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1. INTRODUCTION

Hypergeometric functions occur naturally in a wide variety of problems in applied mathematics,
statistics, operations research, theoretical physics, and engineering sciences. For instance, Srivastava
and Kashyap [1] presented a number of interesting applications of hypergeometric functions in one and
more variables in queuing theory and related stochastic processes. The work of Niukkanen [2] on the
multiple hypergeometric functions is motivated by various physical and quantum chemical applications
of such functions. Especially, many problems in gas dynamics lead to solutions of degenerate second-
order partial differential equations, which are solvable in terms of multiple hypergeometric functions.
Among examples, we can cite the problem of adiabatic flat-parallel gas flow without whirlwind, the flow
problem of supersonic current from vessel with flat walls, and a number of other problems connected
with gas flow [3] (see, also [4—8]).

The success of the theory of hypergeometric functions in one variable has stimulated the development
of a corresponding theory in two and more variables. Appell [9] has defined, in 1880, four functions
Fy to Fy [10, pp. 22, 23], which are all analogous to Gauss’ F'(a,b; c; z) (see, Equation (2)). Seven
confluent forms of the four Appell series were defined by Humbert [11], and he denoted these confluent
hypergeometric series in two variables by ®1, ®o, ®3, W1, ¥y, =1 and Z5. A great merit in the further
development of the theory of the hypergeometric series in two variables belongs to Horn [12], who gave
a general definition and order classification of double hypergeometric series. He has investigated the
convergence of hypergeometric series of two variables and established the systems of partial differential
equations which they satisfy. Horn studied such second-order convergent hypergeometric series that
either are not expressed in terms of series of one variable or are not products of two hypergeometric
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592 ARZIKULOV, ERGASHEV

series in one variable. There are essentially 34 such convergent hypergeometric series of the second
order (14 complete and 20 merging).
Lauricella ([13], p. 114) further generalized the four Applell series Fy, Fs, F3, Fy to series in n

variables and defined his multiple hypergeometric series denoted by F{™ Fé"), Fé") and Fjg”). Moreover,
he introduced 14 complete hypergeometric series in three variables of the second order. Saran [14]
initiated a systematic study of these ten triple hypergeometric series of Lauricella’s set. Other triple
hypergeometric series studied in the literature include, in addition to the three-variable analogues of
several multiple hypergeometric series, the series introduced by Dhawan [15], Samar [16], and Exton
[17]. An expansion of the results on the hypergeometric functions in three variables together with
references to the original literature are to be found in the monograph [10] by Srivastava and Karlsson.
This work also contains an extensive bibliography of all relevant papers up to 1985. For instance, these
authors presented a table of 205 distinct complete triple Gaussian series together with their sources, if
known.

Hasanov and Ruzhansky [ 18] constructed Euler-type integral representations for 205 complete triple
hypergeometric series in three variables. Recently, these authors [19] compiled a system of partial
differential equations, which satisfy the indicated 205 hypergeometric functions and found all linearly-
independent solutions at the origin, if exist. In [20], some analytic continuation formulas for the
hypergeometric functions in three variables of second order are obtained. In [21], some exact solutions
for a partial system of second-order hypergeometric equations are obtained and some decomposition
formulas are constructed.

Despite many applications of confluent forms of hypergeometric functions of more than two variables,
they have been relatively little studied. In the works of Exton [22] and Jain [23], some functions were
studied that are confluent forms of the complete hypergeometric functions in three variables. 395
confluent hypergeometric functions in three variables have recently become known [24]; thus the set
of all possible second-order confluent hypergeometric functions in three variables is completed.

When the number of the variables exceeds two or three, some confluent forms of the multiple
Lauricella functions are defined in [10, pp. 34—36].

The plan of this paper is as follows. In Section 2, we briefly give some preliminary information, which
will be used later and define new multiple confluent hypergeometric functions. Thus, we try to expand
the class of such functions. In Section 3, we find a domain of the definition of the multiple confluent
hypergeometric functions. In Section 4, we write the systems of partial differential equations, which
satisfy the confluent hypergeometric functions in many variables, defined in Section 2. In Section 5, we
find all linearly-independent solutions of the systems of the hypergeometric type, complied in Section 4,
at the origin, if exist. In Sections 6 and 7, we obtain in explicit forms self-similar and fundamental
solutions of the second order multidimensional partial differential equations with singular coefficients.

2. PRELIMINARIES AND NEW DEFINITIONS

A function
) — o (@k(0)k
F(a,b;c;x) = kZ:O (k! ¥, c#0,—-1,-2, ..
is known as the Gaussian hypergeometric function, where (\),, is a Pochhammer symbol defined by
MNn=2A+1..A+n-1), n=1,2,..; (A)o=1.

Lauricella further generalized the four Appell series F1,..., Fy to series in n variables and defined his
multiple hypergeometric series as follows [25, p. 114]: in the domain {x : |z1] + ... + |z,| < 1}

(@) (b1)ky (O )k, 2 ahn

(n) =
F,"” (a,b;c;x) = T ’ |
a ( ) 1%::0 (c)ry-(Cn), K1l o | (1)
in the domain {x: 1] <1, ..., |z, < 1}

00 " .

(n) (al)kl...(an)kn (bl)kl...(bn)kn xy zkn
F a, b7 C;X — Ty ’ 2
. ) g::o (€K el Ty (2)
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SOME SYSTEMS OF PDE ASSOCIATED 593

oo k1 k
(n) (a)\k|(bl)k1~~ (bn),, Ty T
Fy/ (a,b;cx) = e ; (3)
D g::o (C)\k| k! k!
in the domain {x: \/[z1] <1, ..., /]zn] < 1}
k1 k
(m) (@O 27"
E.7 (a,bic;x) = e . (4)
e} =0 (c1)g, - (cn)y, Ka! k!
Here and further the following notation are used
a:=(ay,....,an), b:=(by,....,0,), c:=(c1,.c,cn), X:=(T1,...,Zn); (5)
k:= (k‘l,...,k‘n); |k| =ki+...+ky, k1 2>0,....k, >0. (6)
In all definitions (1)—(4), as usual, the denominator parameters ¢, ¢1, ..., ¢, are neither zero nor

a negative integer. Lauricella [13] (see, also [25]) gave several elementary properties of these series
including, for instance, integral representations of the Eulerian type, transformations and reducible
cases, and the systems of partial differential equations associated with them. Currently, multiple
hypergeometric Lauricella’s functions are used to find explicit solutions to many applied problems [26—
28].

Among the important confluent forms of Lauricella series are the confluent series CI)é") and \I/gn) inn
variables, defined by [29, p. 446, Eq. (7.2)]
o (01)g, o (bn)y,
@(”) b: c: — 1 n 1 . 7
2 [ e X] Z (C) kl' kn ( )
k|=0 k]

and [30, p. 429] (see, also [25, p. 134, Eq. (34))])

S
33

oo k1 k
(n) (@ 2yt ake
Wy Ja;e;x] = — ; (8)
|kZ::O (€1) - (), Fr! k!
so that
n . n ] T
<I>g ) [b;c; x| = |a1\1i>noo Fé) [a,b7c, — ;}
= lim Fo [a,b; c; ﬂ,..., ﬁ} 9
min{|ay],...|an|} 00 a7 ay, ©)
and
(n) . (n) T I (n) I In
1 ex| = 1 F b:c; —, ..., —| = F b,c; —, ....—
2 ;6] |b\1—I>noo c |BUG T b} min{\bl\,.l.r.ﬂlbn\}—)oo A [a’ G D,

Some other confluent forms of Lauricella series have appeared in the literature. These include the

confluent series @g) introduced by Srivastava and Exton [31], and the confluent series E§”> and @én)
used by Exton [32]. By definition, we have [31, p. 373, Eq. (12)]

(a)\k|(bl)k1~~ (bn—l)kn,l :E_’fl - :L“f;"

\I/gL) [a,b1,...;bp—1;¢;%] = Z

. , 10
|k‘:0 (C)‘kl kl' kn' ( )
so that
CIJgL) [a,b1,...;bp—1;5¢; x| = lim F[()n) [a, bi,....,bn;c;  T1,...,Tp_1, In :
by |00 by,
and [32, p. 43, Egs. (2.1.1.4) and (2.1.1.5)]
00 k1 k
=17 (a1, s an, b1, b1 0 x] = Z (C)|k\ o ol

k|=0
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594
= lim F](B,n) [al,...,an,bl,...,bn;c; xl,...,xn_l,x—n] , (L11)
b | =00 by,

2 (b)) (On1)y, 2t xhn

oM [b1, .y bp1; %] = ! e

3 g;o () k!l Ky
= lim o [bl,...,bn;c; xl,...,xn_l,ﬁ] . (12)

|bn |00 by,

Making use of the relationship (9), it is easy to observe that CI)é") is a confluent form of Lauricella series
ng) as well as Fg”).

Introduce a following confluent hypergeometric functions
a)n(b1). ... (b, gl
(@ag By By, bt "

‘I’(nr) [a,b1,....;bp;¢;%] = 7
1, lgz:o (Cl)kl”' (Cn)kn kl' kn'
(n) (n) Ty41 Tn
v a, by, ...,b0%| = im F a,b,c; ey — |
l’r [ ! ] min{|br+1‘7'“7‘bn‘}_>oo A |: br-l,—l bn:|
© k1 k
=(n) (a1)g,--(an)y, (01)g, - (br)y, i T
Eis[abr, o brox] = Z ind E
[k|=0 (C)\k| kl' kn'
B o F(n) |:a’b;c; L1y.eey Tpr,y xr+17""x_n:| ’ 14
min{|by41/,-.-,|bn |} —00 B ! bri1 b, (14)
> k1 k
=(n) (al)kl'--(ar)k (bl)kl- (bT)kr Ty Tn
Eyy lar, .y ar, b1, brs o] = Z Juk EE
[k|=0 (C)|k\ k! k!
= 11 :‘gnr) |:a7b17”'7b7“;c; xla'-'ymrgmwu,ﬁ] s (15)
min{\ar+1|,...,|an\}—>oo ’ a?”-‘rl an

wherel <r <n-—1.
An interesting unification (and generalization) of Lauricella’s multiple series Ff(‘n) and FJ(B") and

Horn’s double series Ho was considered by Erdelyi [33], who defined his general series in the form [33,

p. 13, Eq. (28)]
(a)\k|_\1| (01)g, - (bn)y,,

Hn+p7n(a7b7d7g;c;x;y): Z (C ) (C )
[k+1]=0 Py v A5 Tk
k kn ol l
xll Ln yll % (16)

X (A (gl (90, (90), o T

where n and p are integers, 0 < p < n. Here and further, in addition to the notations (5) and (6), the
following notation are used
d:=(di,....dp), g:=(91,-9%):; ¥Y:=U1,-Yp);

Li= (L, ... 0); =L+ ..+1, §>0,..,0>0.

Evidently, we have
Hnn:F,Eln)y Hn70:Fén)

)
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SOME SYSTEMS OF PDE ASSOCIATED 595

From the hypergeometric series (16) one can determine the following confluent hypergeometric
function in n + p variables

"0) (4 b e s v) = I 11 e
HA (a,b,c,x7y) —;%Hn—kp,n avbvgv"wgvcvxﬁg y
~——
2p
When defining the confluent hypergeometric function Hfff’p) (a,b;c;x;y), we used the equality (see,
for instance, [10, p. 124]) lir% [(1/e),e9 =1, where g is a nonnegative integer. So, the confluent
e—

(n:p)

hypergeometric function H; ™ has a form

HY? (a,breixiy) =
[k, [1]=0

(a’)\k|—\l|(b1)k1"‘(bn)knxlfl 902"9111 yép 17
g (17)

(c1)p,-(Cn)p, k! k! 1)

Note that well-known Humbert functions ®,, ®,, &3, ¥y, ¥y, =1 and =5 are two dimensional
analogous of the multiple hypergeometric functions defined in (7), (8), (10)—(15), and some particular
(n,p)

cases of the function H},™ are found in [34—36].

3. CONVERGENCE OF THE MULTIPLE CONFLUENT SERIES

Horn [12] gave the general definition of the double hypergeometric series, following which it is not
difficult to define the hypergeometric series with the two and more variables. A power series

u(x) = Z A (k) zh ke (18)
k|=0
is said to be hypergeometric if the ratio of any two adjacent coefficients is a rational function of the
components of the summation index k, thatis, forall j = 1,....;n
A (k + ej)
VT ek
A (k) f] ( )7
where e; := (0, ..., 1,...,0) denote the vectors with jth component equal to 1 and the others equal to 0.
The positive quantities r1, ..., r,, are called the associated radii of convergence of the multiple power

series (18), if the power series is absolutely convergent for |x1| < r1, ..., |x,| < 7, and divergent when
|z1| > r1, ..., |xn| > rn. We put maxry = Ry,..., maxr, = R,. Investigating the convergence of (18),
we define

T (p1y ey pn) = limv; (uait, ..., pnt), t—o00, j=1,n.
[t is easy to show that
R =|Y;(e))|™", j=Tn

The domains of convergence of the Lauricella’s series are represented in (1)—(4). In the case of
multiple confluent series one or more, or perhaps all of T vanishes identically. The region of convergence
simplifies considerably and all inequalities, which may be necessary to secure convergence, are recorded
as follows

U (g, o) ¢ 2]+ e 2] < 1 2ega] < 00, ., |2n] < 00}
HEP (@10 s T Y10 ) ¢ 1]+ oo+ 20l < 1, Jy1] < 00, o Jyp] < 00}
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596 ARZIKULOV, ERGASHEV
4. SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

Horn [12] has established the systems of partial differential equations which the double confluent
Humbert functions satisfy (see, also [37, p. 235]). The work [23] contains systems of PDE corresponding
to 38 triple confluent hypergeometric functions and, in the work [36] a three-dimensional analogue of
the function (17) and the corresponding system are used to search for fundamental solutions of the two-
dimensional Helmholtz equation with a singular coefficient.

The power series (18), where
Alktej) Pk
— (19)
A (k) Q; (k)
and P; (x), @; (x) are some polynomials in the n variables (x1, ..., z,) =: x, satisfies a system of linear
partial differential equations, which can be written in terms of the differential operators

0 .
;== xj%j, j=

1,n

as

Q;(6) (x5 u(x) = Pi(O)ux), j=Tm. (20)

where the differential operators P;(6) and @Q;(#) are obtained by substituting the components of the
vector § := (61, ..., 0y), as the arguments of the polynomials P; and Q; in (19).

[t is easy to see that the coefficients of the confluent series <I>§n) defined in (7), which are given by

(b1, -+ (bn)y,

A k) = () gl en!

satisfy the relations (19) for
Pi(k) = bj + kj,  Qj(k) = (c+ [K[) (1 +k;) .

So, confluent series <1>§”) belongs to the family of Horn hypergeometric series. The system (20)
corresponding to P; and @; has the form

(c—l—Z@ ) (1+6,) (;1<1>;”>(x)) = (b +0) 0" (x), j=Tn.

removing parentheses, and bearing in mind that
1 —|—m-i (m._ch)(")(x)> _ _(I)(n)(x)
J 81‘]' J 2 633]- 2 ’

8$k8$ +(e—a) oxy,

0
Setting 05 = x5—,
etting x oz,

we arrive at

—bpd =0, k=Tn,

which, therefore, is a system in the class of Horn hypergeometric systems.

We note that the property (19) holds also for the other confluent series \Ilgn), @g), Eg"), CIJ:(J,"), g

17>
:gnr), Eg T), H(n’p) Similarly, these confluent hypergeometric functions satisfy the following systems of
partial dlﬁerentlal equations
82\1,(”) 8\1,(”) n 8\1,(”) n
ZEka%—F(Ck—ZL']{;) 851,’2k - . Zj 82 —a\Ifg)ZO, ]{,‘:1,717 (21)
i#k
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> ai(1—zp)s—2 4 [e— (a+bp+ 1) 2] 2
j=1

al’kal‘j 8xk
ooy (n) T
—bkzxjal? —abp®)) =0, k=T,n—1,
=1 O
ik

i 3 S S0

= = ou
1— 1 | _ b +1) 2y — — by 2™ =0, k=T.n—1
.’Ek( fl:k) amkg + = ‘I] 8xk8x] + [C (ak + k + )xk] 8xk a0 1 07 , 5

L oEy =
. Ly 81‘]81‘” + (C - :L‘n) 81,” anZy © = 07
7=1
A 025" ()
_ —ar Py = =1,n-1
— 8xk8x] + (C :L‘k) 8xk 3 0’ k " ’
QUL RN ¢ S
— Ym0ty | Orn s =0
2.7 n 2.7,(1) (n)
mk(l—xk)a‘ll il —mkz O, + [cx — (a+ b + 1) zy] OV
0 2 = ]8xk8xj aIL’k
ik
L ovy) ()
—bkzxj 8%" —abp Y =0, k=T,
7j=1
ik
At S A0 v
)7 )T T (n)
n - j n n =Y = 1,n;
T o2 jz:xjaxj+c x)axn ir=0 k=r+1n
s o oE = )
1-— ’ ; = - b + 1 T— a2 = k=1
zp (1 — o) 5 +jz:; Dardz; + [e = (ak + bk + 1) z] o EL 0, )T
j#k
N I - I
jZ::x 0z, 0z (e z) orr k=1 = =reLn
6252”) n 8252”) 855”)
_ T . i _ __ar =(n) — —
xp (1 — xy) 8mi + ; z; Derd; +[c— (ag + b + 1) zg] O akbkEs, =0, k=1,r,
ik
nooEd ol
5T T ;—(TL)
x; +c —E5, =0, k=r+1n;
jzzzl jal’kal‘j 81’k 2
82H(”7P) n 82H(”7P) p 82H(”7P) n 8H(”7P)
1— -~ -~ A
o (1 =) 5~ ) wy +"”’“;% 1ry b"sz_: s
J#k J#k
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598 ARZIKULOV, ERGASHEV

(n,p) p 8H(n7p) ( )
+ e — (a+ by + 1) 2] é; +be Y yj a; —abgHP =0, k=Tn
j=1
p 211(n,p) n 211(n,p) (n,p)
— l—a)—/—+Hy," = =1,p. 22
;yz e ;xz Fon, +(1—a) 5y THAT =0, j=Tp (22)

Note that two-dimensional analogues of these systems are found in the monograph [37, p. 235,
Egs. (23)—(29)].

5. LINEARLY INDEPENDENT SOLUTIONS

In order to find the linearly independent solutions, for instance, of system (21), we will search the
solutions in the form

u= H:E;‘jw(:nl,...,xn), (23)
j=1

where w is unknown function and A; (j = 1,n) are constants, which are to be determined. So,
substituting (23) into the system (21), we get

0w ow " ow e (Mg — 1+ cg)
av 2N~ Tk) 5 — D i — =
Tk 8513% + (ex + 20 — xx) T 2 T oz (a+ X)) w+ o w =0,
J#k
k=Tn. (24)

We note that system in (24) is analogical to system (21), therefore, we require that the conditions
)\k()\k—1+ck):0, kzl,—n (25)
should be satisfied. It is evident that the system (25) has the following solutions

)\1 Ao )\3 >\n—1 An
1: {0 0o O .. 0 O
(
1—c; 0 0 . 0 0
oL 0 1—c 0 . 0 0
{ 0 0 0O ..1—-¢, O
1—61 1—62 0 0 0
o2 0 l—co 1—c3 .. 0 0
{ 0 0 0 .. 1—chq1 1—cp

1:{l—cg 1—cg 1—c3 ... 1=cpq 1—cy,
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n!

k_
where C = R0 — )]

are binomial coefficients. Thus, the system (25) has the number

1+CL+C2+C3 4+ 4O 24O 1 =2

of solutions. Finally, substituting all values of Aq,..., A, into (24), we find the following 2" linearly
independent solutions of the system (21) at the origin:

1: {\Ijgn) [CL, C1, ...,Cn;X] )

1 U a4+ 1= 132 — e1, 00,y eni X,
C-

n

T—cn (™) . :

Ty Wy Ja+1—cpier, ., na1,2 — 3 X],

( 1—c1 _l1—co,(n) . .
xy Txg Uy ja+2—c1 —c2;2—c1,2—C2,C3, ..., Cn3 X,

l—c1,.1— (n) . .
xy Ty a4+ 2 —cp — 32— 1,62, 0, Cne1,2 — i X

c?.
n - l—co _1—c (n) . .
xy Paz BWy a4+ 2—co—c3501,2 —€2,2 — €3,C45 .., Cps X
1—cpn—1 1—cn\l,(") 9 . 2 2 .
Tp_1 T 2 [CL+ —Cp—1 — CpiCly ...y, Cn—2,4 — Cp—1, —Cn,X] )
1: {x%_cl...aj#_c”\llgn) [a+1—c1—..—cpi2—c1,.2 = CpiX].

When none of the numbers ¢y, cq, ..., ¢, is equal to a negative integer, we obtain the general solution of
the system (21) by multiplying these 2™ partial solutions to arbitrary constants and taking their sum.

It is easy to see that in the first group there is one solution (CQ = 1), in the second group there
are C}} = n solutions, the third group consists of C2 = n(n — 1)/2 solutions, etc. So the system of
hypergeometric equations (21) really has 2" solutions.

However, within each group, the functions included in this group are symmetrical with respect to
the numerical parameters. Therefore, for further purposes, it is enough to select one solution from each

group, or more precisely, the solution that comes first in each group. So n + 1 linearly independent
solutions to the system of equations (21) will be identified

wo(x) = Co WS [aser, .o ciX] (26)

wy(x) =C :r%_cl\lfgn) [a+1—c1;2—c1,C9, .y Cn3X] (27)

wo(x) = Cy w%_clx;_”‘llg") [a+2—c1—c2;2—0¢1,2—co,C3, 0y Cpy X (28)
wp(x) =Cp aji_cl...qum_c’l\llgn) [a+1—c1—..—cn32—c1y.0,2 — 3 X] (29)

x which are mutually asymmetric with respect to the numerical parameters, where C; (j = 0,n) are
arbitrary constants.

Similarly, the system (22) has n + 1 linearly independent solutions at the origin

n a7b 7”'7bn;
wo(x;y) = CoHY) ! Xyl . (30)
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_ a+1—ci,b1+1—c1,bo,...,bn;
wi(x;y) = Cray HYP b B (31)
2_017627’”7671;
e 1 +2—c—co,b1+1—c1,b0+1—co,b3,...,by;
wg(x;y):C’ga:% Clm% CQHX”’p) @ e €1, 02 2,93 “xyl, (32)
2_6172_027637’”7671;
_ a+n—c—...—cpb1+1—c1,c0,by + 1 —cp;
wn (%) = Cp =0 gl en HOP) ' mo b "xy |, (33)
2—c1y.2 —cp;

which are mutually asymmetric with respect to the numerical parameters, where C; (j =0,n) are
arbitrary constants.

6. SELF-SIMILAR SOLUTIONS OF THE SECOND ORDER PARTIAL DIFFERENTIAL
EQUATION WITH n LINES OF DEGENERACY

In the domain Q = {z1, ...,zpn,t) : 21 > 0,...,z, > 0,¢ > 0}, we consider the equation

n 2
-y <M N 2&%) —0, ag = const. (34)

1 al‘i T 8xk

The solution to equation (34) is sought in the form
u(x,t) = 7w (9), (35)

where
ks
X = (‘Tlﬂ”'?mn); § = (517'-'7571)7 gk 4nt

and w(&) is an unknown function. Substituting (35) into (34), we have second order partial differential
equation

k=17, (36)

- 0w 1 Ow n
Z [fka—{k + <Oék + 5 nfk) 83:J QW= 0,

k=1
which is equivalent to the following system of PDE of the hypergeometric type

" ow 1
Ek 6 - 2 5 ;»Sja—gj—iwzo, k=Tn. (37)
ik

Comparing now the system (37) with the system (21) and taking into account an expressions (26)—
(29) of the solutions of the system (21), we get a linearly independent self-similar solutions of the
degenerate equation (34) at the origin:

o(x,1) = 1 \IJ() 1 14201 14200 14203 14204 1—|—2an£
:U“Otl/Q 2) 2 5 2 5 2 5 2 PREEY )

1—201
T 3—2a1 142a0 14+2a3 14204 1—1—2a
Ul(X,t) = 1 tll [e%1 \Ilgn) |:1 — 3 9 ) 9 ) 9 } 2 PRERES) n7£

1— 2a1 1—2a09
oy Ty (n) |3 — 201 — 209 3—201 3—2a9 14203 1+ 204”
u2(xat) = K2 t3/2 al—az ‘Il2 |: 2 ) 2 ) 2 ) 2 PREEE} 7{
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a—nfl (1-205)/2 g (n) n+1-2a 3—-2m 3 - 204n
u ( ) /"Lnt H ‘Il |: 2 7 2 VAR 75
7j=1
where y1; (j = 0,n) are arbitrary constants, and x and £ are defined in (36); & := a1 + ... + .
Note that in the case n = 2 self-similar solutions of equation (34) at the origin are found in [38].

7. FUNDAMENTAL SOLUTIONS OF MULTIDIMENSIONAL HELMHOLTZ EQUATION
WITH n SINGULAR COEFFICIENTS

Let us consider the generalized singular Helmholtz equation with several parameters

0%u 2a; Ou
— ——— 4+ (A et A = 38
Zzlam?Jr;% 8m]+(1+ + ) u=0 (38)

in the domain R™" := {(z1, ..., xm) : 21 > 0, ...,x, > 0}, where m is a dimension of Euclidean space
R, n is a number of the singular coefficients of equation; m > 2,0 <n <m; a:= (aq,...,a,) and
A= (A1, ..., Ap) arereal numbers, 0 < 2a; < 1,5 =1,...,n

The solution to equation (38) is sought in the form

u(z; & A) = P(rjw(o,n), (39)
where
P(r) =12, fy= —m; 2 b art ot o
r=|r—¢§l = Z(mz —&)?2, wi= (21, 1m) € R, &= (&1,..,6m) € R
i=1

Here w(o, n) is an unknown function and depends on the variables

4z &y,
2

1
0:=(01,.,0pn), O =— o=, enamp), M= Z)\lrQ.

Substituting (39) into (38), we have a system of second order partial differential equation

0w - 0w P 0w Ow
O'Z(l O'Z')W— 3 Z ,Ujm+aiznjm+[2ai (a—l—al—kl)az] 80_2
¢ J=1,j#i j=1
Z UJ@ +aZZnJ8 —aqw =0, i=1,n, (40)
Jj= 179#1
0w Ow
+(1l—a)—+w=0, j=1,p.
; MA—— 8m 5% lz:: doay; TN 5 j=Tp

Comparing now the system (40) with the system (22) and taking into account an expressions (30)—(33)
of the solutions of the system (22), we get a linearly independent fundamental solutions of the degenerate
equation (38) at the origin:

— n 1807a 7"'7an;
Qo(w; & A) = yor2PHGP [ 1 o)

201, ..., 2005

k
k —20y s /Bk71_a17”'71_ak7ak 1y -0y Oin;
arlws &) = i [ [ @ig)' > 1Y { et o;n] :

i=1 2—-2a1,...,2 =20, 20541, ..., 2005
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k=1n-1,
n
_ o Byl —aq, ., 1 — ap;
qn(7;§A) = Yor 25”H($z’§i)l 20 H(X’p) " "o,
i=1 2 —2a1,...,2 — 2au;
where
m— 2 " ' (Bo) v T ()
- . — 92B0—m 0 v
Bo 9 + : Qi 70 P HF(2O£Z)7
i=1 i=1
m— 2 k n
,Bk:T k—Zai—kZal, k=1,n-1,
i=1 i=k+1

/2

Note that the fundamental solutions of equation (38) in particular case (p = 1) are found in [35] and

expressed by Hff’l).
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