I Main Topics

A Direction cosines

B Lines

C Planes

8/24/16 GG303

Lineations Along a Probable Fault Matterhorn Peak, California

Small Fold Rainbow Basin, California

8/24/16 GG303

Deformation Bands East Rim of Buckskin Gulch, Utah

Sheeting Joints Yosemite National Park, California

8/24/16 GG303

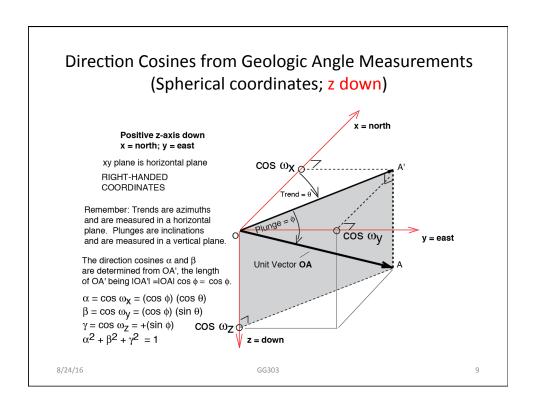
Fractures Austrian Alps

II Direction cosines

- A The cosines of the angles between a line and the coordinate axes
- B The coordinates of the endpoint of a vector of unit length
- C The ordered projection lengths of a line of unit length onto the x,y, and z axes

8/24/16 GG303 7

Direction Cosines from Geologic Angle Measurements (Spherical coordinates; z up) Positive z-axis up z = up y = north y = north; x = east xy plane is horizontal plane Orthographic Projection of vector OA onto xy plane RIGHT-HANDED COORDINATES cos ω_V Ø Remember: Trends are azimuths and are measured in a horizontal plane. Plunges are inclinations Trend = and are measured in a vertical plane. The direction cosines α and β are determined from OA', the length of OA' being IOA'I =IOAI $\cos \phi = \cos \phi$ cos ω_X $\alpha = \cos \omega_X = (\cos \phi) (\sin \theta)$ Unit Vector OA $\beta = \cos \omega_V = (\cos \phi) (\cos \theta)$ $\gamma = \cos \omega_{Z} = -(\sin \phi)$ $\alpha^2 + \beta^2 + \gamma^2 = 1$ $\cos \omega_{Z}$ x = north 8/24/16 GG303

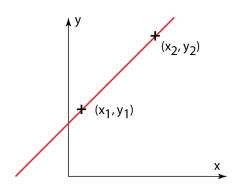


2. EQUATIONS OF LINES AND PLANES **MATLAB** Cartesian coordinates -Spherical coordinates → **Spherical coordinates Cartesian coordinates** >> [TH,PHI,R] = cart2sph(1,0,0) >> [X,Y,Z] = sph2cart(0,0,1)TH = X = The x,y,z values The θ and Φ 0 1 here are direction values cosines are angles. R is a length. PHI = 0 0 R = Z = 1 0 8/24/16 GG303

A Line defined by 2 points (two-point form)

$$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$

where (x_1,y_1) and (x_2,y_2) are two known points on the line



11

8/24/16 GG303

2. EQUATIONS OF LINES AND PLANES

B Line defined by 1 point (e.g., x_0, y_0, z_0) and a direction

1 Slope-intercept form (2D)

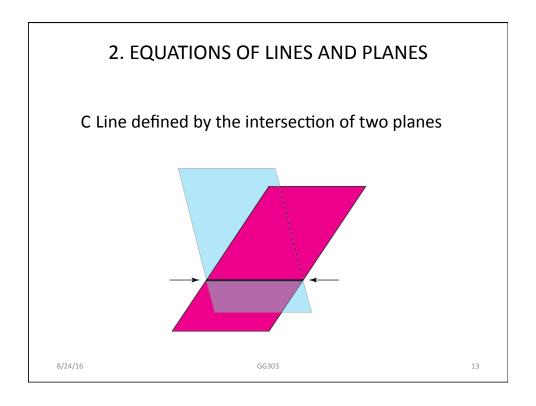
$$y = mx + b$$

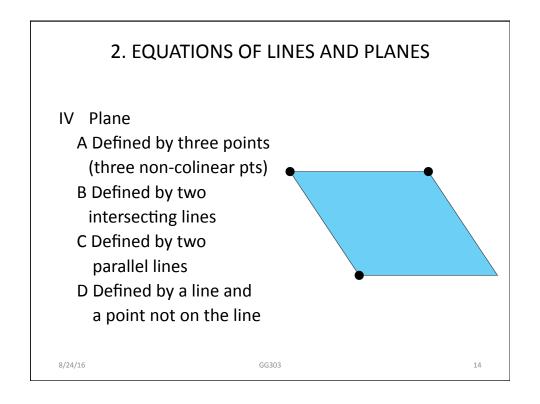
2 General form (2D)

$$Ax + By + C = 0$$

3 Parametric form (2D or 3D)

$$x = x_0 + t\alpha$$
, $y = y_0 + t\beta$, $z = z_0 + t\gamma$,
where α , β , and γ are direction cosines:
 $\alpha = \cos \omega_x$, $\beta = \cos \omega_y$, and (for 3D) $\gamma = \cos \omega_z$;
In 2-D, $\cos \omega_x = \sin \omega_y$





IV Plane

D Defined by a distance and a direction (or pole) from a point not on the plane

1 General form: Ax + By + Cz + D = 0

2 Normal form: $\alpha x + \beta y + \gamma z = d$

$$\alpha = \frac{A}{\pm \sqrt{A^2 + B^2 + C^2}} \qquad \beta = \frac{B}{\pm \sqrt{A^2 + B^2 + C^2}} \qquad \gamma = \frac{C}{\pm \sqrt{A^2 + B^2 + C^2}}$$
$$d = \frac{-D}{\pm \sqrt{A^2 + B^2 + C^2}}$$

8/24/16 GG303 15

2. EQUATIONS OF LINES AND PLANES

3 **n• V** = d,

where

V is any vector from a given point O to plane P;

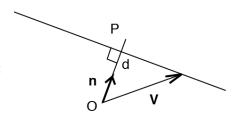
n is the unit normal vector to plane P with direction cosines α , β , and γ ;

n also goes through point O;

d is the distance from O to plane along **n**;

• refers to the dot product:

$$\langle x_1, y_1, z_1 \rangle \bullet \langle x_2, y_2, z_2 \rangle = x_1 x_2 + y_1 y_2 + z_1 z_2$$



3 **n• V** = d

a The distance from a reference point to a plane (as measured along a direction perpendicular to the plane) is d.

b The projection of **V** onto **n** has a length d

If **n** points from the reference point to the plane, then d>0. Otherwise, d<0.

