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TNIPOTEXHUKA MHITOOTJ/IAPY BA HACOC CTAHITUSJIAP

UDC: 539.3

DEVELOPMENT AND RESEARCH OF THE METHOD OF
STATIC SYSTEMS IDENTIFICATION BY HYSTERESIS

B.A.Khudayarov - DSc, professor, F.Zh.Turaev - senior teacher,
“Tashkent Institute of Irrigation and Agricultural Mechanization Engineers” National Research University
Abstract

The paper considers methods for constructing and numerical realization of a hysteresis model for engineering systems.
Mathematical models based on the analytical representation of the hysteresis characteristics of linear systems obtained by
specifying piecewise linear signals at their input with different velocities of both signs on linear sections are proposed. For a
more accurate description of the hysteresis characteristics of static systems that actually occur in practice, in a number of cases,
differential equations of higher order are used, in particular, equations of the second order. The use of differential equations of
higher order makes it possible to simulate cyclically unstable hysteresis, when the shape and slope of the hysteresis curves can
change from a cycle to a number of cycles. For some systems, this process ends after a certain number of cycles (there is a so-called
transient process in the phenomenon of hysteresis, in electrical engineering, it is called accommodation in relation to magnetic
elements), for other systems this process of cyclic instability of hysteresis can be observed for any length of time. Methods for
identifying static objects by hysteresis were developed and investigated.

Key words: hysteresis, integral model, Rayleigh-Masing principle, differential equations, numerical model, input signal.

STATIK TIZIMLARNI HISTEREZIS ORQALI ANIQLASH
USULINI ISHLAB CHIQISH VA TADQIQ QILISH

B.A.Xudayarov - t.f.d, professor, F.].Turayev - katta o‘gituvchi,
“Toshkent irrigatsiya va qishloq xo‘jaligini mexanizatsiyalash muhandislari instituti” milliy tadqiqot universiteti
Annotatsiya

Magolada texnik tizimlarning histerezis modelini yaratish va ragamli amalga oshirish usullari ko‘rib chigilgan. Matematik
modellar chizigli kesmalarda ikkala belgining turli tezligiga ega bo‘lakli chizigli signallarga kirishini o‘rnatish orqali olingan
chiziqli tizimlarning histerezis xususiyatlarini analitik tasvirlash asosida taklif etiladi. Amalda haqiqatda sodir bo‘ladigan statik
tizimlarning histerezis xususiyatlarini aniqroq tavsiflash uchun ba’zi hollarda yuqori tartibli differensial tenglamalar, xususan,
ikkinchi tartibli tenglamalar qo‘llaniladi. Yuqori tartibli differensial tenglamalardan foydalanish, histerezis egri chiziglarning
shakli va giyaligi sikldan siklga o‘zgarishi mumkin bo‘lgan holda, siklik beqgaror histerezisni modellashtirishga imkon beradi.
Ba’zi tizimlar uchun bu jarayon ma’lum miqgdordagi sikllardan so‘ng tugaydi (histerezis hodisasida vagtinchalikjarayon deb
ataladigan narsa bor, elektrotexnikada u magnit elementlarga nisbatan akkomodatsiya deb ataladi), boshqa tizimlar uchun bu
siklik histerezis jarayoni beqarorlik har ganday vaqt davomida kuzatilishi mumkin. Statik obektlarni histerezis orqali aniglash
usullari ishlab chiqgilgan va organilgan.

Tayanch so‘zlar: histerezis, integral model, Reyl-Masing printsipi, differentsial tenglamalar, sonli model, kirish signali.

PA3PABOTKA 1 UCCIIEAOBAHUE METOJA NTAEHTUD®UNKA
NN CTATUYECKUX CUCTEM IIO TUCTEPE3UCY

B.A.Xydasapos — 0.m.H., npogpeccop, @.JK.Typaes — cmapuwiuii npenodasameins,
Hauuonanshetii uccnedosamensckuii yHusepcumem «TaukeHMCKUil UHCIMUIMYIM UH}¥CEHEPO8 Uppuzayuu u MexaHusayuu
CebCKo20 xo3siicmea»
AHHOTaIVS

B cTaThe pacCMOTpeHbl METOMbI TOCTPOEHMS U UMCIEHHOI peanusanyuy TUCTePe3nCHON MO TeXHUUECKUX CUCTEM.
[TpensioskeHbl MaTeMaTHUUeCcKie MO, OCHOBAHHbIE HA aHAJIUTUUYECKOM IMPEeICTaBIeHUN TUCTEPEe3UCHBIX XapaKTePUCTUK
JIMHEIHBIX CUCTEM, ITOJyYEHHBIX ITyTeM 3aJJaHMsI Ha MX BXOJ, KYCOUHO-TMHEITHBIX CUTHAJIOB C Pa3IMYHBIMIM CKOPOCTSIMM 060X
3HAKOB Ha JIMHEHBIX yuacTKax. i1 60iee TOUHOTO OMMCAHMS TYCTEPE3VICHBIX XapaKTEPUCTUK CTATUUECKUX CUCTEM, Peajb-
HO BCTPEYAMOLIVXCS HA MTPAKTUKE, B PsIlie CTy4aeB UCTIONb3YIOT auddepeHIanibHble YpaBHEHMS 60ee BbICOKOTO TOPSIAKa, B
YACTHOCTY YPaBHEHMSI BTOPOTO TMOPSIIKA, VICIIONb30BaHME KOTOPbIX, T03BOISIET MOAEIMPOBATh UKINYECKN HEYCTONUMBBIN
rucTepesuc, Korma hopma 1 HaKJIOH KPUBBIX TMCTEPe31ica MOTYT MEHSIThCSI OT IMKJIA K YMCTY HMKIIOB. [IIs1 OMHMUX CUCTEM 3TOT
MpolIecc 3aKaHYMBAETCS uepes Onpene/ieHHOe YNMC/I0 IIYKIOB (CYIeCTBYET TaK Ha3bIBa€MblIi ITepeXOHbIi MTPOIIeCC B SBIEHUN
TMCTepesnca, B JIEKTPOTEXHIKE OH Ha3bIBAETCSI aKKOMOZAIMEN 10 OTHOIIEHMIO K MaTHUTHBIM 3JIEMEHTaM), /ISt APYTUX CU-
CTEM 3TOT MPOIECC IMKINYECKO HECTAOMIbHOCTM TUCTEPe3ca MOXKET HABMIOAAThCS B TEUEHME JTI060T0 ITPOMEXKYTKA BpeMe-
Hu. PazpaboTaHbl 1 UCCIeOBAHbI METOMIbI MAEHTUDUKALIMM CTATUUECKUX 0OBEKTOB IO TUCTEPE3UCY.

KioueBble cl10Ba: rucTepesnc, MHTerpaabHasi MOZelb, TpUHIUI Panes-MasuHra, nuddepeHianbHble ypaBHEHNS, YMC-
JIeHHas MOJIe/Tb, BXOIHOI CUTHAJ.
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Introduction. Many systems used in practice include
various sources of energy dissipation (nodes with
external and internal friction, ferromagnets, ferroelectric
capacitors, and others), switching devices and nonlinear
elements with an ambiguous static characteristic. For such
systems, called hysteresis systems, with an arbitrary law of
variation of the input coordinate X(t) , the motion of the
representing point will have a complex hysteresis nature,
when a finite or infinite set of values of the output coordinate
Y corresponds to one value of X.

Hysteresis systems are called static systems in the range
IXI<X,, where X is a certain threshold value of speed, at
exceeding which the speed affects the course of the hysteresis
curves, if the shape and slope of the branches of the hysteresis
loops do not depend on the value in the indicated range
of speeds; at that, at the turning points at which the sign
changes to the opposite sign, an acute-angled shape of the
loop (tips) with a break of the first kind is observed.

Since the second half of the 19th century, when the
phenomenon of hysteresis was discovered, attempts have
been made to analytically describe static hysteresis in order
to use the obtained formulas and equations in calculating
electrical machines, mechanical structures, buildings, etc.

The Rayleigh-Masing mathematical model can be
physically substantiated based on the assumption that any
system with hysteresis can be considered as a set of a large
number of ideal elastic-plastic elements with different
values of the yield stress. For example, a polycrystalline
body is represented as consisting of a significant number of
individual conditional grains, arbitrarily oriented relative to
the direction of force action. Some mechanical characteristics
of a conditional grain, as well as its relationship with
neighboring grains, can be postulated. S.P.Tymoshenko [1]
proposed this approach back in 1930. However, for a long
time, it did not attract much attention from researchers.
Apparently, this is due to the fact that this approach of
a "continual" character frightened off researchers by the
seeming difficulty of deriving the relationship between force
and displacement.

In 1944, AYu. Ishlinsky [2] obtained the initial stress-
strain diagram of a specimen of a given material, and the
diagrams of its subsequent alternating loading, by a static
method based on the above-described “continual” approach
to the problem of hysteresis of solids.

After this study, a number of articles by other authors were
published [3. 4. 5. 6], in which the ideas of S.P.Timoshenko
and A.Yu.Ishlinsky were further developed. In the articles
mentioned above, it has been convincingly shown how a
relatively simple hysteresis model can be constructed using
the "continual" approach, reflecting the essential aspects
of this phenomenon; this model can be applied to study
oscillatory processes in systems with a hysteresis.

Many crystalline materials such as ferromagnets,
ferroelectrics and ferroelastics are characterized by
hysteresis, i.e. by ambiguous relationship between input
and output magnetic, electrical and mechanical quantities,
respectively [7].

In [8], a mathematical model of hysteresis of the water-
holding capacity of soil was proposed. The mathematical
model was based on physical concepts of the structure and
capillary properties of the soil pore space. The mathematical
model of the hysteresis water-holding capacity of soil makes
it possible to assess the hydrophysical characteristics of soil,
used in the design of hydro-technical structures, as well as in
the calculation of irrigation norms. The estimates obtained
in the framework of computational experiments using this

model contribute to an increase in the efficiency of studying
the hydrological conditions of the territory of hydro-technical
structures when performing pre-design engineering surveys.

The study in [9] proposed a model that depends on the
wetting angle in an incremental form to reproduce the
behavior of soil-water hysteresis. A proportional distribution
function is proposed for dividing the suction increments into
two parts, one of which is designed to change the effective
degree of saturation, and the other - to change the contact
angle. The proposed hysteresis model contains only four
parameters that can be conveniently calibrated using the
main branch of drying and the scanning curve of wetting. The
model is confirmed by comparison with experimental data.

In [10], the mechanisms of hysteresis in porous media
were investigated and a numerical model for unfrozen liquid
was developed, which is able to describe the phenomenon
of hysteresis in freezing and thawing cycles. The authors
presents a coupled finite element model as a basis for
numerical modeling of fluid flow and heat transfer in partially
frozen porous media.

A model of pore expansion and contraction hysteresis
caused by hydraulic loading was proposed in [11]. The
physical mechanism of expansion and contraction was
revealed through a microscopic model based on the
fundamental principles of the axis displacement technique.
In addition, the pore radius of the porous medium is redefined
to determine the upper and lower boundaries of the pore
expansion and contraction. Differential hysteresis equations
are constructed in combination with a two-parameter
equation. The numerical results are in good agreement with
the experimental data.

In [12], the hydraulic hysteresis in unsaturated soils
was studied, and the energy dissipation associated with the
elastoplastic process and the main processes of wetting and
drying were derived. Based on the hysteresis curve of water
retention for deformable soils, a combined hydromechanical
model was formulated. Experimental tests were carried out to
verify the proposed hysteresis model.

[13] presents a general algorithm for estimating the
damping coefficient, modeled by any constitutive model,
based on the registered behavior in the three-dimensional
"stress-strain” space.

A simple phenomenological approach to modeling the
soil-water characteristic hysteresis curve following arbitrary
wetting/drying cycles was presented in [14].

In [15], a model of water retention was proposed,
depending on the void ratio, taking into account the effect
of hydraulic hysteresis. Structural degradation was modeled
using an approach to strain strengthening, taking into
account the effect of the stress magnitudes and accumulated
plastic strain on the degradation process.

A surface model for describing the stress-strain
relationship in unsaturated soil with constant matrix suction
was proposed in [16]. Strain rates are introduced to account
for the effect of cyclic loading history. The movable center
image rule is used to describe the hysteresis characteristics
of the dynamic stress-strain curve during the unloading
process.

Models and methods

Integral model of the first order of static hysteresis

In one of the simplest cases, the field of hysteresis
curves (hysteresis characteristic) of a static system can be
represented as consisting of two differently oriented families
of curves (plotted in Fig. 1 by a dotted line) fixed on the XOY
plane:

L
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a) a family of curves along which the motion of the

representing point occurs at x>0 (a family of load curves);
b) a family of curves along which the motion of the

representing point occurs at x<0 (a family of load curves).
At x=0 the system is stationary (values of X and Y

are fixed). When the sign of velocity X changes at some
point M(x, y,) of the XOVY plane, the transition from the
curve of one family to the curve of another family occurs
passing through this point. In this case, the branches of the
hysteresis cycle (shown in Fig. 1 by solid curves) obtained
with an arbitrary law of variation x(t) (at the bottom of Fig.
1) are located on the corresponding curves of both families.
The paper considers static hysteresis, which, as noted
above, is characterized by the independence of the course
of the curves from the velocity of disturbing effect on the
system. Using this, we can represent the static hysteresis of

the spatial type in three-dimensional space XOYX as a set
of two families of integral surfaces of the cylindrical type,

the generatrix of which with the plane X = CONSt leads
to the same pattern of plane hysteresis, as mentioned above.
The MNPQS phase trajectory located on one of the surfaces

corresponding to x>0 is projected into one of the loading
curves on the XOY plane; along the phase trajectory, velocity

X canbe of any value, but with a positive sign. A similar
situation is observed with any phase trajectory located on

one of the integral planes at X < 0. so in a visual spatial
form, static hysteresis is presented in one of its simplest
forms (Fig. 2).

Mathematically, each of the families of hysteresis curves
shown in Fig. 1 is considered as a family of integral curves
in domain D of the XOVY plane, which is a solution to a
differential equation of the first order, a nonlinear one, in the
general case.

It is known that for a differential equation of the first
order [1]

4 _
a7 () (1)

where is defined in domain D of the XOY plane and
is continuous in it together with its partial arbitrary with
respect to Y (by the condition of the Cauchy theorem on the
existence and uniqueness of the solution to equation (1), the
general solution is represented as some function

y=¢(x,c)

with one arbitrary constant c.

Geometrically, this solution is represented in domain D
as a family of integral curves, with each individual integral
curve corresponding to its own definite value of ¢ (Fig. 3).
This value of c is determined by setting in (3) the coordinates
of the point through which the given integral curve passes.
Moreover, no matter what point M(x, y,) in domain D we
take, if the Cauchy condition is satisfied, only one integral
curve will pass through it. In accordance with what has been
stated from the theory of first-order differential equations,
the hysteresis characteristic of a static system is described by
functional relations with arbitrary constants ¢, andc, :

@)

Figure 1. Hysteresis curves
_ {501 (x,¢,),x>0;
?,(x,6,),x <0 (3)
where: ¢ describes a family of hysteresis curves at x>0

; and ¢, describes a family of hysteresis curves at x<0
; as mentioned above, both of these families represent the
hysteresis characteristic (hysteresis field) of a static object.

o s

U — ¢
Figure 3. Family of ini"egral curves

When setting an arbitrary law of variation (at the bottom
of Fig. 1), the process of calculating the hysteresis cycle
(shown in Fig. 1 by solid lines) based on relations (3) is realized
as follows. At those points of the working field of the sample
(inFig. 1, points O, A, B,C, /], E), at which the sign of velocity

X (turning points) changes, the coordinates X, Y are stored.

These values of coordinates, depending on sign of X ,are
substituted into the first or second relation (3), as a result of

which a specific value of an arbitrary constant Cl,(i =1,2) is

~3L
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determined and, accordingly, a specific functional expression

of the curve y =g (x,c,), along which the movement from
a given point occurs. At the turning points, the Cauchy
problem known in the theory of first-order differential
equations should be solved. If the solution to this problem
is unambiguous, from this or any other turning point the
movement will be performed only along one curve. This can
be achieved by appropriate selection of functions ¢, and ¢,.
In Fig. 4, a hysteresis loop calculated from relations (3) is
shown by a harmonic law of variation x(t) (a similar result is
obtained by any other periodic law x(t) , as long as the sign

of X does not change in every quarter of the period). It
can be seen that the loop does not close after the first period.
Moreover, the loop does not close after three or four periods
and even more; theoretically it should close only after an
infinite number of periods. This phenomenon is due to the
fact that in the last quarter of the period the movement of the
representing point occurs along an ascending integral curve
located above the integral curve along which the movement
was performed from the initial point O, .

Figure 4. Hysteresis loop

Differentiating each of the relations (3) by x and
eliminating arbitrary constants C, and C,, we obtain the
following system of differential equations:

dy _ fi(x,»),x>0
dx fz(x,y),fc< 0 )

the solution of which is the dependence y (x) from
expression (3).

When calculating an arbitrary hysteresis cycle using
these equations, the coordinates of the points at which the
velocity sign changes are used as initial conditions for the
corresponding differential equation to which the transition
is made.

The proposed models (3) and (4) make it possible to
calculate (in manual way or using computers) arbitrary
hysteresis cycles, including families of hysteresis loops at
different amplitudes of A, at any point M(x, y,) (arbitrary
asymmetry of the cycle) of the hysteresis cycle of the system.

The proposed integral hysteresis model made it possible
to achieve not only qualitative, but also quantitative
conformity of the calculated hysteresis cycles with the
experimental ones. As far as is known, until now, in the
theory of mechanical and electrical hysteresis, there were no
models that satisfied these requirements.

An integral model of hysteresis characteristics, presented
in a functional form (3), and a differential model (4) are
suitable for calculating systems on computers. In the
latter case, the solution of differential equations occurs

continuously in time; in equations (4), considering the
arbitrary nature of variation in x(t) , it is necessary to proceed
to differentiation by t :

dx
s _5. 07
IS it e

& _
dt dx .
L6p)— 5 <0. 5)
Using relation:
dy _dy [dx
de dt/ dt

it is not difficult to pass from equations (5) to an integral
operator, if we perform the appropriate integration over ¢ :

y= jRo[X(f),y(f)]fc(T)dT
0 (6)

where:

Slx(@), y(7)],x > 0;

Solx(2), ¥(2)],x <0,

is the kernel of the integral transformation (6).
When studying the oscillations of a system with one
degree of freedom, the classical equation of oscillations:

ol (¥)=£(0) o

is solved together with either functional expressions (3)
or with differential equations (4) or (5). The disturbing force
f,() can change by an arbitrary law, including a harmonic
one.

In the case of an invertible system, the hysteresis
characteristic are described by the following functional
relationships:

Ro[x(2), y(7)] = {
Y

d*x

e D, (v,¢),y>0;
d)z(y,cz),)'KO, 9)
which are solutions of differential equations:
dy .
é B F; (an/)E,y > 0:
dr dy .
F,(x,y)—,y<0,
2( J’) dr y
(10)
where: @, and @, are functions invertible to functions ¢,
and ¢, from relations (3).
For an invertible system, the integral operator (6) reverts
into a nonlinear integral equation:

[K.Lx(@). y(013(@)dr = x(0) a

0

On the application of a first-order integral model in
calculating arbitrary hysteresis cycles

The principle of calculating an arbitrary hysteresis cycle
using the new integral model described in the previous
section can be embedded into a computer program. At the
same time, attention should be paid to the accuracy of
calculating the turning point (the loop top). Since, for a
given law x(t) , the computer calculates the branches of the
hysteresis cycle with a step At), the accuracy of calculating
the loop top is thus related to the accuracy of calculating
the extremum of function x(t) . The program provides for
the calculation of the extrema of this function with a given
accuracy ¢, . If, as indicated in Fig. 5, the error in calculating
the extremum exceeds ¢, , there will be a retreat two steps
back and the given step is split by two, that is, there is a new
step At,/2. Backtracking and step splitting stop when the
specified accuracy is reached.

B
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Figure 7. Hysteresis curve

On harmonic linearization of hysteresis loops

Consider a steady-state closed hysteresis loop (Fig.
6.), obtained by a harmonic law of variation of the input
disturbance. In general, the shape and slope of the loop
depend on the amplitude A.

y(x)=yu(x)+yT(x), (12)
where: y (x) is the single-digit curve of the conservative
component (in Fig. 6 it is shown by a dashed line, in Fig. 7 it
is shown separately), the ordinates of which are equal to the
half-sum of the ordinates of the hysteresis loop at the same
abscissa; y,(x) is the two-digit curve of the non-conservative
component (Fig. 8), obtained by subtracting the conservative
component y (x) from the input hysteresis loop (Fig. 6).

In the case of an elastic-damping element, a material
sample, and other mechanical elements, the conservative
component is the elasticity curve, and the non-conservative
component is the force of external or internal friction.

The component y,(x) depending on velocity X isa
non-linear function that can be approximated by a linear

dependence v, = hx. This approximation can be realized so

that the areas of the loops corresponding to Vr (x) = hx be
equal, i.e.:
S(A):ﬂ"h'AQ'd), (13)
where S is the area of the real loop obtained as a result
of the experiment; A is the amplitude of the input sinusoidal
signal; w is its frequency.
From the last equation we obtain:

. S(4)
e (14)
and correspondingly:
S(4) .
Yr= 2 X
T-A o (15)

The conservative, hysteresis-free component y (x) is
approximated by a linear function:

A, X

Figure 6. Closed hysteresis loop

i

A =

+9.
+Jp

it ] —
_’4\‘\;/*;4 /1[/

Figure 8. Hysteresis loop

Yu (x):k(A)x’ (16)

using, for example, the method of optimal linearization of

nonlinear elastic characteristics proposed by Ya.G. Panovko

[17]. In the case of symmetric y (x) , the dependence k(A) is
calculated using the following integral:

5 A
k()= j ¥,(x)x’dx,

Sy
the maximum ranges of oscillations relative to the
beginning of the count; x,is the displacement of the center
of oscillations.
So, we describe the hysteresis loop y(x) by the following
equation:

a7)
In the case of asymmetric y, (x)
5 +A4
k()= [ e =x)xelx,
-4 (18)
where: X, =X+X,, x0=A2;A1’ A=A2+A'- A,4, are

Y@ =kt D

T-A o (19)

which takes into account the experimentally observed

dependence of the slope and area of the loop on the amplitude

of the input effect. We introduce the coefficient of relative
hysteresis y for a static system in the following form

S(A4)

7-k(A) A (20)
where: k(A) is the coefficient of linearization of the loop
centerline introduced above.
In accordance with this,
transformed:
a) in real form:

y:k(A)[xJ(A)-x},

expression (19) can be

@ 2]

b) in complex form:
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y=k(D[1+ir(4)]-x. @2

As can be seen, the form of harmonic linearization of
static hysteresis characteristics remained the same as for
linear systems.

Calculation of the loops parameters obtained by the
harmonic law of variation of the input signal

As mentioned above, at harmonic law of variation of the
input value of x(t) , the steady-state position of the hysteresis
loop isreached after a certain number of cycles. The equations
of the contour of a steady-state loop (Fig. 9) is written as:

D,(y,¢,,),%>0;
@, (»,6,,),% <0,
(23)
where: C, , C, are the values of arbitrary constants
corresponding to the steady-state mode.
The loop area is calculated by the following formula:

xo+A
S = J. [D, (y,cln)— D, (y,czn )]dx.
XO—A (24)
The mid-line of the loop (Fig. 9):
ycp (x) = ®1 (y’ CIn) ; (Dz (y’ czn) b
(25)

can be approximated by a linear dependence (Fig. 9)

yA(x):lOC+y1>

where: k, y-const at a given amplitude .

Yoplx) 4

Yo

Figure 9. Hysteresis loop

In the case of using the least squares approximation [18],
we minimize the integral:

xo+A4
Sy + Sk = I ycp(x)dx9
xo—A
Xg+A
Sy, +S,k= I Ve, (X)xdx,
A

Xo—

(28)
where: § =24, S,=2x4, S, =%(3x§ +47).
The same approximation can be made by minimizing the
integral:
Xo+A
L= [ [y, = (x+y)Pxdx,
Xo—A (29)
which provides for the so-called "weighing" along the
coordinate x , proposed by Ya.G. Panovko [17]. The need
for such "weighing" was proven both theoretically and
practically. From the minimum condition (29), we obtain a
system of equations for k andy, :
l%:mr[y (x) — (hx + y,)]x*dx = 0
2 oy, Xo—A v 1 ’

Xo+A

laj—’": I [yq, (x)—(kx+y)]x3dx:0,

2 ok (30)
or

Xo+4

Qv + 0k = [ v, (xxdx,
xo—A
Xo+4

O+ 0k = I ycp(x)x3dx9

xg—A4
> 4 s (31)

where: O, =x?, [0} :xT, 0, = x?

The coefficient y is calculated as before by formula (20),
and the coefficient k is taken as a solution to equations (28)
or (31).

In the case of using a computer to calculate dependencies
k(A) and y(A) itis more convenient to proceed to the discrete
form of equations (28) or (31), which can be obtained by
minimizing the sums:

Approximation without
coordinate:

"weighting” along the x

n

I = Y= (kx, + v
" ;[yc,,(x,) (kx, + y)T%s -

Approximation with "weighting" along the x coordinate:

1, = v () = G, + 3P

xo+A (33)
2 .
I, = J' [ycp (x) — (kx + y)] dx. In the first case, wen get: )
xp—A (26) ny,+ () x)k = x;),
The result is a system of algebraic equations for i ; ' ;yc” ( ')
calculating the parameters k andy, : n . n
1 o1 Xo+A (Z X))y, + (Z x))k = Zx,.ycp(xi).
~=2= [ [1,(0)-Cbc+ »)ldx =0, ! - - (34)
2 oy, o In the second case, we get:
lter, % 22 )y, 4 (S k=3 )
56_]:,: J‘ [ycp(x)_(kx+y)]xdx:0, (IZ::“X z)yl (;xz) izz:‘xx pr(xl)
Xo—A n n n
27
o @n Qo+ (U xk = 2%y, (x).
i=1 i=1 i=1 (35)
Points x, are taken in the range from x.-A to x-A with step
Q-
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Ax = 24
i =11 > where n is the number of steps.

By setting different values of the amplitude A, it is possible
to obtain the dependences k(A) and y(A), corresponding to a
given operating point.

Applications to describe hysteresis of second-order
differential equations

For a more accurate description of the hysteresis
characteristics of static systems actually used in practice, in a
number of cases it is preferable to use differential equations
of higher order, in particular, second-order equations. Firstly,
more accurate analytical description of the branches of the
hysteresis loops are achieved (remember that the general
solution, for example, of a linear homogeneous second-
order equation with constant coefficients can contain two
exponentials); secondly, the use of higher-order equations
allows one to display the loop closure observed in practice
for a number of static systems (in particular, systems with
magnetic elements, ferroelectric capacitors, and in some
cases with sources of mechanical losses) after the first cycle,
which, as we saw above, is not displayed using the first-order
equations. In addition, the use of higher-order differential
equations allows the simulation of cyclically unstable
hysteresis, when the shape and slope of the hysteresis curves
can change from cycle to a number of cycles. For some
systems, this process ends after a certain number of cycles (the
so-called transient process in the phenomenon of hysteresis
is observed, in electrical engineering in relation to magnetic
elements it is called accommodation). For other systems, this
process of cyclic instability of hysteresis can be observed for
any length of time (this is especially characteristic for a strain
of a rigid body).

For a better understanding of what has been said, we
present the basic information from the theory of second-
order differential equations:

d’ 2}
L= F(xy)Z,

2
dx (36)
where: function F is defined in domain V of three-
dimensional space XOYY' and is continuous in it together
with its partial derivatives iny and y' (the Cauchy conditions
for the existence and uniqueness of the solution to equation
(36)).
It is known that the general solution of such an equation
contains two arbitrary constants ¢, and c,:

y=¢(x.c.c,) (37)

A family of integral curves y= ¢(x, c,,C I.Z‘
corresponds to each specific value of C,, (=1, 2, ...), and the
shape and slope of the curves in the general case can change
from family to family (Fig. 10.).

When defining a specific integral curve passing through a

given point M(x,y,), the initial angle of inclination
a(wa-2Lam,) of the tangent to the curve at this point is also
specified. It is clear that we can set this angle arbitrarily,
as long as only the Cauchy problem has a unique solution.
As can be seen, the general solution of the second-order
differential equation reflects the fact that an infinite set of
integral curves of the most diverse shapes and slopes can
pass through a given point of the XOY plane. At the same
time, as we saw above, in the case of a first-order differential
equation, when the Cauchy conditions are satisfied, only one
integral curve can pass through a given point of the plane.

"

e L2

X

[}\
0

Figure 10. Family of integrated curves

Therefore, based on the general theory of the second-
order differential equations, we describe the hysteresis
characteristic with functional relations:

B (x,¢,¢,),x>0;
- ¢2(X,C3,C‘4),).C < Os

(38)
which are solutions of differential equations:
av) .
&y 2 [x,y,;yj,x >0;
Y
Fz(x,ygj,)'c <0.
d (39)

In the case of computer-aided calculation of hysteresis
cycles according to functional relations (38), the calculation
of arbitrary constants c(i=1,..4) can be performed in two
different ways.

According to the first method, at any point of turning A
, the coordinates x,y, of this point are recorded, and the
tangent of the tilt angle to the corresponding curve of loading
(unloading) is set. These coordinates and arbitrary values are
substituted into the appropriate integral relations (the first
or second expression of (38)) and its derivative, as a result
of which specific values are obtained (i = 1.2 or 3.4), and,
hence, a specific analytical expression of the corresponding
hysteresis curve.

According to the second method, the coordinates of
not only the source point of turning A are stored, but the
coordinates of pre-source point B as well. The coordinates
of both points are substituted at a particular integral relation
(38), as a result of which we obtain two algebraic equations
to determine the corresponding arbitrary constants c, . It
is easy to see that in this case there is a return to the pre-
source point of turn B (the same situation is realized in the
Rayleigh-Mazing principle).

Differential equations (39) are transformed to the
following form:

Fl(x,y,W)%,DO;

aw
dt dx

F(x,y,w)—,x <0,

Z(xyw)d: X
by (40)
dt dr’

where: @ determines the tangent tilt in the hysteresis
curves field. dt

According to equations (40), the simulation of hysteresis
characteristics of mechanical and electrical elements was
conducted.

~4l
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According to the well-known Rayleigh-Masing principle,
an arbitrary hysteresis cycle restores the same curve y=f(x)
at the turning points (Fig. 11) since the coordinates of the
turning points are arbitrarily, and we can consider them as
arbitrary constants. Let c¢=x,, ¢,=y, , ¢,;=X;, ¢,=y, (see Fig.
11). In accordance with this, the equations of hysteresis
characteristics are written as:

{—f(—x+c,)+cz,x>0;

f(x—¢)+c,,x<0. (41)

Differentiating relations (41) twice and eliminating
arbitrary constants from the expressions obtained for the
derivatives using (41), we arrive at the differential equations:

dyy .o
&y _ _H(E)’DO’
e +6‘(ﬂ),5c<0,
* (42)
where:
|
o-1 [f ( dxﬂ
Equations (40) correspond to the integral operator:
y=[[[R[x(5).»(S).w(S)]%(5)dS1i(z ).,
00 43)

where:

RI(S)(S)w(S)] = {FI[X(S ) Y(8), ()], %(S) > 0;

E[x(8), y(8), w($)],%(S) < 0.

S=AX)

AN, 5 )

M XX S5

AN, 4

Figure 11. Hysteresis cycle

Calculations

Plotting an unstable hysteresis cycle

Let a monotonically increasing curve y,=f(x,) (fragment
1) be constructed on the X,0,Y, plane (Fig. 12), defined on
an interval (a,b) and having continuous first and second
derivatives on this interval. The value of the first derivative
at each of its points is positive and decreases monotonically
with an increase in the abscissa from a to b. In particular, it
can be defined either on the entire number axis (- ,+)or on
the positive semi-axis [0,+) . We introduce a new coordinate

* &
system XOY (Fig. 12) with the origin at point O(JCO s yO)
at which the equation of the curve has the following form:

=y, + f(x+x,
Y=Y+ f(x+x) )

We mark with a solid line the part of this curve located
in the 1st quadrant of the XOY plane. The selected area,
transferred parallel to itself (Fig. 12, fragment 2) to the

position with the origin at point
described by the following equation:

y:yk+1_yo+f(x+xo_xk+1) (45)
The same selected part of the curve, rotated relative to
point O, is described by the following equation:

y=y;—f(—x+x;) (46)

Ak+1 (xk+1’yk+l)’ 15

and at parallel transfer to point Ak ( XYy ) :

Y=Yt Yo+ f(=x+x,+x,) (47)
Curves (45) and (47) are used to construct a hysteresis

cycle corresponding to an arbitrary continuous law of
variation of the input coordinate x as a function of time t>0.

Iy
. e
tam=fl) ~ Ao B B
YViket | 1@ o
4]
Yok L
Yik-1 1/ :M
H: |
0 xl '

Figure 12. Monotonically increasing curve

We assume that at x>0 the motion of the representing
point on the plane is performed along the curve (45), and at
x<0 along the curve (47). At x=0 , the turning point is fixed
on the XOY plane. In the general case of cyclically unstable

* * *
hysteresis, the values of X, and ), = f ngL) depend on
the number of loading half-cycles k, i.e. are sequences of the

* * *
form X, =x0(k) Vi =f(xk). . .
As aresult, the equations of the ascending and descending
hysteresis curves have the following form (Fig. 12):

_ Vs 7y;+1 +f(x+x2+l 7'xk+l)7x>0;
yk+y,:—f(—x+x,:—xk),fc<0, (48)
where: 4 (x Vi ), Ak+1( )

13 Vs,
are the turmng pomts at the beglnnlng of the k-th (odd)
and (k + I)-th half-cycles, respectively, (k = 1,2,3). It is easy

to show by direct differentiation that vl (x,)=f"(x;) at the
k-th turning point.

Let x vary by some law of periodic function (which does
not change the sign of the derivative in every quarter of the
period) running through the values (in Fig. 12, fragment 2)
within the limitsx, - A<x<x,+4 |

Then, equations (48) can be rewritten as:

Yin _yZ+1 +f(x+x,:+l +4 —xo),fc >0;
y =
VetV —f(—x+x; +A+x0),5c<0.
(49)
At the points of intersection of these curves with the
abscissa, we get:
for the down-sloping curve

fk:onrAer:*f_l(yZ*J’k) (50)

L
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At the points of intersection of these curves with the
abscissa, we get:
for the down-sloping curve

X, =X+ A+x, —ffl(y}: +yk)
for the upward-sloping curve
fk+1 =X, * A+ x;+1 - f_l(yltﬂ + yk+1)
As a result, the width of the loop formed at the k-th and (k
+ 1)-th half-cycles is:
b =% + X, +24-f" (J’; + .Vk) -/ (J’;H + J’k+15)
(1)

(50)

where: Vi = Vi +yl: _.f(x;cK +2A)

The dependence b on the number of cycles can be
determined from experimental records of the field of curves
of cyclically unstable hysteresis. Therefore, considering
, the sequence can be calculated by solving the nonlinear
algebraic equation (51). In addition, having a close-up
record of the hysteresis field, this sequence can be found
directly by superimposing and shifting over each other until
the branches of the loops in the 1st and k-th half-cycles
completely coincide.

According to equations (49), it is easy to distinguish the
ordinates at the points A,,, and A, A,,, and A, (Fig. 12,1II):

1
Via =W = —Ayz +4f,,
Vi = Vis = *AJ’:H + s (52)
where:
AV, = Vi = ViV = Vier = Vi
Ay = f (xi +24) — £ (x; +24),
A.flc+l = .f(xl:+2 + 2A) - f(xI:H + ZA)
Consider the behavior of the hysteresis characteristic in
the following three cases:

* *
1. The sequence X, =X, (k) is sign-positive
and monotonically increasing. By virtue of the conditions

imposed on the function Vo= f ( xo) above, we obtain

Ay, >0, Ay, >0, Ay, <Af,, Ay, <Af,,. This
means that in the first case, with the growfh, the foops will
narrow vertically.

2. The sequence xZ = x;(k) is sign-negative and

monotonically increasing in absolute value, and | x;:| <2A4
for any k . It leads to Ayk* <0, Aka* <0, Af, <0,

N,y <0, Ay <M Ay <A, -
kgl. Thus, iﬁlthis s]gclond case, on the contrary, with the

growth of k, the loops will expand vertically.
4. The sequence x; = x;(k is sign-positive and non-

increasing, and for each subsequent even number k , the

3
value of X, is greater than the corresponding value for
the previous odd number. Then, according to (3.52), we

obtain yk* > O, Aykﬂ* < 0, n Af*k > 0, Af*k+1 < 0: and

accordingly y, » <y,, V.., > ¥,.;. Thus,inthe third case,
the phenomenon of cyclic relaxation will be observed, which
manifests itself in the downward displacement of the loop. If

the difference between two adjacent values of Xk decreases
with increasing k, the cyclic relaxation will decay.

Further, let during each half-cycle the value of the output
coordinate y change monotonically within the limits (in Fig.
12). Then, based on (48), we arrive at the following equations
for the hysteresis curves:

* * .
V1= Vin +f(x+xk+1 _xk+1)’x >0;

y2+yk—f(—x—xk+xk),5c<0. (53)
at the points of intersection with the abscissa axis we
have:
For outgoing curve

xkzxk+xk_fl(yk+y2) (54)
for incoming curve
KXot = Xy _x;+1 + f_l(yl + Vi)
(55)
Accordingly, the width of the loop in the k, (k + 1)-th half-
cycles is:

* * -1 * -1 *
by =X =X + X, X~ f (yk +y2) -f (yk+l +y1)
(56)
where:
* -1 *
Yea =X A% = f (Yt y+ )
*
This equation can also be used to find the sequence X, .
Using equations (53), it is not difficult to determine the
difference between the abscissas at the points B,,,and B, and
B,,B,., (Fig. 12). . 1
Xepo =X, =—Ax, + A,
* -1
Xt = Xpaz = _Axkﬂ + Aﬁcﬂ
(57)
where:

* *

Ax, =x;,
Axk = (xZ+1 - xk,)’ Axk+1 = (xZ+l _xk+1,*)’
A = (Vi) - (e v+ 0),

A =1 (Vi 0+ 2:) = (Vea+ 0+ 3,),

of which, in the same order as discussed above, it follows:

* *

% %
=X A =X, — X,

* . . ., .
1. If the sequence X, (k ) is sign-positive and
Ax; >0, Ax,, >0,

Afk’1 > Ax;:, Afk:rll > sz .1» andaccordingly, X; , > X,

monotonically increasing, then

X3 > Xy
Hence, it follows that under this condition, the loop will
expand horizontally with increasing k.

* . . .
2. If the sequence X, (k ) is sign-negative and
. . . . *
monotonically increasing in absolute value, then Axk <0,

Ax,,, <0, Afk_1 < Ax,:, Aﬁ:l < sz ., and accordingly,

Xy <X, X,,,<X,,,. Incontrast to the previous case,
+2 k> k+3 k+l A
this leads to a narrowing of the loop horizontally.

«
3. If the sequence X, k) is sign-positive and
non-increasing, and for each subsequent even number Kk,
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*
the value of X, is greater than the corresponding value
for the previous odd number, then Ax,t >0, Ax,: 4 >0,

* — *
Af 1 > Axka Afk+11 < Axk+19 xk+2_ > i x_k+3 > Kiaps
and the loop moves along the OX axis to the right, thereby
demonstrating cyclic creep.

The mathematical model of hysteresis in the form (48) is
suitable for studying systems with hysteresis on a computer.
When using computers, it is necessary to pass from functional
relations (48) to second-order differential equations. This
transition is realized as follows. Since in the first functional

relation (48) the coordinates X, ., , V, . can take arbitrary
values from some area (closed or non-closed) on the XOY
plane, they can be taken as arbitrary constants ¢, and c,,
respectively. Then the first relation from (48) can be rewritten
as .

y=f(x+x,,—c)+c,.

(58)
Differentiating this relation twice:
dy . .
E:fl(XWkaﬂ _cl):¢(x+xk+l _cl):
d zy fll ( n _ *
di? - x xk+1_cl)_'//(x+xk_cl)’
and eliminating c, , we arrive at the following differential
equation:
L2 of2)
dx* dx ) (59)
where

(2]

The initial conditions for this equation are: for

1 1o ¥
X=X V=V ¥ =1 (5 1),
Likewise, for the second relation from (48) we obtain an
equation of the form:

y__, dy)
dx? dx (60)
where
The initial conditions for it are for:
x=x, y=y, ¥ = 1)
) ) dy . )
Introducing notation W = E and using relation
dw
_ g
dx [
dt
we can write the following system of equations:
dx
oOW)—,x>0,
an_| "
dt dx
—-0(W)—,x <0,
ne (61)
by

i d
In order to simplify the setup scheme, we will transform
the variable W by the following formula:

W, =W+ f (x0) (62)
as a result, equations (61) are rewritten as:
, e dX
aw | H GOl % >0

- (63)

LAy
—OW, — fi )l %<0,

dy oy
E=|:W; - (M)JE
In order to simplify the setup scheme, we will transform
the variable by the following formula:
w=w+ fl(x,), (64)
as a result, equations (61) are rewritten as:
o edx
ﬂ: o, - f; (xk)]gax>0a
di ;e dx .
e g i <o

L in

Calculation of quadrangular hysteresis

More generally, the ascending and descending branches
of the hysteresis loops can consist of several continuously
conjugated arcs. Then the hysteresis characteristic in the
simplest version can be represented as a set of four families
of integral curves fixed on the XOY plane and intersecting
with each other (Fig. 13), each of them is a solution to a first-
order differential equation. The transition at the same sign
of from a curve of one family to a curve of another family
is conducted when some parameter of the curve (arc length,
projection onto the coordinate axis, radius of curvature, etc.)
reaches a certain value. Families of curves can be described
by the following functional relationships:
D, (x,¢), <5, x>0,
D,(x,c,), 2 f3,
D, (x,¢,), < B,, <0,
D,(x,¢,), B2 B, (65)

which are solutions of first-order differential equations of
the form:

dx .
Rey)_nB<p, x>0,
dx
F‘Z(x’y)za ﬁzﬁl’

Fz(%)’)%,ﬁ < /62’ x <0a

Et(xay)%:ﬁzﬂz' (66)

We further consider an option of a cyclically unstable
hysteresis characteristic (Fig. 13.), in which the 1st and
3rd families of integral curves are families of straight lines
fixed on the XOY plane. In Fig. 14, (fragment 1), two loops
were constructed in K, (K+1)-th and, (K+2), (K+3)-th half-
cycles under variation of x within . The projection of the
linear section onto the OX axis is used here as a parameter
depending on the number of half-cycles.

In the K, (K+1)-th half-cycles, the branches of the loops
are described by the following relations:

a(x - xk+l)7 Xrat =x< fk+l’
f(x - xk+1)’ fk+l sx< )_Clﬁ-zﬁx > O>
r= a(x—x,),X, <x<x,,,,x<0;
—f(=x+Xx,),%, Sx<X, (67)
where: ;ck =X, —x;, ;Ckn =Xy —x,:H, X, =X+ A4, X, =x+A4
The loop width in K, (K + 1)-th half-cycles is calculated by the formula:

-1 .
bk,k+l =24- Xk _;f(xk + 2A) (68)

From Fig. 14, it can be seen that in the case of a

monotonically increasing sequence x = x*(k) , the loops
. . . (ST

will expand vertically and narrow in width, while in the case

of monotonic decreasing, vice versa. The phenomenon of

4
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cyclic relaxation will be observed if in an even half-cycle, is

x; . less than the corresponding value in an odd half-cycle.
Consider, in addition, a limited variation in y within

-y <y< (Fig. 14, fragment 2). The loop width is
calculated by the following formula:
* 1 * y + y
s =%+ (0 +y, —ax) == P : (69)

In this option, it is not difficult to formulate appropriate
conclusions about the behavior of loops at an increase in the
number of half-cycles.

Electronic simulation of cyclically unstable hysteresis
with variable linear sections is performed according to the

equations y =y (x)(x>0) in the zero half-cycle:

y=a(x—-x,), ;}k<kaxk,x<0,
d’ d -
;{z—ﬁ[zy],xm <x<Xx,
y= a('x_xkﬂ)’ xk+l < xé'xh]’
d’ dy, -
;); = (9(;‘)),36,Hl <x<X,.,,

Xp = X 7x*0(k), X1 = X 7x*0(k+])

(70)

X

Figure 15. Hysteresis loops

Fig. 15 shows the experimental hysteresis characteristics
of TS steel (fragment 1, soft loading) and brass 59 (fragment
111, rigid loading). The superposition of the branches obtained
in different half-cycles on top of each other shows that for
TS steel, the BD curve can be taken as a generalized curve
with a continuation up to point A (shown by a dotted line in
fragment 1). If the ABD curve is sequentially superimposed
on branches 41, 40, 31, 30, ... 2, 1, it can be seen how the AB
section will gradually decrease. With a sufficient degree of
accuracy, the AB curve can be represented as an exponential
and, in accordance with (48), the hysteresis characteristic of
TS steel will be described by functional relations (without
considering zero half-cycle):

Opa — O',:“ +0o; {1 —xp[-b(e + 5/:+1 ~&ka )]} ,£>0;
o=
o, +o, +0'T{17xp[b(£+£,: 75,()]},5'<0,

(71)

where: , are the constant parameters determined by
processing the hysteresis curves, for example, using the least
squares method.

Since an increase in the number of half-cycles K

shortens the AB curve, the sequence g (%) , which acts
as a projection of the AB segment onto tohe € axis, is sign-
positive and monotonically increasing (see fragment 2 in Fig.
15, solid segments). On the basis of (58), knowing that for TS

steel f( g)=o, [I_GXP(_bg)] , it is not difficult to obtain a
system of differential equations, the solutions of which are
relations (71).

The branches of the hysteresis characteristic of brass 59
(inFig. 16) consists of a linear section with a slope E and a non-
linear section, which is also well described by an exponential.
The figure clearly shows the increase in the length of linear

segment / o Or its projection on the O axis, equal to g;

with the increase in K. The resulting sequence go( k) is sign-
negative and monotonically decreasing in absolute value (see
Fig. 16, dashed segments); the fastest decrease is observed
in the first three half-cycles. Based on (67) and (70), it is
easy to obtain functional relations and the corresponding
differential equations describing the hysteresis of brass 59.

Figure 16. Hysteresis branches

Simulation of the hysteresis loops indicated in Fig.
15 shows good agreement between the calculated and
experimental data [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30].

Results and discussion

Experimental determination of
characteristics

Experimentally, families of curves of the hysteresis field
of any static system can be obtained as follows. Let the

hysteresis

)
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working field of the system on the XOV plane be bounded by
some closed curve OMPK (Fig. 16). We will excite the system
from the initial point 0 by the law indicated at the bottom
of Fig. 16. In this case, we register only the curves at To
obtain a family of curves at , the system is excited by the
law indicated below (Fig. 17). When testing static systems
during every quarter cycle, the motion does not have to be
linear. It is sufficient that the sign of the velocity does not
change during this time (see, for example, in Fig. 17 another
excitation law indicated by the dotted line).
},

Figure 17. Hysteresis loops

The excitation laws shown in the figures can be obtained
using special generators and tracking systems. Therefore,
when testing samples of various materials, elastic damping
devices and other mechanical elements of this type, the
strain laws can be obtained using a servo drive, the structural
diagram of which is shown in Fig. 18. Adjuster I provides an
electrical signal U (t), changing over time in proportion to the
desired law of change in strain or force. Signal U (t) is compared
with the feedback signal U (t), coming through switch from
dynamometer 6 and the internal strain X (t) sensor 8 of test
specimen 5. The resulting difference is the loop error signal
AU, which through amplifier 2 enters the control system 3
by actuator 4. The latter (of electromechanical, hydraulic
or some other type) converts the loop error signal into the
displacement of the machine active grip X (t), which causes
deformation of the sample, the reaction of which is perceived
by the dynamometer and the loading device of the machine.

st} Alp

Figure 18. Block diagram

Under the influence of the sample, the loading device is
strained, as a result of which the actual strain of the sample
X (1) is less than the displacement X (1) of the active grip by
the amount of machine strain X (¢) ,i.e. X ;= X ()-X (1).

Conclusions

Comparatively complete information about the hysteresis
field of a particular static object can be obtained using simpler
sinusoidal oscillators. Therefore, in mechanical tests, we can
use any mechanism (of appropriate power) of reciprocating
motion with an adjustable vibration amplitude, if equipped
with force and strain sensors.

In the case of using sinusoidal oscillators in different
areas of the object's hysteresis field, families of hysteresis
loops are recorded at different amplitudes. Comparison of
the curves of hysteresis during loading and unloading, and
over the entire hysteresis field will help to restore a complete
pattern of the hysteresis characteristics of the object under
consideration.

Mathematical models of hysteresis characteristics of static
systems were developed. For a more accurate description of
the hysteresis characteristics of static systems that actually
occur in practice, in a number of cases, differential equations
of higher order were used, in particular, second-order
equations. The use of differential equations of higher order
makes it possible to simulate cyclically unstable hysteresis,
when the shape and slope of the hysteresis curves can
change from cycle to a number of cycles. For some systems,
this process ends after a certain number of cycles, for other
systems, this process of cyclic instability of hysteresis can be
observed for any length of time.

—

227 (3), Pp.547-550.

Physics, 41 (7), P.p 1214-1222.

Geotechnics. 49, Pp.36-42.
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