MINISTRY OF HIGHER AND SECONDARY SPECIAL EDUCATION OF THE REPUBLIC OF UZBEKISTAN

NATIONAL UNIVERSITY OF UZBEKISTAN

(15-17 Normaber, Ferguna, Unindidesant, Afaronica, 2021, r

UZBEKISTAN ACADEMY OF SCIENCES

V.I.ROMANOVSKIY INSTITUTE OF MATHEMATICS

FERGANA STATE UNIVERSITY

for monthson processes, elegant special special special enterior and enterior

INTERNATIONAL ENGINEERING ACADEMY

Santulian Actions States

Alloy Experience

Na aderation on the brains (6).

ABSTRACTS

information beginsology, only leading leading has for PhD, proper indicates brought at

OF THE VII INTERNATIONAL SCIENTIFIC CONFERENCE
CONFERENCE

University of the Control of the Con

MODERN PROBLEMS OF APPLIED MATHEMATICS AND INFORMATION TECHNOLOGIES AL-KHWARIZMI 2021

Professor Assignative associative denor Latituled discovering acquired variable professor Recipies Associated Recipies Recip

dedicated to the 100th anniversary of the academician

Vasil Kabulovich Kabulov

Totthe galgageM

PARTERY AL

15-17 November, 2021, Fergana, Uzbekistan

PROPERTIES OF THE SPACE OF PROBABILITY MEASURES

Zhuraev T.F.¹, Rakhmatullaev A.Kh.² Khidoyatova M.A.³

¹ Tashkent State Pedagogical University named after Nizami, Tashkent, Uzbekistan, tursunzhuraev@mail.ru

² Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan, olimboy56@gmail.com

³ Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan, xidoyatovamiyassar@gmail.com³

For a functor P and its subfunctors P_n and P_{ω} (see [1]) in the category of compacts and continuous mappings in itself, it is proved the following statements:

Theorem. For any infinite compact X and for any $n \in mathbb{N}$, and subspace $P_{\omega}(X) \setminus P_n(X)$,

homotopy is dense in $P_{\omega}(X)$.

Proof. Let an X infinite compact set and $n \in N$. We construct the required homotopy $h(\mu, t) : P_{\omega}(X) \times [0, 1] \to P_{\omega}(X)$ by setting: $h(\mu, t) = (1 - t)\mu + t \cdot \mu_0$. Where μ_0 an arbitrary measure from the set $P_{n+2}(X) \setminus P_{n+1}(X)$ i.e. $\mu_0 \in P_{n+2}(X) \setminus P_{n+1}(X)$.

$$\mu_0 = m_1 \delta_{x_1} + m_2 \delta_{x_2} + \dots + m_{n+2} \delta_{x_{n+2}}, \sum_{i=1}^{n+2} m_i = 1 \text{ and } m_i > 0.$$

If t = 0, then $h(\mu, 0) = (1 - 0)\mu + 0 \cdot \mu_0 = \mu$. It means, $h(\mu, 0) = id_{P_{\omega}(X)}$.

If t > 0, then $h(\mu, t) = (1 - t)\mu + t \cdot \mu_0 \in P_n(X)$, since $|\sup ph(\mu, t)| \ge n + 1$.

Hence, for any $t \in (0,1]$, the measure $h(\mu,t)$ belongs to the subspace $P_{\omega}(X) \setminus P_n(X)$, which is what was required to be proved. This theorem implies

Corollary 1. For any $n \in \mathbb{N}$ and infinite compact, X the subspace is $P_n(X)$ homotope negligible in $P_{\omega}(X)$.

In work [2], one can find the followings:

Proposition [2]. Suppose X is ANR space and $Y \subset X$ homotopy is dense in X. Then Y also ANR space.

Based on this proposition [2] and proved theorem, one can derive the following corollary:

Corollary 2. For any infinite compact X and any $n \in \mathbb{N}$, subspace $P(X) \setminus P_n(X)$ is ANR space.

Consequently, due to the convexity of these subspaces, they are contractible spaces AR such for any $n \in \mathbb{N}$ and any infinite compact X, spaces $P(X)\backslash P_n(X)$ and $P_{\omega}(X)\backslash P_n(X)$ are AR spaces. On the other hand, there is $P_{\omega}(X)\backslash P_n(X)\subseteq P(X)\backslash P_n(X)$.

References

1. Fedorchuk V.V. Probabilistic measures in topology// Mat. Nauk, 1991, Vol.46, no 1, pp.41-80.

2. T.Bankh, T.Radul, M.Zarichnyi Absorbing sets in infinite –dimensional Manifolds. Math. Studies. Monog. Ser.1, Lviv: VNTl Publ., 1996.