
Citation: Ryskan, A.; Arzikulov, Z.;

Ergashev, T.; Berdyshev, A.

Self-Similar Solutions of a

Multidimensional Degenerate Partial

Differential Equation of the Third

Order. Mathematics 2024, 12, 3188.

https://doi.org/10.3390/

math12203188

Academic Editor: Luigi Rodino

Received: 3 September 2024

Revised: 27 September 2024

Accepted: 9 October 2024

Published: 11 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Self-Similar Solutions of a Multidimensional Degenerate Partial
Differential Equation of the Third Order
Ainur Ryskan 1,2,*,† , Zafarjon Arzikulov 3,† , Tuhtasin Ergashev 4,5,*,† and Abdumauvlen Berdyshev 1,†

1 Institute of Mathematics, Physics and Informatics, Abai Kazakh National Pedagogical University,
Almaty 050012, Kazakhstan; a.berdyshev@abaiuniversity.edu.kz

2 School of Digital Technologies, Narxoz University, Almaty 050035, Kazakhstan
3 Department of Higher Mathematics, Fergana Polytechnic Institute, Fergana 150100, Uzbekistan;

z.arziqulov@ferpi.uz
4 Department of Higher Mathematics, National Research University “TIIAME”, Tashkent 100000, Uzbekistan
5 Department of Mathematics, Analysis, Logic and Discrete Mathematics, Ghent University, 9000 Gent, Belgium
* Correspondence: a.ryskhan@abaiuniversity.edu.kz (A.R.); t.ergashevtukhtasin@tiiame.uz (T.E.)

Tel.: +7-707-500-47-82 (A.R.); +998-77-07163-65 (T.E.)
† These authors contributed equally to this work.

Abstract: When studying the boundary value problems’ solvability for some partial differential
equations encountered in applied mathematics, we frequently need to create systems of partial
differential equations and explicitly construct linearly independent solutions explicitly for these
systems. Hypergeometric functions frequently serve as solutions that satisfy these systems. In
this study, we develop self-similar solutions for a third-order multidimensional degenerate partial
differential equation. These solutions are represented using a generalized confluent Kampé de Fériet
hypergeometric function of the third order.
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1. Introduction: Notations and Definitions

The theory of special functions, as a field of mathematical analysis devoted to the study
and application of higher transcendental functions, has a long history and rich content
due to the penetration and interrelationships with a wide range of topics in the theory of
functions, integral and differential equations, and other branches of mathematics. Solving
various issues concerning thermal conductivity, lectromagnetic oscillations, aquantum
mechanics, eromechanics, dynamics and potential theories gives rise to special functions.
They most often appear when solving partial differential equations [1,2].

The significant successes achieved in the theory of the hypergeometric function of one
variable have stimulated the development of corresponding theories for functions of two
or more variables.

A significant contribution to the theory of two-dimensional hypergeometric functions
was conducted by Horn [3], who particularly studied the hypergeometric series of the
second order. He discovered that in addition to some functions representable in terms of
one variable functions or multiplication of two hypergeometric functions, every depending
on one variable, there are 34 different hypergeometric functions of the second order (known
as the Horn list). Thus, in the case of two variables, there are 14 complete and 20 confluent
hypergeometric functions of the second order. Horn also studied the convergence of
hypergeometric functions of two variables [4] (pp. 227–229). In general, Horn concentrated
on the study of second-order hypergeometric functions of two independent variables.
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Hypergeometric functions of two variables whose order exceeds two are called Kampé de
Fériet functions [5] (p. 27).

The purpose of this work is to find self-similar solutions for a multidimensional
degenerate third-order partial differential equation.

n

∏
j=1

x
mj
j · ∂u

∂t
− tl

n

∑
k=1

(
n

∏
j=1,j ̸=k

x
mj
j

)
∂3u
∂x3

k
= 0, l > 0, mj > 0, j = 1, n (1)

in the area Ω = {(x, t) : x1 > 0, ..., xn > 0, t > 0}. Further, x := (x1, ..., xn). Note that
many degenerate partial differential equations of the third and higher orders appear when
solving applied problems [6–8].

When studying natural phenomena and solving problems in physics, engineering,
chemistry, biology, and other sciences, it is often challenging to directly establish a relation-
ship between the quantities that describe a particular evolutionary process. However, in
many cases, it is possible to relate these quantities (functions) to the rates of their change
concerning other (independent) variables. This leads to the formulation of equations that
include unknown functions under the derivative sign, known as differential equations.

For instance, the work cited in [9] utilizes both analytical and experimental results
to mathematically reveal a deterioration in material stiffness linked to a decrease in the
first natural frequency when the excitation frequency is slightly lower than that of an
intact structure. Considering the vibration of a homogeneous thin cantilever beam as an
oscillatory system with worsening hysteresis behavior, Hasanov and Djuraev [10] derived
exact solutions to the fourth-order equation, as follows:

∂2u(x, t)
∂t2 +

2a
t
+ c2 ∂4u(x, t)

∂x4 = 0, c =

√
EI
ρS

,

where ρ is the density, S is the cross section area, EI is the bending stiffness of a beam.
Equation (1) considered above belongs to the type of parabolic equations that arise

in modeling processes such as liquid filtration in fractured porous media, groundwater
movement with a free surface in multilayer media, and the transfer of moisture, heat, and
salts in porous media [11]. Studying these processes requires solving boundary value
problems for a third-order equation.

As is known, if the order of degenerate and singular partial differential equations
with three variables exceeds two, then any solutions to them are expressed in terms of the
Kampé de Fériet hypergeometric function, the order of which is equal to the order of the
equation in question. For example, in [12], all eight self-similar solutions of equation are
as follows:

Lu = xnymut − tkymuxxx − tkxnuyyy = 0,

where m, n, k are positive constant numbers in the domain Ω = {(x, y, t) : x > 0, y > 0, t > 0}
and are written out using the Kampé de Fériet hypergeometric function (of two independent
variables). The following works are adjacent to this line of research [13–17].

To solve this problem, following the Horn method [3], we define a general hypergeo-
metric function of many variables and compose a system of partial differential equations
that satisfies any hypergeometric function of many variables. We introduce the Kampé de
Fériet function of many (more than two) variables and determine the linearly independent
solutions of the system of differential equations corresponding to this multidimensional
Kampé de Fériet function. Finally, we write out self-similar solutions of Equation (1) through a
generalized confluent hypergeometric Kampé de Fériet function of the third order.



Mathematics 2024, 12, 3188 3 of 13

1.1. Multivariable Hypergeometric Functions

Consider a given multiple power series, as follows:

∞

∑
|k|=0

A(k)xk1
1 xk2

2 xk3
3 ...xkn

n , (2)

where the summation is executed according to the index k := (k1, ..., kn) with non-negative
integer elements k j ≥ 0, i = 1, n for |k| := k1 + ... + kn.

A multiple power series (2) is a hypergeometric function if the following n relations

A
(
k + ej

)
A(k)

= f j(k)

are rational functions that depend on k, where ej := (0, ..., 0, 1, 0, ...0) is a vector consisting
of n components, the j-th component of which is equal to one, and the rest are zero.

Let

f j(k) =
Pj(k)
Qj(k)

, (3)

where Pj and Qj are polynomials of k, which have, respectively, degrees pj and qj. It is
assumed that Qj has a multiplier k j + 1; Pj and Qj they do not have common multipliers,
except perhaps k j + 1 (j = 1, n).

The largest of the numbers p1,..., pn, q1,..., qn is called the order of the hypergeomet-
ric function.

If all the numbers p1,..., pn, q1,..., qn are the same, i.e., p1 = ... = pn = q1 = ... = qn,
then the hypergeometric function (2) is called complete; otherwise, it is confluent.

In the case of two variables, there are 14 complete functions for which p1 = q1 = p2 =
q2 = 2, and there are 20 confluent functions (Horn’s list [3], see also, [4] (pp. 224–227)),
which are the limit forms for complete functions and for which p1 ≤ q1 = 2 , p2 ≤ q2 = 2;
moreover, p1 and p2 cannot both be equal to two at the same time.

In the case of three variables, there are 205 complete [5] and 395 confluent [18] second-
order hypergeometric functions that are known.

The hypergeometric function of many variables is

z(x) =
∞

∑
|k|=0

A(k)xk1
1 xk2

2 xk3
3 ...xkn

n ,

where
A
(
kj + 1

)
A(k)

=
Pj(k)
Qj(k)

and Pj(k) , Pj(k) (j = 1, n) are the same polynomials as in (3) and fulfill a set of linear
partial differential equations. This system may be expressed using differential operators,
as follows:

δj := xj
∂

∂xj
, j = 1, n (4)

in the form of [
Qj(δ)x−1

j − Pj(δ)
]
z(x), j = 1, n. (5)

Here, the differential operators Pj(δ) and Qj(δ) were chosen by replacing the elements
of the vector δ := (δ1, ..., δn) as variables of the polynomials Pj and Qj, defined in (3).

Horn, investigating the convergence of two dimensional hypergeometric series, estab-
lished a partial differential equations’ systems that they fulfilled [4] (pp. 232–236).

Systems of differential equations and integral representations for all 205 complete
second-order hypergeometric functions of the three variables were obtained in [19,20], and
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relatively few works have been devoted to the study of confluent hypergeometric functions
of the three variables [21–23].

1.2. Generalized Kampé de Fériet Function of Many Variables

The Kampé de Fériet functions of two variables have been studied quite well in the
mathematical literature. Decomposition formulas (expansions), some summation and
analytic continuation formulas and other new results on the double Kampé de Fériet
functions, can be found in [24–30].

The next generalization of the Kampé de Fériet functions (two-dimensional case)
belongs to Srivastava H.M. and Panda R. [31] (p. 1127, Formula (4.1)), which really defined
the extension of the Kampé de Fériet functions from many variables:

Fp:q1;...;qn
l:m1;...;mn

(x) ≡ Fp:q1;...;qn
l:m1;...;mn

(ap
)

:
(

b′q1

)
; ...;

(
b(n)qn

)
;

(αl) :
(

β′
q1

)
; ...;

(
β
(n)
qn

)
;
x1, ..., xn

=
∞

∑
|k|=0

p
∏
j=1

(
aj
)
|k|

q1

∏
j=1

(
b′j
)

k1
...

qn

∏
j=1

(
b(n)j

)
kn

l
∏
j=1

(
αj
)
|k|

m1
∏
j=1

(
β′

j

)
k1

...
mn
∏
j=1

(
β
(n)
j

)
kn

xk1
1

k1!
...

xkn
n

kn!
, (6)

where (λ)ν is the Pohhammer symbol, i.e.,

(λ)0 = 1, (λ)ν = λ(λ + 1) · ... · (λ + ν − 1) =
Γ(λ + ν)

Γ(λ)
,

and Γ(z) is known Gamma function.
For convergence of the hypergeometric series (6), the following conditions must be met

1 + l + mj − p − qj ≥ 0, j = 1, n;

at equality, i.e., at
1 + l + mj − p − qj = 0, j = 1, n,

it is additionally required that either

p > l, |x1|1/(p−l) + ... + |xn|1/(p−l),

or
p ≤ l, max{|x1|, ..., |xn|} < 1.

Along with the confluent Kampé de Fériet functions, there are certain Kampé de
Fériet-like hypergeometric matrix functions [32].

Karlsson [33] considered a special case of the Kampé de Fériet hypergeometric function
of many variables (6) when

qj = q, mj = m, j = 1, n,

and this special case is designated more simply as Fp:q
l:m .

Introduce the generalized confluent hypergeometric function of Kampé de Fériet as
follows:

F1:0
0:2(a; b, c; x) =

∞

∑
|k|=0

(a)|k|
n

∏
j=1

x
kj
j

k j!
(
bj
)

kj

(
cj
)

kj

, (7)

where a, bj and cj are real numbers, with bj, cj ̸= 0,−1,−2, ..., j = 1, n.
List some properties of the Kampé de Fériet function F1:0

0:2.
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Symmetry in the vector of numerical parameters:

F1:0
0:2(a; b, c; x) = F1:0

0:2(a; c, b; x). (8)

Symmetry for each numeric parameter:

F1:0
0:2(a; b, c; x) = F1:0

0:2
(
a; b1, ..., bk−1, ck, bk+1, ..., bn, c1, ..., ck1 , bk, ck+1, ..., cn; x

)
, k = 1, n. (9)

Differentiation formula:

∂|k|

∂xk1
1 ...∂xkn

n
F1:0

0:2(a; b, c; x) =
(a)|k|

(b1)k1
...(bn)kn

(c1)k1
...(cn)kn

F1:0
0:2(a + |k|; b + k, c + k; x).

2. System of Differential Equations

Following Horn [3], let us compose a system of differential equations of the hypergeo-
metric type for a function of the form (7).

By entering the designation

A(k) =
(a)k1+...+kn

k1!...kn!(b1)k1
....(bn)kn

(c1)k1
....(cn)kn

,

make a relationship

A
(
k + ej

)
A(k)

=
a + k1 + ... + kn(

1 + k j
)(

bj + k j
)(

cj + k j
) , j = 1, n.

From here,
Pj(k) = a + k1 + ... + kn, j = 1, n,

Qj(k) =
(
1 + k j

)(
bj + k j

)(
cj + k j

)
, j = 1, n.

Now, by substituting Pj(k) and Qj(k) into the system (5) and using the definition (4)
of differential operators δ1, ..., δn, we have{[(

bj + xj
∂

∂xj

)(
cj + xj

∂

∂xj

)(
1 + xj

∂

∂xj

)
1
xj

−
(

a +
n

∑
k=1

xk
∂

∂xk

)]
z(x) = 0, j = 1, n, (10)

where z(x) = F1:0
0:2(a; b, c; x). By unwrapping the brackets in the system (10), we get{

x2
j

∂3z
∂x3

j
+
(
bj + cj + 1

)
xj

∂2z
∂x2

j
+ bjcj

∂z
∂xj

−
n

∑
k=1

xj
∂z
∂xj

− az = 0, j = 1, n. (11)

Thus, the hypergeometric function F1:0
0:2(a; b, c; x) defined by the equality (7) indeed

satisfies the system of differential Equation (11).
Note that the system of differential Equation (11) in the case n = 2 can be found in [12].

Theorem 1. The system of differential Equation (11) near the origin has 3n linearly independent
solutions.

Proof. To obtain the general integral of the system (11), it is enough to note that it does not
change its form when replacing

z(x) =
n

∏
k=1

x
λj
j · F1:0

0:2(a; b, c; x), (12)

where λj represents arbitrary numbers that need to be determined.
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Having calculated the necessary derivatives of the function (12) and substituting them
into system (11), we obtain

x2
j

∂3z
∂x3

j
+
(
3λj + bj + cj + 1

)
xj

∂2z
∂x2

j
+
[
3λj(λj − 1) + 2λj

(
bj + cj + 1

)
+ bjcj − xj

] ∂z
∂xj

+[
λj
(
λj − 1 + bj

)(
λj − 1 + cj

)
x−1

j − (λ1 + ... + λn + a)
]
z = 0, j = 1, n.

(13)

From here, we obtain the indicate system{
λj
(
λj − 1 + bj

)(
λj − 1 + cj

)
= 0, j = 1, n. (14)

Thus, we have 3n solutions.
Indeed, if λj ̸= 1 − bj and λj ̸= 1 − cj (j = 1, n), then the system (14) has one (first)

trivial solution, as follows:

λ1 λ2 λ3 λ4 ... λn−3 λn−2 λn−1 λn
1 : 0 0 0 0 ... 0 0 0 0

if either λj = 1 − bj and λj ̸= 1 − cj, or λj ̸= 1 − bj and λj = 1 − cj (j = 1, n), then the
system (14) has 2 C1

n solutions, as follows:

λ1 λ2 λ3 λ4 ... λn−3 λn−2 λn−1 λn

C1
n :


1 − b1 0 0 0 ... 0 0 0 0

0 1 − b2 0 0 ... 0 0 0 0
0 0 1 − b3 0 ... 0 0 0 0
... ... ... ... ... ... ... ... ...
0 0 0 0 ... 0 0 0 1 − bn

In a similar way, we will find all solutions of the system (14), as follows:

λ1 λ2 λ3 λ4 ... λn−3 λn−2 λn−1 λn

C1
n :


1 − c1 0 0 0 ... 0 0 0 0

0 1 − c2 0 0 ... 0 0 0 0
0 0 1 − c3 0 ... 0 0 0 0
... ... ... ... ... ... ... ... ...
0 0 0 0 ... 0 0 0 1 − cn
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λ1 λ2 λ3 λ4 ... λn−3 λn−2 λn−1 λn

C2
n :



1 − b1 1 − b2 0 0 ... 0 0 0 0
1 − b1 0 1 − b3 0 ... 0 0 0 0
1 − b1 0 0 1 − b4 ... 0 0 0 0
1 − b1 0 0 0 ... 0 0 0 0

... ... ... ... ... ... ... ... ...
1 − b1 0 0 0 ... 0 0 0 1 − bn

0 1 − b2 1 − b3 0 ... 0 0 0 0
0 1 − b2 0 1 − b3 ... 0 0 0 0
0 1 − b2 0 0 ... 0 0 0 0
... ... ... ... ... ... ... ... ...
0 1 − b2 0 0 ... 1 − bn−3 0 0 0
0 1 − b2 0 0 ... 0 1 − bn−2 0 0
0 1 − b2 0 0 ... 0 0 1 − bn−1 0
0 1 − b2 0 0 ... 0 0 0 1 − bn
... ... ... ... ... ... ... ... ...
0 0 0 0 ... 1 − bn−3 1 − bn−2 0 0
0 0 0 0 ... 1 − bn−3 0 1 − bn−1 0
0 0 0 0 ... 1 − bn−3 0 0 1 − bn
0 0 0 0 ... 0 1 − bn−2 1 − bn−1 0
0 0 0 0 ... 0 1 − bn−2 0 1 − bn
0 0 0 0 ... 0 0 1 − bn−1 1 − bn

λ1 λ2 λ3 λ4 ... λn−3 λn−2 λn−1 λn

C2
n :



1 − b1 1 − c2 0 0 ... 0 0 0 0
1 − b1 0 1 − c3 0 ... 0 0 0 0
1 − b1 0 0 1 − c4 ... 0 0 0 0
1 − b1 0 0 0 ... 0 0 0 0

... ... ... ... ... ... ... ... ...
1 − b1 0 0 0 ... 0 0 0 1 − cn

0 1 − b2 1 − c2 0 ... 0 0 0 0
0 1 − b2 0 1 − c3 ... 0 0 0 0
0 1 − b2 0 0 ... 0 0 0 0
... ... ... ... ... ... ... ... ...
0 1 − b2 0 0 ... 1 − cn−3 0 0 0
0 1 − b2 0 0 ... 0 1 − cn−2 0 0
0 1 − b2 0 0 ... 0 0 1 − cn−1 0
0 1 − b2 0 0 ... 0 0 0 1 − cn
... ... ... ... ... ... ... ... ...
0 0 0 0 ... 1 − bn−3 1 − cn−2 0 0
0 0 0 0 ... 1 − bn−3 0 1 − cn−1 0
0 0 0 0 ... 1 − bn−3 0 0 1 − bn
0 0 0 0 ... 0 1 − bn−2 1 − cn−1 0
0 0 0 0 ... 0 1 − bn−2 0 1 − cn
0 0 0 0 ... 0 0 1 − bn−1 1 − cn
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λ1 λ2 λ3 λ4 ... λn−3 λn−2 λn−1 λn

C2
n :



1 − c1 1 − b2 0 0 ... 0 0 0 0
1 − c1 0 1 − b3 0 ... 0 0 0 0
1 − c1 0 0 1 − b4 ... 0 0 0 0
1 − c1 0 0 0 ... 0 0 0 0

... ... ... ... ... ... ... ... ...
1 − c1 0 0 0 ... 0 0 0 1 − bn

0 1 − c2 1 − b2 0 ... 0 0 0 0
0 1 − c2 0 1 − b3 ... 0 0 0 0
0 1 − c2 0 0 ... 0 0 0 0
... ... ... ... ... ... ... ... ...
0 1 − c2 0 0 ... 1 − bn−3 0 0 0
0 1 − c2 0 0 ... 0 1 − bn−2 0 0
0 1 − c2 0 0 ... 0 0 1 − bn−1 0
0 1 − c2 0 0 ... 0 0 0 1 − bn
... ... ... ... ... ... ... ... ...
0 0 0 0 ... 1 − cn−3 1 − bn−2 0 0
0 0 0 0 ... 1 − cn−3 0 1 − bn−1 0
0 0 0 0 ... 1 − cn−3 0 0 1 − bn
0 0 0 0 ... 0 1 − bn−2 1 − cn−1 0
0 0 0 0 ... 0 1 − bn−2 0 1 − cn
0 0 0 0 ... 0 0 1 − bn−1 1 − cn

λ1 λ2 λ3 λ4 ... λn−3 λn−2 λn−1 λn

C2
n :



1 − c1 1 − c2 0 0 ... 0 0 0 0
1 − c1 0 1 − c3 0 ... 0 0 0 0
1 − c1 0 0 1 − c4 ... 0 0 0 0
1 − c1 0 0 0 ... 0 0 0 0

... ... ... ... ... ... ... ... ...
1 − c1 0 0 0 ... 0 0 0 1 − cn

0 1 − c2 1 − c2 0 ... 0 0 0 0
0 1 − c2 0 1 − c3 ... 0 0 0 0
0 1 − c2 0 0 ... 0 0 0 0
... ... ... ... ... ... ... ... ...
0 1 − c2 0 0 ... 1 − cn−3 0 0 0
0 1 − c2 0 0 ... 0 1 − cn−2 0 0
0 1 − c2 0 0 ... 0 0 1 − cn−1 0
0 1 − c2 0 0 ... 0 0 0 1 − cn
... ... ... ... ... ... ... ... ...
0 0 0 0 ... 1 − cn−3 1 − cn−2 0 0
0 0 0 0 ... 1 − cn−3 0 1 − cn−1 0
0 0 0 0 ... 1 − cn−3 0 0 1 − cn
0 0 0 0 ... 0 1 − cn−2 1 − cn−1 0
0 0 0 0 ... 0 1 − cn−2 0 1 − cn
0 0 0 0 ... 0 0 1 − cn−1 1 − cn
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λ1 λ2 λ3 λ4 ... λn−3 λn−2 λn−1 λn

23C3
n :



1 − b1 1 − b2 1 − b3 0 ... 0 0 0 0
... ... ... ... ... ... ... ... ...
0 0 0 0 ... 0 1 − bn−2 1 − bn−1 1 − bn
... ... ... ... ... ... ... ... ...

1 − c1 1 − c2 1 − c3 0 ... 0 0 0 0
... ... ... ... ... ... ... ... ...
0 0 0 0 ... 0 1 − cn−2 1 − cn−1 1 − cn

..................................................................

λ1 λ2 λ3 λ4 ... λn−3 λn−2 λn−1 λn

2nCn
n :


1 − b1 1 − b2 1 − b3 1 − b4 ... 1 − bn−3 1 − bn−2 1 − bn−1 1 − bn
1 − c1 1 − b2 1 − b3 1 − b4 ... 1 − bn−3 1 − bn−2 1 − bn−1 1 − bn

... ... ... ... ... ... ... ... ...
1 − c1 1 − c2 1 − c3 1 − c4 ... 1 − cn−3 1 − cn−2 1 − cn−1 1 − cn.

Here, Cm
n =

n!
m!(n − m!)

are binomial coefficients. It is obvious that

1 + 2 · C1
n + 22 · C2

n + ... + 2n−1 · Cn−1
n + 2n · Cn

n = (1 + 2)n = 3n.

Thus, the system of algebraic Equation (14) has 3n solutions.
Therefore, the system of hypergeometric Equation (13) has 3n linearly independent

solutions, as follows:
C0

n : { F1:0
0:2(a; b, c; x),

C1
n :


x1−b1

1 F1:0
0:2(a + 1 − b1; 2 − b1, b2, ..., bn, c1 − b1 + 1, c2, ..., cn; x),
..............................................................................

x1−bn
n F1:0

0:2(a + 1 − bn; b1, b2, ..., bn−1, 2 − bn, c1, c2, ..., cn−1, cn − bn + 1; x),

C1
n :


x1−c1

1 F1:0
0:2(a + 1 − c1; b1 − c1 + 1, b2, ..., bn, 2 − c1, c2, ..., cn; x),
..............................................................................

x1−cn
n F1:0

0:2(a + 1 − cn; b1, b2, ..., bn−1, bn − cn + 1, c1, c2, ..., cn−1, 2 − cn; x),

C2
n :



x1−b1
1 x1−b2

2 F1:0
0:2

[
a + 2 − b1 − b2; 2 − b1, 2 − b2, b3, ..., bn,

c1 − b1 + 1, c2 − b2 + 1, c3, ..., cn;
x
]

,

..............................................................................

x1−b1
1 x1−bn

n F1:0
0:2

[
a + 2 − b1 − bn; 2 − b1, b2, ..., bn−1, 2 − bn,

c1 − b1 + 1, c2, ..., cn−1, cn − bn + 1;
x
]

,

x1−b2
2 x1−b3

3 F1:0
0:2

[
a + 2 − b2 − b3; b1, 2 − b2, 2 − b3, b4, ..., bn;

c1, c2 − b2 + 1, c3 − b3 + 1, c4, ..., cn;
x
]

,

..............................................................................

x1−bn−1
n−1 x1−bn

n F1:0
0:2

[
a + 2 − bn−1 − bn; b1, ..., bn−2, 2 − bn−1, 2 − bn,

c1, ..., cn−2, cn−1 − bn−1 + 1, cn − bn + 1;
x
]

,

C2
n :



x1−b1
1 x1−c2

2 F1:0
0:2

[
a + 2 − b1 − c2; 2 − b1, b2 − c2 + 1, b3, ..., bn,

c1 − b1 + 1, 2 − c2, c3, ..., cn;
x
]

,

..............................................................................

x1−b1
1 x1−cn

n F1:0
0:2

[
a + 2 − b1 − cn; 2 − b1, b2, ..., bn−1, bn − cn + 1,

c1 − b1 + 1, c2, ..., cn−1, 2 − cn;
x
]

,

x1−b2
2 x1−c3

3 F1:0
0:2

[
a + 2 − b2 − c3; b1, 2 − b2, b3 − c3 + 1, b4, ..., bn;

c1, c2 − b2 + 1, 2 − c3, c4, ..., cn;
x
]

,

..............................................................................

x1−bn−1
n−1 x1−cn

n F1:0
0:2

[
a + 2 − bn−1 − cn; b1, ..., bn−2, 2 − bn−1, bn − cn + 1,

c1, ..., cn−2, cn−1 − bn−1 + 1, 2 − cn;
x
]

,
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C2
n :



x1−c1
1 x1−b2

2 F1:0
0:2

[
a + 2 − c1 − b2; b1 − c1 + 1, 2 − b2, b3, ..., bn,

2 − c1, c2 − b2 + 1, c3, ..., cn;
x
]

,

..............................................................................

x1−c1
1 x1−bn

n F1:0
0:2

[
a + 2 − c1 − bn; b1 − c1 + 1, b2, ..., bn−1, 2 − bn,

2 − c1, c2, ..., cn−1, cn − bn + 1;
x
]

,

x1−c2
2 x1−b3

3 F1:0
0:2

[
a + 2 − c2 − b3; b1, b2 − c2 + 1, 2 − b3, b4, ..., bn;

c1, 2 − c2, c3 − b3 + 1, c4, ..., cn;
x
]

,

..............................................................................

x1−cn−1
n−1 x1−bn

n F1:0
0:2

[
a + 2 − cn−1 − bn; b1, ..., bn−2, bn−1 − cn−1 + 1, 2 − bn,

c1, ..., cn−2, 2 − cn−1, cn − bn + 1;
x
]

,

C2
n :



x1−c1
1 x1−c2

2 F1:0
0:2

[
a + 2 − c1 − c2; b1 − c1 + 1, b2 − c2 + 1, b3, ..., bn,

2 − c1, 2 − c2, c3, ..., cn;
x
]

,

..............................................................................

x1−c1
1 x1−cn

n F1:0
0:2

[
a + 2 − c1 − cn; b1 − c1 + 1, b2, ..., bn−1, bn − cn + 1,

2 − c1, c2, ..., cn−1, 2 − cn;
x
]

,

x1−c2
2 x1−c3

3 F1:0
0:2

[
a + 2 − c2 − c3; b1, b2 − c2 + 1, b3 − c3 + 1, b4, ..., bn;

c1, 2 − c2, 2 − c3, c4, ..., cn;
x
]

,

..............................................................................

x1−cn−1
n−1 x1−cn

n F1:0
0:2

[
a + 2 − cn−1 − cn; b1, ..., bn−2, bn−1 − cn−1 + 1, bn − cn + 1,

c1, ..., cn−2, 2 − cn−1, 2 − cn;
x
]

,
..............................................................................................................................

2n · Cn
n :



x1−b1
1 ...x1−bn

n F1:0
0:2

[
a + n − b1 − ... − bn; 2 − b1, ..., 2 − bn,

c1 − b1 + 1, ..., c2 − bn + 1;
x
]

,

..............................................................................

x1−c1
1 x1−b2

2 ...x1−bn
n F1:0

0:2

[
a + n − c1 − b2 − ... − bn; b1 − c1 + 1, 2 − b2, ..., 2 − bn,

2 − c1, c2 − b2 + 1, ..., cn − bn + 1;
x
]

,

..............................................................................

x1−c1
1 ...x1−cn

n F1:0
0:2

[
a + n − c1 − ... − cn; b1 − c1 + 1, ..., bn − cn + 1,

2 − c1, ..., 2 − cn;
x
]

.

Theorem 1 is proved.

It can be observed that all solutions of the system of hypergeometric Equation (13) are
categorized into several groups.

It turns out that by using the symmetry properties (8) and (9) of the Kampé de Fériet
function F1:0

0:2, it is possible to simplify the extended representation of the system solutions
(13). Indeed, the first group called C0

n contains only one solution, which we denote by z0, as
follows

z0(x) := F1:0
0:2(a; b, c; x); (15)

the next two groups called C1
n contain n solutions each. However, all 2n solutions in these

two groups are symmetric with respect to the numerical parameters bj and cj (j = 1, n).
Therefore, it is sufficient to select one solution from these, specifically the solution that
appears first in the first group C1

n, which we denote by z1, as follows:

z1(x) := x1−b1
1 F1:0

0:2(a + 1 − b1; 2 − b1, b2, ..., bn, c1 − b1 + 1, c2, ..., cn; x); (16)

Via similar reasoning, we select one solution from the following four groups, called
C2

n, which together contain 22 · C2
n = 2n(n − 1) solutions, as follows:

z2(x) := x1−b1
1 x1−b2

2 F1:0
0:2

[
a + 2 − b1 − b2; 2 − b1, 2 − b2, b3, ..., bn,

c1 − b1 + 1, c2 − b2 + 1, c3, ..., cn;
x
]

; (17)

Similarly, another solution stands out from the following eight groups called C3
n, which

together contain 23 · C3
n = 4n(n − 1)(n − 2)/3 solutions, as follows:
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z3(x) := x1−b1
1 x1−b2

2 x1−b3
3 F1:0

0:2

[
a + 3 − b1 − b2 − b3; 2 − b1, 2 − b2, 2 − b3, b4, ..., bn,

c1 − b1 + 1, c2 − b2 + 1, c3 − b3 + 1, c4, ..., cn;
x
]

; (18)

The last group, called 2n · Cn
n , contains 2n solutions. The solution that appears first in

this group should be singled out, as follows:

zn(x) := x1−b1
1 ...x1−bn

n F1:0
0:2

[
a + n − b1 − ... − bn; c1 − b1 + 1, ..., cn − bn + 1,

2 − b1, ..., 2 − bn;
x
]

. (19)

Combining the formulas of solutions (15)–(19), we conclude that all solutions of
the system of hypergeometric Equation (13), which are asymmetric with respect to the
numerical parameters bj and cj (j = 1, n), are represented as

zk(x) := γk

k

∏
j=1

x
1−bj
j · F1:0

0:2

(
a + k − b1 − ... − bk; 2 − b1, ..., 2 − bk, bk+1, ..., bn,

c1 − b1 + 1, ..., ck − bk + 1, ck+1, ..., cn;
x
)

, (20)

where γk is an arbitrary constant; k = 0, n; and the empty product is interpreted as a unit.

3. Self-Similar Solutions

Consider Equation (1) in the area Ω = {(x, t) : x1 > 0, ..., xn > 0, t > 0}, the solution
of which we will seek in the form of

u(x, t) = P(t)ω(ξ), (21)

where

P(t) =
l + 1
ntl+1 , l > 0; ξ := (ξ1, ..., ξn), ξ j = −α3

j P(t)x
1/αj
j ; αj =

1
mj + 3

, mj > 0. (22)

Substituting (21) into Equation (1), we obtain a third-order partial differential equation,
as follows:

n

∑
j=1

{
ξ2

j
∂3ω

∂ξ3
j
+ 3
(
1 − αj

)
ξ j

∂2ω

∂ξ2
j
+
[(

1 − αj
)(

1 − 2αj
)
− nξ j

] ∂ω

∂ξ j

}
− nω = 0,

which is equivalent to the following system of hypergeometric differential equations:{
ξ2

j
∂3ω

∂ξ3
j
+
[(

1 − αj
)
+
(
1 − 2αj

)
+ 1
]
ξ j

∂2ω

∂ξ2
j
+
(
1 − αj

)(
1 − 2αj

)
ωξ −

n

∑
k=1

ξk
∂ω

∂ξ j
− ω = 0, j = 1, n. (23)

Now comparing the latter system (23) with system (11) and taking into account (21), by
virtue of (20), it is easy to write out self-similar solutions of a degenerate partial differential
Equation (1) in the following form:

u0(x, t) = γ0P · F1:0
0:2

[
1;

1 − 2α1, ..., 1 − 2αn, 1 − α1, ..., 1 − αn;
ξ

]
,

(24)
uk(x, t) = γkP1+2α1+...+2αk x2

1...x2
k×

F1:0
0:2

[
1 + 2α1 + ... + 2αk;

1 + 2α1, ..., 1 + 2αk, 1 − 2αk+1, ..., 1 − 2αn, 1 + α1, ..., 1 + αk, 1 − αk+1, ..., 1 − αn;
ξ

]
, (25)

where k = 1, n, and P = P(t), ξ, αj (j = 1, n) are defined in (22).
Thus, the following theorem is proved.
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Theorem 2. Self-similar solutions of a degenerate differential Equation (1) are represented by
Formulas (24) and (25).

4. Conclusions

In this work, self-similar solutions were constructed for a degenerate third-order
differential equation with n independent variables (1). The solution of the equation
was sought as a product of the functions P(t) and ω(ξ) (21). Thus, solving the original
Equation (1) was reduced to solving a third-order hypergeometric differential Equation (23).
Special solutions of Equation (23) are the n so-called self-similar solutions, written in forms
(24) and (25). The solution involves the function F1:0

0:2, which is a generalized confluent
hypergeometric Kampé de Fériet function. A theorem was proven that, near the origin, the
degenerate partial differential Equation (1) has 3n solutions.
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