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STATIC SYSTEMS IDENTIFICATION BY HYSTERESIS
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“Tashkent Institute of Irrigation and Agricultural Mechanization Engineers” National Research University

Abstract
The paper considers methods for constructing and numerical realization of a hysteresis model for engineering systems. 

Mathematical models based on the analytical representation of the hysteresis characteristics of linear systems obtained by 
specifying piecewise linear signals at their input with different velocities of both signs on linear sections are proposed. For a 
more accurate description of the hysteresis characteristics of static systems that actually occur in practice, in a number of cases, 
differential equations of higher order are used, in particular, equations of the second order. The use of differential equations of 
higher order makes it possible to simulate cyclically unstable hysteresis, when the shape and slope of the hysteresis curves can 
change from a cycle to a number of cycles. For some systems, this process ends after a certain number of cycles (there is a so-called 
transient process in the phenomenon of hysteresis, in electrical engineering, it is called accommodation in relation to magnetic 
elements), for other systems this process of cyclic instability of hysteresis can be observed for any length of time. Methods for 
identifying static objects by hysteresis were developed and investigated.

Key words: hysteresis, integral model, Rayleigh-Masing principle, differential equations, numerical model, input signal.

STATIK TIZIMLARNI HISTEREZIS ORQALI ANIQLASH 
USULINI ISHLAB CHIQISH VA TADQIQ QILISH 

B.A.Xudayarov – t.f.d, professor, F.J.Turaуev – katta o‘qituvchi,
“Toshkent irrigatsiya va qishloq xo‘jaligini mexanizatsiyalash muhandislari instituti” milliy tadqiqot universiteti

Annotatsiya
Maqolada texnik tizimlarning histerezis modelini yaratish va raqamli amalga oshirish usullari ko‘rib chiqilgan. Matematik 

modellar chiziqli kesmalarda ikkala belgining turli tezligiga ega bo‘lakli chiziqli signallarga kirishini o‘rnatish orqali olingan 
chiziqli tizimlarning histerezis xususiyatlarini analitik tasvirlash asosida taklif etiladi. Amalda haqiqatda sodir bo‘ladigan statik 
tizimlarning histerezis xususiyatlarini aniqroq tavsiflash uchun ba’zi hollarda yuqori tartibli differensial tenglamalar, xususan, 
ikkinchi tartibli tenglamalar qo‘llaniladi. Yuqori tartibli differensial tenglamalardan foydalanish, histerezis egri chiziqlarning 
shakli va qiyaligi sikldan siklga o‘zgarishi mumkin bo‘lgan holda, siklik beqaror histerezisni modellashtirishga imkon beradi. 
Ba’zi tizimlar uchun bu jarayon ma’lum miqdordagi sikllardan so‘ng tugaydi (histerezis hodisasida vaqtinchalikjarayon deb 
ataladigan narsa bor, elektrotexnikada u magnit elementlarga nisbatan akkomodatsiya deb ataladi), boshqa tizimlar uchun bu 
siklik histerezis jarayoni beqarorlik har qanday vaqt davomida kuzatilishi mumkin. Statik obektlarni histerezis orqali aniqlash 
usullari ishlab chiqilgan va organilgan. 

Tayanch so‘zlar: histerezis, integral model, Reyl-Masing printsipi, differentsial tenglamalar, sonli model, kirish signali. 

РАЗРАБОТКА И ИССЛЕДОВАНИЕ МЕТОДА ИДЕНТИФИКА
ЦИИ СТАТИЧЕСКИХ СИСТЕМ ПО ГИСТЕРЕЗИСУ

Б.А.Худаяров – д.т.н., профессор, Ф.Ж.Тураев – старший преподаватель,
Национальный исследовательский университет «Ташкентский институт инженеров ирригации и механизации 
сельского хозяйства»

Аннотация
В статье рассмотрены методы построения и численной реализации гистерезисной модели технических систем. 

Предложены математические модели, основанные на аналитическом представлении гистерезисных характеристик 
линейных систем, полученных путем задания на их вход кусочно-линейных сигналов с различными скоростями обоих 
знаков на линейных участках. Для более точного описания гистерезисных характеристик статических систем, реаль-
но встречающихся на практике, в ряде случаев используют дифференциальные уравнения более высокого порядка, в 
частности уравнения второго порядка, использование которых, позволяет моделировать циклически неустойчивый 
гистерезис, когда форма и наклон кривых гистерезиса могут меняться от цикла к числу циклов. Для одних систем этот 
процесс заканчивается через определенное число циклов (существует так называемый переходный процесс в явлении 
гистерезиса, в электротехнике он называется аккомодацией по отношению к магнитным элементам), для других си-
стем этот процесс циклической нестабильности гистерезиса может наблюдаться в течение любого промежутка време-
ни. Разработаны и исследованы методы идентификации статических объектов по гистерезису.

Ключевые слова: гистерезис, интегральная модель, принцип Рэлея-Мазинга, дифференциальные уравнения, чис-
ленная модель, входной сигнал.
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Introduction. Many systems used in practice include 
various sources of energy dissipation (nodes with 

external and internal friction, ferromagnets, ferroelectric 
capacitors, and others), switching devices and nonlinear 
elements with an ambiguous static characteristic. For such 
systems, called hysteresis systems, with an arbitrary law of 
variation of the input coordinate X(t) , the motion of the 
representing point  will have a complex hysteresis nature, 
when a finite or infinite set of values of the output coordinate  
Y corresponds to one value of  X.

Hysteresis systems are called static systems in the range 
|X|<X0, where  X0 is a certain threshold value of speed, at 
exceeding which the speed affects the course of the hysteresis 
curves, if the shape and slope of the branches of the hysteresis 
loops do not depend on the value in the indicated range 
of speeds; at that, at the turning points at which the sign 
changes to the opposite sign, an acute-angled shape of the 
loop (tips) with a break of the first kind is observed.

Since the second half of the 19th century, when the 
phenomenon of hysteresis was discovered, attempts have 
been made to analytically describe static hysteresis in order 
to use the obtained formulas and equations in calculating 
electrical machines, mechanical structures, buildings, etc.

The Rayleigh-Masing mathematical model can be 
physically substantiated based on the assumption that any 
system with hysteresis can be considered as a set of a large 
number of ideal elastic-plastic elements with different 
values of the yield stress. For example, a polycrystalline 
body is represented as consisting of a significant number of 
individual conditional grains, arbitrarily oriented relative to 
the direction of force action. Some mechanical characteristics 
of a conditional grain, as well as its relationship with 
neighboring grains, can be postulated. S.P.Tymoshenko [1] 
proposed this approach back in 1930. However, for a long 
time, it did not attract much attention from researchers. 
Apparently, this is due to the fact that this approach of 
a "continual" character frightened off researchers by the 
seeming difficulty of deriving the relationship between force 
and displacement.

In 1944, A.Yu. Ishlinsky [2] obtained the initial stress-
strain diagram of a specimen of a given material, and the 
diagrams of its subsequent alternating loading, by a static 
method based on the above-described “continual” approach 
to the problem of hysteresis of solids.

After this study, a number of articles by other authors were 
published [3. 4. 5. 6], in which the ideas of S.P.Timoshenko 
and A.Yu.Ishlinsky were further developed. In the articles 
mentioned above, it has been convincingly shown how a 
relatively simple hysteresis model can be constructed using 
the "continual" approach, reflecting the essential aspects 
of this phenomenon; this model can be applied to study 
oscillatory processes in systems with a hysteresis.

Many crystalline materials such as ferromagnets, 
ferroelectrics and ferroelastics are characterized by 
hysteresis, i.e. by ambiguous relationship between input 
and output magnetic, electrical and mechanical quantities, 
respectively [7].

In [8], a mathematical model of hysteresis of the water-
holding capacity of soil was proposed. The mathematical 
model was based on physical concepts of the structure and 
capillary properties of the soil pore space. The mathematical 
model of the hysteresis water-holding capacity of soil makes 
it possible to assess the hydrophysical characteristics of soil, 
used in the design of hydro-technical structures, as well as in 
the calculation of irrigation norms. The estimates obtained 
in the framework of computational experiments using this 

model contribute to an increase in the efficiency of studying 
the hydrological conditions of the territory of hydro-technical 
structures when performing pre-design engineering surveys.

The study in [9] proposed a model that depends on the 
wetting angle in an incremental form to reproduce the 
behavior of soil-water hysteresis. A proportional distribution 
function is proposed for dividing the suction increments into 
two parts, one of which is designed to change the effective 
degree of saturation, and the other - to change the contact 
angle. The proposed hysteresis model contains only four 
parameters that can be conveniently calibrated using the 
main branch of drying and the scanning curve of wetting. The 
model is confirmed by comparison with experimental data.

In [10], the mechanisms of hysteresis in porous media 
were investigated and a numerical model for unfrozen liquid 
was developed, which is able to describe the phenomenon 
of hysteresis in freezing and thawing cycles. The authors 
presents a coupled finite element model as a basis for 
numerical modeling of fluid flow and heat transfer in partially 
frozen porous media.

A model of pore expansion and contraction hysteresis 
caused by hydraulic loading was proposed in [11]. The 
physical mechanism of expansion and contraction was 
revealed through a microscopic model based on the 
fundamental principles of the axis displacement technique. 
In addition, the pore radius of the porous medium is redefined 
to determine the upper and lower boundaries of the pore 
expansion and contraction. Differential hysteresis equations 
are constructed in combination with a two-parameter 
equation. The numerical results are in good agreement with 
the experimental data.

In [12], the hydraulic hysteresis in unsaturated soils 
was studied, and the energy dissipation associated with the 
elastoplastic process and the main processes of wetting and 
drying were derived. Based on the hysteresis curve of water 
retention for deformable soils, a combined hydromechanical 
model was formulated. Experimental tests were carried out to 
verify the proposed hysteresis model.

[13] presents a general algorithm for estimating the 
damping coefficient, modeled by any constitutive model, 
based on the registered behavior in the three-dimensional 
"stress-strain" space.

A simple phenomenological approach to modeling the 
soil-water characteristic hysteresis curve following arbitrary 
wetting/drying cycles was presented in [14].

In [15], a model of water retention was proposed, 
depending on the void ratio, taking into account the effect 
of hydraulic hysteresis. Structural degradation was modeled 
using an approach to strain strengthening, taking into 
account the effect of the stress magnitudes and accumulated 
plastic strain on the degradation process.

A surface model for describing the stress-strain 
relationship in unsaturated soil with constant matrix suction 
was proposed in [16]. Strain rates are introduced to account 
for the effect of cyclic loading history. The movable center 
image rule is used to describe the hysteresis characteristics 
of the dynamic stress-strain curve during the unloading 
process.

Models and methods
Integral model of the first order of static hysteresis
In one of the simplest cases, the field of hysteresis 

curves (hysteresis characteristic) of a static system can be 
represented as consisting of two differently oriented families 
of curves (plotted in Fig. 1 by a dotted line) fixed on the ХОУ 
plane:

ИРРИГАЦИЯ ВА МЕЛИОРАЦИЯИРРИГАЦИЯ ВА МЕЛИОРАЦИЯ

№1(31).2023 Journal of "Irrigation and melioration"
36

 HYDRAULIC ENGINEERING STRUCTURES AND PUMPING STATIONS



a) a family of curves along which the motion of the 

representing point occurs at  0x >  (a family of load curves);
b) a family of curves along which the motion of the 

representing point occurs at 0x <    (a family of load curves).

At  0x =  the system is stationary (values of  X and Y  

are fixed). When the sign of velocity X  changes at some 
point  M0(x0, y0) of the ХОУ plane, the transition from the 
curve of one family to the curve of another family occurs 
passing through this point. In this case, the branches of the 
hysteresis cycle (shown in Fig. 1 by solid curves) obtained 
with an arbitrary law of variation x(t)  (at the bottom of Fig. 
1) are located on the corresponding curves of both families.

The paper considers static hysteresis, which, as noted 
above, is characterized by the independence of the course 
of the curves from the velocity of disturbing effect on the 
system. Using this, we can represent the static hysteresis of 

the spatial type in three-dimensional space XOYX  as a set 
of two families of integral surfaces of the cylindrical type, 

the generatrix of which with the plane x const=  leads 
to the same pattern of plane hysteresis, as mentioned above. 
The MNPQS phase trajectory located on one of the surfaces 

corresponding to  0x >  is projected into one of the loading 
curves on the ХОУ plane; along the phase trajectory, velocity 

x    can be of any value, but with a positive sign. A similar 
situation is observed with any phase trajectory located on 

one of the integral planes at 0x < . So in a visual spatial 
form, static hysteresis is presented in one of its simplest 
forms (Fig. 2).

Mathematically, each of the families of hysteresis curves 
shown in Fig. 1 is considered as a family of integral curves 
in domain D of the ХОУ plane, which is a solution to a 
differential equation of the first order, a nonlinear one, in the 
general case.

It is known that for a differential equation of the first 
order [1]

(1)
where   is defined in domain D of the ХОY plane and 

is continuous in it together with its partial arbitrary with 
respect to  Y (by the condition of the Cauchy theorem on the 
existence and uniqueness of the solution to equation (1), the 
general solution is represented as some function 

(3)

where:   φ1 describes a family of hysteresis curves at 0x >  

; and φ2  describes a family of hysteresis curves at  0x <
; as mentioned above, both of these families represent the 
hysteresis characteristic (hysteresis field) of a static object.

(2)
with one arbitrary constant с.
Geometrically, this solution is represented in domain D 

as a family of integral curves, with each individual integral 
curve corresponding to its own definite value of c (Fig. 3). 
This value of c is determined by setting in (3) the coordinates 
of the point  through which the given integral curve passes. 
Moreover, no matter what point M0(x0, y0)  in domain D we 
take, if the Cauchy condition is satisfied, only one integral 
curve will pass through it. In accordance with what has been 
stated from the theory of first-order differential equations, 
the hysteresis characteristic of a static system is described by 
functional relations with arbitrary constants  c1 and c2 :

Figure 1. Hysteresis curves

Figure 2. Static hysteresis

Figure 3. Family of integral curves

When setting an arbitrary law of variation (at the bottom 
of Fig. 1), the process of calculating the hysteresis cycle 
(shown in Fig. 1 by solid lines) based on relations (3) is realized 
as follows. At those points of the working field of the sample 
(in Fig. 1, points  O1, А, В ,С, Д, Е), at which the sign of velocity  

x  (turning points) changes, the coordinates X, Y are stored. 

These values of coordinates, depending on sign of x  , are 
substituted into the first or second relation (3), as a result of 

which a specific value of an arbitrary constant ( 1, 2)iC i =   is 
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(4)
the solution of which is the dependence y (x) from 

expression (3).
When calculating an arbitrary hysteresis cycle using 

these equations, the coordinates of the points at which the 
velocity sign changes are used as initial conditions for the 
corresponding differential equation to which the transition 
is made.

The proposed models (3) and (4) make it possible to 
calculate (in manual way or using computers) arbitrary 
hysteresis cycles, including families of hysteresis loops at 
different amplitudes of A, at any point M0(x0, y0)   (arbitrary 
asymmetry of the cycle) of the hysteresis cycle of the system.

The proposed integral hysteresis model made it possible 
to achieve not only qualitative, but also quantitative 
conformity of the calculated hysteresis cycles with the 
experimental ones. As far as is known, until now, in the 
theory of mechanical and electrical hysteresis, there were no 
models that satisfied these requirements.

An integral model of hysteresis characteristics, presented 
in a functional form (3), and a differential model (4) are 
suitable for calculating systems on computers. In the 
latter case, the solution of differential equations occurs 

(5)
Using relation:

(6)
where:

(7)
is the kernel of the integral transformation (6).
When studying the oscillations of a system with one 

degree of freedom, the classical equation of oscillations:

(9)
which are solutions of differential equations:

(10)
where:  Ф1 and Ф2  are functions invertible to functions  φ1 

and φ2  from relations (3).
For an invertible system, the integral operator (6) reverts 

into a nonlinear integral equation:

(11)
On the application of a first-order integral model in 

calculating arbitrary hysteresis cycles
The principle of calculating an arbitrary hysteresis cycle 

using the new integral model described in the previous 
section can be embedded into a computer program. At the 
same time, attention should be paid to the accuracy of 
calculating the turning point (the loop top). Since, for a 
given law x(t) , the computer calculates the branches of the 
hysteresis cycle with a step ∆t0, the accuracy of calculating 
the loop top is thus related to the accuracy of calculating 
the extremum of function x(t) . The program provides for 
the calculation of the extrema of this function with a given 
accuracy εm . If, as indicated in Fig. 5, the error in calculating 
the extremum exceeds εm , there will be a retreat two steps 
back and the given step is split by two, that is, there is a new 
step  ∆t0/2. Backtracking and step splitting stop when the 
specified accuracy is reached.

(8)
is solved together with either functional expressions (3) 

or with differential equations (4) or (5). The disturbing force 
f0(t)   can change by an arbitrary law, including a harmonic 
one.

In the case of an invertible system, the hysteresis 
characteristic are described by the following functional 
relationships:

Figure 4. Hysteresis loop

Differentiating each of the relations (3) by x and 
eliminating arbitrary constants C1 and C2, we obtain the 
following system of differential equations:

determined and, accordingly, a specific functional expression 

of the curve  ( , ),i iy x cϕ=  along which the movement from 
a given point occurs. At the turning points, the Cauchy 
problem known in the theory of first-order differential 
equations should be solved. If the solution to this problem 
is unambiguous, from this or any other turning point the 
movement will be performed only along one curve. This can 
be achieved by appropriate selection of functions  φ1 and  φ2.

In Fig. 4, a hysteresis loop calculated from relations (3) is 
shown by a harmonic law of variation  x(t) (a similar result is 
obtained by any other periodic law x(t)  , as long as the sign 

of  x  does not change in every quarter of the period). It 
can be seen that the loop does not close after the first period. 
Moreover, the loop does not close after three or four periods 
and even more; theoretically it should close only after an 
infinite number of periods. This phenomenon is due to the 
fact that in the last quarter of the period the movement of the 
representing point occurs along an ascending integral curve 
located above the integral curve along which the movement 
was performed from the initial point O1 .

continuously in time; in equations (4), considering the 
arbitrary nature of variation in x(t) , it is necessary to proceed 
to differentiation by t :

it is not difficult to pass from equations (5) to an integral 
operator, if we perform the appropriate integration over t :
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Figure 5. Loop tops Figure 6. Closed hysteresis loop

Figure 8. Hysteresis loop

Figure 7. Hysteresis curve

On harmonic linearization of hysteresis loops
Consider a steady-state closed hysteresis loop (Fig. 

6.), obtained by a harmonic law of variation of the input 
disturbance. In general, the shape and slope of the loop 
depend on the amplitude A.

(12)
where: yu(x) is the single-digit curve of the conservative 

component (in Fig. 6 it is shown by a dashed line, in Fig. 7 it 
is shown separately), the ordinates of which are equal to the 
half-sum of the ordinates of the hysteresis loop at the same 
abscissa; yT(x)   is the two-digit curve of the non-conservative 
component (Fig. 8), obtained by subtracting the conservative 
component yu(x)  from the input hysteresis loop   (Fig. 6).

In the case of an elastic-damping element, a material 
sample, and other mechanical elements, the conservative 
component is the elasticity curve, and the non-conservative 
component is the force of external or internal friction. 

The component yT(x)  depending on velocity x   is a 
non-linear function that can be approximated by a linear 

dependence .Ty hx=    This approximation can be realized so 

that the areas of the loops corresponding to ( )Ty x  = hx  be 
equal, i.e. :

(13)
where S  is the area of the real loop obtained as a result 

of the experiment;  A is the amplitude of the input sinusoidal 
signal;  ω is its frequency.

From the last equation we obtain:

(14)
and correspondingly:

(15)
The conservative, hysteresis-free component yu(x)   is 

approximated by a linear function:

(16)
using, for example, the method of optimal linearization of 

nonlinear elastic characteristics proposed by Ya.G. Panovko 
[17]. In the case of symmetric yu(x) , the dependence k(A) is 
calculated using the following integral:

(17)
In the case of asymmetric  yu(x) 

(19)
which takes into account the experimentally observed 

dependence of the slope and area of the loop on the amplitude 
of the input effect. We introduce the coefficient of relative 
hysteresis  γ for a static system in the following form

(20)
where: k(A)  is the coefficient of linearization of the loop 

centerline introduced above.
In accordance with this, expression (19) can be 

transformed:
a) in real form:

(21)
b) in complex form:

(18)
where:                                                                                                                                                are 

the maximum ranges of oscillations relative to the 
beginning of the count;   x0 is the displacement of the center 
of oscillations.

So, we describe the hysteresis loop y(x) by the following 
equation:
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Figure 9. Hysteresis loop

(22)
As can be seen, the form of harmonic linearization of 

static hysteresis characteristics remained the same as for 
linear systems.

Calculation of the loops parameters obtained by the 
harmonic law of variation of the input signal

As mentioned above, at harmonic law of variation of the 
input value of x(t) , the steady-state position of the hysteresis 
loop is reached after a certain number of cycles. The equations 
of the contour of a steady-state loop (Fig. 9) is written as:

(23)
where: C1n , C2n are the values of arbitrary constants 

corresponding to the steady-state mode.
The loop area is calculated by the following formula:

(24)
The mid-line of the loop (Fig. 9):

(25)
can be approximated by a linear dependence (Fig. 9)

(29)
which provides for the so-called "weighing" along the 

coordinate x , proposed by Ya.G. Panovko [17]. The need 
for such "weighing" was proven both theoretically and 
practically. From the minimum condition (29), we obtain a 
system of equations for k  and y1 :

(26)
The result is a system of algebraic equations for 

calculating the parameters  k  and y1 :

(27)
or

(28)
where:      

The same approximation can be made by minimizing the 
integral:

where:  k, y-const at a given amplitude  .

In the case of using the least squares approximation [18], 
we minimize the integral:

(30)
or

(32)
Approximation with "weighting" along the x coordinate:

(33)
In the first case, we get:

(34)
In the second case, we get:

(35)
Points xi are taken in the range from  xi-A to x0-A with step   

(31)
where:

The coefficient γ is calculated as before by formula (20), 
and the coefficient k is taken as a solution to equations (28) 
or (31).

In the case of using a computer to calculate dependencies   
k(A) and γ(A)   it is more convenient to proceed to the discrete 
form of equations (28) or (31), which can be obtained by 
minimizing the sums:

Approximation without "weighting" along the x 
coordinate:

     

 HYDRAULIC ENGINEERING STRUCTURES AND PUMPING STATIONS

№1(31).2023 Journal of "Irrigation and melioration"
40

 HYDRAULIC ENGINEERING STRUCTURES AND PUMPING STATIONS



2 ,i
Ax∆ =
Π

 
where  n is the number of steps.

By setting different values of the amplitude A, it is possible 
to obtain the dependences k(A)  and  γ(A), corresponding to a 
given operating point.

Applications to describe hysteresis of second-order 
differential equations

For a more accurate description of the hysteresis 
characteristics of static systems actually used in practice, in a 
number of cases it is preferable to use differential equations 
of higher order, in particular, second-order equations. Firstly, 
more accurate analytical description of the branches of the 
hysteresis loops are achieved (remember that the general 
solution, for example, of a linear homogeneous second-
order equation with constant coefficients can contain two 
exponentials); secondly, the use of higher-order equations 
allows one to display the loop closure observed in practice 
for a number of static systems (in particular, systems with 
magnetic elements, ferroelectric capacitors, and in some 
cases with sources of mechanical losses) after the first cycle, 
which, as we saw above, is not displayed using the first-order 
equations. In addition, the use of higher-order differential 
equations allows the simulation of cyclically unstable 
hysteresis, when the shape and slope of the hysteresis curves 
can change from cycle to a number of cycles. For some 
systems, this process ends after a certain number of cycles (the 
so-called transient process in the phenomenon of hysteresis 
is observed, in electrical engineering in relation to magnetic 
elements it is called accommodation). For other systems, this 
process of cyclic instability of hysteresis can be observed for 
any length of time (this is especially characteristic for a strain 
of a rigid body).

For a better understanding of what has been said, we 
present the basic information from the theory of second-
order differential equations:

(36)
where: function  F is defined in domain  V of three-

dimensional space XOYY'  and is continuous in it together 
with its partial derivatives  in y   and  y' (the Cauchy conditions 
for the existence and uniqueness of the solution to equation 
(36)).

It is known that the general solution of such an equation 
contains two arbitrary constants  c1 and  c2:

(38)
which are solutions of differential equations:

(40)

where: dxW
dt

  determines the tangent tilt in the hysteresis 
curves field.

According to equations (40), the simulation of hysteresis 
characteristics of mechanical and electrical elements was 
conducted.

(39)
In the case of computer-aided calculation of hysteresis 

cycles according to functional relations (38), the calculation 
of arbitrary constants  ci(i=1,..4) can be performed in two 
different ways.

According to the first method, at any point of turning A 
, the coordinates  xA,yA   of this point are recorded, and the 
tangent of the tilt angle to the corresponding curve of loading 
(unloading) is set. These coordinates and arbitrary values are 
substituted into the appropriate integral relations (the first 
or second expression of (38)) and its derivative, as a result 
of which specific values are obtained (i = 1.2 or 3.4), and, 
hence, a specific analytical expression of the corresponding 
hysteresis curve.

According to the second method, the coordinates of 
not only the source point of turning  A are stored, but the 
coordinates of pre-source point  B as well. The coordinates 
of both points are substituted at a particular integral relation 
(38), as a result of which we obtain two algebraic equations 
to determine the corresponding arbitrary constants ci .  It 
is easy to see that in this case there is a return to the pre-
source point of turn  B (the same situation is realized in the 
Rayleigh-Mazing principle).

Differential equations (39) are transformed to the 
following form:

(37)

A family of integral curves ( )1 2, , ,iy x c cφ=  
corresponds to each specific value of  C2i  (і=1, 2, …), and the 
shape and slope of the curves in the general case can change 
from family to family (Fig. 10.).

When defining a specific integral curve passing through a 

given point  M0(x0,y0), the initial angle of inclination 

                  
                                                                         

           of the tangent to the curve at this point is also 
specified. It is clear that we can set this angle arbitrarily, 
as long as only the Cauchy problem has a unique solution. 
As can be seen, the general solution of the second-order 
differential equation reflects the fact that an infinite set of 
integral curves of the most diverse shapes and slopes can 
pass through a given point of the XOY plane. At the same 
time, as we saw above, in the case of a first-order differential 
equation, when the Cauchy conditions are satisfied, only one 
integral curve can pass through a given point of the plane. 

Figure 10. Family of integrated curves

Therefore, based on the general theory of the second-
order differential equations, we describe the hysteresis 
characteristic with functional relations:
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(41)
Differentiating relations (41) twice and eliminating 

arbitrary constants from the expressions obtained for the 
derivatives using (41), we arrive at the differential equations:

(42)
where:

(43)
where:

(45)
The same selected part of the curve, rotated relative to 

point O , is described by the following equation:

(46)

and at parallel transfer to point ( ),k k kA x y  :

(47)
Curves (45) and (47) are used to construct a hysteresis 

cycle corresponding to an arbitrary continuous law of 
variation of the input coordinate x as a function of time  t≥0.

(49)
At the points of intersection of these curves with the 

abscissa, we get:
for the down-sloping curve

(50)

(48)

where: ( ),k k kA x y  , ( )1 1 1,k k kA x y+ + +
  are the turning points at the beginning of the  k-th (odd) 

and (k + 1)-th half-cycles, respectively, (k = 1,2,3). It is easy 

to show by direct differentiation that *( ) ( )k k ky x f x′ ′=  at the 
k-th turning point.

Let  x vary by some law of periodic function (which does 
not change the sign of the derivative in every quarter of the 
period) running through the values (in Fig. 12, fragment 2) 
within the limits 0 0x A x x A− ≤ ≤ +   .

Then, equations (48) can be rewritten as:

(44)
We mark with a solid line the part of this curve located 

in the 1st quadrant of the XOY plane. The selected area, 
transferred parallel to itself (Fig. 12, fragment 2) to the 

Figure 11. Hysteresis cycle

Figure 12. Monotonically increasing curve

According to the well-known Rayleigh-Masing principle, 
an arbitrary hysteresis cycle restores the same curve y=f(x) 
at the turning points (Fig. 11) since the coordinates of the 
turning points are arbitrarily, and we can consider them as 
arbitrary constants. Let  c1=xA, c2=yA  , c3=xB , c4=yB  (see Fig. 
11). In accordance with this, the equations of hysteresis 
characteristics are written as:

Calculations
Plotting an unstable hysteresis cycle
Let a monotonically increasing curve  y0=f(x0) (fragment 

1) be constructed on the X0O1Y0 plane (Fig. 12), defined on 
an interval  (a,b) and having continuous first and second 
derivatives on this interval. The value of the first derivative 
at each of its points is positive and decreases monotonically 
with an increase in the abscissa from  a to b . In particular, it 
can be defined either on the entire number axis (-∞ ,+∞)or on 
the positive semi-axis [0,+∞)  . We introduce a new coordinate 

system XOY  (Fig. 12) with the origin at point  
* *
0 0( , )O x y   

at which the equation of the curve has the following form:

We assume that at x>0  the motion of the representing 
point on the plane is performed along the curve (45), and at   
x<0 along the curve (47). At x=0 , the turning point is fixed 
on the XOY plane. In the general case of cyclically unstable 

hysteresis, the values of 
*
0x   and  ( )* *

0 0y f x=  depend on 
the number of loading half-cycles k , i.e. are sequences of the 

form  ( )* *
0kx x k=  

* ( ).k ky f x=
As a result, the equations of the ascending and descending 

hysteresis curves have the following form (Fig. 12):

Equations (40) correspond to the integral operator:

position with the origin at point  ( )1 1 1, ,k k kA x y+ + +  is 
described by the following equation:
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At the points of intersection of these curves with the 
abscissa, we get:

for the down-sloping curve

Consider the behavior of the hysteresis characteristic in 
the following three cases:

1. The sequence  ( )* *
0kx x k=  is sign-positive 

and monotonically increasing. By virtue of the conditions 

imposed on the function ( )0 0y f x=   above, we obtain 

* 0ky∆ >  , *
1 0ky +∆ >  , * ,k ky f∆ < ∆  *

1 1.k ky f+ +∆ < ∆   This 
means that in the first case, with the growth, the loops will 
narrow vertically. 

2. The sequence  ( )* *
0kx x k=  is sign-negative and 

monotonically increasing in absolute value, and  * 2kx A<  

for any k . It leads to * 0,ky∆ <  *
1 0,ky +∆ <  0,kf∆ <  

1 0,kf +∆ <  *
1 1,k ky f+ +∆ < ∆  *

k ky f∆ < ∆   .
3. Thus, in this second case, on the contrary, with the 

growth of k , the loops will expand vertically.

4. The sequence ( )* *
0kx x k=   is sign-positive and non-

increasing, and for each subsequent even number k , the 

value of  
*
kx  is greater than the corresponding value for 

the previous odd number. Then, according to (3.52), we 

obtain * 0,ky >  *
1 0,ky +∆ <  и    * 0,kf∆ > *

1 0,kf +∆ < and 

accordingly 2 1 3, .k k k ky y y y+ + +< >    Thus, in the third case, 
the phenomenon of cyclic relaxation will be observed, which 
manifests itself in the downward displacement of the loop. If 

(50)
for the upward-sloping curve

(53)
at the points of intersection with the abscissa axis we 

have:
For outgoing curve

(54)
for incoming curve

(55)
Accordingly, the width of the loop in the k, (k + 1)-th half-

cycles is:

(56)
where:

(57)
where:

(52)
where:

(51)

where:   
* *

1 ( 2 )k k k ky y y f x A+ = + − +

The dependence b on the number of cycles can be 
determined from experimental records of the field of curves 
of cyclically unstable hysteresis. Therefore, considering 
, the sequence   can be calculated by solving the nonlinear 
algebraic equation (51). In addition, having a close-up 
record of the hysteresis field, this sequence can be found 
directly by superimposing and shifting over each other until 
the branches of the loops in the 1st and k-th half-cycles 
completely coincide.

According to equations (49), it is easy to distinguish the 
ordinates at the points Ak+2  and Ak, Ak+1  and Ak+3  (Fig. 12, III):

As a result, the width of the loop formed at the k-th and (k 
+ 1)-th half-cycles is:

the difference between two adjacent values of  
kx  decreases 

with increasing  k, the cyclic relaxation will decay.
Further, let during each half-cycle the value of the output 

coordinate y change monotonically within the limits (in Fig. 
12). Then, based on (48), we arrive at the following equations 
for the hysteresis curves:

This equation can also be used to find the sequence 
*
kx .

Using equations (53), it is not difficult to determine the 
difference between the abscissas at the points  Bk+2 and  Bk and 
Bk+1 Bk+3 (Fig. 12).

of which, in the same order as discussed above, it follows:

1. If the sequence ( )*
0x k   is sign-positive and 

monotonically increasing, then   * 0,kx∆ >  *
1 0,kx +∆ >  

1 * ,k kf x−∆ > ∆  
1 *
1 1,k kf x−
+ +∆ > ∆   and accordingly, 2 ,k kx x+ >  

3 1.k kx x+ +>    
Hence, it follows that under this condition, the loop will 

expand horizontally with increasing k.

2. If the sequence ( )*
0x k  is sign-negative and 

monotonically increasing in absolute value, then * 0,kx∆ <  

*
1 0,kx +∆ <   1 * ,k kf x−∆ < ∆  1 *

1 1k kf x−
+ +∆ < ∆     and accordingly, 

2 ,k kx x+ <  3 1.k kx x+ +<     In contrast to the previous case, 
this leads to a narrowing of the loop horizontally.

3. If the sequence  ( )*
0x k  is sign-positive and 

non-increasing, and for each subsequent even number  k, 
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(58)
Differentiating this relation twice:

(64)
as a result, equations (61) are rewritten as:

(65)
which are solutions of first-order differential equations of 

the form:

(66)
We further consider an option of a cyclically unstable 

hysteresis characteristic (Fig. 13.), in which the 1st and 
3rd families of integral curves are families of straight lines 
fixed on the XOY plane. In Fig. 14, (fragment 1), two loops 
were constructed in К, (К+1)-th and, (К+2), (К+3)-th half-
cycles under variation of  x within  . The projection   of the 
linear section onto the OX axis is used here as a parameter   
depending on the number of half-cycles.

In the К, (К+1)-th half-cycles, the branches of the loops 
are described by the following relations:

(59)
where

(60)
where

(62)
as a result, equations (61) are rewritten as:

(68)
From Fig. 14, it can be seen that in the case of a 

monotonically increasing sequence * *
0 ( )kx x k=  , the loops 

will expand vertically and narrow in width, while in the case 
of monotonic decreasing, vice versa. The phenomenon of 

(67)
(61)

(63)

and eliminating c1 , we arrive at the following differential 
equation:

In order to simplify the setup scheme, we will transform 
the variable  by the following formula:

Calculation of quadrangular hysteresis
More generally, the ascending and descending branches 

of the hysteresis loops can consist of several continuously 
conjugated arcs. Then the hysteresis characteristic in the 
simplest version can be represented as a set of four families 
of integral curves fixed on the XOY plane and intersecting 
with each other (Fig. 13), each of them is a solution to a first-
order differential equation. The transition at the same sign 
of   from a curve of one family to a curve of another family 
is conducted when some parameter of the curve (arc length, 
projection onto the coordinate axis, radius of curvature, etc.) 
reaches a certain value. Families of curves can be described 
by the following functional relationships:

The initial conditions for this equation are: for

Likewise, for the second relation from (48) we obtain an 
equation of the form:

In order to simplify the setup scheme, we will transform 
the variable W by the following formula:

the value of 
*
kx   is greater than the corresponding value 

for the previous odd number, then * 0,kx∆ >  *
1 0,kx +∆ >  

1 * ,k kf x−∆ > ∆  1 *
1 1,k kf x−
+ +∆ < ∆  2 ,k kx x+ >  3 1,k kx x+ +>     

and the loop moves along the OX axis to the right, thereby 
demonstrating cyclic creep.

The mathematical model of hysteresis in the form (48) is 
suitable for studying systems with hysteresis on a computer. 
When using computers, it is necessary to pass from functional 
relations (48) to second-order differential equations. This 
transition is realized as follows. Since in the first functional 

relation (48) the coordinates 1kx +  , 1ky +  can take arbitrary 
values from some area (closed or non-closed) on the XOY 
plane, they can be taken as arbitrary constants c1   and  c2, 
respectively. Then the first relation from (48) can be rewritten 
as
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cyclic relaxation will be observed if in an even half-cycle,   is 

*
1kx +

 less than the corresponding value in an odd half-cycle.
Consider, in addition, a limited variation in y within 

1 2y y y− ≤ ≤  (Fig. 14, fragment 2). The loop width is 
calculated by the following formula:

Fig. 15 shows the experimental hysteresis characteristics 
of TS steel (fragment 1, soft loading) and brass 59 (fragment 
III, rigid loading). The superposition of the branches obtained 
in different half-cycles on top of each other shows that for 
TS steel, the BD curve can be taken as a generalized curve 
with a continuation up to point A (shown by a dotted line in 
fragment 1). If the ABD curve is sequentially superimposed 
on branches 41, 40, 31, 30, ... 2, 1, it can be seen how the AB 
section will gradually decrease. With a sufficient degree of 
accuracy, the AB curve can be represented as an exponential 
and, in accordance with (48), the hysteresis characteristic of 
TS steel will be described by functional relations (without 
considering zero half-cycle):

Simulation of the hysteresis loops indicated in Fig. 
15 shows good agreement between the calculated and 
experimental data [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30].

Results and discussion
Experimental determination of hysteresis 

characteristics
Experimentally, families of curves of the hysteresis field 

of any static system can be obtained as follows. Let the 

(69)
In this option, it is not difficult to formulate appropriate 

conclusions about the behavior of loops at an increase in the 
number of half-cycles.

Electronic simulation of cyclically unstable hysteresis 
with variable linear sections is performed according to the 

equations ( ) ( 0)Hy y x x= >  in the zero half-cycle:

(71)
where:  ,  are the constant parameters determined by 

processing the hysteresis curves, for example, using the least 
squares method.

Since an increase in the number of half-cycles K 

shortens the AB curve, the sequence ( )*
0 kε  , which acts 

as a projection of the AB segment onto the 0ε axis, is sign-
positive and monotonically increasing (see fragment 2 in Fig. 
15, solid segments). On the basis of (58), knowing that for TS 

steel ( ) [ )1 exp( ]Tf bε σ ε= − −  , it is not difficult to obtain a 
system of differential equations, the solutions of which are 
relations (71).

The branches of the hysteresis characteristic of brass 59 
(in Fig. 16) consists of a linear section with a slope E and a non-
linear section, which is also well described by an exponential. 
The figure clearly shows the increase in the length of linear 

segment 0   or its projection on the 0ε axis, equal to *
0ε   

with the increase in K. The resulting sequence ( )*
0 kε    is sign-

negative and monotonically decreasing in absolute value (see 
Fig. 16, dashed segments); the fastest decrease is observed 
in the first three half-cycles. Based on (67) and (70), it is 
easy to obtain functional relations and the corresponding 
differential equations describing the hysteresis of brass 59.

(70)

Figure 13. Family of integral curves

Figure 14. Cyclically unstable hysteresis

Figure 16. Hysteresis branches

Figure 15. Hysteresis loops
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Figure 18. Block diagram

Figure 17. Hysteresis loops

working field of the system on the ХОУ plane be bounded by 
some closed curve ОМРК (Fig. 16). We will excite the system 
from the initial point 0 by the law indicated at the bottom 
of Fig. 16. In this case, we register only the curves at   To 
obtain a family of curves at  , the system is excited by the 
law indicated below (Fig. 17). When testing static systems 
during every quarter cycle, the motion does not have to be 
linear. It is sufficient that the sign of the velocity does not 
change during this time (see, for example, in Fig. 17 another 
excitation law indicated by the dotted line). 

The excitation laws shown in the figures can be obtained 
using special generators and tracking systems. Therefore, 
when testing samples of various materials, elastic damping 
devices and other mechanical elements of this type, the 
strain laws can be obtained using a servo drive, the structural 
diagram of which is shown in Fig. 18. Adjuster I provides an 
electrical signal Uз(t), changing over time in proportion to the 
desired law of change in strain or force. Signal Uз(t) is compared 
with the feedback signal Uос(t), coming through switch from 
dynamometer 6 and the internal strain Xоб(t) sensor 8 of test 
specimen 5. The resulting difference is the loop error signal 
∆Uр, which through amplifier 2 enters the control system 3 
by actuator 4. The latter (of electromechanical, hydraulic 
or some other type) converts the loop error signal into the 
displacement of the machine active grip Xз(t), which causes 
deformation of the sample, the reaction of which is perceived 
by the dynamometer and the loading device of the machine. 

Under the influence of the sample, the loading device is 
strained, as a result of which the actual strain of the sample 
Xоб(t) is less than the displacement Xз(t) of the active grip by 
the amount of machine strain Xм(t) , i.е. Xоб = Xз(t)–Xм(t). 

Conclusions
Comparatively complete information about the hysteresis 

field of a particular static object can be obtained using simpler 
sinusoidal oscillators. Therefore, in mechanical tests, we can 
use any mechanism (of appropriate power) of reciprocating 
motion with an adjustable vibration amplitude, if equipped 
with force and strain sensors.

In the case of using sinusoidal oscillators in different 
areas of the object's hysteresis field, families of hysteresis 
loops are recorded at different amplitudes. Comparison of 
the curves of hysteresis during loading and unloading, and 
over the entire hysteresis field will help to restore a complete 
pattern of the hysteresis characteristics of the object under 
consideration.

Mathematical models of hysteresis characteristics of static 
systems were developed. For a more accurate description of 
the hysteresis characteristics of static systems that actually 
occur in practice, in a number of cases, differential equations 
of higher order were used, in particular, second-order 
equations. The use of differential equations of higher order 
makes it possible to simulate cyclically unstable hysteresis, 
when the shape and slope of the hysteresis curves can 
change from cycle to a number of cycles. For some systems, 
this process ends after a certain number of cycles, for other 
systems, this process of cyclic instability of hysteresis can be 
observed for any length of time.
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