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HYDRAULIC ENGINEERING STRUCTURES AND PUMPING STATIONS

UDK: 539.3

AEROLASTIC VIBRATIONS AND STABILITY OF VISCOELASTIC
PLATES TAKING INTO ACCOUNT THE SWEEP

B.Khudayarov — Doctor of Technical Sciences, Professor, F.Turaev — Senior Lecturer, National Research University "Tashkent
Institute of Irrigation and Agricultural Mechanization Engineers”,
S.K.Shamsitdinov - Senior Lecturer, Andijan State University
Abstract

It is shown in the article that when building mathematical models of the dynamics problem of the heredity theory of
viscoelasticity, the Koltunov-Rzhanitsyn singular kernel of heredity adequately describes real mechanical processes and best
approximates experimental data over a long period. A mathematical model of the problem of viscoelastic plate flutter is presented,
taking into account the sweep angle moving in a gas at a high supersonic speed. Using the Bubnov-Galerkin method, discrete
models of the flutter problem for viscoelastic plates in a supersonic gas flow are obtained. A numerical method for solving nonlinear
integro-differential equations of the problem of the heredity theory of viscoelasticity with weakly singular kernels is developed. A
general computational algorithm and a set of applied programs were developed that make it possible to study nonlinear dynamic
problems of the heredity theory of viscoelasticity with weakly singular kernels. On the basis of numerical methods and algorithm
proposed, nonlinear flutter problems for viscoelastic plates flowing about in a gas flow at an arbitrary angle are investigated. Flutter
critical velocities are determined in a wide range of changes in various plate parameters. It is shown that the singularity parameter

o affects not only oscillations of viscoelastic systems, but also the critical flutter velocity.
Key words: mathematical model, viscoelasticity, integro-differential equations, algorithm, flutter, plates, sweep angle
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ntroduction. Mathematical and computer modeling of

the flutter of viscoelastic elements and structural units
of an aircraft is an urgent scientific problem, the study of
which is stimulated by the failure of aircraft structures, parts
of space and jet engines.

Due to the complexity of the flutter phenomenon of
aircraft elements, simplifying assumptions were used in
numerous studies. However, these assumptions, as a rule, turn
out to be so restrictive that the mathematical model ceases
to reflect real conditions with sufficient accuracy. Therefore,
many results of theoretical and experimental studies are still
in poor agreement.

One of the characteristic features of the development
of heredity theory is the wide possibilities for describing
the dynamic processes of deformation of various materials.
However, due to the lack of an adequate mathematical
apparatus, the implementation of these possibilities in many
cases is difficult, especially in the study of nonlinear dynamic
processes. In recent years, the possibilities of computer
technology have increased interest in nonlinear problems.
Under these conditions, it is important to create and develop
effective solution methods that could be applied to the widest
possible class of problems.

The first mathematical models based on integral models
for the study of aerodynamic problems were used by V.I.
Matyash (1971) and G.S. Larionov (1974). In these works,
to solve systems of Volterra integro-differential equations,
the averaging method proposed by A.N. Filatov was used. In
mentioned studies, an exponential kernel was used as the
relaxation kernel.

A.A. Tlyushin, L.A. Kiyko (1994), V.D. Potapov (2011), S.D.
Algazin (2021) devoted their studies to linear problems of
aerodynamics, considering the heredity properties of the
materials. In these studies, the method of Laplace integral
transformations was used to solve systems of Volterra
integro-differential equations. Note that this method is
suitable for linear problems of aerodynamics.

The studies by G.S. Larionov (1974) are devoted to
the nonlinear problems of aerodynamics, considering the
heredity properties of the material. In his works, problems
were considered in a geometrically nonlinear formulation

112

based on the Kirchhoff-Love hypothesis. When solving
these problems, the Bubnov-Galerkin variational method,
based on the two-term approximation of deflections, was
used in combination with the asymptotic averaging method.
Calculations show that these methods do not give the
expected result when solving aerodynamic problems.

Nonlinear problems of the dynamics of heredity theory
under aerodynamic loading based on the Kirchhoff-Love
hypothesis were studied by Badalov (1987), Badalov et
al. (2007a, 2007b, 1987). The Kirchhoff-Love model used,
makes it possible to obtain sufficiently accurate solutions
to a number of practical problems, though, in most cases,
they are incomplete. This primarily refers to thin-walled
structures made of composite materials with heredity and
non-homogeneous properties.

The noted properties of structural materials and the
above factors increase the complexity of research and lead to
the need to develop computational methods for studying the
stability of viscoelastic elements of thin-walled structures.
Therefore, the development of efficient computational
algorithms for solving nonlinear integro-differential
equations of dynamic problems of viscoelastic elements of
thin-walled structures with weakly singular heredity kernels
is relevant.

The issue of considering viscoelastic properties under
dynamic deformation of plates and shells is currently
one of the topical issues in the mechanics of deformable
bodies. Its solution is an effective application of the theory
of viscoelasticity to real processes. Therefore, the methods
and problems of the theory of hereditary elasticity attract
much attention from researchers. There are a number of
publications devoted to solving problems of calculating
the characteristics of viscoelastic thin-walled structures
(Nguyen et al. (2014), Pouresmaeeli et al. (2013), Shokrollahi
Saeed Shafaghat Salman (2017), Chung-Li Liao, Yee-Win
Sun (1993), Kouchakzadeh et al (2010), Zhi-Guang Song,
Feng-Ming Li (2012), Zhi-Guang Song et al (2018), Hai Zhao
Dengqing Cao (2013), Pacheco et al (2017), M.K. Singha Mukul
Mandal (2008)). At present, general theoretical foundations
and methods for solving problems of determining the stress-
strain state and analyzing the dynamic properties of load-

=
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bearing structures are developed, that take into account the
characteristics of the rheological behavior of the materials.

Xiaochen Wang et al. (2017) investigated the nonlinear
flutter of viscoelastic panels in a supersonic gas flow. To build
a mathematical model of viscoelastic panels, the Karman
theory was used. Aerodynamic pressure was determined
according to piston theory. To describe the viscoelastic
properties of materials, the model of a standard viscoelastic
body (the Kelvin theory) was used.

L.Librescu et al. (1989) on the basis of Boltzmann's theory
considered the dynamic stability of viscoelastic isotropic
plates. Transverse shear deformation and rotational inertia
were taken into account. To solve linear dynamic problems of
viscoelasticity, the method of integral transformations was
applied.

Mouafo Teifouet Armand et al. (2016) investigated
viscoelastic rectangular plates under various boundary
conditions. The Kelvin-Voigt theories were used to describe
the deformation processes in viscoelastic materials. The
numerical results obtained were compared with known
results.

Sandwich (three-layered) shells have long been used
in various fields of industry, aviation, and shipbuilding. S.
Mahmoudkhani et al. (2016) investigated the flutter problem
for viscoelastic sandwich cylindrical shells in a supersonic
gas flow. A numerical study of the influence of geometric
parameters, the parameter of viscoelastic damping, and
temperature on the flutter boundaries of shells was
conducted.

The flutter of plates and shallow shells, considering elastic
and viscoelastic foundations, was considered by a number of
authors (Bolotin (1961), Nguyen et al. (2014), Pouresmaeeli
et al. (2013), Li et al. (2018)). Pouresmaeeli et al. (2013)
investigated the natural frequency of orthotropic viscoelastic
nanoplates lying on an elastic foundation employing the
nonlocal classical plate theory. Bolotin (1961) considered
an infinite plate lying on an elastic base and streamlined
by a gas flow. Despite numerous publications, relatively few
studies refer to the issue of nonlinear flutter of viscoelastic
plates and panels.

One of the main difficulties in total understanding the
phenomenon of supersonic panel flutter is that the critical
velocity of the panel flutter depends on a large number of
parameters. At present, the difficulty of isolating many
of these factors in an experimental study does not make it
possible to obtain a satisfactory agreement between the
experimental and theoretical results. There are reviews
of the investigated problems in the scientific literature;
an extensive bibliography is given by Fung (1960), Eisley,
Luessen (1963), Dowell and Ventres (1970). The development
of problems on the flutter of a plate, taking into account the
angle of flow, is reflected in the studies by Deman Tang and
Dowell (2016), Andreea Koreanschi et al. (2016), Jiali Xiea et
al. (2013), Kemal Yaman (2016), Shokrollahi Saeed Shafaghat
Salman (2017), Yang et al. (2012), Sina Mirzaei Sefat et al.
(2012, 2013), Bichiou et al. (2016), Attar et al. (2003) and
others. It turns out that the sensitivity of the flutter velocity
to such factors as the angle of flow is still incomplete.

Mathematical model

Let us consider a viscoelastic plate with sides a, b and
thickness h, flown over in a supersonic gas flow. The edges of
the plate are not oriented in the flow direction, so we take into
account the sweep (Fig. 1). Despite the obvious importance of
the problem under discussion, there is only one publication
devoted to the study of the behavior of the plate considering

the sweep (Eisley and Luessen (1963)).

Let us expand the velocity vector of the oncoming flow
into two velocity components: perpendicular to the leading
edge Vcosep and along the leading edge Vsing. Then the flow
around the swept-back plate (Fig. 1,a) is equivalent to the flow
around the straight plate (Fig. 1, b) by a flow perpendicular to
the leading edge at velocity Vcosy and by a flow along the
span of the plate at velocity Vsing.

When determining the aerodynamic forces acting on the
plates, it can be assumed that only the normal component of
velocity Vcose affects the pressure distribution.

In the flow of an inviscid medium, the velocity component
Vsing does not affect the pattern of pressure distribution.
Therefore, the flow around the plate (Fig. 1a) is equivalent to
the flow around a straight plate (Fig. 1b).

Since a flow around a plate with sweep angle ¢ is
equivalent to a flow around a flat plate at velocity V, we can
use the following equations

Since a flow around a plate with sweep angle ¢ is equivalent
to a flow around a flat plate at velocity V, we can use the following

equations
D | O'w g'w &w| N &w N, ow
*(lfR) 1':+2 2“z+ 1:74 ‘;77} 1::
h Ox ox6y" oy h éx* h &y
__, O _Bow B ow_Brow]
8 hor h éx h | éx

M
for cases of absence of normal forces (N--N=0), obtained in the
theory of a plate in a supersonic gas flow, by replacing V with
Vcose (Dowell and Voss, (1965); Eisley and Luessen (1963), Dowell

(1970)) :
‘l_)(l_R" ﬂ_,_z‘?zwazx_,_ﬂ =
h axt T adayt &yt @)
&w Bdw B éw B, b Aw)
=pl T 28 Cycosp_ 2L (P =,
2 han COS@[ax}
Where D EK ;I is the plate thickness; E is the modulus of

T120-n)
elasticity; i is Poisson's ratio; p is the density of the material; w is
the deflection of the plate; V is the flow rate; R* is the integral
operator with a weakly singular Abel type relaxation kernel R(t):

Rp()= j'R(t —1)p(r)dr?

(R(t):A-exﬁ—ﬁt)-z‘“", A>0,/3>0,0<a<1];

B - N(N+1)p, N is the polytropic exponent

)

p=>Pa, 1
v, e

for gas; p:x:’V:x: — are the pressure and speed of sound in the

undisturbed gas flow, respectively.

Discrete model

The solution of equation (2) is sought using the Bubnov-
Galerkin method. Let {@wm(x,y)} be a complete sequence of
coordinate functions satisfying the boundary conditions.
Introducing the following series into (2)

w(x,y,1)= Z Z W (D)@, (x, y) &)

n=l m=
and performing the well-known procedure of the Bubnov-
Galerkin method, we obtain systems of integro-differential
equations. By introducing the following dimensionless quantities
into integro-differential equations (IDE)
w P

©

hoaa b
and keeping the same notation, we obtain:

113

"Irrigatsiya va melioratsiya' jurnali Maxsus son.2022



HYDRAULIC ENGINEERING STRUCTURES AND PUMPING STATIONS

HRIA

wm+a wnm +(YF, m(l—R")w

n=l m=1
N M

_‘2‘1 cos@ Z Z lenmwm } COS fp) Z Z len mtrwnmwir
n=1 m=1 ni=lmr=l

i
—
5

+ 22'2 nm boshi + A'4¢m my )¢Jﬂ‘dxdy

aE=p-Na‘/(VaDtr); t =+ pha' ID;

o E (B YNn(g)s N o
’ h

E

12(1-4*) “la
M
—Lia==;
4
LV
M =— is the Mach number; _ E
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© PV
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Qk]n mir are the dimensionless coefficients.

The initial conditions for the system of equations (4) take
the following form

Wen(0) = ctm, Woam(0)= fium,

)
where  awn, fm - are known constants.

Systems of (IDE) (4) are solved numerically using the
method based on the quadrature formulas (Badalov et al. (1987,
2007a, 2007b)). We write this system in integral form and, using a
rational transformation, we eliminate the weakly singular
properties of integral operator R* Assuming that t=t;, t=iAt, i=

2,... (At=const) and replacing the integrals with some quadrature
formulas to calculate Ww= wwn(f), we obtain the following
recurrence relation:

N M 1 N M .
Z ZLHMWM —1 - {Z ZLHM <w0,m+ [Wom+ a]wo,m) rp> -
1

=l mel =l el

*f ¢, [C’IZ 2 Lan o +(fp 4;‘)[% Zu: A COS PGy, W

n=1 m=1 n=l m=1
5 N M Ad
-Q Z Z Fk].um {“’jﬂm 7&2 B: eXp(*ﬁ f:)wl;—s,nm (6)
=l m=l =0

-3 Y O ,m[ s T B m}

nij=l mra=l

p=124.; n=LN: m=LM>
where G, B: are the numerical coefficients in relation to the
quadrature formulas of the trapezium:

At At
C =—; C =At 11,— C__
175 ] j= L )
a a ja ;__ a t-a 1'27 71&
B A MGG, p MY Gol))
0 2 J 2 2

Algorithm (6) is general and suitable for flutter problems
both for ideally elastic and hereditarily deformable flexible plates,
under different boundary conditions.

Numerical results

The calculation results are presented in Tables 1, 2 and are
reflected in the graphs shown in Figs. 2-5.

The criterion of instability

Here the principal task is to determine the critical flutter
velocity Ve Various criteria are used to find the critical flutter
velocity. As a criterion that determines the critical flutter velocity,
we take the condition that at this velocity the oscillation amplitude
changes according to the harmonic law. At a velocity V>V., an
oscillatory motion occurs with rapidly increasing amplitudes,
which can lead to the destruction of the structure. At V<V, the

flow velocity is less than the critical one, and the amplitude of
viscoelastic plate oscillations is damping (Khudayarov (2010, 2005,

2008; Khudayarov et al. (2019, 2020)).

The procedure for finding the critical velocity

To determine V=V, we consider the values of V: and Vz
located in interval (Vo Vin) in such a way that Vo<Vi<Va<Vy .
Comparing the law of variation of w at V=V; and V=V the
following conclusions can be drawn:

a) if at V<V, the law of variation of function w is close to a
harmonic law, then V., cannot be in interval (Vp, V7); that is, V.- lies
in interval (Vi V2);

b) if at V>V, rapid growth of function w in time is observed,
then V. lies in interval (Vo, Vi).

Processes a) and b), i.e. the processes of excluding the
intervals that do not give rise to undesirable phenomena are
repeated for (Vo ,Vi) or (Vi Vi), etc. The search ends when the
remaining sub-interval is reduced to a sufficiently small size.

Table 1 shows the critical values of the flutter velocity
depending on the physical-mechanical and geometric nature of the
plate, taking into account the sweep.

From Table 1 it can be seen that critical value Ve for the
swept-back plate is obviously greater than for the plate at p=0. The
range of values of ¢ does not go beyond n/4 since otherwise A1 and
A2 should be determined by the size of the panel in the spread
direction, and not in the chord direction. For example, with sweep
=129, the critical number V., of the swept-back plate increases by
3.7% compared with the corresponding values of V.- of the non-
swept-back plate, with ¢=18° - by 8.3%, with ¢=22,5% by 11.4%,
with ¢=36"- 25.7%, and with ¢=45°- by 43.1%.

Table 1 gives a comparison of the effects of the viscoelastic
properties of the plate material on the flutter velocity with the
sweep angle. For an elastic plate (A=0) with sweep angle ¢p=n/6, the
critical velocity is 1169, and for a viscoelastic plate (A=0.05) with
the same sweep, the critical velocity is 597. The difference between
them is 49%. It is interesting to note that the viscoelastic plate in
the presence and absence of sweep shows the same decrease in
relation to the elastic plate in the presence and absence of sweep.

Computational experiments showed that a slight increase in
the singularity parameter o leads to a significant increase in the
critical flutter velocity.
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Table 1
Dependence of the flutter velocity on the physical-mechanical and geometrical
parameters of the plate
A o B A ah ? Mer Ver
0.0 0.25 0,05 3 350 0 2,98 1012
/6 3.44 1169
0,05 0,25 0.05 3 350 0 1,50 510
/6 1.76 597
0 1,60 545
/15 1.66 565
/10 1,74 590
0,05 0,25 0,05 1 180 /8 1,79 607
/5 2,01 685
/4 2,29 780
0.2 1,76 600
0.05 0.5 0.05 1 180 /6 2.13 725
0,75 2,28 775
0,05 0.25 0.01 1 180 /6 1,90 645
0.1 1.88 640
0.8 1.38 472
0,05 0,25 0,05 1.0 180 6 1.87 635
1.1 2.19 745
1.5 4,04 1373
160 3.06 1050
0.05 0.25 0.05 1 170 /6 2.40 815
190 1,50 510
Table 2
Influence of the aspect ratio parameter /1 on the critical flutter velocity
A a’h Ver
o B ®
A=1,6 | A=1.8 =2 A=22 r=2.5
0 345 455 615 795 1180
/10 | 366 488 650 852 1238
0,05 0,25 | 0,05 | 250 | w/6 394 535 708 920 1365
/5 425 570 760 980 1474
a)
He10

\%
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1
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35.00 F0 .00 105 .00 140 .00
Fig. 1 Flow around a sweep-back Fig. 2. A=0(1); A=0,05(2); ¢=0,25; a/h=350;
plate $=0,05; 1=3; p=r/6; V=500 m/sec.
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Fig. 3. a=0(1); 7/10(2); n/6(3); A=0,05; «=0,25;
a/h=180; 5=0,05; i=1; V=400 m/sec.
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Fig. 4. 0=0,2(1); 0,5(2); 0,75(3); A=0,05; a/h=180;
$=0,05; 1=1; ¢p=n/6; V=500 m/sec.
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Fig. 5. 1=0,8(1); 1(2); 1,5(3); A=0,05; 0=0,25;
a/h=180;
B=0,05; p=1/6; V=600 m/sec.

As seen from the table, the effect of damping parameter 5 of
the heredity kernel on the plate flutter velocity is insignificant
compared to the effect of viscosity parameter A and singularity a,
which once again confirms the well-known conclusions that the
exponential relaxation kernel is unable to fully describe the
heredity properties of the structural material.

Table 2 shows the influence of the aspect ratio parameter
at different sweep angles on the critical flutter velocities. With an
increase in parameter A and sweep angle ¢, the critical flutter
velocity increases. The critical flutter velocity for each A increases
by approximately 25-28% with sweep (¢=/5) in relation to non-
sweep.

Figure 2 shows the curves of dependence of w on time , for
the elastic (curve - 1, A=0) and viscoelastic (curve - 2, A=0.05)
plates, taking into account the sweep. For a viscoelastic swept-
back plate, the amplitude and frequency of oscillations decrease.
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Further, the effect of the sweep on the oscillations of
viscoelastic plate was studied. Figure 3 shows the dependence of
the deflection of a plate flown about in a supersonic gas flow in
time for various values of sweep angle ¢. As parameter ¢ increases,
the oscillations of the plate become damped. At that, the
oscillation amplitude decreases, and the oscillation phase shifts to
the right.

Figure 4 shows the influence of rheological parameter o on
the behavior of a viscoelastic plate, taking into account the sweep
o=n/6. With an increase in the values of this parameter, the
oscillation amplitude decreases, and the oscillation frequency
increases.

The effect of the aspect ratio & on the amplitude and
frequency of oscillations of a viscoelastic plate at ¢=n/6 (Fig. 5) was
studied. For A=0,8 (curve - 1), the amplitude of oscillations
increases in time, and the movement of the plate is of a flutter
nature. At values of Hl (curve - 2) and A=1.5 (curve - 3) the
amplitude of oscillations decays, and the frequency of oscillations

increases.
5. Conclusions

It is shown in the article that in order to build mathematical
models for the problem of dynamics of the heredity theory of
viscoelasticity, the Koltunov-Rzhanitsyn singular kernel of
heredity adequately describes real mechanical processes and best
approximates experimental data over a long period of time. The
critical flutter velocities are determined in a wide range of changes
in various parameters of plates. It is shown that the singularity
parameter o affects not only the oscillations of viscoelastic
systems but also the critical flutter velocity. Therefore, it is
important to take this influence into account when designing
aircraft structures since the smaller the singularity parameter of
the structure material, the more intense the dissipative processes
in these structures. When modeling nonlinear flutter problems for
viscoelastic plates, a number of new mechanical effects were

obtained:
-it was stated that an account for the viscoelastic properties

of the plate material leads to a decrease in the critical

flutter velocity by 40 - 60%;

-it was found that the angle of flow around the plate

contributes to a noticeable increase in the flutter velocity.

The developed models, algorithms and applied programs
can be used in studying the dynamic behavior, designing and
testing structural elements of aircraft made of composite
viscoelastic materials, and other technical structures in various
areas of aircraft and mechanical engineering.

=
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