9th-TECH-FEST-2022

International Multidisciplinary Conference Hosted from Manchester, England 25th Dec. 2022

https://conferencea.org

SOME PROPERTIES OF COVARIANT FUNCTORS ON THE CATEGORY Comp

T. F. Zhuraev

K.R.Zhuvonov,

G.J.Eshmirzaeva

e-mail: Tursunzhuraev@mail.ru, qamariddin.j@mail.ru

In this note, we consider covariant functors in the categories of Comp-compact spaces, Metrmetrizable spaces, S-stratifiable spaces, \aleph -spaces, paracompact p-spaces, and continuous self-maps. It is proved that functors with finite supports acting in certain categories preserve finite-dimensional spaces and weakly countable spaces. Closed functors with finite support are defined and it is proved that closed functors preserve the class of S-spaces.

Recall the definition and some normality properties of a covariant functor $F: Comp \rightarrow Comp$ acting in the category of compact sets. The functor *F* is said to be:

Stores the empty set and point if $F(\emptyset) = \emptyset$ and $F(\{1\}) = \{1\}$ where $\{k\}, k \ge 0$ we denote

the set of non-negative integers - $\{0,1,...,k-1\}$ less than k. In this terminology $\{0\} = \emptyset$;

Monomorphic if for every (topological) embedding. $f: A \rightarrow X$ the mapping

 $F(f): F(A) \rightarrow F(X)$ is an embedding.

Epimorphic if, for every mapping $f: A \to Y$ onto Y, the mapping $F(f): F(A) \to F(Y)$ is also a mapping "to";

Preserves intersections if for any family $\{A_{\alpha} : \alpha \in A\}$ of closed subsets of X and identical embeddings $i_{\alpha} : A_{\alpha} \to X$, mapping $F(i_{\alpha}) : \bigcap \{F(A_{\alpha}) : \alpha \in A\} \to X$ defined by

 $F(i)(\alpha) = F(i_A)(\alpha)$, is an embedding for every $\alpha \in A$;

Pre-images if for every mapping $f: X \to Y$ and every closed set $A \subset Y$ the mapping

 $F(f|_{f^{-1}(A)})(f^{-1}(A)) \to F(A)$ is a homeomorphism;

Preserves weight if $\omega(F(X)) = \omega(X)$ for an infinite compact space X;

Continuous if for every inverse spectrum $S = \{X_{\alpha}; \pi_{\beta}^{\alpha} : \alpha \in A\}$ from bicompacta, a

homeomorphism is a mapping

 $f: F(\lim S) \to \lim F(S)$ which is the limit of mappings $F(\pi_{\alpha})$ if $\pi_{\alpha}: \lim S \to X_{\alpha}$ -through projections of the *S* spectrum.

In what follows, we assume that all functors under consideration are monomorphic and preserve intersections. We also assume that all functors preserve non-empty spaces. This restriction is not essential, since by doing so we exclude from consideration only the empty

