \overline{b}$, το

$$\overline{a} \cdot \overline{b} = |\overline{b}| \cdot \prod p_{\overline{b}} \overline{a} = |\overline{a}| \cdot \prod p_{\overline{a}} \overline{b}$$
.

Таким образом, *скалярное произведение двух векторов равно длине одного* из них, умноженной на проекцию другого вектора на направление первого.

Пусть векторы $\bar{a} = (x_1, y_1, z_1)$ и $\bar{b} = (x_2, y_2, z_2)$ заданы своими координатами. Тогда скалярное произведение этих векторов равно сумме произведений их одноименных координат:

$$\bar{a} \cdot \bar{b} = x_1 x_2 + y_1 y_2 + z_1 z_2.$$

Если же два вектора равны, т. е. $\bar{a} = (x, y, z)$ и $\bar{b} = (x, y, z)$, то $\bar{a} \cdot \bar{b} = \bar{a} \cdot \bar{a} = \bar{a}^2 = x \cdot x + y \cdot y + z \cdot z = x^2 + y^2 + z^2$. Отсюда следует, что $|\bar{a}| = \sqrt{x^2 + y^2 + z^2}$, т. е.

длина вектора равна корню квадратному из суммы квадратов его координат.

Из определения скалярного произведения двух векторов можно найти *угол между векторами*:

$$\cos \varphi = \frac{\overline{a} \cdot \overline{b}}{|\overline{a}| \cdot |\overline{b}|}, \quad \text{ИЛИ} \quad \cos \varphi = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}}.$$

Если два вектора взаимно перпендикулярны, то их скалярное произведение равно нулю, так как $\cos \varphi = \cos 90^\circ = 0$. И, обратно, если скалярное произведение двух ненулевых векторов равно нулю, то эти векторы взаимно перпендикулярны. Таким образом, *необходимым и достаточным условием перпендикулярности двух векторов является равенство нулю их скалярного произведения*:

$$\overline{a} \cdot \overline{b} = 0$$
, ИЛИ $x_1 x_2 + y_1 y_2 + z_1 z_2 = 0$.

Пример 7. Вычислить скалярное произведение векторов $\bar{a} \cdot \bar{b}$, если $|\bar{a}| = 3\sqrt{3}, |\bar{b}| = 6$, а угол между векторами $\phi = 30^{\circ}$.

Решение. По определению скалярного произведения

$$\overline{a} \cdot \overline{b} = |\overline{a}| \cdot |\overline{b}| \cdot \cos \varphi$$
, T. e. $\overline{a} \cdot \overline{b} = 3\sqrt{3} \cdot 6 \cdot \cos 30^\circ = 3\sqrt{3} \cdot 6 \cdot \frac{\sqrt{3}}{2} = 27$.

Пример 8. Вычислить скалярное произведение векторов

$$\overline{AB} \cdot \overline{AC}$$
, если $A(3,-1,0), B(2,1,4), C(2,-1,-2)$.

Решение. Найдём координаты векторов \overline{AB} и \overline{AC} :

$$\overline{AB} = (2-3, 1-(-1), 4-0) = (-1, 2, 4)$$
,

$$\overline{AC} = (2-3, -1-(-1), -2-0) = (-1, 0, -2)$$
.

Так как известны координаты векторов, то их скалярное произведение равно: $\overline{AB} \cdot \overline{AC} = -1 \cdot (-1) + 2 \cdot 0 + 4 \cdot (-2) = -7$.

Пример 9. Вычислить скалярное произведение векторов $\bar{a} = 3\bar{i} - 4\bar{j} + \bar{k}$ и $\bar{b} = 2\bar{i} + 3\bar{j} + \bar{k}$.

Решение. По условию примера $\bar{a}=(3,-4,1)$ и $\bar{b}=(2,3,1)$. Тогда $\bar{a}\cdot\bar{b}=3\cdot 2+(-4)\cdot 3+1\cdot 1=-5$.

Пример 10. Найти длину вектора $\bar{a} = (4, 3, -1)$.

Решение. Так как длина вектора $\bar{a}=(x,y,z)$ и определяется по формуле $|\bar{a}|=\sqrt{x^2+y^2+z^2}$, то $|\bar{a}|=\sqrt{4^2+3^2+(-1)^2}=\sqrt{26}$.

Пример 11. Найти длину вектора $\bar{b} - \bar{a}$, если известны векторы $\bar{a} = (3, 2, -1)$ и $\bar{b} = (6, 6, -1)$.

Решение. Вначале вычислим координаты вектора \bar{b} – \bar{a} :

$$\overline{b}$$
 $-\overline{a}$ = (6-3, 6-2,-1-(-1)) = (3, 4, 0). Тогда $|\overline{b}$ $-\overline{a}|$ = $\sqrt{3^2+4^2+0^2}$ = 5.

Пример 12. Даны векторы $\bar{a} = (3,-1,-1)$ и $\bar{b} = (1,3,5)$. Найти проекцию вектора $2\bar{a} - \bar{b}$ на вектор $\bar{a} + \bar{b}$.

Решение. Найдём координаты этих векторов:

$$2\overline{a} - \overline{b} = (5, -5, -7)$$
, $\overline{a} + \overline{b} = (4, 2, 4)$.

Тогда Пр
$$_{\overline{a}+\overline{b}}(2\overline{a}-\overline{b})=\frac{(2\overline{a}-\overline{b})(\overline{a}+\overline{b})}{\left|\overline{a}+\overline{b}\right|}=\frac{5\cdot 4+(-5)\cdot 2+(-7)\cdot 4}{\sqrt{4^2+2^2+4^2}}=-3$$
.

Пример 13. Найти угол между векторами $\bar{a} = \bar{i} + \bar{j}$ и $\bar{b} = \bar{i} + \bar{k}$.

Решение. Так как по условию $\bar{a} = (1, 1, 0)$ и $\bar{b} = (1, 0, 1)$, то

$$\cos \phi = \frac{\overline{a} \cdot \overline{b}}{|\overline{a}| \cdot |\overline{b}|} = \frac{1 \cdot 1 + 1 \cdot 0 + 0 \cdot 1}{\sqrt{1^2 + 1^2 + 0^2} \sqrt{1^2 + 0^2 + 1^2}} = \frac{1}{2} \; . \; \text{Таким образом, угол между векторами} \quad \phi = 60^\circ$$

Задания для самостоятельной работы

- 1. Даны векторы $\bar{a}=(2,-3,5)$, $\bar{b}=(6,4,-7)$, $\bar{c}=(-2,9,1,)$. Найти векторы $3\bar{a},\ 4\bar{a}+\bar{b}$, $2\bar{a}-3\bar{b}+\bar{c}$.
 - 2. Даны векторы $\bar{a} = (3, -5, 8)$, $\bar{b} = (-1, 1, -4)$. Найти длины векторов $\bar{a} + \bar{b}$ и $\bar{a} \bar{b}$.
 - 3. Даны вершины треугольника A(7, 5, -4), B(4, 9, 1),

C(6, -3, -7). Найти длину медианы, проведённой из вершины A, и периметр треугольника.

4. Точки A(9, -11, 5), B(7, 4, -2), C(-7, 13, -3) являются последовательными вершинами ромба. Найти четвёртую вершину, вычислить периметр ромба и длины его диагоналей.

- 5. Вычислить скалярное произведение векторов \bar{a} и \bar{b} , если $|\bar{a}|=4$, $|\bar{b}|=2\sqrt{2}$, $\phi = \frac{3\pi}{4} \, .$
 - 6. Вычислить скалярное произведение векторов $\bar{a} = (4, 2, -5)$ и $\bar{b} = (2, 6, 4)$.
 - 7. Найти угол между векторами $\bar{a} = (4, -10, 1)$ и $\bar{b} = (11, -8, -7)$.
- 8. Дан треугольник с вершинами A(1, 7, 2), B(5, -3, 3), C(12, -1, -5). Найти внутренние углы этого треугольника.
 - 9. Вычислить проекцию вектора $\bar{a} = (1, -2, 2)$ на вектор $\bar{b} = (2, 10, 11)$.
- 10. Даны векторы $\bar{a}=(2,-3,5)$ и $\bar{b}=(6,4,-7)$. Найти проекцию вектора $3\bar{a}-2\bar{b}$ на вектор $\bar{a}+\bar{b}$.
 - 11. Найти угол между векторами $\bar{a}=2\bar{i}-2\bar{j}+\bar{k}$, $\bar{b}=4\bar{i}-\bar{j}-\bar{k}$.
- 12. Найти, при каком значении m векторы $\bar{a} = m\bar{i} 3\bar{j} + 2\bar{k}$ и $\bar{b} = \bar{i} + 2\bar{j} m\bar{k}$ будут взаимно перпендикулярными.
- 13. Найти проекцию вектора \overline{AB} на вектор \overline{CD} , если известны точки A(2,-3,4), B(5,-5,-2), C(1,2,3) и D(7,4,6).
- 14. Даны вершины четырёхугольника A(1,-2,2), B(1,4,0), C(-4,1,1) и D(-5,-5,3). Вычислить угол между его диагоналями.