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ABSTRACT
Fundamental solutions of a two-dimensional degenerate elliptic
equation have recently become known which are expressed via
the Appell hypergeometric function. The main result of the present
paper is the construction of fundamental solutions for a class of
multidimensional degenerate elliptic equations. These fundamental
solutions are directly connected withmultiple hypergeometric func-
tion of Lauricella and their properties. In this paper, newproperties of
the Lauricella hypergeometric function are established, which allow
finding fundamental solutions of the considered equation in explicit
forms. In addition, the properties of the constructed fundamental
solutions, which are necessary in the future for solving boundary
value problems for a multidimensional degenerate elliptic equation,
are investigated.
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1. Introduction

Special functions are used for solving many problems of mathematical physics [1, 2].
These include the Gauss hypergeometric series, Bessel and Hermite functions, Lauricella
hypergeometric functions, etc. The Hermite functions are actively applied in algorithms
and information systems that are used in medical diagnostics [3]. The Bessel functions
are used in solving a number of problems of hydrodynamics, radiophysics, and thermal
conductivity [4, Part 2]. Some functions that are used in astronomy can be arranged in
hypergeometric series [5, Chapter 3].Multidimensional hypergeometric functions are used
in the superstrings theory [6].

The study of boundary value problems for degenerate equations is one of the important
directions of the modern theory of partial differential equations. In the formulation and
construction of local and nonlocal boundary value problems, the main role is played by
fundamental solutions.

Existence and properties of fundamental solutions for the Tricomi equation
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yuxx + uyy = 0

have been studied by several authors. An exposition of the known and new results on the
fundamental solutions for the Tricomi operator together with references to the original
literature are to be found in the triad of the works by Barros-Neto andGelfand [7–9] which
is the standard work on the subject. These results are extended, with small modifications,
to the generalizations of the Tricomi equation:

ymuxx + uyy = 0

and

ym
n∑
j=1

uxjxj + uyy = 0,

wherem is a positive real number (for details, see [10]). Two explicit fundamental solutions
for the Tricomi equations are later used by many researchers to study various problems for
a mixed-type equation [11]. In this direction, more interesting results are found in [12].

Fundamental solutions of the elliptic equations with two singular coefficients are
expressed by the second Appell function F2, and when the dimension of the equation and
the number of singular coefficients exceed two – by the first Lauricella hypergeometric
function F(n)

A with three andmore variables. Fundamental solutions of the elliptic equation
with two lines of degeneration

ymuxx + xnuyy = 0

arewritten out in terms of theAppell functionF2 in explicit forms [13] and found successful
application in potential theory [14]. The fundamental solutions of the three-dimensional
singular elliptic equation [15] are also applied to the solution of boundary value problems
in the first octant of the unit ball [16, 17].

In the work [18], all 16 fundamental solutions of the four-dimensional degenerate
elliptic equation

ymzktluxx + xnzktluyy + xnymtluzz + xnymzkutt = 0, m > 0, n > 0, k > 0, l > 0

in the domainR4+ := {(x, y, z, t) : x > 0, y > 0, z > 0, t > 0} are constructed in the explicit
forms.

Recently, the fundamental solutions for a degenerate elliptic equation

ym+1 [xuxx + pux
]+ xn+1 [yuyy + quy

] = 0,
n + 2p
n + 2

> 0,
m + 2q
m + 2

> 0 (1)

in a domain R2+ = {(x, y) : x > 0, y > 0} were built and expressed by Appell’s hypergeo-
metric function F2 of two variables [19].

We also note several works in which fundamental solutions of the Helmholtz equation
with one, two, three or more singular coefficients are constructed in explicit forms (see,
respectively, [20–23]). In the work [24] the application of hypergeometric functions to the
construction of particular solutions higher-order partial differential equations is discussed.
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The purpose of the present paper is to construct fundamental solutions in explicit forms
for the multidimensional analogue of Equation (1) which are expressed through the mul-
tiple Lauricella hypergeometric function F(n)

A (see Section 4). Therefore, first we will list
the well-known (Section 2) and new (Section 3) properties of the Lauricella function F(n)

A .

2. Multiple hypergeometric functions

The Gauss hypergeometric function can be represented by the following series [25, p. 56,
Equation 2.1(2)]

F (a, b; c; z) ≡ F
[

a, b;
c; z

]
=

∞∑
m=0

(a)m (b)m
(c)m

zm

m!
, |z| < 1, (2)

where (λ)n is a Pochhammer symbol: (λ)n = λ(λ + 1) · · · (λ + n − 1), n = 1, 2, . . . ;
(λ)0 = 1.

If Rec>Reb>0, we have Euler’s formula [25, p. 56, Equation 2.1(10)]

F(a, b; c; z) = �(c)
�(b)�(c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − tz)−adt. (3)

We observe that Euler’s integral (3) transforms into an integral of the same type if we put
s = 1−t. From this we obtain a transformation formula given by Euler

F(a, b; c; z) = (1 − z)−bF
(
c − a, b; c;

z
z − 1

)
. (4)

The two functions F(a, b; c; z) and F(a′, b′; c′; z) are said to be contiguous when one of the
three differences a′ − a, b′ − b, c′ − c is equal to±1, the other two being zero. Three hyper-
geometric functions, contiguous two by two, are linked by a linear equation. There are
fifteen relations of Gauss between contiguous functions [25, p. 56, Equation 2.8(31)–(45)
].

Three functions F(a, b; c; z), F(a′, b′; c′; z), F(a′′, b′′; c′′; z) such that the differences a′ −
a, b′ − b, c′ − c, a′′ − a, b′′ − b, c′′ − c take one of the three values −1, 0, 1 are still linked
by a linear equation; there are

26 · 25
1 · 2 of these relations; here is an example [26, p. 3]

F(a + 1, b; c; z) − F(a, b; c; z) = b
c
zF(a + 1, b + 1; c + 1; z). (5)

The great success of the theory of hypergeometric functions in one variable has stimulated
the development of the corresponding theory in two or more variables. Appell [27] has
defined in 1880 four functions F1 to F4, which are all analogues to Gauss’ F(a, b; c; x). For
instance, the second Appell function F2 has a form

F2
[

a, b1, b2;
c1, c2;

x, y
]

=
∞∑

m,n=0

(a)m+n (b1)m (b2)n
(c1)m (c2)n

xm

m!
yn

n!
, |x| + |y| < 1. (6)

The following relation between contiguous hypergeometric Appell functions

F2
[

a + 1, b1, b2;
c1, c2;

x, y
]

− F2
[

a, b1, b2;
c1, c2;

x, y
]
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= b1
c1
xF2
[

a, b1 + 1, b2;
c1 + 1, c2;

x, y
]

+ b2
c2
yF2
[

a, b1, b2 + 1;
c1, c2 + 1; x, y

]
(7)

is known [26, p. 21].
Burchnall and Chaundy [28] gave an expansion of double hypergeometric function F2

in series of simpler hypergeometric functions:

F2
[

a, b1, b2;
c1, c2;

x, y
]

=
∞∑
r=0

(a)r (b1)r (b2)r
r! (c1)r (c2)r

×

× xryrF (a + r, b1 + r; c1 + r; x) F
(
a + r, b2 + r; c2 + r; y

)
. (8)

Lauricella hypergeometric function [29]

F(n)
A (a, b; c; x) ≡ F(n)

A

[
a, b;
c; x

]

=
∞∑

|k|=0

(a)|k|
n∏
j=1

⎡
⎣ (bj)kj

(cj)kj

xkjj
kj!

⎤
⎦ ,

n∑
j=1

∣∣xj∣∣ < 1, n ∈ N (9)

is a natural generalization of the classical Gauss hypergeometric function (2) and the
Appell function (6) to the case ofmany complex variables and their corresponding complex
parameters. Hereinafter

b := (b1, . . . , bn) , c := (c1, . . . , cn) , x := (x1, . . . , xn) ; N = {1, 2, . . . , };
|b| := b1 + · · · + bn, |c| := c1 + · · · + cn;

k := (k1, . . . , kn) , |k| := k1 + · · · + kn, k1 ≥ 0, . . . , kn ≥ 0.

The integral representation [26, p. 115, Equation (5)]

F(n)
A (a, b; c; x) =

n∏
j=1

[
�
(
cj
)

�
(
bj
)
�
(
cj − bj

)
] ∫ 1

0
· · ·
∫ 1

0

n∏
j=1

[
ξ
bj−1
j
(
1 − ξj

)cj−bj−1
]

×
⎛
⎝1 −

n∑
j=1

ξjxj

⎞
⎠

−a

dξ1 · · · dξn, Re
(
bj
)

> 0, Re
(
cj − bj

)
> 0, j = 1, n (10)

is easily obtained from the series (9) by using Euler’s integral of the first kind for the
beta-function. One- and two-dimensional analogues of the integral representation (10)
are found in [25] (see, Equation 2.1(10) and 5.8(2), respectively).

Hasanov and Srivastava [30] proved that for all n ∈ N\{1} is true a recurrence formula

F(n)
A (a, b;c;x)

=
∞∑

|k′|=0

(a)|k′|(b1)|k′|(b2)k2 · · · (bn)kn
k2! · · · kn!(c1)|k′|(c2)k2 · · · (cn)kn

×

× x|k′|
1 xk22 · · · xknn F

(
a + |k′|, b1 + |k′|;c1 + |k′|;x1

)
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× F(n−1)
A

(
a + |k′|, b2 + k2, . . . , bn + kn; c2 + k2, . . . ., cn + kn; x2, . . . , xn

)
, (11)

where |k′| := k2 + · · · + kn.
Lauricella function F = F(n)

A (a, b; c; x) verifies a system of n second-order linear partial
differential equations [26, p. 117]:⎧⎪⎪⎨

⎪⎪⎩
xk (1 − xk)

∂2F
∂x2k

− xk
∑n

j=1,j�=k xj
∂2F

∂xk∂xj
+ [ck − (a + bk + 1) xk]

∂F
∂xk

−bk
∑n

j=1,j�=k xj
∂F
∂xj

− abkF = 0, k = 1, n.
(12)

This system contains as special cases: for n = 1 the hypergeometric equation of Gauss; for
n = 2, the system of equations of Appell (see, Equation 2.1(1) and 5.9(10) in [25]).

Appell and Kampé de Fériet [26] have demonstrated a series of propositions concerning
system of the form which lead to the following result: the integrand of the system (12)
verified by the function F(n)

A depends linearly on 2n arbitrary constants.
To obtain the general integral of system (12), it is sufficient to note that it does not change

form when the change is made to

F = xλ1
1 · · · xλn

n F̃,

where λ1, λ2,. . . , λn are having some suitable values:

λ1 λ2 λ3 . . . λn−1 λn

1 {0 0 , 0 . . . 0 0

n

⎧⎪⎪⎨
⎪⎪⎩

1 − c1 0 0 . . . 0 0
0 1 − c2 0 . . . 0 0

· · · · · · · · · . . . · · · . . .

0 0 0 . . . 1 − cn 0

n(n − 1)
1 · 2

⎧⎪⎪⎨
⎪⎪⎩

1 − c1 1 − c2 0 · · · 0 0
0 1 − c2 1 − c3 · · · 0 0
· · · · · · · · · · · · 0 · · ·
0 0 0 · · · 1 − cn−1 1 − cn

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 {1 − c1 1 − c2 1 − c3 · · · 1 − cn−1 1 − cn.

We deduce the 2n particular integrals [26, p. 118]:

1{F(n)
A

[
a, b1, . . . , bn;
c1, . . . , cn;

x
]
,

n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1−c1
1 F(n)

A

[
a + 1 − c1, b1 + 1 − c1, b2, b3, . . . , bn;
2 − c1, c2, c3, . . . , cn;

x
]
,

x1−c2
2 F(n)

A

[
a + 1 − c2, b1, b2 + 1 − c2, b3, . . . , bn;
c1, 2 − c2, c3, . . . , cn;

x
]
,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
x1−cn
n F(n)

A

[
a + 1 − cn, b1, . . . , bn−1, bn + 1 − cn;
c1, . . . , cn−1, 2 − cn;

x
]
,
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n(n − 1)
1 · 2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1−c1
1 x1−c2

2 F(n)
A

⎡
⎣ a + 2 − c1 − c2, b1 + 1 − c1,

b2 + 1 − c2, b3, . . . , bn;
2 − c1, 2 − c2, c3, . . . , cn;

x

⎤
⎦,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

x1−c1
1 x1−cn

n F(n)
A

⎡
⎣ a + 2 − c1 − cn, b1 + 1 − c1, b2, . . . ,

bn−1, bn + 1 − cn;
2 − c1, c2, . . . , cn−1, 2 − cn;

x

⎤
⎦,

x1−c2
2 x1−c3

3 F(n)
A

⎡
⎣ a + 2 − c2 − c3, b1, b2 + 1 − c2,

b3 + 1 − c3, b4, . . . , bn;
c1, 2 − c2, 2 − c3, c4, . . . , cn;

x

⎤
⎦,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

x1−cn−1
n−1 x1−cn

n F(n)
A

⎡
⎣ a + 2 − cn−1 − cn, b1, . . . , bn−2,

bn−1 + 1 − cn−1, bn + 1 − cn;
c1, . . . , cn−2, 2 − cn−1, 2 − cn;

x

⎤
⎦ ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ..

1
{
x1−c1
1 · · · x1−cn

n F(n)
A

[
a + n − c1 − · · · − cn, b1 + 1 − c1, . . . , bn + 1 − cn;
2 − c1, . . . , 2 − cn;

x
]
.

When none of the numbers λ1, λ2,. . . , λn is equal to an integer, we obtain the gen-
eral integral of the system (12), by multiplying these 2n particular integrals by arbitrary
constants, then by adding them together.

By virtue of symmetry of the function F(n)
A with respect to the parameters b1,. . . , bn,

c1,. . . , cn and variables x1, . . . , xn, it is possible to group the above linearly independent
solutions of the systemof hypergeometric Equations (12). As a result, a number of solutions
of the system (12), which are necessary to further studies, will decrease. Thus, all solutions
of the system (12) are expressed by the formula:

ωk(x) =
k∏

j=1

[
x1−cj
j

]
F(n)
A

⎡
⎣ a + k −∑k

j=1 cj, b1 + 1 − c1, . . . ,
bk + 1 − ck, bk+1, . . . , bn;
2 − c1, . . . , 2 − ck, ck+1, . . . , cn;

x

⎤
⎦ , k = 0, n. (13)

The factor
∏k

j=1 in (13) means 1 if k = 0, also the sum
∑k

j=1 = 0 if k = 0.

3. New properties of Lauricella function

Theorem 1: . The following relation between contiguous Lauricella functions:

F(n)
A (a + 1, b; c; x) − F(n)

A (a, b; c; x) =
n∑
j=1

bj
cj
xjF

(n)
A
(
a + 1, b + ej; c + ej; x

)
(14)

is valid, where ej := (0, . . . , 1, . . . , 0) denote the vectors with jth component equal to 1 and
the others equal to 0.

Proof: In cases n = 1 and n = 2 the relations (5) and (7) are known.
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Let us prove the relation (14) for any natural numbers n. By virtue of the definition (9),
we have

F(n)
A (a + 1, b; c; x) − F(n)

A (a, b; c; x)

=
∞∑

|k|=0

[
(a + 1)|k| − (a)|k|

] n∏
i=1

[
(bi)ki
(ci)ki

xkii
ki!

]

= 1
a

∞∑
|k|=0

|k| (a)|k|
n∏

i=1

[
(bi)ki
(ci)ki

xkii
ki!

]
.

Then applying the following easily-derivable identity

∞∑
|k|=0

|k| (a)|k|
n∏

i=1

[
(bi)ki
(ci)ki

xkii
ki!

]
=

∞∑
|k|=0

(a)|k|+1

n∑
j=1

(bj)kj+1

(cj)kj+1

xkj+1
j

kj!

n∏
i=1, i�=j

[
(bi)ki
(ci)ki

xkii
ki!

]

and elementary properties of the Pochhammer symbol:

(a)|k|+1 = a(a + 1)|k|, (bj)kj+1 = bj(bj + 1)kj , (cj)kj+1 = cj(cj + 1)kj ,

we get the assertion (14) of Theorem 1. �

Remark 1: In cases n = 2 and n = 3 the contiguous relations (7) and (14) with applica-
tions to the theory of the boundary value problems for the singular elliptic equations are
found respectively in [16] and [17].

Remark 2: The contiguous relation (14) first occurs in [31], where thanks to this rela-
tion, the solution of the generalized Holmgren problem for the multidimensional singular
elliptic equation is found in explicit form.

Let’s determine some necessary notation:

Al(k, n) =
k+1∑
i=l

n∑
j=i

mi,j,Bl(k, n) =
k∑
i=l

mi,k +
n∑

i=k+1

mk+1,i;

A2(0, 0) = B2(0, 0) = 0; |mn| :=
n∑

i=2

n∑
j=i

mi,j, Mn! :=
n∏

i=2

n∏
j=i

(
mi,j
)
!,

where k, n ∈ N, k ≤ n; l ∈ N \ {1}; mi,j ∈ N ∩ {0}(2 ≤ i ≤ j ≤ n); N = {1, 2, . . . , }. Here-
inafter,

∑m
i=1,
∑n

i=2 denote zero ifm = 0 or n = 1.

Theorem 2: The following expansion formula holds for all n ∈ N

F(n)
A (a, b; c; x) =

∞∑
|mn|=0

(a)A2(n,n)

Mn!

n∏
k=1

(bk)B2(k,n)
(ck)B2(k,n)
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×
n∏

k=1

{
xB2(k,n)k F

[
a + A2(k, n), bk + B2(k, n);
ck + B2(k, n);

xk
]}

, (15)

where F(a, b; c; z) is the Gaussian hypergeometric function defined in (2).

Proof: We carry out the proof by themethod ofmathematical induction. In the case n = 1
the equality (15) is obvious (A2(1, 1) = B2(1, 1) = 0).

Let n = 2. Since A2(1, 2) = A2(2, 2) = B2(1, 2) = B2(2, 2) = m2,2 := r, we obtain the
formula (8).

So the formula (15) works at n = 1 and n = 2.
Now we assume that for n = s the equality (15) holds:

F(s)
A (a, b1, . . . ., bs;c1, . . . ., cs; x1, . . . , xs) =

∞∑
|ms|=0

(a)A2(s,s)

Ms!

×
s∏

k=1

(bk)B2(k,s)
(ck)B2(k,s)

xB2(k,s)k F
[

a + A2(k, s), bk + B2(k, s);
ck + B2(k, s);

xk
]
. (16)

Let n = s + 1. We prove that the following formula

F(s+1)
A (a, b1, . . . ., bs+1;c1, . . . ., cs+1; x1, . . . , xs+1)

=
∞∑

|ms+1|=0

(a)A2(s+1,s+1)

Ms+1!

s+1∏
k=1

(bk)B2(k,s+1)

(ck)B2(k,s+1)

×
s+1∏
k=1

xB2(k,s+1)
k F

[
a + A2(k, s + 1), bk + B2(k, s + 1);
ck + B2(k, s + 1); xk

]
(17)

is valid.
We rewrite the Hasanov-Srivastava’s formula (11) in the form

F(s+1)
A (a, b1, . . . ., bs+1;c1, . . . ., cs+1;x1, . . . , xs+1)

=
∞∑

m2,2,...,m2,s+1=0

(a)A2(1,s+1)(b1)B2(1,s+1)(b2)m2,2 · · · (bs+1)m2,s+1

m2,2! · · · m2,s+1!(c1)B2(1,s+1)(c2)m2,2 · · · (cs+1)m2,s+1

× xB2(1,s+1)
1 xm2,2

2 · · · xm2,s+1
s+1 F

[
a + A2(1, s + 1), b1 + M2(1, s + 1);
c1 + B2(1, s + 1); x1

]

× F(s)
A

[
a + A2(1, s + 1), b2 + m2,2, . . . , bs+1 + m2,s+1;
c2 + m2,2, . . . ., cs+1 + m2,s+1;

x2, . . . , xs+1

]
. (18)

By virtue of the formula (16) we have

F(s)
A

[
a + A2(1, s + 1), b2 + m2,2, . . . , bs+1 + m2,s+1;
c2 + m2,2, . . . , cs+1 + m2,s+1;

x2, . . . , xs+1

]
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=
∞∑

mi,j=0
(3≤i≤j≤s+1)

(a + A2(1, s + 1))A3(s+1,s+1)

mij!

s+1∏
k=2

(bk + m2,k)B3(k,s+1)

(ck + m2,k)B3(k,s+1)
xB3(k,s+1)
k

×
s+1∏
k=2

F
[

a + A2(1, s + 1) + A3(k, s + 1), bk + m2,k + B3(k, s + 1);
ck + m2,k + B3(k, s + 1); xk

]
. (19)

Substituting from (19) into (18) we obtain

F(s+1)
A (a, b1, . . . ., bs+1; c1, . . . ., cs+1; x1, . . . , xs+1)

=
∞∑

mi,j=0
(2≤i≤j≤s+1)

(a)A2(1,s+1)+A3(s+1,s+1)

mij!

s+1∏
k=1

(bk)m2,k+B3(k,s+1)

(ck)m2,k+B3(k,s+1)
xm2,k+B3(k,s+1)
k

×
s+1∏
k=1

F
[

a + A2(1, s + 1) + A3(k, s + 1),bk + m2,k + B3(k, s + 1);
ck + m2,k + B3(k, s + 1); xk

]
.

Further, by virtue of the following obvious equalities

A2(1, s + 1) + A3(k, s + 1) = A2(k, s + 1), 1 ≤ k ≤ s + 1, s ∈ N,

m2,k + B3(k, s + 1) = B2(k, s + 1), 1 ≤ k ≤ s + 1, s ∈ N,

we finally find the equality (17). Q.E.D. �

Theorem 3: Let a, bk, ck be real numbers, where ck �= 0,−1,−2, . . . and a > |b| > 0 and
ck > bk. Then for n = 1, 2, . . ., the following limit correlation is true

lim
ε→0

[
1

ε|b| F
(n)
A

(
a, b; c; 1 − f1(ε)

ε
, · · · ., 1 − fn(ε)

ε

)]

= � (a − |b|)
�(a)

n∏
k=1

[∣∣fk(0)∣∣−bk � (ck)
� (ck − bk)

]
,

where fk(ε) are arbitrary functions with fk(0) �= 0 (k = 1, n).

Proof: By virtue of the decomposition formula (15) we obtain

F(n)
A

(
a, b; c; 1 − f1(ε)

ε
, . . . , 1 − fn(ε)

ε

)
=

∞∑
|mn|=0

(a)A2(n,n)

Mn!

n∏
k=1

(bk)B2(k,n)
(ck)B2(k,n)

×
n∏

k=1

(
1 − fk(ε)

ε

)B2(k,n)
F
[

a + A2(k, n), bk + B2(k, n);
ck + B2(k, n);

1 − fk(ε)
ε

]
. (20)

Applying now the familiar autotransformation formula (4) to each hypergeometric func-
tion included in the sum (20), we get

F(n)
A

(
a, b;c;1 − f1(ε)

ε
, . . . , 1 − fn(ε)

ε

)
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= ε|b|
∞∑

|mn|=0

(a)A2(n,n)

Mn!

n∏
k=1

(bk)B2(k,n)
(ck)B2(k,n)

[
fk(ε)

]bk
(

ε

fk(ε)
− 1
)B2(k,n)

×
n∏

k=1

F
[

ck − a + B2(k, n) − A2(k, n), bk + B2(k, n);
ck + B2(k, n);

1 − ε

fk(ε)

]
.

It should be noted here that the sum B2(1, n) + B2(2, n) + · · · + B2(n, n) has the parity
property, which plays an important role in the calculation of some values of hypergeometric
functions. In fact, by virtue of equality

n∑
k=2

k∑
i=2

mi,k =
n−1∑
k=1

n∑
i=k+1

mk+1,i

we obtain
n∑

k=1

B2(k, n) = 2
n∑

k=2

k∑
i=2

mi,k = 2
n−1∑
k=1

n∑
i=k+1

mk+1,i

which helps to calculate the limit

lim
ε→0

n∏
k=1

(
ε

fk(ε)
− 1
)B2(k,n)

=
n∏

k=1

(−1)B2(k,n) = 1.

Now we calculate the limit

lim
ε→0

[
1

ε|b| F
(n)
A

(
a, b; c; 1 − f1(ε)

ε
, . . . , 1 − fn(ε)

ε

)]
=

∞∑
|mn|=0

(a)A2(n,n)

Mn!

×
n∏

k=1

[
fk(0)

]−bk (bk)B2(k,n)
(ck)B2(k,n)

F
[

ck − a + B2(k, n) − A2(k, n), bk + B2(k, n);
ck + B2(k, n);

1
]
.

Applying the summation formula [25, p. 56, Equation 2.1(14)]

F(a, b; c; 1) = �(c)�(c − a − b)
�(c − a)�(c − b)

, Rec > Reb > 0, Re(c − a − b) > 0.

to the Gauss hypergeometric functions in the last sum and taking into account the
following previously proven equality [32, Equation (4.11)]

∞∑
|mn|=0

(a)A2(n,n)

Mn!

n∏
k=1

(bk)B2(k,n) (a − bk)A2(k,n)−B2(k,n)

(a)A2(k,n)
= � (a − |b|)

�(a)

n∏
k=1

�(a)
� (a − bk)

,

we obtain the assertion of Theorem 3. Q.E.D. �

Let us introduce the notation: |x| := x1 + · · · + xn.
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Theorem 4: . Let be x1 > 0,. . . , xn > 0. If c1 > b1 > 0,. . . , cn > bn > 0 and a + |b| = |c|,
then the Lauricella hypergeometric function F(n)

A has a logarithmic singularity

F(n)
A (a, b; c; x) ∼ − 1

�(a)

n∏
j=1

[
�
(
cj
)

�
(
bj
)xbj−cj

j

]
ln(1 − |x|)

as |x| → 1 − 0. The same argument leads to the more general result, that if c1 > b1 > 0,. . . ,
cn > bn > 0 and a + |b| > |c|, then

F(n)
A (a, b; c; x) ∼ � (a + |b| − |c|)

�(a)

n∏
j=1

[
�
(
cj
)

�
(
bj
)xbj−cj

j

]
(1 − |x|)|c|−|b|−a (21)

as |x| → 1 − 0.

Note that in case n = 2 Theorem 4 is proven for the Appell function F2 in [13].

Proof: Let us prove the statement of the theorem on logarithmic singularity. We assume
that the following conditions are met: cj > bj > 0 and a + |b| = |c|. It is known [29], that
the hypergeometric function Lauricella F(n)

A (a, b; c; x) converges absolutely, if x1 > 0,. . . ,
xn > 0 and |x| < 1.

It is clear that the pointM with coordinates xj = a2j /A (j = 1, n) lies on the hyperplane
|x| = 1, where A := a21 + · · · + a2n, a1 > 0, . . . an > 0. Let us show that each point of
this hyperplane is a point of logarithmic singularity.

For brevity, we denote the Lauricell hypergeometric function by F(n)
A . Then, if bi >

0, i = 1, n, then the integral representation (10) for F(n)
A can be easily transformed to

the form

n∏
j=1

[
�
(
bj
)
�
(
cj − bj

)
�
(
cj
)

]
F(n)
A (a, b;c;x)

=
∫ 1

0
· · ·
∫ 1

0

⎛
⎝1 −

n∑
j=1

tjxj

⎞
⎠

−a
n∏
j=1

[
tbj−1
j
(
1 − tj

)cj−bj−1 dtj
]

= I,

meaningful only if x1 > 0, . . . , xn > 0, |x| < 1. Now we write xj = ξjr, where ξj > 0, ξ1 +
· · · + ξn = 1, 0 < r < 1, and investigate the behaviour of I for r → 1 − 0. We obtain

I =
∞∑
k=0

(a)k
k!

∫ 1

0
· · ·
∫ 1

0
(t1x1 + · · · + tnxn)k

n∏
j=1

[
tbj−1
j
(
1 − tj

)cj−bj−1 dtj
]

= a0 +
∞∑
k=1

(a)k
k!

Ekrk,
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where

a0 =
n∏
j=1

[
�
(
bj
)
�
(
cj − bj

)
�
(
cj
)

]

and

Ek =
∫ 1

0
· · ·
∫ 1

0
(t1x1 + · · · + tnxn)k

n∏
j=1

[
tbj−1
j
(
1 − tj

)cj−bj−1 dtj
]

=
∫ 1

0
· · ·
∫ 1

0
(1 − t1x1 − · · · − tnxn)k

n∏
j=1

[
tcj−bj−1
j

(
1 − tj

)bj−1 dtj
]
.

Now let’s put t1 = θ1/(kξ1), . . . , tn = θn/(kξn). Then, by virtue of |c| − |b| = a, we get

Ek = 1
k|c|−|b|

n∏
j=1

1

ξ
cj−bj
j

∫ kξ1

0
· · ·
∫ kξn

0

(
1 − 	

k

)k n∏
j=1

[
θ
cj−bj−1
j

(
1 − θj

kξj

)bj−1
dθj

]
,

where 	 := θ1 + · · · + θn. Passing to the limit as k → ∞, we obtain

kaEk →
n∏
j=1

1

ξ
cj−bj
j

∫ ∞

0
· · ·
∫ ∞

0
e−	

n∏
j=1

[
θ
cj−bj−1
j dθj

]

=
n∏
j=1

⎡
⎣ 1

ξ
cj−bj
j

∫ ∞

0
e−θjθ

cj−bj−1
j dθj

⎤
⎦ =

n∏
j=1

⎡
⎣�
(
cj − bj

)
ξ
cj−bj
j

⎤
⎦ .

Using the well-known asymptotic formula for the gamma function[25, p. 62, Equation (4)]:

�(z + α)

�(z + β)
= zα−β

[
1 + 1

2z
(α − β) (α + β − 1) + O

(
1
z2

)]
, z → ∞,

we have

(a)k
k!

Ek = Ek
� (a)

� (a + k)
�(1 + k)

∼ Ek
� (a)

ka−1

= ka−1

� (a) ka

n∏
j=1

⎡
⎣�
(
cj − bj

)
ξ
cj−bj
j

⎤
⎦ = 1

k� (a)

n∏
j=1

⎡
⎣�
(
cj − bj

)
ξ
cj−bj
j

⎤
⎦

as k → ∞. �

Further, in the process of proving Theorem 4, the following lemma given by Hobson
[33] is very important.

Lemma 1: If
∑∞

n=0 anx
n,
∑∞

n=0 bnx
n both converge within the interval (−1, 1), an being

positive and such that
∑∞

n=0 an is divergent, and if bn/an oscillates between the limits U
and L, then the upper and lower limits of

∑∞
n=0 bnx

n/
∑∞

n=0 anx
n, as x converges to 0,
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are in the interval (L,U). In particular, if bn/an converges to a definite limit, as n ∼ ∞,∑∞
n=0 bnx

n/
∑∞

n=0 anx
n converges to the same limit, as x converges to 1. If bn/an diverges to

∞, so also does
∑∞

n=0 bnx
n/
∑∞

n=0 anx
n, as x ∼ 1.

By virtue of Lemma 1, we have

lim
r→1−0

∑∞
k=1

(a)k
k!

Ekrk∑∞
k=1

1
k
rk

= lim
k→∞

(a)k
k!

Ek
1
k

= 1
� (a)

n∏
j=1

⎡
⎣�
(
cj − bj

)
ξ
cj−bj
j

⎤
⎦ .

Hence, taking into account the well-known expansion of the logarithmic function

ln(1 − r) = −
∞∑
k=1

1
k
rk,

we obtain

I ∼ − 1
� (a)

n∏
j=1

⎡
⎣�
(
cj − bj

)
ξ
cj−bj
j

⎤
⎦ ln(1 − r)

= − 1
� (a)

n∏
j=1

⎡
⎣�
(
cj − bj

)
rcj−bj

xcj−bj
j

⎤
⎦ ln (1 − |x|)

∼ − 1
� (a)

n∏
j=1

⎡
⎣�
(
cj − bj

)
xcj−bj
j

⎤
⎦ ln (1 − |x|)

as r → 1 − 0.
Therefore, if cj > bj > 0, a + |b| = |c| and xj are positive (j = 1, n), then

F(n)
A (a, b; c; x) ∼ − 1

� (a)

n∏
j=1

⎡
⎣ �

(
cj
)

�
(
bj
)
xcj−bj
j

⎤
⎦ ln (1 − |x|) ,

as |x| → 1 − 0.
The second statement of Theorem 4 is proved similarly. Q.E.D.

4. Fundamental solutions of a multidimensional degenerate elliptic
equation

We consider the equation

n∑
k=1

n∏
j=1,j�=k

[
xmj+1
j

](
xk

∂2u
∂x2k

+ pk
∂u
∂xk

)
= 0, 0 < pk < 1, mk > −2pk (22)

in the domain Rn+ = {(x1, . . . , xn) : x1 > 0, . . . , xn > 0}.
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Let x := (x1, . . . , xn) be any point and ξ := (ξ1, . . . , ξn) be any fixed point of Rn+.
Let x and ξ be two points of the domain Rn+. We are looking for a solution of Equation

(22) in the form

u = Pω (σ) , (23)

where ω is a new unknown function,

P = r−2β , β = n − 2
2

+
n∑

k=1

αk, αk = mk + 2pk
2 (mk + 2)

;

σ = (σ1, . . . , σn) , σk = r2 − r2k
r2

, r2 =
n∑
j=1

4(
mj + 2

)2
(
x
mj+2
2

j − ξ
mj+2
2

j

)2
,

r2k = 4
(mk + 2)2

(
x
mk+2

2
k + ξ

mk+2
2

k

)2
+

n∑
j=1j�=k

4(
mj + 2

)2
(
x
mj+2
2

j − ξ
mj+2
2

j

)2
, k = 1, n.

We calculate all necessary derivatives and substitute them into Equation (22):

n∑
k=1

Ak
∂2ω

∂σ 2
k

+
n∑

k=1

n∑
l=k+1

Bk,l
∂2ω

∂σk∂σl
+

n∑
k=1

Ck
∂ω

∂σk
+ Dω = 0, (24)

where

Ak = PX
n∑
j=1

n∏
i=1,i�=j

[
xmi
i
] (∂σk

∂xj

)2
,

Bk,l = 2PX
n∑
j=1

n∏
i=1,i�=j

[
xmi
i
] ∂σk

∂xj
∂σl

∂xj
,

Ck = PX
n∑
j=1

n∏
i=1,i�=j

[
xmi
i
] ∂2σk

∂x2j

+ 2X
n∑
j=1

n∏
i=1,i�=j

[
xmi
i
] ∂P

∂xj
∂σk

∂xj
+ P

n∑
j=1

pj
n∏

i=1,i�=j

[
xmi+1
i

] ∂σk

∂xj
,

D = X
n∑
j=1

n∏
i=1,i�=j

[
xmi
i
] ∂2P

∂x2j
+

n∑
j=1

pj
n∏

i=1,i�=j

[
xmi+1
i

] ∂P
∂xj

, X =
n∏
j=1

[xj].

It is not difficult to calculate the derivatives (k, j = 1, n):

∂σk

∂xk
= − 8

(mk + 2) r2
x
mk
2
k ξ

mk+2
2

k − 4
(mk + 2) r2

x
mk
2
k

(
x
mk+2

2
k − ξ

mk+2
2

k

)
σk, (25)

∂σk

∂xj
= − 4(

mj + 2
)
r2
x
mj
2
j

(
x
mj+2
2

j − ξ
mj+2
2

j

)
σk, j �= k, (26)
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∂2σk

∂x2k
= − 4mk

(mk + 2) r2
x
mk−2

2
k ξ

mk+2
2

k − 4 (2mk + 3)
(mk + 2) r2

xmk
k σk

+ 2 (3mk + 4)
(mk + 2) r2

x
mk−2

2
k ξ

mk+2
2

k σk + 32
(mk + 2)2 r4

xmk
k

(
x
mk+2

2
k − ξ

mk+2
2

k

)2
σk, (27)

∂2σk

∂x2j
= 2mj(

mj + 2
)
r2
x
mj−2
2

j ξ
mj+2
2

j σk − 4
(
mj + 1

)
(
mj + 2

)
r2
xmj
j σk

+ 32(
mj + 2

)2 r4 x
mj
j

(
x
mj+2
2

j − ξ
mj+2
2

j

)2
σk, j �= k, (28)

∂P
∂xi

= − 4βP(
mj + 2

)
r2
x
mj
2
j

(
x
mj+2
2

j − ξ
mj+2
2

j

)
, (29)

∂2P
∂x2i

= −16β(β + 1)P(
mj + 2

)2 r4 x
mj
j

(
x
mj+2
2

j − ξ
mj+2
2

j

)2

− 4β
(
mj + 1

)
P(

mj + 2
)
r2

xmj
j + 2βmjP(

mj + 2
)
r2
x
mj−2
2

j ξ
mj+2
2

j , (30)

After some simple calculations, by virtue of (25)–(30), we find (k = 1, n)

Ak = −4xm+1P(r)
r2

(
ξk

xk

)mk+2
2

σk (1 − σk) ; (31)

Bk,l = 4xm+1P(r)
r2

⎡
⎣( ξk

xk

)mk+2
2 +

(
ξl

xl

)ml+2
2

⎤
⎦ σkσl, k < l, l = 1, n; (32)

Ck = −4xm+1P(r)
r2

⎧⎨
⎩[2αk − (1 + β)σk]

(
ξk

xk

)mk+2
2 − σk

n∑
j=1

αj

(
ξj

xj

)mj+2
2

⎫⎬
⎭ ; (33)

D = 4βxm+1P(r)
r2

n∑
i=1

αi

(
ξj

xj

)mj+2
2

. (34)

Substituting Equations (31)–(34) into Equation (24), we get the system of hypergeometric
equations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
σk (1 − σk)

∂2ω

∂σ 2
k

− σk

n∑
j=1,j�=k

σj
∂2ω

∂σj∂σk
+ [2αk − (1 + αk + β) σk]

∂ω

∂σk

−αk
∑n

j=1,j�=k σj
∂ω

∂σj
− αkβω = 0, k = 1, n,

(35)

Comparing now the system (35) with the system (12), it is easy to determine the solutions
of the system (35):

1 : {F(n)
A

[
β ,α1, . . . ,αn;
2α1, . . . , 2αn;

σ

]
,
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n :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ 1−2α1
1 F(n)

A

[
β + 1 − 2α1, 1 − α1,α2, . . . ,αn;
2 − 2α1, 2α2, . . . , 2αn;

σ

]
,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
σ 1−2αn
n F(n)

A

[
β + 1 − 2αn,α1, . . . ,αn−1, 1 − αn;
2α1, . . . , 2αn−1, 2 − 2αn;

σ

]
,

n(n − 1)
1 · 2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 1−2α1
1 σ 1−2α2

2 F(n)
A

⎡
⎣ β + 2 − 2α1 − 2α2,

1 − α1, 1 − α2,α3, . . . ,αn;
2 − 2α1, 2 − 2α2, 2α3, . . . , 2αn;

σ

⎤
⎦ ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

σ 1−2α1
1 σ 1−2αn

n F(n)
A

⎡
⎣ β + 2 − 2α1 − 2αn,

1 − α1,α2, . . . ,αn−1, 1 − αn;
2 − 2α1, 2α2, . . . , 2αn−1, 2 − 2αn;

σ

⎤
⎦ ,

σ 1−2α2
2 σ

1−2α3
3 F(n)

A

⎡
⎣ β + 2 − 2α2 − 2α3,

α1, 1 − α2, 1 − α3,α4, . . . ,αn;
2α1, 2 − 2α2, 2 − 2α3, 2α4, . . . , 2αn;

σ

⎤
⎦ ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

σ
1−2αn−1
n−1 σ 1−2αn

n F(n)
A

⎡
⎣ β + 2 − 2αn−1 − 2αn,

α1, . . . ,αn−2, 1 − αn−1, 1 − αn;
2α1, . . . , 2αn−2, 2 − 2αn−1, 2 − 2αn;

σ

⎤
⎦ ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ..

1 :
{
σ 1−2α1
1 · · · σ 1−2αn

n F(n)
A

[
β + n − 2α1 − · · · − 2αn, 1 − α1, . . . , 1 − αn;
2 − 2α1, . . . , 2 − 2αn;

σ

]
,

and substituting these solutions in (23), by virtue of (13), we obtain the fundamental
solutions of Equation (22) in the form

qk(x; ξ) = γkr−2βk
k∏

j=1

[(
xjξj
)1−pj

]

× F(n)
A

[
βk, 1 − α1, . . . , 1 − αk,αk+1, . . . ,αn;
2 − 2α1, . . . , 2 − 2αk, 2αk+1, . . . , 2αn;

σ1, . . . , σn
]
, k = 0, n, (36)

where γk are constants, which are determined when solving boundary value problems for
Equation (22);

βk = n − 2
2

+ k −
k∑

j=1
αj +

n∑
j=k+1

αj, k = 0, n; σj = 1 − r2j
r2
, j = 1, n.

Lemma 2: The fundamental solutions qk(x; ξ) of Equation (22) defined in (36) have a
following properties:

∂q0(x; ξ)

∂xj

∣∣∣∣
xj=0

= 0, j = 1, n; (37)

qk(x; ξ)
∣∣
xj=0 = 0, j = 1, k, k = 1, n − 1; (38)
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∂qk(x; ξ)

∂xj

∣∣∣∣
xj=0

= 0, j = k + 1, n, k = 1, n − 1; (39)

qn(x; ξ)
∣∣
xj=0 = 0, j = 1, n. (40)

Proof: The fulfilment of the equalities (38) and (40) follows directly from the definition of
the fundamental solution (36).

To prove the equalities (37) and (39) Theorem 1 on the relation between contigu-
ous hypergeometric Lauricella functions is used. Indeed, let us consider the fundamental
solution

q0(x; ξ) = γ0r−2β0F(n)
A

[
β0,α1, . . . ,αn;
2α1, . . . , 2αn;

σ1, . . . , σn
]
, β0 = n − 2

2
+

n∑
j=1

αj

and calculate the derivative with respect to x1,. . . , xn:

∂q0
∂xj

= −β0γ0r−2β0−2 ∂r2

∂xj
F(n)
A + γ0r−2β0

n∑
k=1

∂F(n)
A

∂σk

∂σk

∂xj
.

Now using the ready derivatives (25), (26) and

∂

∂σk
F(n)
A

[
a, b1, . . . , bn;
c1, . . . , cn;

σ

]
= abk

ck
F(n)
A

[
a + 1, b1, . . . , bk−1, bk + 1, bk+1, . . . , bn;
c1, . . . , ck−1, ck + 1, ck+1, . . . , cn;

σ

]
,

and also a relation between contiguous Lauricella functions (14) (see Theorem 1), we get

∂q0
∂xj

= − 4β0γ0

mj + 2
r−2β0−2x

mj
2

{
x
mj+2
2 F(n)

A

[
β0 + 1,α1, . . . ,αn;
2α1, . . . , 2αn;

σ

]
− ξ

mj+2
2 F̃(n)

A

}
,

where

F̃(n)
A = F(n)

A

[
β0 + 1,α1, . . . ,αn;
2α1, . . . , 2αn;

σ

]

− F(n)
A

[
β0 + 1,α1, . . . ,αj−1,αj + 1,αj+1, . . . ,αn;
2α1, . . . , 2αj−1, 2αj + 1, 2αj+1, . . . , 2αn;

σ

]
.

Since limxj→0 σj = 0, then limxj→0 F̃
(n)
A = 0. Hence, the equality (37) is valid.

The equality (39) is proved in a similar way. Q.E.D. �

Lemma 3: In the case n>2 the fundamental solutions qk(x; ξ)(k = 1, n) of Equation (22)

have a singularity of order
1

rn−2 as r → 0.
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Proof: Using the transformation for the Lauricella function F(n)
A [26, p. 116, Equation (9)]

F(n)
A (a, b; c; σ1, . . . , σn) = (1 − |σ |)−aF(n)

A

(
a, c − b; c;

σ1

|σ | − 1
, . . . ,

σn

|σ | − 1

)
,

where |σ | := σ1 + · · · + σn, we rewritten the fundamental solution qk(x; ξ) of Equation
(22) defined in (36) in the form

qk(x; ξ) = γkR−2βk
k∏

j=1

[(
xjξj
)1−pj

]

× F(n)
A

[
βk, 1 − α1, . . . , 1 − αk,αk+1, . . . ,αn;
2 − 2α1, . . . , 2 − 2αk, 2αk+1, . . . , 2αn;

σ̃1

R2
, . . . ,

σ̃n

R2

]
, (41)

where

R2 =
n∑
j=1

4(
mj + 2

)2
(
x
mj+2
2

j + ξ
mj+2
2

j

)2
; σ̃k = 16

(mk + 2)2
x
mk+2

2
k ξ

mk+2
2

k , k = 1, n.

It is easy to calculate the limit of the sum of variables of the Lauricella function in (41):

n∑
j=1

σ̃j

R2
= 1 − r2

R2
→ 1 − 0, r → 0.

Since in the representation (41) the sum of the upper parameters of the Lauricella function
F(n)
A is greater than the sum of the lower parameters, then one can use assertion (21) of

Theorem 4 to determine the behaviour of the fundamental solution qk(x; ξ):

qk(x; ξ) ∼ γkR−2βk
(
R
r

)n−2 k∏
j=1

[
�
(
2 − 2αj

)
�(1 − αj)

(
xjξj
)1−pj

(
σ̃j

R2

)αj−1
]

×
n∏

j=k+1

[
�
(
2αj
)

�(αj)

(
σ̃j

R2

)−αj
]
,

i.e.

qk(x; ξ) ∼ γ̃k

rn−2

n∏
j=1

(
xjξj
)−(mj+2pj)/4 , (42)

where

γ̃k =
k∏

j=1

[
�
(
2 − 2αj

)
�(1 − αj)

(
4

mj + 2

)2αj−2
] n∏

j=k+1

[
�
(
2αj
)

�(αj)

(
4

mj + 2

)−2αj
]
.

Since xj > 0, ξj > 0 and mj + 2pj > 0 (j = 1, n), the last relation (42) shows that the fun-

damental solutions qk(x; ξ) (k = 0, n) for n>2 have a singularity of order
1

rn−2 as r → 0.
Q.E.D. �
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Thus, the main result of this Section can be formulated as follows

Remark 3: In paper [19] it is proved that in case n = 2 the fundamental solutions of

Equation (22) have a logarithmic singularity ln
1
r
as r → 0.

Theorem 5: . The functions defined in (36) are the fundamental solutions of Equation (22)
and satisfy the boundary conditions (37)–(40).

Proof: The proof of Theorem 5 follows from Lemmas 2 and 3. �

5. Conclusion

Note that using the constructed fundamental solutions (36), one can find simple and
double layer potentials, volume potentials, and also Green’s functions associated with
Equation (22), which are used in solving boundary value problems.

By the above method, taking into account new properties of the Lauricella’s hypergeo-
metric function established in Section 3, fundamental solutions of the multidimensional
degenerate elliptic equation

n∑
k=1

n∏
j=1,j�=k

[
xmj
j

] ∂2u
∂x2k

= 0, mj > 0, xj > 0, j = 1, n

can also be constructed.
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